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Resumo
Um dos grandes desafios da Modelagem Volumétrica é a definigao de um arcabougo teérico que
suporte a manipulagao e representacao de ob jetos volumétricos. Diferente do que é visto em mode-
lagem de superficies, poucas ferramentas tém sido apresentadas para assegurar robustez topologica
na modelagem de volumes. Nesse artigo oferecemos um ferramental matematico para modelagem
volumétrica de malhas tetraedrais. A partir de uma caracterizacao topologica de tetraedros deriva-
mos um conjunto de operadores de Morse, os quais possibilitam um controle topolégico global
durante a insercao e remocao de tetraedros. Modelagem geométrica e reconstrucao volumétrica
sao areas tipicas de aplicagao do ferramental aqui proposto. A eficacia de nossa abordagem é
demonstrada em reconstrucao de volumes a partir de imagens, onde ruidos sao tratados de forma
topolégica, evitando a etapa de pré-processamento. A etapa de pés-processamento, usualmente
empregada na deteccao de buracos e cavidades no modelo, também pode ser evitada corn controle
topolégico.

Abstract
One of the challenges of Volume Modelling is the definition of theoretical frameworks to support
object manipulation and representation. Opposite to what is seen in the field of surface modelling,
few satisfactory tools have been presented that ensure topological robustness to volumetric models.
In this paper we offer one such mathematical framework for volumetric model definition based on
tetrahedral meshes. From a coinplete tetrahedral topological characterization, a set of Morse
Operators is given, which enable global tolopogical control during tetrahedral addition or removal.
A number of applications can be envisaged, from geometrical modelling to volume reconstruction.
We show the effectiveness of the tetrahedral characterization framework for volume reconstruction
from images, showing that the method is capable of handling certain types of noise topologically
without the need for a time consuming preprocessing step, or a post—processing step to detect
cavities or holes.



1 Introduction
Computational studies of topological nature of objects have attracted researchers from
several fields of science. The wide interest for such subject is motivated by the large
number of computational applications that need to represent topology, such as image
processing, solid and volume modelling, as well as visualization and computer graphics in
general.

The particular area of Volume Modelling (VM) refers to the body of tools and tech-
niques to handle scientific data in 3D space [9]. Arising from the area of scientific visual-
ization, volume modelling represents the next step in the search for a framework involving
definition of volumetric models to support advanced visualization applications. In VM
not much is available to compound such a framework, mainly because most visualizations
so far have been realized as a final step in the data understanding process, whilst new
applications need to have control over the structures under manipulation in various other
stages of the process (such as data representation and interaction), Interaction is central
to data understanding and object manipulation and changes made during this stage must
be tracked.

Three main classes of VM tasks originally involved in the visualization process can
benefit greatly from the support of mathematical modelling. Those are Ddata organi-
zation, volume representation, and the visualization itself. Some mathematical tools for
manipulation of objects in these categories exist, but they are sparse and not Specific to
VM problems.

In the Data Organization category, modelling strategies must allow flexibility and
access to data fields in an effective manner. These data, generated as a result of measure-
ments (ex. Medical Imaging) or simulations (ex. Computational Fluid Dynamics), have
to be structured in a way to speed up access during mapping and visualization stages as
well as further simulations. It must also reveal interesting structures in the original space.
This area lacks tools for robust definition of data spaces and indexing techniques for fast
access to data and features. ‘

In VM, volume representation means the collection of strategies and tools to support
definition of entities characterized by their interior. Although classic modelling and graph—
ical data structures are adapted to representation of object interior, most of them treat
internal half-spaces as uniform, whilst a considerable number of applications need to spec—
ify variation of properties inside objects (e.g. finite volume analysis). Mesh generation
in 3D ([12, 16]) supports volumetric definition, but consistency, robustness and efficiency
are reasons for concern. In visualization applications most techniques represent volume
as union of voxels (volume units). For many applications, however, other types of volume
decomposition (such as using tetrahedral cells) might prove useful, particularly for those
volumes that are not regular in dimension or uniform in content. Therefore in the repre-
sentation field of VM, techniques are necessary to specify various forms of object interior
(and their features.

In the visualization stage of volume models, mapping and rendering must be realized



to translate interior representations and data into visual representations. Most techniques
here are adapted to regular volume units and meshes or structured grids. Tools are
necessary to develop visual counterparts of these techniques for data represented in other,
less uniform, volumetric structures. For those techniques, prOper manipulation tools are
necessary to ease access to existing objects and to generate new ones (ex. as a result of
the mapping process involved in visualization or the interaction with objects).

In this context, the task of volume representation bears importance in all other areas
of VM. In the current stage of development, it relies in a handful of computational tech—

niques with little mathematical support[9]. In particular, topological aspects of volume
models have been largely neglected, regardless of bearing great weight in how VM will
develop. Being able to analyze topology of volumetric meshes is important to enable the
use of unstructured grids throughout the visualization and volume modelling processes.
For instance, strong mathematical framework is necessary to process special features of
meshes during simulation, data traversal, mapping, visualization and interaction. Holes,
singularities, cavities, borders and other features affect all volume modelling tasks and
must be handled with flexibility and robustness, as well as efficiency.

Topological approaches to volume modelling present various advantages over more
conventional, analytical or geometrical approaches. Two of the main advantages are ro-
bustness of implementation and control over object features. Geometrical procedures are
typically unstable and most mathematical representations lack control of topological con-
straints of the model, which are important in many applications.

In order to analyze the topological properties of objects computationally it is necessary
make use of a description of such object and its topological relationships. Forsurface
models, Euler operators have been widely employed to solve problems such as consistency
and robustness. They allow reliable computational treatment of object models. Objects
constructed using Euler operators lend themselves to mathematical manipulation, with
its advantages. With the growth of VM, the area is now in need of similar techniques
that offer the same advantages for objects defined volumetrically. This makes the cell
decomposition issue central to volume modelling.

An specially important kind of volumetric cell decomposition is the tetrahedral de-
composition, due to the variety of applications that employ this kind of representation:
three-dimensional reconstruction [12], isosurface extraction [7], mesh generation [1] and
many others. Although tetrahedral representations have been widely employed, not much
has been done to understand their topological properties when compared with voxel rep-
resentations.

This is the main motivation for the work presented here. In this paper we present a
study of tetrahedron characterization, i.e., we analyze and classify the topological changes
caused by the insertion and removal of tetrahedra in a tetrahedral object model. Be-
sides giving the mathematical framework for such characterization, we offer a set of Morse
operators for tetrahedral meshes that are capable of describing tetrahedral simplicial com-
plexes in a similar way to surface Euler operators. They provide tools for construction and
manipulation of tetrahedral meshes describing objects, in a form that allows full control



of object topology.
Additionally, a data structure is presented to store meshes described with these tools,

and a complexity analysis of the implementation of the operators is given. As an example
of application we employ the operators developed here to a volume reconstruction problem.
This gives rise to an algorithm capable of modelling the volume of objects from a set of
their cross sections.

This text is organized as follows: section 2 presents a brief description of previous work
on topological approaches applied to the various areas related to VM. Basic concepts nec-
essary to understand the notation and nomenclature employed in the remaining of the text
is given in section 3. Section 4 presents the topological tetrahedral characterization and
the Morse operators associated with it. Section 5 introduces a short discussion about the
implementation and complexity of the Morse operators. Section 6 presents the application
in volumetric reconstruction and the main results, followed by our conclusions and future
work in Section 7. ‘

2 Related Works
As mentioned before, the emerging area of Volume Modelling intends to provide structure
and framework for modelling volumetric information, with direct impact in three related
issues, originally associated with computational scientific visualization: Data organization,
Visual Display and Volume Representation. Some tools for manipulation exist, but all
those areas are lacking proper mathematical framework [9], a fact that impair further
development of data understanding techniques.

In order to treat some of the problems and needs of areas related to volume modelling,
researchers have turned to computational topology tools [3, 5], such as the one presented
here. The following text identifies needs and efforts involving computational topology as
a tool in VM areas.

In the issue of data organization, tools have been employed to improve efficiency of
the various steps of the visualization process. Virtually all visualization processes han-
dling data large enough not to fit in memory could benefit from proper data indexing via
geometrical or topological information of the original data set. For instance, in large data
sets, a re-organization of the data using topological indexing may speed up the process of
finding groups of cells of interest for a particular visualization procedure, such as checking
for surface intersection[2].

Isosurface extraction is another subject that has benefited from the topological ap-
proach, in order to solve various problems arising from surface fitting of data. Those
include shape ambiguity, formation of holes Where none existed in the original data, ex-
cess of primitives in the surface model, and bad mesh organization leading to inefficient
traversal. Several topological tools have been employed to solve problems such as topolog-
ical consistency [18], mesh simplification [17], and speed up of the surface fitting process
[10].



In the subject of volume representation, tetrahedral meshes are produced by cell de-
composition processes, which generate a number of problems. The quality of the mesh
itself and the type of connectivity amongst elements are of concern. Additionally, access to
mesh elements (mesh representation) leads to difficulties during interaction, for instance
achieving real time performance during rebuilding of the mesh submitted to operations
such as cuts and slicing. In the cell decomposition context, computational topology has
shown to be an essential mechanism to study various problems caused by mesh generation
[4] and interaction [6].

The set of applications of topological representation vary widely and may carry im-
portance to all areas of volume modelling. This fact has motivated the investigation of
important questions related to the computation of homology [3, 11] and characterization
of tetrahedra [14]. These issues offer immediate tools to build a VM framework. Homology
and tetrahedra characterization offer construction and analysis tools to help control the
structure of volumetric objects. This is very important when handling irregular objects
or phenomena in an unstructured mesh setup.

In particular, the work by Saba and Majumder [14] shows a' sound mathematical
framework to analyze the local characterization of tetrahedra. Their characterization
allows the measurement of the local topological changes caused by a deletion or insertion
of a tetrahedron. In their work, the type of tetrahedron called a ’simple’ tetrahedron is
a type of mesh element whose elimination or insertion does not affect the mesh topology
locally. For non-simple tetrahedra it measures local change in topology, without discussing
what happens to the mesh globally.

Global topological changes are important for the detection (and solution) of volumetric
characteristics of objects (such as elimination of noise - reflected as holes, and measure-
ments of various quantities). Global control is also important for indexing purposes when
those characteristics must be accessed frequently. In this work we propose a set of tools
for global characterization of tetrahedra, that can be seen as an extension of some results
obtained by Saha and Manjumdeer once it provides a framework to analyze tetrahedral
meshes. Using our framework, it is possible to tell, once the mesh changes locally, What
the effect will be on the whole mesh. Besides that characterization, we provide a set of
operators to implement insertion and deletion of tetrahedra keeping the topological con-
trol of the meshes at all times. These are called 3D tetrahedral Morse operators, which
provide a topologically consistent framework for many tasks of volume modelling. This is
an initiative that offers a mathematical framework lacking in the volume modelling liter-
ature for tetrahedral meshes. It is a contribution to allow the creation and management
of volume models with consistency and robustness, in much the same way as surfaces are
handled today.



3 Basic Concepts
This section introduces the basic concepts and terminology used in the remaining of the
text. Definitions and results presented in this and the following sections are restricted to
three-dimensional Euclidean space. A reference to many of the concepts presented in this
section is [11].

A

A p—dimensional simplex or p-simplex in R3, 0 S p S 3, is the convex hull of p + 1

geometrically independent points in R3 (a set {u0, . . . ,up} C R3 is geometrically indepen-
dent if the vectors v1 —— v0, . . . mp ~ uo are linearly independent). A O-simplex is called a
vertex, a 1-simplex is called an edge, a 2—simplex is called a triangle and a 3-simplex is .

called a tetrahedron. If a = {um . . . mp} is a p-simplex, p = 0, 1,2, 3, then any j-simplex,
0 S j S p, spanned by a subset S of {um . . . ,vp} (that is, the convex hull of S) is called
a face of a. The faces of a different from o itself, are called the proper faces of 0; their
union is called the boundary of o and denoted Bdo. The interior of a simplex o is defined
by the equation Into = a — Bdo.

A simplicial complex [C is a finite collection of simplices satisfying:

1. If a 6 [C then all faces of a belong to K.

2. If a, r 6 K then either 0 m r = (Z) or 0 n r is a common face of o and r.
The dimension of the simplicial complex 1C ¢ 0), denoted dimIC, is the maximum of the

dimensions of the simplices in IC. A subcollection of [C that is itself a simplicial complex is
called a (simplicial) subcomplex of 1C. The subcomplex of IC constituted by all simplices
of K of dimension at most p is called the p-skeleton of 1C. The subset |K| = Uaeyco of R3
is called the underlying space of IC. The degree of a vertex v e [C is the number of edges
in IC that have u as a vertex.

A regularized simplicial complex; [C is a three-dimensional simplicial complex such that
any p—simplex in IC is contained in at least one 3-simplex of 1C.

From now on, K is always a regularized simplicial complex, i.e., any p—simplex of IC is
contained in a tetrahedron of 1C. A 2—simplex t (triangle) of 1C is an interior triangle if t
is shared by two tetrahedra of 1C, otherwise, t is a boundary triangle of 1C. The vertices
and edges contained in the boundary triangles are called boundary uertices and boundary
edges of IC, respectively. The boundary of IC is the subcomplex S C [C constituted by all
boundary p—simplex, p z 0,1,12, of IC. Each connected component of the underling space
|S| is called a boundary component of 1C.

The star of a simplex o 6 1C, denoted st 0, is the union of all simplices in IC having cr

as a face. The link of a is the union of all simplices of IC lying in sto that are disjoint
from a. A simplex o e [C is singular if its link is not homeomorphic to a sphere or to a
half-sphere.

Let a be a p—simplex. Two orderings of its vertex set are equivalent if they differ
from each other by an even permutation. If p > 0, there are two equivalence classes (and
if p = 0, just one). Each one of these classes is called an orientation of a. An oriented



simplex is a simplex 0 together with an orientation of o. The oriented simplex with vertices
no, . . . ,'up whose orientation is the equivalence class of the particular ordering (v0, . . . ,up)
shall be denoted by [v0, . . . ,vp].

Let [C be a simplicial complex. Let Op (1C) be the free abelian group generated by the
p-simplices of 1C, each one of them with a fixed orientation. CPUC) is called the group of
(oriented) p-chains of 1C. An element of CPUC) is called a p-chain. Therefore, any p—chain

can be written, in a unique way, as 2le mm, where k is the number of p—simplices a,-
of 1C and, Vi e {1, . . . ,k}, n, is an integer. pr > 0, —o,- represents a,- with its opposite
orientation. Note that the operation in CPUC) is given by (2le nioi) + (2le midi) :25:10“ + mi)o,-, where Vi E {1, . . . ,k}, m,- and n, are integers.

We define a homomorphism 8p : CPUC) —> Cp_1(IC), called the boundary operator, by
8p[uo,...,vp] = Ef=O(—l)‘[u0, . . . ”ii, . . . ,vp], where [vo, . . . ,up] is an oriented simplex of
1C and the symbol iii means that the vertex v,- is to be deleted from the array. We complete
the definition by defining 61, to be the trivial homomorphism if CPUC) or CPLIUC) is the
trivial group. It can be shown that 81, is well defined, that 6p(—-o) = —8p(a) for all
a = [w], . . . ,v,,] and that, Vp E Z, 6], o 6p+1 = 0.

The kernel of the boundary operator 6p : CPUC) —) Cp~1(lC), denoted ZPUC), is called
the group of p—cgcles of IC. The image of 81,“ : Cp+1(lC) —> CPUC) is called the group of
p-boundaries of 1C and is denoted BpUC). Since 61, 0 8p.“ == 0, BpUC) C Zp(IC), therefore
we have the quotient group Hp(IC) = Zp(lC)/BP(IC) called the pt" homology group of 1C.

The rank of Hp(IC), denoted by flpUC), represents the number of connected components,
when p equals 0; the number of holes, when p equals 1; and the number of cavities, when p
equals 2 inlC. The BPUC) are called Betti numbers of the homology group. If nu, ne, nf, and
nt are the number of vertices, edges, triangles, and tetrahedra in IC, the Euler characteristic
of 1C is defined by x(lC) = nv —— ne + nf —- nt. It can be shown that the Euler characteristic
of K can also be computed as x(lC) = fioUC) — 510C) + figUC).

A sequence of abelian groups A and homomorphisms d)

mamfimfiaam
is said to be exact at A, if image¢i_1 = kernel¢i. It is said to be an exact sequence if it
is exact in all of its groups.

We finish this section with an important result known as the Mayer-Vietoris Se-
quence [11]. f

Mayer—Vietoris Sequence: Let [C be a simplicial complex; let [Co and [Cl be subcom-
plexes such that [C = [Co U K1. Then there is an exact sequence

"' —> HpUCo 0 K1) —> HpUCo) EB Hp(IC1)—> HPUC) «> Hp_1(}C0 0161) —>

of abelian groups and homomorphisms.
In the next section the concepts presented here are employed to support the charac—

terization of tetrahedra and definition of Morse Operators for tetrahedral meshes.



4 Topological Operators in the construction and character;
,

ization of tetrahedral meshes
In this section we investigate how the insertion or removal of a tetrahedron can change the
homology of a simplicial complex IC. Based on this discussion we introduce the concept of
tetrahedral Morse operators, which provide a robust mechanism to control the homology
during the construction of a three-dimensional simplicial complex.

4.1 Characterization of Tetrahedra
Let T be a new tetrahedron to be added to K. The homological change caused by adding
T in IC is related with the intersection T 0 K. A tetrahedron T is called adjacent to [C if
T 55 IC and T 0 1C is either empty or a subcomplex of 1C and of T. We shall say that two
simplices ‘7'1 and T2 adjacent to [C are equivalent if T1 0 1C and T2 (1 K are homeomorphic,
that is, if there is a bijection f between the set of vertices of T1 0 IC and the set of vertices
of T2 0 [C such that the vertices v0, . . . ,vn of T1 0 1C span a simplex of T1 0 1C if and only if
f (fag), . . . , f(vn) span a simplex of T2 (7 1C. Of course this is an equivalence relation.

Lemma 1: There are twenty eight equivalence classes for the set of adjacent tetrahedra to
a simplex 1C. '

Proof. The proof of this lemma can be done by exhaustive enumeration of the cases. In
fact, let 1300) be the p—skeletons, p = 0,1,2, of the complex E = 1C 0 T. If C = 0 we
have a equivalence class 1a). Suppose that U0) # (0 and £1?) = (2) for p = 1,2. In this
case, the cardinality of [,(0) can be 1, 2, 3 or 4 and we have four equivalence classes in this
case (figure 1b)). If Em 76 (I) and U2) = (D we can have fourteen equivalence classes as
indicated in figure 1c). Note that the tetrahedra in each dashed box are in classes where
the p—skeletons of the intersections have the same cardinality but the intersections are not
homeomorphic as simplicial complexes. In the last case, when U2) 76 (ll, we have nine
equivalence classes, as represented in figure ld).D

The equivalence classes described in lemma 1 represent the different manners of in-
serting a tetrahedron in IC.

Regarding homological changes, adding tetrahedra from different classes can produce
either the same homological change (if any) or homologically distinct complexes. It is
also worth noting that the intersection between a tetrahedron T and IC is not sufficient to
decide about the homology of the resulting simplicial complex [C U T. An example of this
fact is shown in figure 2 where the addition of a tetrahedron with three common edges
with [C can either generate a cavity (figure 2a)) or close a. hole (figure 2b)) of IC.

Although the intersection TflIC does not characterize the homological changes in TU/C,
it does determine all of its possibilities. Before showing that, we analize the intersection
T 0 1C.

”Lemma 2: Let T be a tetrahedron adjacent to a simplicial complex 1C. Let flu, fll, fig be



Figure 1: Equivalence classes of the tetrahedra adjacent to K.

the ranks of the homology groups of 70 [C as defined in section 3. If [3 = (flab-O 1C), fll (T 0
1C), fl2(T (1 IC)) is the triple representing the ranks of the homology groups of T 0 [C then
fi 6 {(0,0,0),(1,070),(2,0,0),(3,070),(4,070),(2,1,0), (1,1,0),(1,2,0),(1,3,0),(1,0,2)}-
Proof. From figure 1 we derive table 1 that proofs the lemaD

Proposition 1: Let 7‘ be a tetrahedron adjacent to a simplicial complex 1C. If a = (fl0(7' fl
1C),fl1(Tfl’C),flz(Tfl’C)) and V = (Bo(TU’C) —fio(’C),fl1(TU’C) -fi1(/C), 52(TU1C) —flz(’C))
then a is related with u as follows:



Figure 2: The insertion of the tetrahedron a) generates a cavity; b) closes a hole.

70 , 1 Tr“) , 70
Class
0 0 0 0

1,5,6,11,12, 1,0,0
19 1

2 7 9 10 0 0
8 3
4
13

14 15 16
17
18

Table 1: Betti numbers of T 0 1C.

1. if a = (0,0,0) then 1/ = (1,0,0)
if a = (1,0,0) then u = (0,0,0)

ifa= (2,0,0) thenz/G {(— 1, 0,0), 0, 1 ,0)}

(ifa= 3,0,0)thenV€{ 2,,00), 1,1,0,,),(020)}

ifa= (4,0,0) thenu€{ —3, 0, 0),

(

(—

(— 2,1,0),(— 1, 2 ,0),(0, 3 ,0)}

1,— 1,0),(— 1, 0, 1), (0, 0, 0),(0,1, 1)}

(

(

(

(—

(—

if a = (2,1,0) then u e {(—

if a = (1,1,0) then 1/ e {(0,—10),
0,0,11)}

ifa= (1,2,0) thenl/ e {(0, —2 ,0), 0,— ,1,,)(0 0, 2)}

) (

)

S99°N.°’.°‘P9°E°

ifa:(1,3,0 thenu€{0, —,30), 0, —2, 1),0,( —1,2),(0,0,3)}

10. ifa= (1,0,2 thenu= (0,0,—1)

Proof. Let us consider the Mayer-Vietoris sequence:

0 —> H2(1cm) 43 H2(IC) 591117) “E H2(ICUT) 3?

10



9? H1(IC n r) i) H1(IC) ea H1(T)fl H1(IC u T) 5}

é} H0(’Crl7') fl HQUC) ®H0(7') 1/3 H0(’CUT) £9 0

Let us prove item 6, that is, suppose that (fl0(7‘ 0 1C), fi1(7' 0 1C), 5201“ 0 IC)) = (2,1,0).
In this particular case, the sequence above can be rewritten as follows:

0—>013H2(1C)?3H2(icw)52

éizflfllm) firm/CUT) 6; (1)

flzezi’fiflomozflmmwflm
We have two cases to analyze, either: (a) T intersects two distinct connected components
of 1C or (b) 'r intersects only one connected component of 1C.

Case (a): In this case flOUC U T) = BOUC) — 1 and we have exact sequences

0 it H2(IC) 1? H2(ICUT) 94 imAz is 0

and
H2(ICUT) 6? Zi‘» H1(K) it H1(ICUT) 94 Zezfl H0(IC)EBZ.

Either A2 = 0 or im A2 = nZ with n 76 0. If A2 = 0 we have

02mm) flHfiKuflfiio (2)

and
O—>Z¢;‘>H1(K)flH1(ICUT)5§Z€BZf3HO(IC)EBZ. (3)

From (2) it follows that figUC U T) = flgUC). Additionally, since the generators of each
copy of Z in the domain of 4m are going to different components in IC, ¢0 is injective, so
im A1 = ker (150 = {0} and (3) becomes

OsZflH1(K)flH1(1CUT)—>o,

therefore [3106 U T) = fl1(IC) f 1. On the other hand, if im A2 = nZ with n 76 0, then we
have ‘

oflH2(n)flH2(nuT)flnZ—>o (4)

and
H2()CUT)é—§Zf—‘>H1K)flH1(ICUT)é$Z®Z¢¥9HO(IC)GBZ. (5)(

From (4) it follows that [320C U T) = fi2(IC) + 1. Additionally, since (150 is injective, (5)
becomes

A 1/1

HQUCUT) 4 zfl H1(K) 4 H1(/cuT)—> o

11



therefore filUC U T) = fllUC) — TankUcer 1&1) = [31 (1C) — rank(im ¢1), but mnkUceT (pl) =
rank(im A2) = 1, so Tank(z'm ¢1) = 0, therefore fi1(IC U T) = B1(IC).
Case (b): In this case ,30(IC U T) = figUC). The computation of H2(IC U T) is exactly the
same as in case (1), therefore if A2 = 0 then B2<IC U T) = fizUC) and if A2 yé 0 then
fizUC U T) = figUC) + 1. Regarding H1(IC U T) we have that (750 is no longer injective.
Instead, her 450 = Z now. If A2 = 0, we have the exact sequence

0+ZQH1(K)3H1(1CUT)§iZ—>o

therefore fllUC U T) — rank(im $1) = 1, but Tankfim 1/11) = B1 (1C) — Tank(ker $1) and
Tank(ker 1/11) = rank(im ¢1) = 1, hence fllUC U T) = fl1(IC). Now, if im A2 = 712 with
n 75 0, we have

H2(ICUT)5§Z£¥H1(K)T4H1(ICUT)flZEBZQHOUCMBZ

therefore [310C U T) — mnk(im1/11) = 1 = Tank(imA1) but Tank(imT/)1) = fi1(IC) -
Tank(ker 1111) and TankUceT $1) = mnk(im ch) = O, hence fl1(IC U T) : flIUC) + 1.

The same kind of reasoning that we employed to prove item 6, was used to prove the
remaining itemsD

An important result that can be extracted from proposition 1 is:

Corollary 1: There are twenty five different forms of changing the homology of a simplicial
complex [C by attaching tetrahedra. This is straightforward from the cases shown in
Proposition 1.

An immediate consequence of proposition 1 is that we can group the equivalence classes
in figure 1 in accordance with the possible homological changes that their tetrahedra can
produce in the complex . We arrange the equivalence classes in six categories named:
O-handle, Ho-handle, Hz-handle, HoHl-handle, Hng-handle, and HoHlHQ-handle. Fol-
lowing the numbering of figure 1, each category is constituted as follows:

1. O—handle: {1,5,6,11,12,19,21,24, 26}

2. Ho—handle= {0}

3. Hg-handlez {27}

4. HoHl-handle: {2,3,4,7,8,9, 10,20}

5. Hng-handle: {14, 15, 16, 17, 18, 22, 23, 25}
6. H0H1H2—handlez {13}

If T is a tetrahedron contained in a class of O-handles then T is called a O—handle tetrahe-
dron, if T is contained in a class of Ho-handles it is called Ho-handle tetrahedron and so
on.
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Proposition 1 above offers a way of quantifying and describing the nature of the ho—

mological change caused by adding a handle into K. A consequence of this fact is the
characterization of simple tetrahedra according to this theory, i.e., tetrahedra whose in-
sertion (removal) does not change the homologies of a simplicial complex. They are our
Oohandles. Therefore, in order to decide if a tetrahedron is simple it is sufficient to analyze
its intersection with the simplicial complex to which it will be added. It is worth noting
that the characterization of simple tetrahedra given by proposition 1 is more straightfor—
ward than that presented in the work by Saha and Majumder [14], once it depicts all
possible cases of this kind of tetrahedron.

Proposition 1 also shows another important fact: a HoHng—handle can be added into
a simplicial complex without altering the ranks of the homology groups, i.e., a H0H1 H2-
handle can replace a hole for another one, not modifying the rank of H1. In that respect,
a H0H1H2-handle could be mistaken for a simple tetrahedron. However this handles does
change the homology, although to one with the same ranks.

Proposition lis also the basis for table 2 below, where the first column indicates the
type of handle (in accordance with figure 1), the second column displays the group in
which the handle is contained and the third column shows the possible changes that such
handle can produce in the number of connected components (V0), holes (V1) and cavities
(v2) of a simplicial complex 1C.

Table 2 presents all possible changes that the addition of a new tetrahedron can pro-
duce in a simplicial complex IC. As far as we know, this is so far the most complete
characterization of tetrahedra described in the literature. Under this theory, a set of con-
struction operators (and their inverses) (seen in Table 2), which are discussed in the next
section.

4.2 Tetrahedral Morse Operators
From table 2 above we can define a set of topological operators we shall call tetrahedral
Morse operators. As we are going to show, these Morse operators make it possible to add
new tetrahedra into a simplicial complex while keeping control of the number of connected
components, of holes, and of cavities. Morse operators enable a more robust handling of
the incidence and adjacency relationship in a tetrahedral mesh, considering that all the
elements affected by the addition of a new tetrahedron are completely specified for each
operator. 5

Tetrahedral Morse operators are defined in a straightforward manner based on table 2.

The fifty two operators are grouped into seven different sets according to the homological
change they introduce in the simplicial complex.

The seven sets with their respective operators are:
TMO0 ={MV, ME, M2E, M3E, MF, M2F, M3F, MEF}

TMOHO ={MC, M2VKC, M3VK20, M4VK3C, MVEKC, M2VEKZC, MV2EKC, M2EKC, MVFKC}
TMOH1 ={M2VH, M3V2H, M4V3H, MVEH, M2VE2H, MVZEH, M2EH, M3EKH, M4EKH, M5EK2H,

MGEKSH, MVFH, M2EFKH, M3EFK2H, ME2FKH, MV3EHKH}

13



Handle Equivalence (110,111,112) Operator Handle Equivalence (1/0, 1/1 , 1/2) Operator
Class Class

0 Ho-handle (1, 0, 0) MC 14 H1 Hz-handle (0, —1,0) MBEKH
1 O-handle (0,0, 0) MV (0, o, 1) M3EP
2 HoHl-handle (—1,0,0) M2VKC 15 H1H2-handle (0, —1,0) M4EKH

(o, 1, 0) M2VH (0,0,1) M4EP
3 HoHl-handle (—2, 0, o) M3VKZC 16 H1 Hz-handle (o, -1, o) M4EKH

(—1,1,o) MBVHKC (0,0,1) M4EP
(0, 2,0) M3V2H 17 H1 Hg-handle (0, —2, 0) M5EK2H

4 HoHl-handle (—3,0,0) M4VKSC (0, —1, 1) MSEPKH
(—2,1,o) M4VHK2C (0,0,2) M5E2P
(—1, 2, 0) M4V2HKC 18 H1 Hz-handle (0, —3, o) M6EK3H
(o, 3, 0) M4V3H (0, —2, 1) M6EPK2H

5 O-handle (0, 0, 0) M2E (0, —1, 2) M6E2PKH
6 O—handle (0, 0,0) ME (0, 0, 3) M6E3P
7 HoHl-handle (—1, 0, o) MVEKC 19 O-handle (o, o, 11) MF

(0, 1,0) MVEH 20 HoHl-handle (—1,o,o) MVFKC
8 H0H1—handle (—-2, 0, 0) M2VEK2C (0,1,0) MVFH

(- 1,1,0) MZVEHKC 21 O-handle (0,0, 0) MEF
(0, 2, 0) MZVEZH 22 H1 Hz-handle (0, —1,0) MZEFKH

9 HoHl-handle (—1,0,0) MV2EKC (0,0,1) M2EFP
(0,1,0) MVZEH 23 H1H2-hand1e (0, —2, 0) M3EFK2H

10 HoHl-handle (— 1, 0, o) MZEKC (0, —1, 1) M3EFPKH
(0,1,0) M2EH (0,0, 2) M3EF2P

11 O-handle (0, 0,0) M3E 24 O—handle (0, 0,0) M2F
12 O-handle (0, 0, 0) MSE 25 H1 Hz-handle (0, —1,0) ME2FKH
13 HOHI Hz—handle (—1, —1,0) MVBEKCH (0,0,1) ME2FP

(~1, o, 1) MV3EPKC 26 O-handle (0, 0, 0) M3F
(0, 0,0) MVSEHKH 27 Hz-handle (0,0, -1) M4FKP
(0,1,1) MVSEHP

Table 2: Handles (operators) and their relation with the homology of the simplicial com—

plex.

TMOH2 ={M3EP, M4EP, M5E2P, M6E3P, M2EFP, M3EF2P, MEZFP, M4FKP}

TMOHOH, ={M3VHKC, M4VHK20, M4V2HKC, M2VEHKC, MV3EKCH}

TMOHOH2 ={MV3EPKC}

TMOH132 ={MV3EHP, MSEPKH, M6EPK2H, M6E2PKH, M3EFPKH}

The types of homological changes caused by these classes of operators are identified
by the handles expressed in their names, that is :

TMOO : Cause no homological changes in the complex.

TMOHD : Causes change in the H0 number, that is, operators in this class change the number of connected
components.

TMOH1 : Causes change in the number of holes.

TMOH2 : Causes change in the number of cavities.

TMOHOH1 : Causes change in the number of connected components and in the number of holes.
TMOHO H2 : Causes change in the number of connected components and in the number of cavities.

TMOH1 H2 : Causes change in the number of holes and cavities.
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A number of symbols are used to name the operators, and the convention for naming
any particular operator provides a summary description of its action over the simplicial
complex.

The seven symbols used for naming the operators are: M - make; K - kill; H - hole;
P - cavity (pocket); C - component; V - vertex; E - edge; F - face. Numbers are utilized
to describe the number of times that an action is executed in each entity (the number
1 is omitted in order keep the notation clean). An operator is identified by a sequence
of symbols representing the actions on elements necessary to complete an operation of
insertion or deletion of a tetrahedron.

During insertion or deletion of a tetrahedron, sometimes the action make (M in the
sequence) refers to identification of the elements following M in the sequence that already
exist in the complex. This happens when the elements that follow are vertices, edges and
faces (that is, when V,E or F follows the letter M). Other times M means that the elements
in the sequence are added or caused in the simplex. This occurs for holes, cavities and
components (that is, when the symbols H, P and C follow the letter M). For instance, lets
suppose a tetrahedron is to be inserted in an existing simplicial complex, by gluing it to
a single vertex of another tetrahedron already there. In this case, this addition is done
through the identification of the vertex already there, to which the new tetrahedron must
be glued (MV - make 1 vertex.) Figure 3 shows the action of the MV operator.

Figure 3: Tetrahedron insertion through MV operator.

As further examples of the action of an operator, lets take the symbol sequence MVZEH
naming an operator in TMOHI. Its name indicates that, to add a tetrahedron, this
operator makes (i.e., identifies) one vertex and two edges already in the complex (totalling
three vertices), and adds a hole in the process(see Figure 4); the operator MV3EPKC
in TMOHOH2 indicates that, to adds a tetrahedron, it makes (i.e., identifies) one vertex
and three edges (totalling four vertices), adds one cavity, and kills a component. Figure
2 given before shows the execution of tetrahedra insertion through the operators M3EP
(figure 2a)) and M3EKH (figure 2b)).

Note that the presence of symbols V and E means that the operator containing such
symbols introduces singular vertices and edges into the simplicial complex. From this
observation follows the next proposition.

Proposition 2: It is not possible to generate a simplicial complex K with holes or cavities,
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Figure 4: Tetrahedron insertion through MV2EH operator.

by gluing tetrahedra, without adding singular vertices or edges (or both) to [C during the
process.
Proof. In order to generate a hole in [C it is necessary to add a new tetrahedron into [C

through an operator from TMOH1, TMO H0H1, or TMOH1 Hz' For a cavity, it is necessary
to make use of a operator from TMOHz, TMOHOHz, or TMO H1 Hz. Since all operators of
these classes introduce singular vertices or edges the proposition is provedD

Proposition 2 above has an important practical meaning regarding topological data
structures, namely, that any data structure dedicated to represent regularized simplicial
complexes generated by gluing tetrahedra must be able to handle singularities in vertices
and edges in order to be effective.

The above operators are called direct operators, as they may be used to add tetrahedra
to an existing simplical complex. Operators for removing tetrahedra are described in
terms of the inverse operators, which may be obtained by replacing letters M with K (and
vice-versa) in the above description. The inverse operators can also be grouped into the
same seven sets according to the homological change they introduce. The homological
changes produced are also in the same classes of the direct operatos.

We finish this section with an interesting theoretical result about a minimal number
of operators to build a tetrahedral mesh.
Proposition 3: To build any simplicial complex by gluing tetrahedra it is necessary the
use of at least six operators (and their inverses).
Proof. Let W be the submodule in Z7 whose elements (1), e, f, t, c, h, p) satisfy the equation
1) — e + f — t — c + h — p = 0. Note that any simplicial complex [C may be represented
as a vector in W and each Morse operator can also be described as a vector in W. For
example, the operator MVFH may be represented by vector (0,3,3,1,0,1,0), meaning that
it introduces zero new vertices, three new edges, three new faces, one new tetrahedron,
zero components, one hole, and zero cavities into 1C.

1.46th1 = (1,3,3a1’070,0)7 11:2 :_- (071,271’0’070)’ $3 = (0’0’1’1’07070)) $4 I (0,3,3,1,0,1,0),
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x5 2 (1, 3, 4, 1, 0, 0, 1), and x5 = (4, 6, 4, 1,1,0, 0) be the vector representations of operators“
MF, M2F, M3F, MVFH, M3EP, and MC, respectively. A straightforward computation
shows that 513,32" = 1, . . . ,6 are linearly independent and that they are a basis for W, thus
generating any vector contained in W. As any simplicial complex [C is represented by
a vector in W, theoretically these six operators constitute a minimal set of operators to
generate ICE]

Next section presents some important issues of implementation 03 TMOs.

5 Implementation and Computational Complexity
In this section we are concerned with the computational aspects of the Tetrahedral Morse
Operators.

One issue that bears importance to all areas of Volume Modelling is that of Data
Structure. In the case of our computational representation, one particular data structure,
called SHF (Singular Half-Face) is under development. Some of its requirements are
still under inspection and evolution so that its use during various stages of visualization
processes can be accomplished. However, in the current stage of development, SHF is
capable of storing and indexing meshes built via TMOs. Its description and discussion are
given in the next section.

The following section discusses other computational issues such as complexity and
storage requirements.

5.1 Data Structure
The Data Structure named Singular Handle—Face (SHF)is capable of representing regu-
larized simplicial complexes with singular vertices and edges.

A SHF data structure is organized in terms of seven explicitly represented entities (or
nodes) which are:

0 Solid - Representing each connected component of the regularized simplicial com-
plex.

0 Cells - Representing the tetrahedra .

o Vertices - Representing the vertices.

o Half-Faces - Representing the face contained in a cell.

0 Half-Edges — Representing an edge contained in a Half—Face.

o Boundary_Comp0nents - Representing each boundary components.

a Star_Vertex - Representing each edge incident on a vertex.
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Figure 5: Hierarchical organization of SHF

Figure 5 shows the hierarchical relationship among the nodes of SHF.
Given a regularized simplicial complex K, the solid, cells, and vertices nodes of SHF

are linked lists representing each connected component, the tetrahedra, and the vertices
of [C respectively.

The nodes half-faces and half—edges are circular linked lists that store the simplices of
dimension two and one contained in each tetrahedron. In other words, each tetrahedron
is a cell containing its lists of half-faces and half-edges. The adjacency relationship among
simplices is also stored in the nodes half-faces and half—edges. For example, each half-
face “knows” the adjacent half—face in the neighbor tetrahedron, as shown in figure 6a),
and each half-edge knows the adjacent half—edges in its tetrahedron and in the neighbor
tetrahedron, as in figure 6b). If a half-face lies on the boundary of IC, its half-edges are
employed to give access to the adjacency relationships in the boundary surface, as in a
B-Rep representation. Figure 6c) presents this schema.

Figure 6: Adjacency relationship through Half-Face and Half-Edge nodes.

The Boundary Components node is a linked list containing a half—face of each boundary
component. As the Tetrahedral Morse Operators act on the boundary of 1C, it is important
that SHF offers an efficient mechanism to give access to boundary components.

Each vertex in the SHF contains a Star Vertex node which is a linked list containing a
half-edge of each edge incident to the vertex. The Singular Vertex node could be replaced
by an algorithm to find the edges but, in order to improve the performance, we represent
them explicitly. Figure 5 represents the structure, its nodes and references.
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The realization of each TMO on a mesh has specific effects on the data structure that
were implemented as actual operators on the data structure, one for each named operator
shown before. This data structure was implemented using Ob ject-oriented concepts and its
use is open for general users. The data structure and its application shown in section 6 were
also implemented in the context of an open—source visualization system, the VTK (The
Visualization Toolkit ) [15], and are available on the internet (http://lcad.icmc.sp.br/ pow—

erms).

5.2 Computational Complexity
Suppose that a new tetrahedron is to be added in a regularized simplicial complex [C

represented by SHF data structure. Also suppose that the position where the new tetra—
hedron must be added has already been found. As the computational cost to find the
correct position of the new tetrahedron is dependent on the application, we do not take
it into account. For example, if the tetrahedra of [C are given by vertex coordinates, for
each new tetrahedron it is necessary perform a search in the boundary surfaces to find the
position where to insert it. However, in some situations, as in the example given in the
next section, the position of the tetrahedron is given.

The position of the tetrahedron defines the type of handle that it needs to be added.
From the handle we decide which operator must be employed through local and global
searches (note from table 1 that a same handle can give rise to different operators). As the
SHF data structure maintains the local adjacency and connected components explicitly
represented, only local searches are necessary to decide the operators from the O-handle,
Ho-handle, and HOHl-handle.

In order to decide the operators from HQ-handle, Hng-handle, and H0H1H2-handle
it is necessary make use of global searches, i.e., traverse the boundary surfaces and verify
if new cavities are being created. That way, the cost of such operators is proportional to
the number of boundary faces.

6 Volumetric Reconstruction
Aiming at illustrating the applicability of tetrahedra characterization, we present in this
section an application of TMO in volumetric reconstruction from a sequence of images.

The reconstruction process Starts from bi—dimensional images taken from measurement
devices (such as MRI) or other scalar data sets representing consecutive data planes in
3D space. The sequence of images compound a regular 3D grid of cuboid cells, such as
illustrated in figure 7. Each pixel value is stored at a cell vertex. Each cuboid is interpreted
as a set 0 6 tetrahedra, adjusted to fill out this volume unit. Tetrahedral adjustment inside
a volume unit is illustrated in figure 8.

Given a range of values indicative of objects of interest inside the regular grid, the
reconstruction algorithm checks for the presence of these values at each vertex. Tetrahedra
inside the volume unit whose vertices checked ’yes’ for the presence of values of interest
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Figure 8: Tetrahedra positioning inside a cell.

are candidates to be added to the object model. Two possible approaches were taken for
the selection of tetrahedra to be included. In one of them all tetrahedra with one ’yes’
vertex are added. In the second approach, an average of the vertices values is taken and
compared with the values of interest. The average check produces smoother models.

In all cases the final model may be smoothed out by applying a filter that changes
positions of vertices in the boundary of the object by averaging its coordinates with those
belonging to the neighboring vertices.

Figure 9 shows the reconstruction of a cashew nut from MRI images taken 2 mm
apart after smoothing. The holes formed in this picture can be seen in the input images
presented in figure 10. The larger ’hole’ is actually the nut core, and is of interest for
analysis of the object. The others were manually created to illustrate the reconstruction .

of cavities, and their elimination. Apart from these holes, there are many other, very small
holes, present in the original images due to noise generated by the data collection process.
Those were also reconstructed. but are not visible due to their size.

Figure 11 presents a cut of small number of slices from the cashew nut reconstruction,
which illustrates the tetrahedral mesh, as well as some of the small details generated during
the reconstruction process.

Due to the complete control of the topological structure of the constructed objects
exerted by the modelling TMOs, during reconstruction the holes formed are registered so
that they can be recovered later for analysis and other purposes. Even those lost visually
due to their small size are registered because of the capabilities of the method, and easily
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Figure 9: Cashew Nut Reconstruction with four holes.

a)

3)

Figure 11: A slice of the tetrahedral mesh for the cashew nut reconstruction a) surface
display; b) wireframe display.

recovered due to the organization of the data structure.
A particular procedure available to handle holes is to fill out any holes the user chooses

not to consider part of the object. In figure 9, for instance, from the three visible holes,
the larger one is actually the cavity formed by the nut core, while the others are not useful
objects. After processing the filling out procedure it is possible to eliminate any number
of them. Figure 12 shows the same model after elimination of the two smaller holes from
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figure 9 together with all the other holes formed due to noise in the original images.

Figure 12: Cashew Nut after elimination of the three smaller holes.

7 Discussion and Conclusions
This paper presents a body of techniques to handle Volumetric Modelling via tetrahedral
meshes. This is done through a body 0 mathematical tools from the field of topology, with
which it is possible to characterize tetrahedra and tetrahedral meshes completely. This
gives rise to a number of operators capable of creating and updating any non manifold
simplicial complex, keeping the topology of the object formed under control. The technique
offers global control, that is, any element created or deleted in the whole mesh due to the
addition (or deletion) of a tetrahedron is predicted the operator used during the operation.
The type of homological change is also registered by the operator class.

Thus, due to this strict topological control, at any time it is possible to tell how
many holes, cavities and connected components there are in a particular object under
construction. With the use of proper data structure (such as the one also presented here)
it is also possible to tell where those elements are and handle them adequately (e. g.
filling out their undesirable holes). The data structure presented here is also capable of
representing singularities explicitly, a feature that is useful when the mesh is being used
for numerical processing.

.

Many applications can make use of this framework. In this paper it was offered as ex-
ample a case of reconstruction of a cashew nut from planar MRI images. In this particular
case, the interior of the object must be modelled, once the application needs to simulate
forces on the shell during post-harvest processing of the nut. In cases such as this, where
the interior of the object is to be modelled in a non-uniform way (for visual or simulation
reasons), the tools presented here can support many types of processing that would be
diflicult (or too slow) otherwise.

For the reconstruction case, we also illustrated that the TMO’s lend themselves to
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modellling the interior of objects via a one-pass procedure, that is, in contrast with other
volumetric modelling tools, here it is not necessary to reconstruct the border first, or to
generate the object’s contours, and then fill out the internal parts with tetrahedra, to
obtain the model of the object’s interior.

The main advantage of the method for modelling is its topological control. Handling
topology instead of geometry improves robustness of computational procedures. Addition-
ally, the topological control of the homology allows indexing of important features. This
effort should support volume modelling of objects through tetrahedra in an integrated
way, so that objects can be handled using these meshes in many stages of the visualization
process (from simulation to interaction) without the need for change in representation.
For instance, tracking changes and their effects during interaction should be supported by
these tools.

TMO’s are being extended to handle voxel meshes, taking as basis a technique devel-
oped for 2D digital surfaces by the authors [13].
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