

Simpósio em Ciência e Engenharia de Materiais

H

Perspectivas para Pesquisa Científica no Mundo Globalizado

13 a 15 de dezembro de 2021

76

https://doity.com.br/xxiii-sicem

XIII Simpósio em Ciência e Engenharia de Materiais

13 a 15 de Dezembro de 2021

Livro de resumos do XXIII Simpósio em Ciência e Engenharia de Materiais

Coordenador: Rafael Salomão

Organizador(es):

Ana Carolina Figueiredo Prado Bianca Groner Queiroz Claudia Santana Goncalves Ferreira

Universidade de São Paulo Escola de Engenharia de São Carlos

Diretor: Professor Edson Cezar Wendland Vice-Diretor: Professor Denis Vinicius Coury

Programa de Pós-Graduação em Ciência e Engenharia de Materiais

Coordenador: Rafael Salomão Vice-Coordenador: Marcelo Falcão de Oliveira Secretário: Victor Barioto

Ficha catalográfica preparada pela Seção de Apoio à Pesquisa e Comunicação Acadêmica do Serviço de Biblioteca "Prof. Dr. Sergio Rodrigues Fontes" da EESC-USP

Simpósio em Ciência e Engenharia de Materiais S612L.23 (23. : 2021 : São Carlos) 2021 Livro de resumos do 23. simpósio em ciência e engenharia de materiais [recurso eletrônico] / Coordenador: Rafael Salomão; Organizadores: Ana Carolina Figueiredo Prado, Bianca Groner Queiroz, Claudia Santana Goncalves Ferreira. -- São Carlos : EESC/USP, 2021. 116 p. -- Dados eletrônicos ISBN 978-65-86954-15-9 1. Ciência e engenharia de materiais. 2. Compósitos. 3. Instrumentação e análise. 4. Materiais cerâmicos. 5. Materiais metálicos. 6. Materiais poliméricos. I. Salomão, Rafael. II. Prado, Ana Carolina Figueiredo. III. Queiroz, Bianca Groner. IV. Ferreira, Claudia Santana Gonçalves. V. Título.

Flávia Helena Cassin – CRB-8/5812

ISBN 978-65-86954-15-9 Número de páginas: 116

Versão eletrônica em PDF disponível online no Portal de Eventos Científicos da EESC-USP – www.eventos.eesc.usp.br

Tamanho e dimensões da obra: 21 cm × 29,7 cm (padrão Folha A4) Obra sem cobrança ou valor monetário

Transverse shear simulations on bioactive glass implants for orbital floor reconstruction

N. Lara, M. I. B. Bernardi

Universidade de São Paulo, Instituto de Física de São Carlos, SP, Brazil e-mail: nicolaslara@usp.br

Abstract

With the development of vitreous implants for orbital floor reconstruction, a question arises whether their high fragility and very small thickness are capable of withstanding loads imposed by inflammation and tissue growth during convalescence. Since glass fracture surfaces are sharp blades, an eventual failure could cause serious damage to the local tissue. To assess the risk of fracture by transverse shear, a computational model of an orbital floor implant was created and shear loads were simulated, from 20 to 100 N, on a transverse plane. Using the Finite Elements Method, the software plotted the stress distribution in an implant made of three vitreous materials: amorphous Bioglass 45S5, 40% crystalline Bioglass 45S5 and apatite-wollastonite glass ceramic. partially crystallized Bioglass showed the best mechanical resistance to shear, with a safety factor of at least 1.7 at the simulated load levels.

Keywords: Bioglass; glass ceramics; facial bones reconstruction; numerical simulations; Finite Elements Method

Introduction

Facial traumas can lead to severe fractures of the orbital floor and surrounding structures (Fig. 1), which may need reconstruction if there is a clear herniation of the adipose tissue or the inferior rectus muscle in the maxillary sinus. As the floor is very thin, orbital wall defects cannot be restored, so the injured area must be reconstructed using an implant [1].

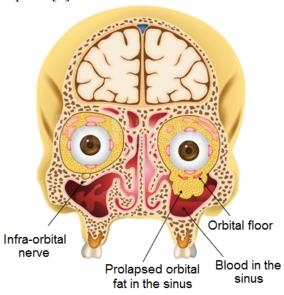
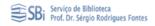



Figure 1 – Fracture of the orbital floor [2].

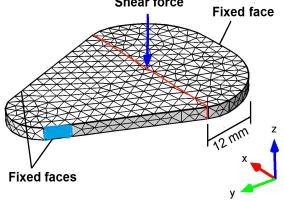
The aim of the reconstruction is to restore the distorted floor shape and recover the original orbit volume. Many implants, both autogenous and alloplastic, have been used to reconstruct such defects [1]. Autogenous grafts made from bone, cartilage, and fascia have been used [3,4], but it was only in 2015 that Stoor et al. [1] developed an implant with satisfactory long-term results. Made of a 1.5 mm thick bioactive glass sheet, the implant has an anatomical shape (Fig. 2), but without the natural concavity of the orbital

floor in the sagittal plane, to compensate for the adipose tissue atrophy that occurs during trauma and surgery:

ρ (g/cm ³)	2.7	2.7	3.1
ν	0.26	0.27	0.28

Using the Finite Elements Method, the

	r orbital
a ± 1mm	
	ide with cs® 5.1,
b ± 1mm	25 mm, m 20 to
TOU IT OH A MANDETON PIAMO, AND	shown in

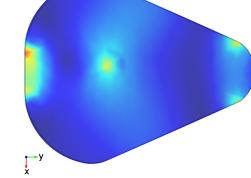

software plotted the distribution of stresses and strains using tetrahedral elements with edges of at most 0.5 mm and linear interpolation. Since glasses are brittle materials, the safety factors were calculated by the Maximum Normal Stress Failure Theory:

$$SF = \frac{TS}{\sigma_{l \text{ or } \sigma_{l} l}} SF = \frac{TS}{\sigma_{l \text{ or } \sigma_{l} l}} SF = \frac{TS}{\sigma_{l \text{ or } \sigma_{l} l}}$$
(1)

Figure 3:

Shear force

where TS is the tensile strength and σ_I and σ_{II} are the maximum principal stresses [6].


Results and Discussion

The stress distribution has the same spectrum (Fig. 4) for all materials and loading levels, changing only its intensities:

Stress

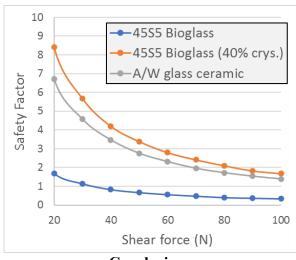
Max

Figure 3 – Computational model of the orbital floor implant.

Three materials were evaluated: totally amorphous Bioglass 45S5, 40% crystallized Bioglass 45S5 and apatite-wollastonite (A/W) glass ceramic. The elastic properties of these materials are shown in Table 1:

Figure 4 – Stress spectrum of the implant under shear load

Table 1 – Young's Modulus (E), Tensile Strength (TS), density (ρ) and Poisson's Ratio (ν) of the evaluated glasses [5]


Figure 4 shows that stresses are maximum at the fixed faces and at the shear plane. The safety factor calculated for each material and load level is shown in Figure 5:

Property	45S5	40%	A/W glass
	Bioglass	crystalline	ceramic
		45S5 Bioglass	
E (GPa)	35	68	118
TS (MPa)	42	210	215

Conclusions

The simulations showed that, for transverse shear loads, the maximum stresses occur on the fixed faces of the implant and on the plane of application of the shear force. Of the three simulated materials, Bioglass 45S5 with 40% crystallized volume fraction has the best elastic properties to support shears. For a more complete finite element analysis, it is necessary to simulate other types of loads, such as torsion, bending, compression and traction, so that it is possible to select the material on a more reliably way, suggest modifications and validate the design computational model with experimental tests.

in the reconstruction of orbital floor fractures—A prospective long-term follow-up study", Journal of Cranio-Maxillofacial Surgery, v. 43, n. 6, p. 969-975, 2015.

[2]"Orbital Fracture | Orbital blow out | Orbital Trauma", Eyefacialplastic surgery.com, 2020. [Online]. Available: https://www.eyefacialplasticsurgery.com/orbital-fracture-blow-out-medial-wall-fracture-trauma.html. [Accessed: 20- Nov- 2020].

[3]M. Constantian, "Use of Auricular Cartilage in Orbital Floor Reconstruction", Plastic Reconstruction Surgery. v. 69, n. 6, p. 951-955, 1982.

[4]R. Rončević and B. Malinger, "Experience with various procedures in the treatment of orbital floor fractures", Journal of Maxillofacial Surgery, v. 9, p. 81-84, 1981.

[5]I. Thompson and L. Hench, "Mechanical properties of bioactive glasses, glass-ceramics and composites", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 212, no. 2, pp. 127-136, 1998.

[6]R. Hibbeler, Mechanics of Materials, 8th ed. Upper Saddle River, NJ: Pearson Prentice Hall, p. 524, 2011.

Acknowledgments

The authors gratefully acknowledge the financial support of the Brazilian research funding agencies FAPESP (under grant number 2013/07296-2 and 2018/07517-2), CNPq (under grant number 405033/2018), PRONEX/FINEP and CAPES (under grant number 88887.607222/2021-00).

References

[1] P. Stoor, K. Mesimäki, C. Lindqvist and R. Kontio, "The use of anatomically drop-shaped bioactive glass S53P4 implants

