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Resumo

Modelos de Regressdo em Cristas apresentam caracteristicas préprias e
problemas especificos. S3o geralmente utilizados para contornar ¢ problema da
multicolinearidade, consequéncia da existéncia de relagbes lineares entre as varidveis

explicativas.

0 objetivo do presente trabalho é apresentar e discutir as medidas de diagnés-
tico e a correspondente anilise de influéncia quando é utilizado o procedimento de
regressao em cristas.

Apresentaremos inicialmente medidas de influéncia especificas para o contexto

de regressdo em cristas. Serdo analisadas ainda medidas de influéncia local neste

mesmo contexto. Finalmente, os procedimentos descritos serdo aplicados aum

conjunto de dados reais.



1.Medidas de Influéncia na Regressdo em Cristas

Consideremos o modelo de regress3do linear
y =15, +XB, +¢,

onde y & um vetor de varidveis aleatérias observaveis, 1 é um vetor contendo o valor
1 em todas as posigbes, £, é um parédmetro desconhecido, X =(x,,...,xp) € uma
matriz nxp centralizada e padronizada de constantes conhecidas
(l'x, =0, x',x, =1 i= ],...,p), B, € um vetor de pardmetros desconhecidos e £ é um

vetor de erros ndo observéveis com E(g)=0 e var(c)=o1.

se Z=(1,X), o estimador de minimos quadrados de B [p'= (ﬂ.,,ﬁ',)] é
b=(Z'Z)'Z'y, o vetor de respostas ajustadas fica § = Zb e o estimador de o &

s* =¢'e/(n— p—1), sendo que e é o vetor de residuos (1Y —'})

O estimador em cristas surgiu como uma forma de contornar o problema de

multicolinearidade que pode aparecer em dados amostrais.

O problema principal quando se utiliza o estimador de minimos quadrados na
presenga de multicolinearidade é que, embora este seja nao viciado, sua varidncia é

grande.

Por outro lado, o estimador em cristas é viciado, mas seu erro quadratico
médio pode ser menor que o do estimador n3o viciado B de minimos quadrados,

devido ao decréscimo na variancia (Montgomery e Peck, 1982, pg. 311) .



O estimador em cristas é definido como
b =(Zzz+a)'zy
onde I' = diag(o, 1,.., 1) de dimensdo p+1

Existem inGmeros critérios para a determinacdo do valor de k e varios deles estdo

descritos em Oishi (1983).

A andlise de diagndstico em modelos de regressdo quandoos parimetros s3o
estimados pelo procedimento de minimos quadrados é bastante conhecida. No
entanto, para o procedimento de regress3o em cristas, a literatura ndo se mostra tao

rica. Apresentaremosa seguir algumas medidas de diagnéstico para esse caso,

extrafdas do trabalho de Walker e Birch (1988).

Ao utilizarmos o estimador em cristas, o vetor de valores ajustados sera

¥y =2Zb
= Z(Z'Z + I )_' Z'y.
Portanto, a matriz H’ =Z(Z'Z+kl')'] Z' assume uma fungdo similar 3 da
matriz “hat” na estimagdo por minimos quadrados. O i-ésimo valor previsto pode ser
escrito em termos dos elementos de H' como

7 =Zh,}y,-
Jal

Consequentemente, 8y, /3y, = h, = h, e com isso, os elementos da diagonal

da matriz “hat” do estimador em cristas podem ser interpretados, assim como no caso

de minimos quadrados, como um valor de alavancagem.



Uma versdo alternativa para a distdncia de Cook adaptada também ao

contexto de regressio em cristas é dada pela expressdo
D; =(1/{(p+1)s o' -b* ()} 22 (" -°().
emque b’ (x) € o estimador em cristas calculado sem a j-ésima observagao.

Amedida D, também pode ser escrito como

D} =(/(p+1)? )5 -9 NG -3 ().

sendo que ¥° =Zb"(7)
2 -Anilise de Influéncia Local na Regress3o em Cristas

O método da influéncia local foi desenvolvido por Cook (1986) e é aplicavel

apenas em procedimentos de estimag3o via fungdo de verossimilhanga.

Seja L(O) o logaritmo da fungdo de verossimilhanga para um modelo inicial,

sendo @ um vetor px1 de parametros desconhecidos com estimador de maxima

verossimilhanga dado por 0.

S3o introduzidos distirbios no modelo através do vetor w, mxl, wcQ,
Q cR”, onde  representa um conjunto aberto de possiveis pequenos disturbios.
Do ponto de vista pratico, w refletiria qualquer esquema de perturbagdo, por
exemplo, nas varidveis explicativas ou na matriz de covaridncias da varidvel resposta

do modelo de regressiao.



Seja L(B | w) o logaritmo da fungdo de verossimilhanga que corresponde ao
modelo que sofreu perturbagdo e 6, o estimador de maxima verossimilhanga
correspondente a esse modelo. Supondo que exista um ponto w, em Q que
representa a auséncia de perturbagio nos dados, de modo que L(8)=L(8|w,), e
assumindo que L(O | w) seja duplamente diferencidvel e continua em uma vizinhanga

de (ﬁ',w'O ), o deslocamento de verossimilhangas de Cook é definido como

LD(w)=228)- 25, .

e compara as estimativas 0 e 0_, podendo, assim, avaliar a influéncia dos disturbios

w. Grandes valores de LD(w) indicam que e 0, diferem consideravelmente em

relag3o ao contorno da fungio de verossimilhanga sem perturbagio 1(8).

Esse método é baseado no estudo do comportamento local de um grdfico de

influéncia a(w)=(w',LD(w)) ao redor de w,. O procedimento consiste em
considerar w como w(a)=w,+ad, ac® e d um vetor diregio de comprimento

unitario.

Cook (1986) sugere investigar a diregdo na qual a medida de influéncia
LD(w) muda localmente mais rapidamente, que é a curvatura méxima de LD, dada

por

Coue = 1ax 2|d'F],

em que F é uma matriz mxm definida por



F=A'Q™'A,
A éamatriz pxm (p=dim(8), m = dim(w)) com elementos

_&Ljw)

Ay
9,0w,

’

avaliados em 0 e w,, e —Q representa a matriz de informacdo observada do
modelo sem distirbios Q=[6’L(0)|60,60 J], avaliada em 0. Verificase que a
maximizagio de |d'Fd|, sujeito 3 restricio que d'd=1, resulta em d,, que
representa o autovetor correspondente ao maior autovalor absoluto C,, de F. A

diregao do vetor d_, seria aquela que produziria a maior mudanca local nas

estimativas dos parametros.

Cook (1986) sugere como referéncia geral uma curvatura igual a 2, sendo que

curvaturas maiores que esse valor indicariam notavel sensibilidade local.
Billor e Loynes (1999) propuseram ainda uma medida alternativa, descrita por
LD" (w)=-2[L(3)- L6, 1))

A quantidade LD'(W) compararia entdo as fungSes de verossimilhanga das

duas situagBes consideradas, com e sem perturbagdo. Para m 2 2, os autores sugerem

o uso da medida

low =|[VLD' (w,)),

onde VLD'(w,) é o vetor gradiente da fungdo LD" em w,



Para o cilculo das medidas de influéncia, de acordo com essa abordagem, os
autores escrevem o estimador em cristas como um estimador de pseudo-maxima

verossimilhanga.
Para tal fim, consideraram um modelo de regressdo linear miltipla
Y=Xp+e, (2.1)

onde X é uma matriz conhecida nx p padronizada, B é um vetor pxl de
parametros conhecidos, € é o vetor de erros px1 independentes e com distribui¢do

normal com média zero e variancia desconhecida o? . Admitiu-se adicionalmente que,

nesse modelo, o termo constante n3o foi incluido.

Marquardt (1970) demonstrou que o estimador em cristas é equivalente ao
estimador de minimos quadrados quando os dados sio suplementados por um
conjunto de dados ficticios tomados de acordo com a matriz de planejamento

ortogonal Hk e a variavel resposta Y sendo zero em cada ponto ficticio adicionado.

O modelo aumentado com matriz de planejamento (n+ p)x p

% G(v]

eovetor (n+ p)x1 de varidveis resposta Y, = (Y' 0°) pode ser escrito como
Y, =X_B+e,,

onde g, representa um vetor aleatério cujas componentes sdo varidveis aleatérias

independentes e normalmente distribuidas com média zero e varidncia o. A fungio



densidade de Y, serd denominada fung3o pseudo-densidade e a correspondente

fungdo de pseudo-verossimilhanga sera descrita por

L,,(B)=£+—Blog2n'—“—plogo" _"—IT Zn:(y,—x', B)2 +kB'B |-
2 2 2c =]

L, (p)

o,
O estimador de maxima pseudo-verossimilhanga é resultante de —2—-=0.

Como

n 2
Sy, -x;p) +ip'p

pode ser escrito na forma

(y - XB){y - XB)+ P
=y'y -2y'Xp+p[X'X +]p,

derivando-se essa expressdo com relagdo a B e igualando a zero, obtem-se
2[X'X +k1]p-2X'y =0.

Resolvendo essa equagdo, em decorréncia da utilizagdio da matriz
aumentada, obtém-se a solugdo B’ = (X'X +kI)"X'Y, que & o estimador em cristas.
Uma vez que o estimador em cristas é o estimador de maxima pseudo-
verossimilhanga para o modelo considerado, a medida de influéncia local de Cook

pode ser aplicada na regressio em cristas.

Considerando o modelo  originalmente descrito em (2.1),  que supde

homogeneidade na varidncia do erro, ou seja, var(e): a’l e que pequenos distirbios



s30 introduzidos na variancia de £, por meio de um vetor de distirbios w, nx1,

onde ¢? é suposto conhecido, a fungio de pseudo-verossimilhanga com disttrbios

para o modelo aumentado é

2
20° A iat

L,(B)=constanre - ! [i(y,—x',ﬂ)zw;+kﬁ'ﬂ]+%ilogw;

onde w, =1+w,, w,sendo o i-ésimo componente do vetor nx1 de distirbios

Para o cilculo da curvatura méxima C_,, € necessaria a obten¢do dos

componentes individuais da matriz da informag3o observada — Q e da matriz

Az[i’iﬂ'ﬂ],

aﬁrawj
avaliados em J e w,.

Nessa situacdo, as matrizes Q e A s3o dadas por

_Q-= (X*X + k1)
- 2

o

A XDf)

0,2

onde ¢ & o vetor de residuos em cristas, isto é, ¢ =y—Xp’', p° é o estimador em

cristas e D¢’ )= diag(e],....e, ) A curvatura é obtida como:



C, =2j¥d|
= 2|d‘ aQad|
_2jrple’ (e x+ m)" xDle’ b

0.1

Apos célculos, verifica-se que a curvatura maxima de LD é dada por

onde A, ¢é o maior autovalor de
ple’ (XX + k)" X'Dle’).
Ja, para LD°, a maxima inclinagio sera dada por

vLD;|= le:(l - (°:: I ; .

o2

Com relagdo a uma interpretagdo adequada dessas medidas, Cook (1986)

sugere que C_ =2 pode ser usado como um valor limite. Contudo, Billor e Loynes

{1993) apontaram o valor 1’2n+4(l4n)”2 como relevante na determinagdo de
influéncia local.
3-Aplicagao

As técnicas de andlise apresentadas foram aplicadas ao conjunto de dados do
projeto: Relagdo Estrutura-Atividade de Anestésicos Locais N,N [Dimetilamina) Etil
Benzoatos Para-Substituidos, (André, Elian e Bruscato, 1997) em Oikawa(2008). O

projeto é da drea farmacoldgica e investiga o efeito de diversos tipos de anestésicos
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locais sobre o coragdo de ratos. O interesse desse estudo consistiu em verificar quais
caracteristicas fisico-quimicas da molécula de determinada droga influenciam mais em
sua poténcia téxica, definida como a dose de droga necessdria para ocorrer uma
redugdo de 30% na freqiiéncia do atrio. Para tal, foram utilizados setenta e dois ratos,
homogéneos entre si, divididos em quatorze grupos, contendo de trés a oito ratos.
Cada grupo foi submetido a uma droga diferente e a poténcia téxica calculada apds a

realizagdo de um experimento, descrito no referido trabalho.

Foram consideradas as variaveis independentes

e BA4: largura do comprimento substituinte a partir do eixo da liga¢3o,
perpendiculares a ele {medida em Angstron).

* F:componente de campo (adimensional);

¢ R: componente de ressondncia (adimensional);

e SIGMA: constante de Hammet — combinag3o linear das duas anteriores
(adimensional);

e LOG PAPP: logaritmo do coeficiente de particdo Sleo-dgua medido
(adimensional);

e a varidvel resposta é dada por:

¢ POTENCIA: -log(DE3,), onde DE3 é a dose de droga necesséria para
ocorrer uma redu¢3o de 30% na freqliéncia do dtrio em relagdo ao

controle (adimensional).
Na andlise da relagdo entre a varidvel resposta e as varidveis independentes
utilizou-se um modelo de regressdo linear multipla. No entanto, foi detectada a
presenga de multicolinearidade através do calculo do Fator de Inflagdc da Varidncia e

1



: = 4 ; ’
do nimero condicional, que é obtido pela razéo x=—=, onde A_, é o maior

autovalor da matriz (X'X), na sua forma de correlag3o, enquanto que 1_, é o menor
autovalor dessa matriz. Os autovalores da matriz (X'X) obtidos foram: 3,1756;

1,0058; 0,6851; 0,1267 e 0,0066. x = lﬁ = M =481,15, o que sugere existéncia
Ao 0,0066

de forte multicolinearidade nos dados.

Como forma de contornar o problema da multicolinearidade, um modelo de
regressao em cristas foi ajustado. Para isso, fol utilizado o trago como critério de

escolha para o valor de k, com & variando de zero a dois.

0.4

{xScoef)

x$Slambda

Figura 3.1 - Trago das estimativas dos coeficientes de regressio das varidveis: B4,
SIGMA. F, R e LOG.PAPP
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Através da Figura 3.1, percebe-se que a partir de k =1 os coeficientes tendem
a se estabilizar. Assim, esse valor foi escolhido obtendo-se 0 modelo de regressao em

cristas

¥ =3,27-0,07-B4+0,02-SIGMA — 0,44 -F—0,81-R +0,30- LOG.PAPP
Posteriormente foram aplicadas algumas das técnicas de diagndstico descritas

com o auxilio de programas desenvolvidos no pacote computacional R.

Calculando-se os elementos da diagonal principal da
matriz H' =Z(Z'Z+kl')_] Z' verificou-se que as observacBes 64, 65 e 66 eram as
mais influentes, com valor h,' =0,172 (Figura 3.2). Correspondiam a trés ratos com os

maiores valores de SIGMA (0,72} e foram os unicos a apresentarem valores negativos
em LOG.PAPP (-0,70). Apresentavam também os maiores valores da varidvel F (0,54) e

da varidvel R (0,22).

coo
0.15
0.10
000 oooo
. oaococoo oo cocooaco
0.05 ‘coocoo
7] oo
_— coooco
000000
esoco
T T T T T T T T
'] 10 20 30 40 50 60 70

Figura 3.2 - Valores da diagonal principal da matriz H*
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N3o foram detectados pontos influentes por meio da medida D,. Se o

procedimento adotado fosse o de minimos quadrados, sete seriam as observagGes

influentes: 21, 44, 64, 65, 69, 70 e 71.

A t 3xi btida foi == fEm 0 " - 287 Dessa
curvatura maxima obtida foi C_,, 32 0,03663602 S:

forma, podemos concluir por uma sensibilidade moderada nos dados, de acordo com

o critério de Cook (C_ > 2).

O autovetor associado a A, também fornece informacdo sobre a influéncia

dos pontos,de modo que as coordenadas com maiores valores correspondem aos

pontos mais influentes. Segundo esse critério, foram detectados os ratos de nimeros:
44, 43, 46, 49, 21, 48 e 45, todos com componente de A:m maiores que |0,2|, como

pode ser verificado na Figura 3.3.

o
o
o e °
°
= o ©
o | T ®
A ° o, P
-] Pt 6 o Lo | OOMPLE0O o P O
- 05" o o
<o
(-]
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(=]
02 =3
. °
-]
04
o
T T T L T T T T
0 10 20 30 40 50 -] 70

Figura3.3- Anélise da Influéncia pelas componentes do autovetor assoclado a A,
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Ainclinagdo maxima [, obtida foi

puoil-| 5{-EF g

tal c

VLD, | =13,53.

Assim, como [, =13,53<16,46 =42n+4(14n)"* esta medida n3o sugere

’

sensibilidade local para os dados . Os valores absolutos individuais de /, , em que

o\

e

l, = (1 - ( :1) ] , encontram-se na Figura 3.4 e Tabela 3.1.
fo)

10 _| °
8
6
o
4
2 ° °
o (-]
6P °% %09 onoo°°°°°=°° Opo0 o °e° °d°°° ° o 0,°
0 | cos Qg oo © © °° e o ‘& o° e ©
T T T T T T T T
0 10 20 30 40 50 €0 70

Figura 3.4 — Valores absolutos de /,
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Tabela 3.1~ Valores absolutos individuais de /,

Caso | l | Caso l i | Caso [ l | Caso l i, ] Caso I f; |
1 0,10 16 1,25 31 0,94 46 1,10 61 0,16
2 0,10 17 0,91 32 0,04 a7 0,41 62 0,27
3 0,72 18 0,17 33 0,95 48 0,77 63 0,92
4 0,05 19 0,29 34 0,41 49 2,43 64 0,97
5 0,91 20 0,69 35 0,95 50 0,98 65 0,80
6 0,99 21 10,5 36 0,76 51 0,70 66 0,42
7 0,24 22 0,32 37 0,81 52 0,18 67 0,68
8 0,24 23 0,85 38 2,39 53 0,54 68 0,10
9 0,97 24 0,82 39 1,00 54 0,91 69 0,72
10 0,74 25 0,83 40 0,88 55 0,12 70 0,59
11 0,37 26 0,89 41 0,89 56 0,96 71 0,90
12 0,28 27 0,68 a2 0,95 57 0,57 72 0,23
13 0,95 28 0,29 43 1,34 58 0,63
14 0,89 29 0,46 44 4,96 59 0,99
15 0,84 30 0,60 45 0,24 60 0,63
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Com base neles, detectamos quatro observacSes apresentando valores
perceptivelmente maiores que as demais: 21, 38, 44 e 49, sendo que as observagdes

21 e 44 ja haviam sido detectadas pelo método de minimos quadrados e também
pelas componentes de /1:,,,, Dessa maneira, a andlise de diagnostico mostrou-se

plenamente satisfatéria pois todos os pontos diagnosticados correspondiam a

elementos atipicos, 0 que evidenciou a extrema importincia das técnicas utilizadas.
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