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Modelos de Regressão em Cristas apresentam características próprias e 

problemas específicos. São geralmente utilizados para contornar o problema da 

multicolinearidade, consequência da existência de relações lineares entre as variáveis 

explicativas. 

O objetivo do presente trabalho é apresentar e discutir as medidas de diagnós­

tico e a correspondente análise de influência quando é utilizado o procedimento de 

regressão em cristas. 

Apresentaremos inicialmente medidas de influência específicas para o contexto 

de regressão em cristas. Serão analisadas ainda medidas de influência local neste 

mesmo contexto. Finalmente, os procedimentos descritos serão aplicados a um 

conjunto de dados reais. 
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1.Medidas de Influência na Regressão em Cristas 

Consideremos o modelo de regressão linear 

y =lPo +XP,+&, 

onde y é um vetor de variáveis aleatórias observáveis, l é um vetor contendo o valor 

1 em todas as posições, p0 é um parâmetro desconhecido, X=(x,, ... ,xP) é uma 

matriz n x p centralizada e padronizada de constantes conhecidas 

(rx, = O, x;x, = 1, ; = l, ... ,p), P, é um vetor de parâmetros desconhecidos e e é um 

vetor de erros não observáveis com E(c) = O e var(c) = o-21. 

Se Z = (1,X), o estimador de mínimos quadrados de P ÍII'= (p0 ,fl', )] é 

b = (z•zt' Z'y, o vetor de respostas ajustadas fica y = Zb e o estimador de o-' é 

s2 = e'el(n - p-1), sendo que e é o vetor de resíduos (y-y ). 

O estimador em cristas surgiu como uma forma de contornar o problema de 

multicollnearidade que pode aparecer em dados amostrais. 

O problema principal quando se utiliza o estimador de mínimos quadrados na 

presença de multicolinearidade é que, embora este seja não viciado, sua variância é 

grande. 

Por outro lado, o estimador em cristas é viciado, mas seu erro quadrático 

médio pode ser menor que o do estimador não viciado p de mínimos quadrados, 

devido ao decréscimo na variância (Montgomery e Peck, 1982, pg. 311} . 
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O estimador em cristas é definido como 

onde f = diag( O, 1, ... , 1) de dimensão p + 1 

Existem inúmeros critérios para a determinação do valor de /e e vários deles estão 

descritos em Oishi (1983}. 

A análise de diagnóstico em modelos de regressão quando os parâmetros são 

estimados pelo procedimento de mínimos quadrados é bastante conhecida. No 

entanto, para o procedimento de regressão em cristas, a literatura não se mostra tão 

rica. Apresentaremos a seguir algumas medidas de diagnóstico para esse caso, 

extraídas do trabalho de Walker e Birch (1988). 

Ao utilizarmos o estimador em cristas, o vetor de valores ajustados será 

f =Zb" 

=Z(z·z+1cfY,z•y. 

Portanto, a matriz u· =Z(Z'Z+kffz• assume uma função similar à da 

matriz #hat" na estimação por mínimos quadrados. O /-ésimo valor previsto pode ser 

escrito em termos dos elementos de H " como 

Consequentemente, ôy,' / õy, = h,; = h,° e com isso, os elementos da diagonal 

da matriz #hat# do estimador em cristas podem ser interpretados, assim como no caso 

de mínimos quadrados, como um valor de alavancagem. 
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Uma versão alternativa para a distância de Cook adaptada também ao 

contexto de regressão em cristas é dada pela expressão 

em que b • (;) é o estimador em cristas calculado sem ai-ésima observação. 

A medida v; também pode ser escrito como 

sendo que y' =Zb' (;). 

2 -Análise de Influência local na Regressão em Cristas 

O método da influência local foi desenvolvido por Cook {1986) e é aplicável 

apenas em procedimentos de estimação via função de verossimilhança. 

Seja L(O) o logaritmo da função de verossimilhança para um modelo inicial, 

sendo O um vetor px J de parâmetros desconhecidos com estimador de máxima 

verossimilhança dado por Ô. 

São introduzidos distúrbios no modelo através do vetor w, m x 1, w e n, 

n e !R•, onde n representa um conjunto aberto de possíveis pequenos distúrbios. 

Do ponto de vista prático, w refletiria qualquer esquema de perturbação, por 

exemplo, nas variáveis explicativas ou na matriz de covariãncias da variável resposta 

do modelo de regressão. 
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Seja L(O I w) o logaritmo da função de verossimilhança que corresponde ao 

modelo que sofreu perturbação e ô. o estimador de máxima verossimilhança 

correspondente a esse modelo. Supondo que exista um ponto w0 em n que 

representa a ausência de perturbação nos dados, de modo que L(8) = L(81 w O), e 

assumindo que L(O I w) seja duplamente diferenciável e contínua em uma vizinhança 

de (ô•, w'0 ), o deslocamento de verossimilhanças de Cook é definido como 

LD(w) = 2[r(ô )- r(ô. )j, 

e compara as estimativas Ô e ô., podendo, assim, avaliar a influência dos distúrbios 

w. Grandes valores de LD(w) indicam que Ô e Ô,. diferem consideravelmente em 

relação ao contorno da função de verossimilhança sem perturbação L(8 ). 

Esse método é baseado no estudo do comportamento local de um gráfico de 

influência a(w)=(w',LD(w)) ao redor de w 0 • O procedimento consiste em 

considerar w como w(a) = w O + ad , a e 9t e d um vetor direção de comprimento 

unitário. 

Cook (1986) sugere investigar a direção na qual a medida de Influência 

LD(w) muda localmente mais rapidamente, que é a curvatura máxima de LD, dada 

por 

e.,.. = max 2 ld'Fdl, 
ldl•I 

em que Fé uma matriz mxm definida por 
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t,. é a matriz p x m (p = dim{O 1 m = dim{w )) com elementos 

avaliados em Ô e w 0 , e - Q representa a matriz de informação observada do 

modelo sem distúrbios Q = [ii L(O)I ao,ao J, avaliada em Ô. Verifica-se que a 

maximização de !d'Fdl, sujeito à restrição que d'd = 1, resulta em d_, que 

representa o autovetor correspondente ao maior autovalor absoluto C.,.. de F. A 

direção do vetor d,_ seria aquela que produziria a maior mudança local nas 

estimativas dos parâmetros. 

Cook (1986) sugere como referência geral uma curvatura Igual a 2, sendo que 

curvaturas maiores que esse valor indicariam notável sensibilidade local. 

Billor e Loynes (1999) propuseram ainda uma medida alternativa, descrita por 

A quantidade LD' {w) compararia então as funções de verossimilhança das 

duas situações consideradas, com e sem perturbação. Para m ~ 2, os autores sugerem 

o uso da medida 

onde V LD' {w 0 ) é o vetor gradiente da função LD' em w 0 
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Para o cálculo das medidas de influência, de acordo com essa abordagem, os 

autores escrevem o estimador em cristas como um estimador de pseudo-máxima 

verossimilhança. 

Para tal fim, consideraram um modelo de regressão linear múltipla 

Y=XP+c, {2.1) 

onde X é uma matriz conhecida n x p padronizada, p é um vetor p x 1 de 

parâmetros conhecidos, e é o vetor de erros p x 1 independentes e com distribuição 

normal com média zero e variância desconhecida cr2 
• Admitiu-se adicionalmente que, 

nesse modelo, o termo constante não foi incluído. 

Marquardt (1970) demonstrou que o estimador em cristas é equivalente ao 

estimador de mínimos quadrados quando os dados são suplementados por um 

conjunto de dados fictícios tomados de acordo com a matriz de planejamento 

ortogonal H/c e a variável resposta Y sendo zero em cada ponto fictício adicionado. 

O modelo aumentado com matriz de planejamento (n + p )x p 

e o vetor (n + p ) x 1 de variáveis resposta Y~ = (Y' O') pode ser escrito como 

onde e. representa um vetor aleatório cujas componentes são variáveis aleatórias 

independentes e normalmente distribuídas com média zero e variância cr2 
• A função 
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densidade de Y. será denominada função pseudo-densidade e a correspondente 

função de pseudo-verossimilhança será descrita por 

O estimador de máxima pseudo-verossimilhança é resultante de ôL.(JJ) = O. 
ôll 

Como 

pode ser escrito na forma 

(y- XJI }-(y- XJI )+ kJl'JI 

= y'y - 2y' XJI + JI' [X' X+ kl ]JI, 

derivando-se essa expressão com relação a JI e igualando a zero, obtem-se 

2[X'X+kl]J1-2X'y = O. 

Resolvendo essa equação, em decorrência da utilização da matriz 

aumentada, obtêm-se a solução ji' = (X'X + kit X'Y, que é o estimador em cristas. 

Uma vez que o estimador em cristas é o estimador de máxima pseudo-

verossimilhança para o modelo considerado, a medida de Influência local de Cook 

pode ser aplicada na regressão em cristas. 

Considerando o modelo originalmente descrito em (2.1), que supõe 

homogeneidade na variância do erro, ou seja, var(c)= o-21 e que pequenos distúrbios 
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são introduzidos na variância de &1 por meio de um vetor de distúrbios w, nx 1, 

onde u 2 é suposto conhecido, a função de pseudo-verossimilhança com distúrbios 

para o modelo aumentado é 

onde w; = 1 + w,, w, sendo o i-ésimo componente do vetor n x l de distúrbios 

w. 

Para o cálculo da curvatura máxima e_ é necessária a obtenção dos 

componentes Individuais da matriz da informação observada -Q e da matriz 

avaliados em p e w O• 

Nessa situação, as matrizes Q e A são dadas por 

onde e· é o vetor de resíduos em cristas, isto é, e·= y-xp·, p· é o estimador em 

cristas e D(e· }= diag(e; , ... ,e:}. A curvatura é obtida como: 
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C4 =~d'Fdl 

= 21d' A'Q-1 Mi 

= 
2ld'o{e· )x(x•x + kl)·1 x•o(e· ~I 

Após cálculos, verifica-se que a curvatura máxima de LD é dada por 

onde À:,.. é o maior autovalor de 

D(e' )x(x•x+ kl}-1 X'D(e'). 

Já, para LD
0

, a máxima inclinação será dada por 

Com relação a uma interpretação adequada dessas medidas, Cook (1986) 

sugere que C.,.,. = 2 pode ser usado como um valor limite. Contudo, Blllor e Loynes 

{1993) apontaram o valor .J2n+4(14n)112 
como relevante na determinação de 

influência local. 

3-Apllcação 

As técnicas de análise apresentadas foram aplicadas ao conjunto de dados do 

projeto: Relação Estrutura-Atividade de Anestésicos Locais N,N [Dimetilamina) Etil 

Benzoatos Para-Substituídos, (André, Elian e Bruscato, 1997) em Oikawa(2008). O 

projeto é da área farmacológica e investiga o efeito de diversos tipos de anestésicos 
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locais sobre o coração de ratos. O interesse desse estudo consistiu em verificar quais 

características físico-químicas da molécula de determinada droga influenciam mais em 

sua potência tóxica, definida como a dose de droga necessária para ocorrer uma 

redução de 30% na freqüência do átrio. Para tal, foram utilizados setenta e dois ratos, 

homogêneos entre si, divididos em quatorze grupos, contendo de três a oito ratos. 

Cada grupo foi submetido a uma droga diferente e a potência tóxica calculada após a 

realização de um experimento, descrito no referido trabalho. 

Foram consideradas as variáveis independentes 

• 84: largura do comprimento substituinte a partir do eixo da ligação, 

perpendiculares a ele (medida em Ângstron). 

• F: componente de campo (adimensional); 

• R: componente de ressonância (adimensional); 

• SIGMA: constante de Hammet - combinação linear das duas anteriores 

(adimensional); 

• LOG PAPP: logaritmo do coeficiente de partição óleo-água medido 

(adimensional); 

e a variável resposta é dada por: 

• POTtNCIA: -log(DE30), onde DE30 é a dose de droga necessária para 

ocorrer uma redução de 30% na freqüência do átrio em relação ao 

controle (adimensional). 

Na análise da relação entre a variável resposta e as variáveis independentes 

utilizou-se um modelo de regressão linear múltipla. No entanto, foi detectada a 

presença de multicolinearidade através do cálculo do Fator de Inflação da Variância e 
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Â. 
do número condicional, que é obtido pela razão K = 2!!!..., onde Ã..,.. é o maior 

Ã. ... 

autovalor da matriz (X'X), na sua forma de correlação, enquanto que Ã.,.;. é o menor 

autovalor dessa matriz. Os autovalores da matriz (X'X) obtidos foram: 3,1756; 

1,0058; 0,6851; 0,1267 e 0,0066. K = Ã._ = 
3
•
1756 

= 481,15, o que sugere existência 
,i.,... 0,0066 

de forte multicolinearidade nos dados. 

Como forma de contornar o problema da multicollnearidade, um modelo de 

regressão em cristas foi ajustado. Para isso, foi utilizado o tr.iço como critério de 

escolha para o valor de k , com k variando de zero a dois. 
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Figura 3.1 - Traço das estimativas dos coeficientes de regressão das variáveis: B4, 

SIGMA. F, R e LOG.PAPP 
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Através da Figura 3.1, percebe-se que a partir de k = 1 os coeficientes tendem 

a se estabílizar. Assim, esse valor foi escolhido obtendo-se o modelo de regressão em 

cristas 

Y = 3,27 - 0,07 · B4 + 0,02 · SIGMA - 0,44 · F - 0,81 · R + 0,30 · LOG.PAPP 

Posteriormente foram aplicadas algumas das técnicas de diagnóstico descritas 

com o auxílio de programas desenvolvidos no pacote computacional R. 

Calculando-se os elementos da diagonal principal da 

matrizH' =Z(Z'Z+kff Z' verificou-se que as observações 64, 65 e 66 eram as 

mais Influentes, com valor h," = 0,172 (Figura 3.2). Correspondiam a três ratos com os 

maiores valores de SIGMA (0,72) e foram os únicos a apresentarem valores negativos 

em LOG.PAPP (-0,70). Apresentavam também os maiores valores da variável F (0,54) e 

da variável R (0,22). 

0,15 
-

0.10 

-

0,05 

10 20 30 40 60 eo 70 

Figura 3.2 - Valores da diagonal principal da matriz H* 
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Não foram detectados pontos influentes por meio da medida D;. Se o 

procedimento adotado fosse o de mínimos quadrados, sete seriam as observações 

influentes: 21, 44, 64, 65, 69, 70 e 71. 

A curvatura máxima obtida foi C = 2 · .. ( ... = 2 · 0•0525435 2,87. Dessa 
- a2 0,03663602 

forma, podemos concluir por uma sensibilidade moderada nos dados, de acordo com 

o critério de Cook (e...,. > 2). 

O autovetor associado a il;_ também fornece informaçilo sobre a influência 

dos pontos,de modo que as coordenadas com maiores valores correspondem aos 

pontos mais influentes. Segundo esse critério, foram detectados os ratos de números: 

44, 43, 46, 49, 21, 48 e 45, todos com componente de il;_ maiores que \0,2\, como 

pode ser verificado na Figura 3.3. 

o. 

º· 

10 20 30 40 50 "° 70 

Figura3.3- Análise da Influência pelas componentes do autovetor associado a il:.,. 
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A inclinação máxima /,... obtida foi 

1•w;1=[t[,J~r]T, 
jvw;j = 13,53. 

Assim, como/,... =13,53<16,46 = ✓2n+4(14n)112 esta medida não sugere 

sensibilidade local para os dados . Os valores absolutos individuais de /1 , em que 

l, = ( 1-(jt), encontram-se na Figura 3.4 e Tabela 3.1. 
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Figura 3.4 - Valores absolutos de /1 
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Tabela 3.1-Valores absolutos individuais de /1 

Caso 
1 / , 1 Caso i',I Caso i',I Caso i',I Caso i',I 

l 0,10 16 1,25 31 0,94 46 1,10 61 0,16 

2 0,10 17 0,91 32 0,04 47 0,41 62 0,27 

3 0,72 18 0,17 33 0,95 48 0,77 63 0,92 

4 o.os 19 0,29 34 0,41 49 2,43 64 0,97 

s 0,91 20 0,69 35 0,95 50 0,98 65 0,80 

6 0,99 21 10,S 36 0,76 51 0,70 66 0,42 

7 0,24 22 0,32 37 0,81 52 0,18 67 0,68 

8 0,24 23 0,85 38 2,39 53 0,54 68 0,10 

9 0,97 24 0,82 39 1,00 54 0,91 69 0,72 

10 0,74 25 0,83 40 0,88 55 0,12 70 0,59 

11 0,37 26 0,89 41 0,89 56 0,96 71 0,90 

12 0,28 27 0,68 42 0,95 57 0,57 72 0,23 

13 0,95 28 0,29 43 1,34 58 0,63 

14 0,89 29 0,46 44 4,96 59 0,99 

15 0,84 30 0,60 45 0,24 60 0,63 

16 



Com base neles, detectamos quatro observações apresentando valores 

perceptivelmente maiores que as demais: 21, 38, 44 e 49, sendo que as observações 

21 e 44 já haviam sido detectadas pelo método de mínimos quadrados e também 

pelas componentes de i;,,.. Dessa maneira, a análise de diagnóstico mostrou-se 

plenamente satisfatória pois todos os pontos diagnosticados correspondiam a 

elementos atípicos, o que evidenciou a extrema importância das técnicas utilizadas. 
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