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Abstract

With the development of vitreous implants
for orbital floor reconstruction, a question
arises whether their high fragility and very
small thickness are capable of withstanding
loads imposed by inflammation and tissue
growth during convalescence. Since glass
fracture surfaces are sharp blades, an
eventual failure could cause serious damage
to the local tissue. To assess the risk of
fracture by transverse shear, a computational
model of an orbital floor implant was created
and shear loads were simulated, from 20 to
100 N, on a transverse plane. Using the
Finite Elements Method, the software plotted
the stress distribution in an implant made of
three vitreous materials: amorphous Bioglass
45S5, 40% crystalline Bioglass 45S5 and
apatite-wollastonite glass ceramic. The
partially crystallized Bioglass showed the
best mechanical resistance to shear, with a
safety factor of at least 1.7 at the simulated
load levels.
Keywords: Bioglass; glass ceramics; facial
bones reconstruction; numerical simulations;
Finite Elements Method.

Introduction

Facial traumas can lead to severe fractures
of the orbital floor and surrounding structures
(Fig. 1), which may need reconstruction if
there is a clear herniation of the adipose

tissue or the inferior rectus muscle in the
maxillary sinus. As the floor is very thin,
orbital wall defects cannot be restored, so the
injured area must be reconstructed using an
implant [1].

Figure 1 – Fracture of the orbital floor [2].

The aim of the reconstruction is to restore
the distorted floor shape and recover the
original orbit volume. Many implants, both
autogenous and alloplastic, have been used to
reconstruct such defects [1]. Autogenous
grafts made from bone, cartilage, and fascia
have been used [3,4], but it was only in 2015
that Stoor et al. [1] developed an implant
with satisfactory long-term results. Made of a
1.5 mm thick bioactive glass sheet, the
implant has an anatomical shape (Fig. 2), but
without the natural concavity of the orbital



floor in the sagittal plane, to compensate for
the adipose tissue atrophy that occurs during
trauma and surgery:

Figure 2 – Bioactive glass implant for orbital
floor reconstruction [1].

Experimental Procedure

A computational model was made with
the software COMSOL Multiphysics® 5.1,
with dimensions a = 31 mm and b = 25 mm,
and shear loads were simulated from 20 to
100 N on a transverse plane, as shown in
Figure 3:

Figure 3 – Computational model of the
orbital floor implant.

Three materials were evaluated: totally
amorphous Bioglass 45S5, 40% crystallized
Bioglass 45S5 and apatite-wollastonite
(A/W) glass ceramic. The elastic properties
of these materials are shown in Table 1:

Table 1 – Young’s Modulus (E), Tensile
Strength (TS), density (ρ) and Poisson’s

Ratio (ν) of the evaluated glasses [5]

Property 45S5
Bioglass

40%
crystalline

45S5 Bioglass

A/W glass
ceramic

E (GPa) 35 68 118
TS (MPa) 42 210 215

ρ (g/cm³) 2.7 2.7 3.1
ν 0.26 0.27 0.28

Using the Finite Elements Method, the
software plotted the distribution of stresses
and strains using tetrahedral elements with
edges of at most 0.5 mm and linear
interpolation. Since glasses are brittle
materials, the safety factors were calculated
by the Maximum Normal Stress Failure
Theory:

(1)

where TS is the tensile strength and σI and σII

are the maximum principal stresses [6].

Results and Discussion

The stress distribution has the same
spectrum (Fig. 4) for all materials and
loading levels, changing only its intensities:

Figure 4 – Stress spectrum of the implant
under shear load

Figure 4 shows that stresses are maximum
at the fixed faces and at the shear plane. The
safety factor calculated for each material and
load level is shown in Figure 5:



Figure 5 – Safety factor as a function of
applied shear force.

These curves show that 40% crystallized
Bioglass 45S5 is the best option to resist this
type of loading, having the greatest safety
factor on the entire shear force range. The
fully amorphous form of this glass is the only
simulated material to reach a safety factor of
less than 1, theoretically fracturing at 35 N.

Conclusions

The simulations showed that, for transverse
shear loads, the maximum stresses occur on
the fixed faces of the implant and on the
plane of application of the shear force. Of the
three simulated materials, Bioglass 45S5
with 40% crystallized volume fraction has
the best elastic properties to support shears.
For a more complete finite element analysis,
it is necessary to simulate other types of
loads, such as torsion, bending, compression
and traction, so that it is possible to select the
material on a more reliably way, suggest
design modifications and validate the
computational model with experimental tests.
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