Autonomous Agents and Multi-Agent Systems (2022) 36:45
https://doi.org/10.1007/510458-022-09571-9

®

Check for
updates

On-line estimators for ad-hoc task execution: learning types
and parameters of teammates for effective teamwork

Elnaz Shafipour Yourdshahi' - Matheus Aparecido do Carmo Alves? - Amokh Varma3 -
Leandro Soriano Marcolino?® - J6 Ueyama* - Plamen Angelov?

Accepted: 21 June 2022
© The Author(s) 2022

Abstract

It is essential for agents to work together with others to accomplish common objectives,
without pre-programmed coordination rules or previous knowledge of the current team-
mates, a challenge known as ad-hoc teamwork. In these systems, an agent estimates the
algorithm of others in an on-line manner in order to decide its own actions for effective
teamwork. A common approach is to assume a set of possible types and parameters for
teammates, reducing the problem into estimating parameters and calculating distributions
over types. Meanwhile, agents often must coordinate in a decentralised fashion to com-
plete tasks that are displaced in an environment (e.g., in foraging, de-mining, rescue or
fire control), where each member autonomously chooses which task to perform. By har-
nessing this knowledge, better estimation techniques can be developed. Hence, we present
On-line Estimators for Ad-hoc Task Execution (OEATE), a novel algorithm for teammates’
type and parameter estimation in decentralised task execution. We show theoretically that
our algorithm can converge to perfect estimations, under some assumptions, as the number
of tasks increases. Additionally, we run experiments for a diverse configuration set in the
level-based foraging domain over full and partial observability, and in a “capture the prey”
game. We obtain a lower error in parameter and type estimation than previous approaches
and better performance in the number of completed tasks for some cases. In fact, we evalu-
ate a variety of scenarios via the increasing number of agents, scenario sizes, number of
items, and number of types, showing that we can overcome previous works in most cases
considering the estimation process, besides robustness to an increasing number of types
and even to an erroneous set of potential types.

Keywords Ad-hoc teamwork - Decentralised task execution - Learning - Planning

Elnaz Shafipour Yourdshahi and Matheus Aparecido do Carmo Alves are first authors.

This paper is an extended version of an AAMAS short paper (extended abstract) [36].

< Leandro Soriano Marcolino
l.marcolino @lancaster.ac.uk

Extended author information available on the last page of the article

Published online: 13 August 2022) Springer

http://orcid.org/0000-0002-3337-8611
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09571-9&domain=pdf

45 Page 2 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

1 Introduction

Autonomous agents are usually designed to pursue a specific strategy and accomplish a
single or set of tasks. Intending to improve their performance, these agents often follow
specified coordination and communication protocols to enable the collection of valuable
information from the environment components or even from other reliable agents. How-
ever, employing these methods is challenging due to environmental and technological
constraints. There are circumstances where communication channels are unreliable, and
agents cannot fully trust them to send or receive information. Moreover, particular situa-
tions require the design of agents (e.g., robots or autonomous systems) from various par-
ties aiming to solve a problem urgently, but constructing and testing communication and
coordination protocols for all different agents can be unfeasible given the time constraints.
For example, consider a natural disaster or a hazardous situation where institutions may
urgently ship robots from different parts of the world for handling the problem. In these
scenarios, avoiding delays and unnecessary funding usage would save lives and mitigate
the caused damages

One possible solution is to offer a centralised mechanism to allocate tasks to each agent
in the environment in an efficient manner. However, we may face scenarios where there
is no centralised mechanism available to manage the agents’ actions. When we consider
large scale problems, it is even easier to imagine situations where environmental or time
constraints also derail this solution. Hence, agents need to decide, autonomously, which
task to pursue [11]—defining what we will denominate a decentralised execution scenario.
The decentralised execution is quite natural in ad-hoc teamwork, as we cannot assume that
other agents would be programmed to follow a centralised controller. Therefore, allow-
ing agents to reason about the surrounding environment and create partnerships with other
agents can support the accomplishment of missions that are hard to deal with individually,
reducing the necessary time to achieve all tasks and minimising the costs related to the
process.

For many relevant domains, these decentralised execution problems can be modelled
focused on the set of tasks that need to be accomplished in a distributed fashion (e.g., vic-
tims to be rescued from a hazard, letters to be quickly delivered to different locations, etc).
Note this kind of design presents a task-based perspective to solve the problem, where
agents must reason about their teammates’ targets to improve the coordination, hence the
team’s performance. In this way, the agents must approximate the teammates’ behaviours
(or their main features) in order to deliver this improvement while solving the problem.

As our first goal, this paper will address the problem where agents are supposed to com-
plete several tasks cooperatively in an environment where there is no prior information,
reliable communication channel or standard coordination protocol to support the problem
completion. We will denominate this ad-hoc team situation as a Task-based Ad-hoc Team-
work problem, a decentralised distributed system where agents decide their tasks autono-
mously, without previous knowledge of each other, in an environment full of uncertainties.

Instead of developing algorithms that are able to learn any possible policy from scratch,
a common approach in the ad-hoc teamwork literature is to consider a set of possible agent
types and parameters, thereby reducing the problem of estimating those [2, 3, 10]. This
approach is more applicable, as it does not require a large number of observations, thus
allows the learning and acting to happen simultaneously in an on-line fashion, i.e., in a
single execution. Types could be built based on previous experiences [7, 8] or derived
from the domain [1]. Moreover, the introduction of parameters for each type allows more

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page30of49 45

fine-grained models [2]. However, the previous works that learn types and parameters
in ad-hoc teamwork are not specifically designed for decentralised task execution, miss-
ing an opportunity to obtain better performances in this relevant scenario for multi-agent
collaboration.

Other lines of work focus on neural network-based models and learn the policies of
other agents after thousands (even millions) of observations [22, 33]. These applications,
however, would be costly, especially when domains get larger and more complicated. Simi-
larly, I-POMDP based models [12, 17, 19, 23] could be applied for reasoning about the
model of other agents from scratch, but its application is non-trivial considering larger
problems.

On the other hand, some approaches in the literature have also tested task-based designs,
inferring about agents pursuing tasks to predict their behaviour [13]. Although we share
some similarities, they have not yet handled learning types and parameters of agents in ad-
hoc teamwork systems where multiple agents may need to cooperate to complete common
tasks.

Therefore, as our main contribution, we present in this paper On-line Estimators for
Ad-hoc Task Execution (OEATE), a novel algorithm for estimating teammates types and
parameters in decentralised task execution. Our algorithm is light-weighted, running esti-
mations from scratch at every single run, instead of employing pre-trained models, or car-
rying knowledge between executions. Under some assumptions, we show theoretically that
our algorithm converges to a perfect estimation when the number of tasks to be performed
gets larger. Additionally, we run experiments for two collaborative domains: (ii) a level-
based foraging domain, where agents collaborate to collect “heavy” boxes together, and;
(ii) a capture the prey domain, where agents must collaborate to surround preys and capture
them. We also tested the performance of our method in full and partial observable scenar-
ios. We show that we can obtain a lower error in parameter and type estimations in com-
parison with the state-of-the-art, leading to significantly better performance in task execu-
tion for some of the studied cases. We also run a range of different scenarios, considering
situations where the number of agents, scenario sizes, and the number of items gets larger.
Furthermore, we evaluate the impact of increasing the number of possible types. Finally,
we run experiments where our ad-hoc agent does not have the true type of the other agents
in its pool of possible agent types. In such challenging situations, our parameter estimation
outstands the competitors and, our type estimation and performance is similar or better
than the state-of-the-art in several cases considering the results’ confidence interval.

2 Background

Ad-hoc Teamwork Model Ad-hoc teamwork defines domains where agents intend to coop-
erate with their teammates and coordinate their actions to reach common goals. Moreover,
agents in the domains do not have any prior communication or coordination protocols to
enable the exchange of information between them, so learning and reasoning about the cur-
rent context are mandatory to improve the team’s performance as a unit. However, if agents
are aware of some potential pre-existing standards for coordination and communication,
they can try to learn about their teammates with limited information [8]. As a result of such
intelligent coordination in the ad-hoc teams, they can improve their decision-making pro-
cess and hence, accomplish shared goals more efficiently.

@ Springer

45 Page 4 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

This fundamental model can be extended to fit many problems and scenarios. For our
work, we will extend it to a task-based model, enabling a better representation of our world
as presented in previous state-of-the-art works [5, 6, 41].

Task-based Ad-hoc Teamwork Model As an extension of ad-hoc teamwork model, the
task-based ad-hoc teamwork model represents a problem where one learning agent ¢, acts
in the same environment as a set of non-learning agents w € Q, ¢ & Q. In the ad-hoc team
¢ U Q, the objective of ¢ (as the learning agent) is to maximise the performance (e.g., the
number of tasks accomplished or the necessary time to finish them all). However, all non-
learning agents’ models are unknown to ¢, and there is no communication channel avail-
able. Hence, ¢ must estimate and understand their models as time progresses, by observing
the scenario. In other words, the learning agent must improve its decision-making process
by approximating the teammates’ behaviour in an on-line manner and facing a lack of
information.

Besides, there is a set of tasks T which all agents in the team endeavour to accomplish
autonomously. A task 7 € T may require multiple agents to perform it successfully and
multiple time steps to be completed. For instance, in a foraging problem, a heavy item may
require two or more robots to be collected, and the robots would need to move towards
the task location to accomplish it, taking multiple time steps to move from their initial
position.

The learning agent ¢ must minimise the time to accomplish all tasks. Hence, playing
this role requires the support of a method that integrates the estimation and the decision-
making process while performing and improving the planning.

Model of Non-Learning Agents All non-learning agents aim to finish the tasks in the
environment autonomously. However, choosing and completing a task 7 by any is
dependent on its internal algorithm and its capabilities. Nonetheless, @’s algorithm can be
one of the potential algorithms defined in the system, which might be learned from previ-
ous interactions with other agents [7].

Therefore, following the model of Non-Learning agents defined in previous works [2,
41], there is a set of potential algorithms in the system, which compose a set of possible
types O for all v € Q. The assumption is that all these algorithms have some inputs, which
is denominated parameters. Hence, the types are all parameterised, which affects agents’
behaviour and actions. Considering the existence of these types’ parameters allows ¢ to use
more fine-grained models when handling new unknown agents.

According to these assumptions, each @ € Q will be represented by a tuple (6, p), where
0 € O is w’s type and p represents its parameters, which is a vector p =< p,p,,p, >.
Also, each element p; in the vector p is defined in a fixed range [p;"i", P [2]. So, the
whole parameter space can be represented as P C R”. These parameters can be the abili-
ties and skills of an agent. For instance, a robot can be quite different depending on its
hardware—for a robot, it can be vision radius, the maximum battery level or the maximum
velocity. The parameters could also be hyper-parameters of the algorithm itself. Conse-
quently, each w € Q, based on its type € and parameters p, will choose a target task. The
process of choosing a new task can happen at any time and any state in the state space,
depending on the agents’ parameters and type. We denominate these decision states as
Choose Target States 8 € S.

In the Task-based Ad-hoc Teamwork context, a precise estimation of tasks also depends
on estimating the Choose Target State. Our method presents a solution to this problem by
considering an information-based perspective, which does its evaluation by giving differ-
ent weights to the information derived from observations made by the agent ¢, instead of
directly estimating the choose target state. More detail will be presented in Sect. 6.

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page50f49 45

Stochastic Bayesian Game Model A Stochastic Bayesian Game (SBG) describes a well-
suited solution towards the representation of ad-hoc teamwork problems that combine the
Bayesian games with the concept of stochastic games and provide a descriptive model to
the context [4, 29]. In this section, we will define an SBG-based model for our specific set-
ting and refer the reader to [29] for a more generic formulation.

Our model consists of a discrete state space S, a set of players (¢ U Q), a state transition
function 7 and a type distribution A. Each agent @ € Q has a type 8, € ® and a param-
eter space P. Each parameter is a vector p =< p,,p, ... p, > and each p; € [plf"i", pi], for
all agents. The set [p’l”i", Py [p"”” max] = P C R" is the parameter space for each
agent. Each type could have a different parameter space, but we define a single parameter
space here for simplicity of notation. Furthermore, we assume that the types of the agents
are fixed throughout the process (a pure and static type distribution). Moreover, each player
is associated with a set of actions, an individual payoff function and a strategy. Considering
that at each time step, agents w; € Q are fixed tuples (6;, p,), where 6, € O and p; € P, we
extend the SBG model in order to describe the following problem:

Problem Consider a set of players ¢p U Q that share the same environment. Each
player acts according to its type ,, set of parameters p,; and own strategy =;. They do
not know the others’ types or parameters. At each time step ¢, given the state s’ and a

joint action a' = (' ¢,a a IQ\) the game transitions accordingly to the transi-

tion probability 7 and each player receives an individual payoff r; until the game
reaches a terminal state.

Therefore, by using the SBG model, we can represent our problem and the necessary
components in it. However, we consider in this work a fully cooperative problem, under
the point of view of agent ¢p. Hence, within the task-based ad-hoc teamwork context, we
want to model the problem employing a single-player abstraction under ¢’s point of view.
Using a Markov Decision Process Model (MDP), we can abstract all the environment com-
ponents as part of the state (including teammates in Q). This approach enables the aggrega-
tion of individual rewards from the SBG model into a single global reward and allows us to
use single-player Monte Carlo Tree Search techniques, as previous works did [5, 32, 41].

Markov Decision Process Model The Markov Decision Process (MDP) consists of a
mathematical framework to model stochastic processes in a discrete time flow. As men-
tioned, although there are multiple agents and perspectives in the team, we will define the
model considering the point of view of an agent ¢ and apply a single agent MDP model, as
in previous works [5, 32, 41] that represent other agents as part of the environment.

Therefore, we consider a set of states s € S, a set of actions a € A¢, a reward func-
tion R(s,a), and a transition function 7', where the actions in the model are only the ¢’s
actions. In other words, ¢ can only decide its own actions and has no control over other
environment components (e.g., actions of agents in the set Q). All @ in Q are modelled as
the environment, as their actions indirectly affect the next state and the obtained reward.
Therefore, they are abstracted in the transition function. That is, in the actual problem, the
next state depends on the actions of all agents, however, ¢ is unsure about the non-learning
agents next action. For this reason, we consider that given a state s, an agent w € Q has a
(unknown) probability distribution (pdf) across a set of actions A, which is given by w’s
internal algorithm (6, p). This pdf is going to affect the probability of the next state. There-
fore, we can say that the uncertainty in the MDP model comes from the randomness of the
actions of the w agents, besides any additional stochasticity of the environment.

@ Springer

45 Page 6 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

This model allows us to employ single-agent on-line planning techniques, like UCT
Monte Carlo Tree Search [26]. In the tree search process, the pdf of each agent defines
the transition function. At each node transition, ¢ samples @ agents’ actions from their
(estimated) pdfs, and that will determine the next state s’ for the next node. However, in
traditional UCT Monte Carlo Tree Search, the search tree increases exponentially with the
number of agents. Hence, we use a history-based version of UCT Monte Carlo Tree Search
called UCT-H, which employs a more compact representation than the original algorithm,
and helps to trace the tree in larger teams in a simpler and faster fashion [41].

As mentioned earlier, in this task-based ad-hoc team, ¢ attempts to help the team to get the
highest possible reward. For this reason, ¢ needs to find the optimal value function, which max-

imises the expected sum of discounted rewards E [Z;io v, +i)» where 7 is the current time, r,;

is the reward ¢ receives at j steps in the future, y € (0, 1]is a discount factor. Also, we consider
that we obtain the rewards by solving the tasks 7 € T. That is, we define ¢’s reward as . r(z),
where r(7) is the reward obtained after the task 7 completion. Note that the sum of rewards is
not only across the tasks completed by ¢, but all tasks completed by any set of agents in a given
state. Furthermore, there might be some tasks in the system that cannot be completed without
cooperation between the agents, so the number of required agents for finishing a task z depends
on each specific task and the set of agents that are jointly trying to complete it.

Note that the agents’ types and parameters are actually not observable, but in our MDP
model that is not directly considered also. Estimated types and parameters are used during
on-line planning, creating an estimated transition function. The actual decisions made by
the non-learning agents is observable in the real world transitions without any direct infor-
mation about type and parameters. More details are available in the next section.

3 Related works

The literature introduces ad-hoc teamwork as a remarkable approach to handle multi-
agents systems [5, 38]. This approach presents the opportunity to achieve the objectives of
the multiple agents in a collaborative manner that surpasses the requirement of designing a
communication channel for information exchanging between the agents, building an appli-
cation to do prior coordination or the collection of previous data that train agents intending
to improve the decision-making process within the environment. Furthermore, these mod-
els enable the creation of algorithms capable of acting in an on-line fashion, dynamically
adapting their behaviour according to the environment and current teammates.

In this section, we will carry out a comprehensive discussion about the state-of-the-
art contributions and how these different approaches have inspired our work. Intending to
facilitate understanding and readability, we organised the section into topics and related
contributions by groups. Each subsection categorises the major idea of each group and
summarises the main strategy of those.

3.1 Type-based parameter estimation

Considering type-based reasoning and parameters learning, we can solve the problem
using fine-grained models, which evaluate the observations and estimate each agent’s type
and parameters in an on-line manner [1, 3, 7, 8, 10]. These lines of works propose the
approximation of agents’ behaviour to a set of potential types to improve the ad-hoc agents’

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page70f49 45

decision-making capabilities, allowing a quick on-line estimation of agents’ algorithms,
without requiring an expensive training process for learning their policies from scratch.
However, if a set of potential types and the parameter space cannot be defined through
domain knowledge, then they would have to be learned from previous interactions [8].

Albrecht and Stone [2], in particular, introduced the AGA and ABU algorithms for
type-based reasoning of teammates parameters in an on-line manner, which are the main
inspirations for this work. Both methods sample sets of parameters (from a defined param-
eter space) to perform estimations via gradient ascent and Bayesian updates, respectively.
However, by focusing on decentralised task execution in ad-hoc teams, our novel method
surpasses their parameter and type estimations when the number of teammates gets larger
or more tasks are accomplished, consequently leading to better team performance. We also
extend their work by adding partial observability to all team members.

On the other hand, Hayashi et al. [22] propose an enhanced particle reinvigorating pro-
cess that leverages prior experiences encoded in a recurrent neural network (RNN), acting
into a partial observable scenario in their ad-hoc team. However, they need thousands of
previous experiences for training the RNN, while still requiring knowledge of the potential
types. Our approach can start from scratch at every single run, with no pre-training.

Concerning problems with partial observability, POMCP is usually employed for on-
line planning [37]. However, it is originally designed for a discrete state space, making
it harder to apply POMCP for (continuous) parameter estimation. However, we apply
POMCEP in combination with our algorithm OEATE, which enables the decision making on
partial observable scenarios and improves the POMCP search space, given the OEATE’s
estimation of the agents’ parameters. We also evaluate experimentally the performance of
POMCEP for our problem without the embedding of parameter estimation algorithms.

3.2 Complex models

Guez et al. [20] proposed a Bayesian MCTS that tries to directly learn a transition function
by sampling different potential MDP models and evaluating it while planning under uncer-
tainty. Our planning approach (inspired by [2, 7]) is similar, as we sample different agent
models from our estimations. However, instead of directly working on the complex transi-
tion function space, we learn agents types and parameters, which would then translate to a
certain transition probability for the current state or belief state.

Rabinowitz et al. [33] introduce a ‘“Machine Theory of Mind”—or purely the Theory of
Mind (ToM) approach—, where neural networks are trained in general populations to learn
agent types, and the current agent behaviour is then estimated in an on-line manner. Simi-
larly to learning policies from scratch, however, their general models require thousands
(even millions) of observations to be trained. Besides, they used a small 11 x 11 grid in
their experiments, while we scale all the way to 45 X 45 to estimate the behaviour of sev-
eral unknown and distinct teammates. On the other hand, if a set of potential types is not
given by domain knowledge, then their work serves as another example that types could be
learned.

A different approach that enables the learning of teammates models and reasoning about
their behaviour in planning is given by I-POMDP based models [12, 17, 19, 23]. How-
ever, they are computationally expensive, assuming all agents are learning about others
recursively and considering agents that receive individual rewards (processing estimations
individually).

@ Springer

45 Page 8 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Eck et al. [18] addressed this problem and recently proposed a scalable approach using
the I-POMDP-Lite Framework in order to consider large open agent systems. In their
approach, an agent considers a large population by modelling a representative set of neigh-
bours. They focus on estimating how many agents perform a particular action, hence their
approach is not applicable to the task-based problems that we consider in this work. Addi-
tionally, although they present a scalable approach in terms of team size, they still consider
only small 3 X 3 scenarios. In this work, we show scalability regarding the team size, the
dimensions of the map and the numbers of simultaneous tasks in the scenario.

Rahman et al. [34] also handle open agent problems and propose the application of a
Graph Neural Network (GNN) for estimating agents behaviours. Similarly to other neural
network-based models, it needs a large amount of training, and their results are limited to
a 10 x 10 grid world with 5 agents. Their agent parametrisation is also more limited, with
only 3 possible levels in the level-based foraging domain, which is directly given as input
for each agent (instead of learned).

Therefore, we propose lighter MDP/POMDP models, focused on decentralised task exe-
cution, with a single team reward, that allows us to tackle problems with a larger number of
agents, and tasks in bigger scenarios in the partially observable domain. Also, we build a
model for every single member of the team. On the other hand, open agent systems are not
in the scope of our work, and we consider fixed team sizes.

3.3 Task-oriented and task-allocation approaches

As mentioned, our key idea is to focus on decentralised task execution problems in ad-hoc
teamwork. Chen et al. [13] present a related approach, where they focus on estimating tasks
of teammates, instead of learning their model. While related, they focus on task inference
in a model-free approach, considering that each task must be performed by one agent, and
the ad-hoc agent goal changes to identifying tasks that are not yet allocated. Our work, on
the other hand, combines task-based inference with model-based approaches and allows for
tasks to require an arbitrary number of agents. Additionally, their experiments are on small
10 x 10 grids, with a lower number of agents than us.

There are also other works attempt to identify the task being executed by a team from a
set of potential tasks [29]; or an agent’s strategy for solving a repetitive task, enabling the
learner to perform collaborative actions [39]. Our work, however, is fundamentally differ-
ent, since we focus on a set of (known) tasks which must be completed by the team.

Another approach suggested in the literature for task-based problems optimisation
are the Multi-Agent Markov Decision Problem (MMDP) models [14, 15]. These models
allow agents to decide their target task autonomously and are focused on estimating team-
mates’ policies directly at specific times in the problem execution. Given knowledge of the
MMDP model, those approaches compute the best response policy (at the current time)
for the other agents and use those models while planning. However, they do not consider
learning a probability distribution over potential types and estimating agents’ parameters
like in our approach. OEATE is capable of using a set of potential types and space of
parameters to learn the probabilities of each type-parameter set up for each teammate in an
on-line fashion.

Multi-Robot Task Allocation (MRTA) models also represent an alternative approach to
solve problems in the ad-hoc teamwork context [27, 40]. Intending to maximise the col-
lective completion of tasks, these models employ decentralised task execution strategies
that work in an on-line manner without a central learning agent. Each agent develops its

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page90of49 45

own strategy based on the received observations. Similarly to our proposal, MRTA models
implement a task-based perspective to deliver solutions where agents know and seek tasks
distributed in an environment while reasoning. However, MRTA models assume knowl-
edge about the teammates’ types and the tasks that they are pursuing. Furthermore, this
assumption holds because they consider this information is available in the environment,
where agents can get it through observation (e.g., agents choosing tasks of different col-
ours) or reliable communication channels for information exchange between the agents. As
we mentioned earlier, there are circumstances where communication channels are unreli-
able, and agents cannot fully trust them to send or receive information. OEATE predicts
their teammates’ targets while learning their types and parameters, besides handling prob-
lems where these assumptions are not secured.

Concerning task allocation, MDP-based models are commonly applied [30, 31] in the
ad-hoc teamwork context. For instance, it can be framed as a multi-agent team decision
problem [35], where a global planner calculates local policies for each agent. Auction-
based approaches are also common, assigning tasks based on bids received from each
agent [28]. These approaches, however, require pre-programmed coordination strategies,
while we employ on-line learning and planning for ad-hoc teamwork in decentralised task
execution, enabling agents to choose their tasks without relying on previous knowledge
of the other team members, and without requiring an allocation by centralised planners/
controllers.

3.4 Geneticalgorithms

OEATE is inspired by Genetic Algorithms (GA) [24] since our main idea is to keep a
set of estimators, generating new ones either randomly or using information from previ-
ously selected estimators. However, GAs evaluate all individuals simultaneously at each
generation, and usually, they are selected to stay in the new population or for elimination
according to its fitness function. Our estimators, on the other hand, are evaluated per agent
at every task completion, and survive according to the success rate. The proportion of sur-
vived estimators are then used for type estimation, and new ones are generated using a sim-
ilar approach to the usual GA mutation/crossover. Moreover, we choose the application of
GA concepts in the works considering our empirical and theoretical results. As an empiri-
cal result, the employment of the GA approach showed better results in comparison with
the Bayesian Updates (considering the performance of AGA and ABU against OEATE)
As a theoretical result, our solution does not depend on finite-dimensional representations
for parameter-action relationships and can provide a more robust way to explore the whole
parameter space, through the use of multiple estimators, which mutate to form even better
estimators.

3.5 Prior contributions

As one of our major prior contributions, we recently proposed an on-line learning and
planning approach for an agent to make decisions in environments containing previously
unknown swarms (Pelcner et al. [32]). Defined in a “capture the flag” domain, an agents
must perform its learning procedure at every run (from scratch) to approximate a single
model for a whole defensive swarm, while trying to invade their formation to capture the
flag. Differently from Pelcner et al. [32], in this proposal we are aiming to learn a model for
each agent in the environment and by the estimation of types and parameters.

@ Springer

45 Page 10 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Another important work related to this current contribution is the UCT-H proposal in
Shafipour et al. [41]. Previous works that employ Monte Carlo Tree Search approaches
are limited to a small search tree since the cost of this procedure increases exponentially
with the number of agents and scenario. Trying to expand its horizons of applicability,
we proposed a history-based version of UCT Monte Carlo Tree Search (UCT-H), using a
more compact representation than the original algorithm. We performed several experi-
ments with a varying number of agents in the level-based foraging domain. As OEATE is
a Monte-Carlo based model, the studied of Monte Carlo Tree Search approaches and their
capabilities were essential to the development of our novel algorithm. In this current work
and to perform a fair comparison, we used the UCT-H version of the Monte-Carlo tree
search to run every defined baseline.

4 Estimation problem

Considering the problem described by the MDP model in Sect. 2, in this section, we
describe the general workflow of an estimation process and discuss how we integrated
planning and estimation in this work.

Estimations process Initially, since agent ¢ does not have information about each agent
’s true type 6* and true parameters p*, it will not know how they may behave at each state,
hence, must reason about all possibilities for type and parameters from distribution A. So,
¢ must consider, for each @ € Q, an uniform distribution for initialising the probability of
having each type 6 € 0O, as well as randomly initialising each parameter in the parameter
vector p based on their corresponding value ranges. However, given some domain knowl-
edge, it could be sampled from a different distribution both for types and for parameters.

After each estimation iteration, we expect that agent ¢ will have a better estimation for
type 6 and parameter p of each non-learning agent in order to improve its decision-making
and the team’s performance. Hence, ¢ must learn a probability for each type, and for each
type, it must present a corresponding estimated parameter vector.

In further steps, as agent ¢ observes the behaviour of all ® € Q and notices their actions
and the tasks that they accomplish, it keeps updating all the estimated parameter vectors p,
and the probability of each type P(6),, based on the current state. The way these estima-
tions are updated depends on which on-line learning algorithm is employed.

This described process aims to improve the quality of ¢’s decision-making based on
the quality of the result delivered by the estimation method. Therefore, we will perform
experiments using three different methods from the literature for type and parameter esti-
mation: Approximate Gradient Ascent (AGA), Approximate Bayesian Update (ABU) [2]
and POMCP [37], which will be explained in more detail in further Sect. 5. Moreover,
these methods will represent our baselines for comparison against our novel algorithm,
denominated On-line Estimators for Ad-hoc Task Execution (OEATE), for parameter and
type estimation in decentralised task execution, which will be described in detail in Sect. 6.

Planning and Estimations The current estimated models of the non-learning agents
are used for on-line planning, allowing agent ¢ to estimate its best actions. In this work,
we employ UCT-H for agent ¢’s decision-making. UCT-H is similar to UCT, but using a
history-based compact representation. This modification was shown to be better in ad-hoc
teamwork problems [41]. Therefore, as in previous works [2, 41], we sample a type 6 € @
for each non-learning agent from the estimated type probabilities each time we re-visit the

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 110f49 45

root node during the tree search process. We use the newly estimated parameters p for the
corresponding agent and sampled type, which will impact the estimated transition func-
tion, as described in our MDP model. Consequently, the higher the quality of the type and
parameter estimations, the better will be the result of the tree search process. As a result,
agent ¢ makes a decision concerning which action to take.

Note that the actual @ agents may be using different algorithms than the ones available
in our set of types ©. Nonetheless, agent ¢ would still be able to estimate the best type 6
and parameters p to approximate agent «’s behaviour. Additionally, @ agents may or may
not run algorithms that explicitly model the problem as decentralised task execution or
over a task-based perspective. However, using the single-agent MDP, we only need agent ¢
to be able to model the problem as such.

5 Previous estimation methods and baselines

In this work, we compare our novel method against some state-of-the-art methods. We
defined three algorithms from the literature as our baselines: AGA, ABU and POMCP.
Therefore, we will review these methods in this section.

AGA and ABU Overall The Approximate Gradient Ascent (AGA), and the Approximate
Bayesian Update (ABU) estimation methods are introduced in Albrecht and Stone [2]. In
that work, the probability of taking the action o/, at time step ¢, for agent w, is defined as
P(a; |Ha‘0 ,0,.p), where H;} = (s?, ,slf) is the w agent’s history of observations at time step
t, 0;1s a type in ©, and p is the parameter vector which is estimated for type ;. For the
estimation methods, a function f is defined as f(p) = P(a;)‘ 1 |H;‘1, 0,,p) where f(p) repre-
sents the probability of the agents’ previous action a’~ 1, given the history of observations of
agent w in previous time step, H{’U‘l, type 0;, and its corresponding parameter vector p. After
estimating the parameter p for agent @ for the selected type 6,, the probability of having
type 6, is updated following:

PO;|H.) < P(a’ ' |H, 60,,p) X P(O;|H))

Iteratively, they showed that both methods are capable of approximate the type and param-
eters and improve the performance in the ad-hoc teamwork context.

AGA The main idea of this method is to update the estimated parameters of an agent
by following the gradient of a type’s action probabilities based on its parameter values.
Algorithm 1 provides a summary of this method.

Algorithm 1 Approximate Gradient Ascent

1: procedure AGA ESTIMATION(p?~!, d)

2 Collect samples D = (p(), f(p(V))

3 Fit polynomial f of degree d to D

4: Compute gradient V f(p?~1) and step size \!
5 Update estimate p*

6: end procedure

@ Springer

45 Page 12 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

First of all, the method collects samples (p®, f(p")), and stores them in a set D (Line 2).
The method for collection could be, for example, using a uniform grid over the parameter
space that includes the boundary points. After collecting a set of samples, the algorithm,
in Line 3, fits a polynomial f of some specified degree d according to the collected sam-
ples. By fitting f, the gradient V{ with some suitably chosen step size A’ is calculated in
the next Line 4. At the end, in Line 5, the estimated parameter is updated as presented in
Equation 2.

p'=p~ + VP)

These steps define the AGA algorithm to estimate the agent’s parameters and type itera-
tively. For further details, we recommend reading Albrecht and Stone [2].

ABU In this method, rather than using f‘ to perform gradient-based updates, Albrecht
and Stone use f to perform Bayesian updates that retain information from past updates.
Hence, in addition to the belief P(0,»|H;), agent ¢» now also has a belief P(le; ,0,) to quan-
tify the relative likelihood of parameter values p, for agent w, when considering type 6,.
This new belief is represented as a polynomial of the same degree d as f. Algorithm 2
provides a summary of the Approximate Bayesian Update method.

Algorithm 2 Approximate Bayesian

1: procedure ABU ESTIMATION(p)

2 Fit f to f as in Algorithm 1

3 Compute polynomial product § = f - P(p|HL ™, 6;)
4: Collect samples D = (p(), g(p())

5: Fit new polynomial h of degree d to D

6 Compute integral] = f;’;ﬁf h(p)dp

7 Set new belief P(p|HY ,60;) = h/I

8: Extract estimate p? from P(p|HE, 6;)

9: end procedure

After fitting f (Line 2), the polynomial convolution of P(lei}‘l,Qi) and f results in a
polynomial § of degree greater than d (Line 3). Afterwards, in Line 4, a set of sample
points is collected from the convolution g in the same way that is done in Approximate
Gradient Ascent, and a new polynomial h of degree d is fitted to the collected set in Line
5. Finally, the integral of h under the parameter space, and the division of h by the inte-
gral is calculated, to obtain the new belief P(le(fu, 0,). This new belief can then be used
to obtain a parameter estimation, e.g., by finding the maximum of the polynomial or by
sampling from the polynomial. For further details, we recommend reading Albrecht and
Stone’s work [2].

POMCP Although in the MDP model agent ¢ has full observation of the environ-
ment, it cannot observe the type and parameters of its teammates. Therefore, we can
employ POMCP [37], a state-of-the-art on-line planning algorithm for POMDPs (Partially
Observable Markov Decision Process) [25]. POMCP stores a particle filter at each node
of a Monte Carlo Search Tree. In this case, like the environment, apart from the types and
parameters of the other agents, is fully observable, the particles are defined as different
combinations of the types and parameters for all agents in Q. Le., [(8,,P;), (05,P,), ...
(6,,p,)], where each (6, p) corresponds to one non-learning agent.

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 130f49 45

In the very first root, when the particles are created, we randomly assign types and
parameters for each agent at each particle. Therefore, at every iteration, we sample a parti-
cle from the particle filter of the root, and hence change the estimated type and parameters
of the agents. As in the POMCP algorithm, the root gets updated once a real action is
taken, and a real observation is received. Therefore, for having a type probability P(6),, for
a certain agent @, we calculate the frequency that the type 0 is asssigned to w in the current
root’s particle filter. Additionally, for the parameter estimation, we will consider the aver-
age across the particle filter (for each type and agent combination). For further explana-
tions about the POMCP algorithm, we recommend reading Silver and Venesss [37].

6 On-line estimators for ad-hoc task execution

In this section, we introduce our novel algorithm, On-line Estimators for Ad-hoc Task
Execution (OEATE), which helps the ad-hoc agent ¢ to learn the parameters and types of
non-learning teammates autonomously. The main idea of the algorithm is to observe each
non-learning agent (w € Q) and record all tasks (z € T) that any one of the agents accom-
plishes, in order to compare them with the predictions of sets of estimators. In OEATE,
there are some fundamental concepts applied during the process of estimating parameters
and types. Therefore, we introduce the concepts first and, then, explain the algorithm in
detail.

6.1 OEATE fundamentals

Sets of Estimators In OEATE, there are sets of estimators Eg} for each type 6 and each
agent w that the agent ¢ reasons about (Fig. 1). Moreover, each set Ef} has a fixed number
of N estimators e € EZ. Therefore, the total number of sets of estimators for all agents are
|Q| x |®|. Figure 1 presents this idea, relating agent, types and estimators.

An estimator e of EY is a tuple: {p,, c,.f,. 7, }, where:

e P, is the vector of estimated parameters for w, and each element of the parameter vector
is defined in the corresponding element range.
¢, holds the success score of each estimator e in predicting tasks.
/. holds the failures score of each estimator ¢ in predicting tasks.

Fig. 1 For each w agent there is a @
t of estimators E? f ht
set of estimators E{ for each type e
01 02 On
E‘! E’2 - ----- E’n

@ Springer

45 Page 14 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

e 7,is the task that w would try to complete, assuming type 6 and parameters p,. By hav-
ing estimated parameters p, and type 6, we assume it is easy to predict @’s target task at
any state.

The success and failure scores (c, and f,, respectively) will be further explained the in the
Evaluation step of OEATE presentation.

All estimators are initialised in the beginning of the process and evaluated whenever
a task is done (by the w agent alone or cooperatively). The estimators that are not being
able to make good predictions after some trials are removed and replaced by estimators
that are created using successful ones, or purely random, in a fashion inspired by GA
[24].

Bags of successful parameters Given the vector of parameters p, =< p, Py, ..., P, >,
if any estimator e succeeds in task prediction, we keep each element of the parameter
vector p, in bags of successful parameters to use them in the future during new param-
eter vector creation. Accordingly, there is a bag of parameters Bz) for each type 0 € O as
there is a estimator set Ez) for each type. These bags are not erased between iterations,
hence, their size may increase at each iteration. There is no limit size for the bags. We
will provide more details in Sect. 6.2. Figure 2 presents this idea, relating agent, types
and estimators to the addition of estimators in the bags.

Choose Target State In the presented task-based ad-hoc teamwork context, besides
estimation of type and parameter for each non-learning agent (w € Q), the learning
agent ¢ must be able to estimate the Choose Target State (8,) of each w. The Choose
Target State of an w agent can be any s € S or, in other words, a non-learning agent @
can choose a new task 7 € T to pursue at any time 7 or state s. This can happen in many
situations, for example, when the agent @ notices that its target is not existing anymore
(if it was completed by other agents), it would choose a new target, and the Choose Tar-
get State would not be the same state as when the last task was done by agent @. Hence,
a task-based estimation algorithm must be able to identify these moments where a pos-
sible task decision happened, to correctly predict the target.

Example For a better understanding of our method’s fundamentals, we will present
a simple example. Let us consider a foraging domain [2, 41], in which there is a set of

Fig.2 For each w agent and each @
possible type 6 € O, there is a

. (o)
bag of successful estimators.

Successful estimator are copied |
to the bag of estimators of their | T |

respective type, in order to later

. 0 o ____ 0
generate new combinations of 0 2 n
their elements. The check mark ! :
indicates success in predict- | l
ing the task and the cross mark v ¥
indicates failure
v'p

Ef}xpe:\pez Bf
X

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 150f49 45

¥ \ 03

@

(a) Current state where ¢ must reason (b) ¢ reasoning about w agents’ behaviour.
about w agents’ behaviour (teammates). In the illustration, ¢ considers three possi-
ble decisions for the agent ws.

Fig.3 Example of ¢ thinking about w agents’ behaviour, when performing foraging

agents in a grid-world environment as well as some items. Agents in this domain are
supposed to collect items located in the environment.

We show a simple scenario in Fig. 3, in which there are two non-learning agents @,, w,,
one learning agent ¢, and four items which are in two sizes. As in all foraging problems,
each task is defined as collecting a particular item, so in this scenario there are four tasks z'.
In addition, we have two types 0, and 0,, and two parameters (p,, p,), where p,,p, € [0, 1].

To keep the example simple, we consider that only p, affects w,’s decision-making at
each state, and its behaviour follows the rules:

e If the type is 8, and p, > 0.5, then w, goes towards small and furthest item (z°).
e If the type is 8, and p; < 0.5, then @, goes towards small and closest item (z?).
e If the type is 8,, Vp, € [0, 1], @, goes towards big and closest item (z?).

Therefore, in the example scenario, there are four sets of estimators, two for each w agent :

E) E; E; Eg. We assume that the total number of estimators in each set is 5 (N = 5).

Furthermore, we maintain 4 bags of estimators : BSJ‘I, Bgf], Bz,‘z, Bzfz.
We assume that the true type of agent w, is 6,, and the true parameter vector is (0.2, 0.5).
At this point, we will focus on the set of estimators for agent w,. Moreover, we will con-

tinue to use this example to explain further details of OEATE implementation.

6.2 Process of estimation

After presenting the fundamental elements of OEATE, we will explain how we define the
process of estimating the parameters and type for each non-learning agent. Simultaneously,
we will also demonstrate how OEATE evolves in various steps, using our above example.
The algorithm is divided into five steps, which is executed for all agents in Q at every
iteration:

@ Springer

45

Page 16 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

®
(i)

Initialisation: responsible for initialising the estimator set and the bags of successful
estimators for each agent w € Q.

Evaluation: step where OEATE will increase the failure or the success score of each
estimator, for all initialised estimator sets, based on the correct prediction of the w’s
target task. If the estimator successfully predicts the task, it will be added to its respec-
tive bag. Otherwise, it will be up for elimination.

(iii) Generation: step where our method replaces the estimators removed in the evaluation

process for new ones.

(iv) Estimation: process of calculating the types’ probabilities and expected parameters’ value for

)

each existing estimators set. The calculation is based on the success rate of each set.
Update: responsible for analysing the integrity of each estimator e and its respective
chosen target 7, given the current world state. If it finds some inconsistency, a new
prediction is made considering @’s perspective.

These steps are explained in detail below:
Initialisation At the very first step, for each identified teammate in the environment, we initial-

ise

its estimation set and the bag for each possible type. Therefore, agent ¢ needs to create N esti-

mators for each type 8 € O and each w € Q. If there is a lack of prior information, the parameter
vectors p, of each estimator can be initialised with a random value from the uniform distribution

ua

in each parameter’s range. Since each estimator has a certain type 8 and a certain parameter

vector p,, it allows agent ¢ to estimate agent w’s task choosing process. A task will be estimated
and assigned to 7, when, in a given state s € S at the time ¢, the prediction return a valid task. In

the

case where there is no valid task to return at the state s and time ¢, 7, receives “None” and will

be updated in later iterations (process carried out by the Update step). Finally, both ¢, and f, are
initialised to zero.

The Algorithm 3 presents the initialisation process.

Algorithm 3 Initialising OEATE

1: procedure INITIALISATION(£2,®,N,Pranges, st)

2 EstimatorSets < ()

3 Estimator Bags < ()

4 for each w € 2 do

5: for each 6 € © do

6: EstimatorSets < EstimatorSets U E?,
7 while |[EY | < N do

8: Pe < Ue(Pmin, Pmaxz, 0) > Generating the estimator from uniform distribution &/
9: Ce, fe < 0,0

10: 5¢ +— st

11: Te + predicty,(st, 0, pe)

12: El « ES Ue

13: end while

14: end for

15: end for

16: end procedure

sta
we

&

Initialisation Example Returning back to our example, in Initialisation step, we
rt by creating random estimators, as shown in Table 1. To make the example simple,
define the state as only the position of agent w,. Therefore, we set each 3, (Choose

Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 170f49 45

Table 1 Estimator sets E) P21, D2) 3, T, c, £,

and sz obtained from the

Initialisation step () Initial estimators for type 6,
0.4, 0.6) 3. 4) 7! 0 0
0.5,0.3) 3.4 73 0 0
(0.6,0.2) 3.4 73 0 0
0.2,0.5) 3.4 7! 0 0
(0.9,0.8) 3,4 73 0 0
(b) Initial estimators for type 6,
(0.1,0.3) 3,4 72 0 0
0.8,0.7) 3. 4) 72 0 0
(0.3,0.5) 3.4 72 0 0
(0.6, 0.9) 3.4 72 0 0
0.2,0.1) 3,4 72 0 0

Target State) with the initial position of w;, which is (3, 4), and then we create the
parameter vectors p, by randomly sampling from the uniform distribution, which should
be done separately for both p; and p,. Agent ¢ simulates w,’s task decision-making pro-

. . 0 0, . .
cess for each estimator in the sets E,, and E,;, and obtains the corresponding target task

7, based on the type and parameter of each estimator. In addition, all f, and ¢, will be
initialised as zero. All initial estimators for both sets are shown in Table 1.

Evaluation The evaluation of all sets of estimators EZ) for a certain agent w starts
when it completes a task 7,. The objective of this step is to find the estimators that
could estimate w’s just completed real task 7, correctly. Therefore, we present the Algo-
rithm 4 to facilitate the understanding and explanation of the evaluation process.

Algorithm 4 Evaluating Estimators

1: procedure EVALUATION(7,, w, s?)

2 for each 6 € ® do

3 for each e € Ef, do

4 if 7, = 7. then

5: B? « BY Up. > Parameters are added with repetition.
6: Ce < Ce + score(e)

7 else

8: fe « fe + score(e);

9: end if
10: if ce/ (Ce + fe) < & then > Checking if estimator success rate > &
11: E’ « Ef\e > Removing e from EZ,
12: else
13: So — st
14: Te — predict,, (st7 0,pe) > Assigning new task to survived estimators
15: end if
16: end for

17: end for
18: end procedure

@ Springer

45 Page 18 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

As there are sets of estimators for each type 8 € O, then for every e in Eg}, we check

if the 7, (estimated task by assuming p, to be w’s parameters with type) is equal to 7,
(the real completed task). If they are equal, we consider them as successful parameters
and save the p, vector in the respective bag B? (Line 5). The union between bag and
parameter, which is applied in the equation, means that new parameters would be added
to the bag with repetition, and if a parameter succeeds many times, it will appear in the
bag with the same numbers of successes, so the chance of selecting it would be higher.

If the estimated task 7, is equal to the real task 7, we will increase the c, follow-
ing ¢, < ¢, + score(e). The score(e) value denotes the information-level score for the
prediction made by estimator e. The information-level score is used to represent the
weighting given to certain task completions over others. For example: If a task predic-
tion occurs many steps before the task completion, it was likely made by a correct esti-
mator than by random chance. Furthermore, this function can be tweaked in a domain-
specific way.

If the estimated task 7, is not equal to the real task 7,, we will increase the f, score
following f, < f, + score(e). Note from the algorithm that we will only remove an esti-
mator e if its success rate is lower than & (Line 10). We define the threshold & as a suc-
cess threshold aiming to improve our estimator set, by removing the estimators that do
not make good predictions and keeping the ones that do (more detail in the Generation
explanation).

Note that, by using this approach, any generated estimator e has a chance to be elimi-
nated at the first iteration of estimation. Hence, some estimators, which may potentially
approximate well the actual parameters, can be removed after performing their first esti-
mation wrongly, V& € [0, 1]. However, even if these particles fail at the beginning of the
estimation, other estimators may also likely fail in the subsequent iterations of OEATE,
enabling the regeneration of the removed potentially correct estimator through the bags
or by sampling it again from the uniform distribution. As we will show in Section 6.3,
OEATE estimates the correct parameter for all agents as the number of completed tasks
grows and under some assumptions.

Finally, the Choose target State (3,) of the successful estimators is updated and a
new task (z,) is predicted using the type and parameters of the estimator. The evaluation
process ends and the removed estimators will be replaced by new ones in the Generation
Process.

Evaluation Example From the previous example, after the initialisation, the agents
move towards their respective targets. Based on the true type and parameters of the
agent w,, after some iterations, the agent (®,) gets the item that corresponds to the task
7!, For this example, and throughout our experimentation, we will use the number of
steps required between predicting the task and completing the next task as the score
(information-level) for the estimator for that prediction. Let us assume that the number
of steps required by the agent w, is 4 (3 for moving and 1 for completing). From Fig. 4,
the agent w,’s new position will be (6,4). We will use this value as the score for the esti-
mators. Note that here, since all estimators chose the task at the same time, they will get
the same score.

Whenever a task is done by an agent, the process of evaluation will start. Now, we
carry out the next step of our process. In Evaluation, all estimators of the two sets Ez,‘l,
Ez,z1 will be evaluated. If the task 7 of any estimator e equals to 7!, then its success
counter ¢, increases by score(e), otherwise it remains the same. Also, in failing cases,

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 190f49 45

Table 2 Estimator sets Ez,'], Effl P21, D2) 3, T, c, £ c

after updating c, and f, Cete
(a) Estimators for type 0,
(0.4, 0.6) 3, 4) 7! 4 0 1
(0.5,0.3) 3, 4) 73 0 4 0
(0.6,0.2) 3.4 73 0 4 0
(0.2,0.5) 3.4 7! 4 0 1
(0.9,0.8) 3.4 73 0 4 0
(b) Estimators for type 0,
(0.1,0.3) 3, 4) 72 0 4 0
(0.8,0.7) 3, 4) 72 0 4 0
(0.3,0.5) 3. 4) 72 0 4 0
(0.6, 0.9) 3.4 72 0 4 0
0.2,0.1) 3,4 7? 0 4 0

. U — <

e Bvaation g PO K R
(a) Estimators for type 0,
0.4, 0.6) 6, 4) 73 4 0 1
0.2,0.5) 6,4) 73 4 0 1

(b) Estimators for type 6,

the counter of failures f, increases by score(e). The updated values of the estimators are
shown in Table 2.

If we suppose that the threshold for removing estimators is equal to 0.5 (¢ =0.5),
then we will have two surviving estimators (Cci >¢)at Ez,‘l and none in ngl. Hence, the

bag for 6, are: BZ‘] = {(0.4,0.6),(0.2,0.5)} and the bag for 6, is empty. Further, the new
Choose Target State will be (6,4) and using this, we can find the new task (z,) for each
of the surviving estimators. The new estimator sets are represented in Table 3 and, the
new choose target state is illustrated by Fig. 4.

Generation The generation process of new estimators occurs after every evaluation
process and only over the removed estimators. In this step, the objective is to generate
new estimators, in order to maintain the size of the Eg) sets equal to N.

Unlike the Initialisation step, we do not only create random parameters for new esti-
mators, but generate a proportion of them using previously successful parameters from
the bags BY . Therefore, we will be able to use a new combination of parameters from
estimators that had successful predictions at least one time in previous steps. Moreover,

@ Springer

45 Page 20 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Fig.4 New Choose Target state
after @, completing 7!. At this
step, w; will try to find a new
task to pursue

Evaluation

(a) Some of the estimators of each (b) A proportion of new estimators

agent w will be removed after evalu- 1€ generated as a new combination
ation. of saved parameters from the respec-

tive bags and the others are randomly
generated.

New
Estimators

s10yewnISH [V
S
S

S,
S,

& =Y &
=3 =} —
= = =
I o =
—+ =+)
g g B
% Q

£ =

o]

Initial Estimator Set Evaluation Generation Final Estimator Set

(C) Estimation set modifications during the evaluation and generation pro-
cess.

Fig.5 Estimation set modifications from the evaluation to the end of generation process. a, b present the
modifications after the evaluation and after the generation, respectively. ¢ Presents the entire modification
process

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page210f49 45

as the number of copies of the parameter p in the bag BZ is equivalent to the number of
successes of the same parameter in previous steps, the chance of sampling very success-
ful parameters will increase according to its success rate.

The idea of using successful estimators to generate part of the new estimators is related
to the Genetic Algorithm (GA) principles. Until now, the described process shares several
similarities with the GA idea, such as the generation of a sample population for further
evaluation and feature improvement. Furthermore, we are concerned about boosting our
estimation process (based on the estimator sampling and evaluation), so we require a rea-
sonable way to generate new estimators that can improve our estimation quality. Therefore,
inspired by GAs mutation and cross-over process, we implement a GA-inspired process
that supports our generation method.

Therefore, after the elimination of estimators for which the probability of making a cor-
rect prediction is lower than the threshold &, we will generate new estimators for our popu-
lation following the mutation rate of m, where part of our population is generated randomly
following a uniform distribution ¢/, and the rest following a process inspired by the cross-
over, using our bags of successful parameters. With domain knowledge, different distribu-
tions could be used. Figure 5 illustrates how the estimator set changes during this described
process and indicates the portion of particles generated using the bags or randomly. Algo-
rithm 5 summarises this generation procedure.

Algorithm 5 Generating new estimators in OEATE

1: procedure GENERATION(w,$2,©,m,N,n_removed,s?)
2 n_mutations <— m * n_removed > Calculating the number of mutations to perform.
3 for each 6 € © do
4 while n_removed > 0 do
5: e +— new Estimator() > Initialising the new estimator.
6 if n_mutations > 0 then > Generating a estimator from the mutation process.
7 Penew < ue(pm,hu Pmax, 9)
8: n_mutations = n_mutations — 1
9: else > Generating an estimator using the bags.
10: for i = 0;7 < n_parameters;i =i+ 1 do
11: Psampled ~ BfJ > Sampling a parameter from the bag.
12: Di,enew < Pi sampled > Assigning the i-th parameter of Psqmpled t0 Penew.
13: end for
14: end if
15: n_removed = n_removed — 1
16: Senew <— st
17: Tenew «— predicty, (st, 0, penew)
18: E! « Ef uenew
19: end while
20: end for

21: end procedure

The generation process using the bags can be seen in Algorithm 5 Line 10-13 . There, a
new estimator is created by sampling 7 different parameters (with repetition) from the tar-
get bag, and then choosing their i-th parameters. Hence, essentially if the parameter of new
estimator (€"") is Pguew =< Py, P2, ..., P, >, then p; is chosen by sampling P,,1eq ~ BZ)
and then taking the i-th parameter from it (p; sumpiea)-

After performing all the generations with the bag, we continue to fill the estimator set with
uniform generated parameters. Once the estimator set is full (i.e., |Ez)| = N), the current state

@ Springer

45 Page 22 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

is assigned as Choose Target State (3,...) of every new estimator. Afterwards, a task (7,u.) is
predicted for each new estimator and the generation process finishes.
Generation Example Supposing m = % as mutation rate, then (1 — %) X (5—2)=2new

estimators are generated by randomly sampling from the bags, while % X (5 —2) = 1 estima-
tor is generated randomly from the uniform distribution. Therefore, we may create new esti-
mators with the following parameters: (0.4, 0.5); (0.2, 0.6); (0.8, 0.7), where the last vector is
fully random. For Efj}, as all estimators were removed and the corresponding bags are empty,
the whole set Eff1 will be generated using the uniform distribution as in the initialisation pro-
cess. After this, the current state (6,4) , is assigned as the Choose Target State for each new
estimator and a task is predicted. All new estimators and updated values are shown in Table 4.

Estimation At each iteration after doing evaluation and generation, it is required to estimate
a parameter and type for each w € Q to improve the decision-making. First, based on the cur-
rent sets of estimators, we calculate the probability distribution over the possible types. For
calculating the probability of agent w having type 8, P(8),, we use the success score c, of all
estimators of the corresponding type 6. For each w € Q, we add up the success rates ¢, of all
estimators in EY of each type 6, that is:

K= c,v0e0

0
e€Ef

It means that we want to find out which set of estimators is the most successful in estimat-
ing correctly the tasks that the corresponding non-learning agent completed. In the next
step we normalise the calculated kf}, to convert it to a probability estimation, following:

ks o
ookl Zyeoky, >0
I

else

P@), =
N

During the simulations, OEATE will sample estimations from the current estimation sets.
In detail, for each agent w, we will sample a type 6 based on P(6),, and sample an estimator
from w’s estimator set of that type (EZ}), using the weights given by c, of the estimators. In
this way, once a type () is selected, the probability of selection of each estimator e € EZ)

. 0

Table 4 Estimator sets E,) and c,
] P.(P1.P2) 8 z ¢ Je

E,; sets after the Generation step : ‘ ‘ ‘ ‘ Cotfe

(o)

(a) Estimators for type 6,

0.4, 0.6) (6,4) 73 4 0 1
0.2,0.5) 6,4) 73 4 0 1
0.4,0.5) 6,4) 73 0 0 0
0.2, 0.6) (6,4) 73 0 0 0
0.8,0.7) (6,4) 70 0 0 0
(b) Estimators for type 6,

0.1,0.3) (6,4) 72 0 0 0
0.8,0.7) 6,4) 72 0 0 0
0.3,0.5) 6,4) 72 0 0 0
0.6, 0.9) (6,4) 72 0 0 0
0.2,0.1) (6,4) 72 0 0 0

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page230f49 45

is equals to ¢, /k? . If k% = 0, we sample the estimator uniformly from E? . Otherwise, we
perform the weighted sampling.

Using this strategy, OEATE can improve the reasoning horizon and diversify the simu-
lations. Differently from AGA and ABU that presents only a single estimation per iteration,
we present a set of the (current) best found estimators for planning and decision-making.

Estimation Example Now, we do the Estimation step in our example to have a probabil-
ity distribution over types, and one parameter vector per type of ;. At this step, in order to
find the probability of being either 6, or 6,, we apply the Equation 6.2. By considering the
¢, of all estimators, we have that:

K =8,k =0,

Hence, to calculate the probability of each type, we use the Equation 6.2. Accordingly, the
probabilities are:
8

P'6)) = 350" 1,P'(6,) =

0

— =0,
8+0

which means that the probability of being 6, is the higher one.

Now, for the sampling process, we sample a type using the previously calculated dis-
tribution. Let’s say that we sample ;. Now, from this type, we also sample an estimator,
using the ratio c,/k% as the probability of each estimator in Ez)‘l. Concretely, we get:

P((0.4,0.6)6,) = %, P((0.2,0.5)]0,) = %

while the other estimators have probability 0. So, we use these probabilities to sample an
estimator, let’s say (0.4,0.6). Therefore, type 6, and the parameters (0.4, 0.6) will be our
estimated type and parameter for the current estimation step.

During the planning phase in the root of the MCTS (for the learning agent ¢ perspec-
tive), the OEATE will sample the simulating type and parameter respecting the probabili-
ties calculated above. Moreover, to calculate the error of the estimation of our method, we
use the mean square error (MSE) between the true parameter and the expected parameter
of the true type (6%). The expected parameter of a type (0) and agent w is calculated as:

pexp = Z Ii_zpe

0
eeE! o

Update As mentioned earlier, there are possible issues that might arise in our estimation
process, they occur:

(i) when a certain task 7 is accomplished by any of the team members (including agent
¢), and some other non-learning agent was targeting to achieve it, or;

(i) when a certain non-learning agent is not able to choose a task to target (e.g., cannot
see or find any available (or valid) task within its vision area considering possible
parameters limitations, such as vision radius and angle).

If some non-learning agent w faces one of these problems, it will keep trying to find a
task to pursue. Hence, from the perspective of the learning agent ¢, OEATE must handle
this problem updating its teammates’ targets. Otherwise, it might incorrect evaluate the
available estimators given the outdated prediction.

@ Springer

45 Page 24 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Algorithm 6 Updating the OEATE Estimators

1: procedure UPDATE(s?,Q2,©)

2 for each w € Q do

3 for each 6 € ® do

4 for each e € EY, do

S5: if no task or valid task was assigned to 7. then > Agent can’t find or see a valid task
6 Te = predict,, (st, 0, pe) > Predicting a task.
7 5e < st

8: else if 7. was completed by other agent then > Task completed by other agent
9: Te = predict,,(st, 0, pe) > Predicting a task. Note the return can be ().
10: Se st
11: end if
12: end for
13: end for
14: end for

15: end procedure

Therefore, the OEATE’s Update process exists to guarantee the estimator set integrity
for future evaluation. At each iteration, the update step will analyse the integrity of each
estimator e and its respective chosen target 7, given the current world state. If it finds some
inconsistency, it will simulate the estimator’s task selection for the next states, considering
’s perspective. The process is carried out in each successive state until it returns a new
valid target for the indecisive estimator. The Algorithm 6 presents the described update
routine.

Update Example In the update step, we look at our estimators from Table 4 and check
whether the conditions for update (from Algorithm 6) are met. Evidently, for our case,we
see that every estimator has a valid task assigned to it and therefore, nothing will happen in
the update step.

6.3 Analysis

We show that as the number of tasks goes to infinite, under full observability, OEATE
perfectly identifies the type and parameters of all agents w, given some assumptions. Since
each of our updates are related to completing the tasks, this analysis assumes that the
agents are able to finish the tasks. First, we consider that parameters have a finite number
of decimal places. This is a light assumption, as any real number x can be closely approxi-
mated by a number x” with finite precision, without much impact in a real application (e.g.,
any computer has a finite precision). Hence, as each element p; in the parameter vector is in
a fixed range, there is a finite number of possible values for it. To simplify the exposition,
we consider y possible values per element (in general they can have different sizes). Let n
be the dimension of the parameter space.

Additionally, let p* be the correct parameter, and 6* be the correct type, of a certain
agent w. We define 0~ # 6%, and p~ # p*, representing wrong types and parameters,
respectively. We will also use tuples (p, 0) to represent a pair of parameter and type.

Assumption 1 Any (p,67), and any (p~, 8*) has a lower probability of making a correct
task estimation than (p*, *). Moreover, we assume that the correct parameter-type pair
(p*, 6*) will also be able to have the correct Choose Target State (8,).

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 250f49 45

This assumption is very light because if a certain pair (p,0~) or (p~, %) has a higher
probability of making correct task predictions, then it should indeed be the one used for
planning, and could be considered as the correct parameter and type pair.

Assumption 2 Any (p,07), and any (p~, 8*) will not succeed infinitely often. That is,
as |T| — oo there will be cases where it successfully predicts the task, but the number of
cases is limited by a finite constant c.

Assumption 3 This assumption is needed to distinguish our method from a random
search. The assumption has 2 parts: (i) a correct value p? in any position i may still pre-
dict the task wrongly (since other vector positions may be wrong), but it will eventually
predict at least one task correctly in at most ¢ trials, where ¢ is a constant; (ii) a wrong
value p; in any position i may still predict the task correctly (since other vector posi-
tions may be correct), but that would happen at most b times for each bag, across all
wrong values. Therefore, b < y.

That is, if one of the vector positions i is correct, p will not fail infinitely, even
though other elements may be incorrect. That is valid in many applications, as in some
cases only one element is enough to make a correct prediction. For example, if a task
was nearby, for almost any vision radius it would be predicted as the next one if the
vision angle were correct. On the other hand, wrong values will not always succeed.
That is also true in many applications: although by the argument above, wrong values
may make correct predictions, but these are a limited number of cases in the real world.
Eventually, all tasks nearby will be completed, and a correct vision radius estimation
becomes more important to make correct predictions. Usually, y would be large (e.g.,
they may approximate real numbers), so we would have b <« y. Additionally, we will
consider the case with lack of previous knowledge, so parameters and types will be ini-
tially sampled from the uniform distribution. As before, we denote by P(8) the estimated
probability of a certain agent having type 6, but we drop the subscript w for clarity.

Theorem 1 OFATE estimates the correct parameter for all agents as |T| - oo. Hence,
P(6*) - L

Proof Since wrong parameters-type pairs will not succeed infinitely often, we always will
generate new estimators with a random p,. As we sample from the uniform distribution,
p* will be sampled with probability 1/y" > 0. Hence, eventually it will be generated as
|T| — oo. As the generation defines a Bernoulli experiment, from the geometric distribu-
tion, we expect y" trials.

Therefore, eventually, there will be an estimator with the correct parameter vector
p*. Furthermore, since (p*, 8*) has the highest probability of making correct predictions
(Assumption 1), it has the lowest probability of reaching the failure threshold &¢. Hence,
as |T| — oo, there will be more estimators (p*, 6*), than any other estimator. Further, any
(p~, 6*) will eventually reach the failure threshold, and will eventually be discarded, since
it succeeds at most ¢ times by Assumption 2. Therefore, by considering our method of
sampling an estimator from the estimator sets, we will correctly estimate p* when assum-
ing type 6*. Hence, when |T| — oo the sampled estimator from EY will be p*.

Further, when we consider the Assumption 2 , then the probability of the correct type
P(6*) — 1. That is, we have that ¢, - oo in the set E?". Hence, k" — oo, while ¢, < ¢ for 6~
(by assumption). Therefore:

@ Springer

45 Page 26 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

o+
PO*) = + -1,
29’6@ kg;

while P(67) — 0, as|T| — oo. O

This ensures that the as |T| — oo, the sampled type is 6*.

We saw in Theorem 1 that a random search from the mutation proportion takes y”" trials
in expectation. OEATE , however, finds p* much quicker than that, since a proportion of
estimators are sampled from the corresponding bags Bg;i . In the following proposition, we
will prove that OEATE will indeed find p* and under Assumption 1, p* would have highest
probability of not being removed from the estimator set and will continue to add it’s own
parameters back to the bag, thereby further increasing the probability of sampling those
parameters at each mutation.

Proposition 1 OEATE finds p*in O(n X w X (b + 1)").

Proof Consider Assumption 3, we know that at some time, we must encounter a param-
eter value p;. Sampling the correct value for element p; would take y trials in expectation.
Once a correct value is sampled, it will be added to Bg: if it makes at least one correct
task prediction. It may still make incorrect predictions because of wrong values in other
elements, and it would be removed (from the estimator set) if it reaches the failure thresh-
old &. However, for a constant number of trials ¢ X y, it would be added to BZ;. Similarly,
sampling the correct value for all n dimensions at least one time would take n X y trials in
expectation, and in at most # X n X y trials Bz: would have at least one estimator each with
the correct value in position i. The bags store repeated values, but in the worst case, there
is only one correct example at each Bg:, leading to at least 1/(b + 1) probability to sample
the correct value from the bag. Hence, given the bag sampling operation, we would find p*
with at most 7 X n X y X (b + 1)" trials in expectation.

Hence, the complexity is close to O(y), instead of O(y") as the random search (since
b <)

Considerations In Assumption 1, the choose target state (3,) of an estimator is depend-
ent only on the previous predicted tasks and the main agent’s observation. Therefore, in a
fully observable case, the true parameters have the highest probability of having the cor-
rect choose target state . Furthermore, we leave the proof for partially observable cases as
future work.

Time Complexity It is worth noting that the actual time taken by the algorithm
is dependent on (b+ 1)" . So, as an example, if b =10 <y =100 , then if n =3,
(b +1)" = 1000 > w = 100 . However, when we are write the time complexity, we are
focusing on how the algorithm will scale with larger search space (i.e. Higher y). Further,
since y is the precision of parameters, it is likely to be a large value. For instance, if there
are 3 elements in parameter vector (p), if range of each element (p;) is [0,1] and we want
our answer to be accurate up to only 3 places of decimal, then y = 10°.

6.4 OEATE with partial observability

Assuming full visibility for the learning agent is a strong presupposition and it rarely occurs
in a real application (due to data or technology limitations). Thus, towards a more realistic

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 27 0f49 45

application, we considered scenarios where agent ¢ is working with limited visibility of the
environment. Therefore, we formalise our problem as a Partially Observable Markov Deci-
sion Process, and similarly as before, we define a single agent POMDP model, which will
allow us to adapt POMCP [37] with our On-line Estimators for Ad-hoc Task Execution.

In this section, we will outline the main changes compared to our previous MDP model
(Sect. 2) and how we designed our POMCP-based solution for distributed task execution
problems into an ad-hoc teamwork context.

6.4.1 POMDP model

Our POMDP model considers one agent ¢ acting in the same environment as a set of non-
learning agents (w € Q), and ¢ tries to maximise the team performance without any ini-
tial knowledge about w agents’ types and parameters. We consider the same set of states
S, action A, transition 7 and reward function R defined previously. Additionally, agent
¢’s objective is still to maximise the expected sum of discounted rewards. However, now
agent ¢ has a set of observations O that defines its current state. Every action a produces
an observation o € O, which is the visible environment in agent ¢’s point of view (all of
the environment within the visibility region, in the state s’ reached after taking action a).
We assume agent ¢ can perfectly observe the environment within the visibility region, but
it cannot observe anything outside the visibility region. Hence, our POMDP model work-
swithin a observation function which is deterministic instead of stochastic—so, all values
denote empty square, agent or task. As before, agents true types and parameters are not
observable.

The current state cannot be observed directly by agent ¢, so it builds a history H instead.
'H consists of a set of collected information 4, from the initial timestamp ¢ = 0 until the cur-
rent time. Each A, is an action and observation pair ao, representing the action a taken
at time ¢, and the corresponding observation o that was received. The current agent his-
tory will define its belief state, which is a probability distribution across all possible states.
Therefore, agent ¢ must find the optimal action, for each belief state.

This formalisation enables the extension of our planning model, from a full observa-
ble context using MCTS to a partially observable context for POMCP application. This
transition to a POMCP application is a straightforward process, however, we make further
modifications to guarantee the on-line estimation and planning features, which OEATE
presents.

6.4.2 POMCP modification

POMCP [37] is an extension of UCT for problems with partial observability. The algo-
rithm uses an unweighted particle filter to approximate the belief state at each node in the
UCT tree and requires a simulator, which is able to sample a state s, reward r and observa-
tion o, given a state and action pair. Each time we traverse the tree, a state is sampled from
the particle filter of the root. Given an action a, the simulator samples the next state s’ and
the observation o. The pair ao defines the next node »n in the search tree, and for the cur-
rent iteration, the state of the node will be assumed to be s’. This sampled state s’ is added
to node n’s particle filter, and the process repeats recursively down the tree. We refer the
reader to Silver and Veness [37] for a detailed explanation.

However, as in the UCT case, we do not know the true transition and reward functions,
since they depend on the pdfs of the non-learning agents (w € Q). Therefore, we employ

@ Springer

45 Page 28 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

the same strategy as previously: at each time we go through the search tree, we sample a
type for each agent from the estimated type probabilities and use the parameters that cor-
respond to the sampled type. These remain fixed for the whole traversal until we re-visit
the root node for the next iteration. Note that these sampled types and parameters are also
going to be used in the POMCP simulator, when we sample a next state, a reward and an
observation after choosing an action in a certain node.

As mentioned previously, POMCP has been modified before to sample transition func-
tions [20]. Here, however, we are employing a technique that is commonly used in UCT
(for MDPs) in ad-hoc teamwork [2, 7], but now in a partially observable scenario, which
allows us to work on the type/parameter space instead of directly on the complex transi-
tion function space. In this way, we can then employ OEATE for the type and parameter
estimation.

The same OEATE algorithm described in Sect. 6 can handle the cases where any agent
w € Q is outside the agent ¢’s visibility region. In order to do so, it samples a particle
from the POMCP root, which corresponds to sampling a state from the belief state. That
allows us to have complete (estimated) states when predicting tasks for w agents. States
that are considered more likely will be sampled with a higher probability for the OEATE
algorithm following the POMCP belief state filtering probabilities. However, we assume in
our implementation (and in all algorithms we compare against) that agent ¢ knows when
an agent o has completed a task z, even if it is outside our visibility region. That is, agent ¢p
would know exactly which task was completed by a certain agent. That would require in a
real application some global signal of task completion (e.g., boxes with radio transmitters).

7 Results
7.1 Level-based foraging domain

The level-based foraging domain is a common problem for evaluating ad-hoc teamwork
[2, 4, 41]. In this domain, a set of agents collaborate to collect items displaced in a rec-
tangular grid-world environment in a minimum amount of time (Fig. 6). In this foraging
domain, items have a certain weight, and agents have a certain skill level, which defines
how much weight they can carry. Hence, agents may need to collaborate to pick up a par-
ticularly heavy item. Further, we assume that tasks are spawning in the environment during
the execution.

Differently from [2, 41], this approach enables a continuous level of information in the
scenario, which ¢ must analyse and reason about to improve the team’s performance. The
performance here will regard the number of completed tasks in the environment instead of
the necessary time to complete all tasks. Concretely, we define the number of tasks that can
be in the environment simultaneously. If some agent (or group of agents) accomplishes a
task, we spawn a new one for each completion at that execution time. In this way, we man-
age to maintain a fixed number of tasks in the environment, hence the same problem level
from the beginning to the end.

Finally, we defined this problem over full and partial observability, which Fig. 6 illus-
trates possible scenarios configuration.

Agent’s Parameters Each agent has a visibility region and can only choose items as a
target if they are in its visibility cone. Therefore, to know which items are in the visibility
area of each agent, we need to have the View Angle and the maximum View Radius of the

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page290f49 45

0.5

(a) Level-based foraging domain. The num- (b) Level-based foraging domain. The num-
ber next to the boxes indicate their weight, ber next to the boxes indicate their weight,
and the one next to agents indicate their and the one next to agents indicate their
skill levels. The coloured area represents skill levels. The coloured area represents
the vision area of w agents. ¢ has full visi- the vision area of w agents. ¢ has partial
bility of the environment. visibility of the environment.

Fig. 6 Possible problem scenarios in the defined level-based foraging domain

agents. Additionally, each agent has a Skill Level which defines its ability to collect items.
Also, each item has a certain weight, so each agent can collect items that have a weight
below their Skill Level or equal to it. Based on what we described above, each agent can be
defined by three parameters:

[, which specifies the Skill Level and [€ [0.5, 1];
a, which is referring to View Angle. The actual angle of the visibility cone is given by
the formula a * 2z. Additionally, it is assumed that a € [0.5, 1];

e r, which is referring to the View Radius of the agent. The actual View Radius is given
by rv/w? + h?, where w and h are the width and height of the grid. Also, the range of
the radius is r € [0.5, 1].

All of these parameters are applicable to all ® € Q. Agent ¢ has the parameter Skill Level
when it has either full or partial observability, but the View Angle and View Radius param-
eters are only applicable when it has partial observability.

Agent’s Types Concerning types of non-learning agents, we took inspiration from Albre-
cht and Stone [2] type definitions in the foraging domain. They considered four possible
types for the agents in Q: two “leader” types, which choose items in the environment to
move towards, and two “follower” types, which attempt to go towards the same items as
other agents, in order to help them load items. However, “follower” agents may also choose
other agents as target, while in our work we handle agents that choose tasks as target. There-
fore, we only consider “leader” agents in our work. Hence, based on agent w’s type and
parameter values, a target item will be selected, and the agent’s internal state (memory) will
be set to the position of that target. Afterwards, the agent will move towards the target using
the A* algorithm [21]. Here is the detail for how the different types choose their targets:

@ Springer

45 Page 30 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

L1: if there are items visible, return the furthest item; else, return @.

L2: if there are items visible, return the item with highest sum of coordinates; else, &.
L3: if there are items visible, return the closest item; else, return @.

LA: if there are items visible, return the item with lowest sum of coordinates; else, &.
L5: if there are items visible, return the first item found (considering the orientation:
west to east, north to south); else, @.

e [6: if there are items visible, return an random item; else @.

Actions Each agent has five possible actions in the grid: North, South, East, West, Load.

The first four actions will move the agent towards the selected direction if the destina-
tion cell is empty and it is inside the grid.

The fifth action, Load, helps the agent to load its target item. The only time that an agent
can collect an item is when the item is next to the agent, and the agent is facing it. Also, for
loading the item, the Skill Level of the agent should be equal to or higher than the items’
weight. If the agent does not have enough Skill Level to collect the item, then a group of
agents can do the job if the sum of the Skill Levels of the agents that surround the target is
greater than or equal the item’s weight. Therefore, the item can be “loaded” by a set of agents
or just one agent. In the situation when the agent does not have enough ability to collect the
target item, it will standstill in the same place when issuing the Load action. In the case of
collecting an item, the team of agents receives a reward and it will be removed from the grid.

Foraging Process: First of all, we describe the process of foraging and choosing a target
for agents @ in Algorithm 7 in order to facilitate the understanding and explanation.

In the very first step as agent @ has not chosen any target, the Mem, which holds the
target item, is initialised to @. In Line 10, the Visibleltems routine is called, which gets the
agent @’s parameters, View Angle and View Radius, and returns a set containing the visible
items. In Line 11, the ChooseTarget routine gets the Skill Level and Type of the w agent,
and the list of visible items, returned from Visibleltems routine as input. The output of this
routine is the target item that agent w should go towards.

As it is shown in Line 17, there might be cases where agent w is not able to find any
target task. In these cases, all actions would get equal probabilities and consequently, it will
perform actions uniformly randomly until it is able to choose a task.

We should mention that this is an algorithm template that we assume non-learning
agents are following. We use the same template in our simulations, but in practice agents,
o could follow different algorithms. Hence, in the results section, we will also evaluate the
case where the agents do not follow the same algorithm as in our template.

7.2 Capture the prey domain

Intending to evaluate the present range of applicability of our proposal over different
domains, we further perform experiments in the Capture-the-Prey domain.

This domain is presented as a discrete, rectangular grid-world as in Sect. 7.1. It is
a variant of the Pursuit Domain described in [9, 10]. There are several “preys” in the
environment, which represents the objectives that the Ad-hoc Team must pursue, similar
to the “tasks” from our Level-based Foraging environment. However, the preys are also
non-learning agents, which are running a reactive algorithm and trying to escape from
being captured—defining decentralised tasks, which are moving in the scenario. Each
prey can also be identified by a numeric index given to it. The ad-hoc team is composed
of non-learning agents w € Q and a learning agent ¢. They must surround the prey and

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page310f49 45

capture it, which means to block the movement of the prey on all discrete four sides:
North, South, East and West. It can be done only by agents, or with the support of walls
and/or by other preys. Note that surrounding is mandatory, hence the agents must col-
laborate in the most efficient way in order to improve their performance. The tasks are
re-spawning in this environment as well. Figure 7 illustrates the problem.

Algorithm 7 Foraging
1: procedure MoveOmega (Skill Level, ViewRadius, ViewAngle, Type)
2 if item in Mem is collected then
3 Mem + 0 > Memory to keep target
4: end if
S: Loc < location of w;
6: Dest + ()
7 if Mem # () then
8 Dest +— Mem
9: else > Choose new target
10: I < Visibleltems(Loc, ViewRadius, ViewAngle)
11: Targ <+ ChooseTarget (Skill Level, Type, I)
12: if Targ # 0 then
13: Dest <+ Targ
14: end if
15: end if

16: Mem < Dest
17: if Dest = () then

18: Assign probability 0.2 to each action

19: else

20: if Loc is next to Dest then

21: Assign probability 0.96 to Load action
22: else

23: Use A* to find path from Loc to Dest
24: Assign probability 0.96 to first move action in path
25: end if

26: Add probability 0.01 to each move action
27: end if

28: Return pdf over actions

29: end procedure

Fig. 7 Possible problem scenario

in the defined capture the prey &
domain. The agent with red

details is the learning agent ¢.
The agents with blue details
are the non-learning agents

o € Q. The grey agents are the
prey (Color figure online)

o
& ¢ D

P

@ Springer

45 Page 32 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Agent’s Parameters The parameter of each agent is the same as earlier, but there is no
longer a Skill Level parameter since the completion condition is not related to task param-
eters. In this way, the w agents still have a visibility region to see and choose targets, which
follows:

e g, which is referring to View Angle. The actual angle of the visibility cone is given by
the formula a * 2z. Additionally, it is assumed that a € [0.5, 1];

e r, which is referring to the View Radius of the agent. The actual View Radius is given
by rv/w? + h2, where w and h are the width and height of the grid. Also, the range of
the radius is r € [0.5, 1].

Agent’s Types Concerning types of non-learning agents, we created 2 main types to run the
experiments:

e (1: the spatial type of the set, which chooses the furthest visible prey to pursue, if there
are visible preys in its vision area; else, return @.

e (2: the index-based type, which chooses preys with an even identification, if there are
visible preys in its vision area; else, return @.

Actions Each agent has 5 actions : North, South, East, West, Block . The first four actions
will move the agent towards the selected direction if the destination cell is empty or it is
inside the grid. The Block is the action that actually captures the prey, where the agent
stands at its position blocking the passage of prey. Notice that there is no Load action, as
the completion of the task (or “Capturing the Prey”) is done by the surrounding. So the
agent must block one passage of the prey, trying to create a capture situation.

Unlike in level-foraging, the tasks are no longer stationary. At each step, the tasks also
move randomly to one of the empty squares next to them. If no such free space exists and,
at least, one agent is surrounding the task, it gets captured. So, each task can be completed
by at least 1 agent, depending on the location of the task and the whole state configuration
(such as other agents positions, other preys positions and map borders).

Capturing Process Directly, the process of choosing actions and targets remains similar
to the process defined for Foraging by Algorithm 7.

7.3 OEATE results

Baselines We will compare our novel algorithm (OEATE) against two state-of-the-art
parameter estimation approaches in ad-hoc teamwork: AGA and ABU [2] (both presented
in Sect. 5). As we mentioned before, we sample sets of parameters (for a gradient ascent
step or a Bayesian estimation), which is similar to set of estimators in the OEATE for
estimating parameters and types. Therefore, for better comparison against them, we use
the same set size as estimator sets (N). Note that Albrecht and Stone [2] also introduced an
approach called Exact Global Optimisation (EGO). We do not include it in our experiments
since it is significantly slower than the ABU/AGA, without outperforming them in terms of
prediction.

Additionally, we compare our approach against the proposed POMCP-based method
(also presented in Sect. 5) for type and parameter estimations. As described, in estima-
tion with POMCP, we assume that the agent ¢ can see the whole environment, however,
the teammates’ type and parameters are not observable. Hence, agent ¢ applies POMCP’s

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page330f49 45

particle filter for estimation. We use N X |Q| X |@| particles, matching the total number of
estimators in our approach (since we have N per agent, for each type).

Experiments configuration We executed random scenarios in Level-based Foraging and
Capture the Prey domains (Sects. 7.1 and 7.2, respectively) for a different number of dis-
tributed tasks, agents and environment size for all aforementioned estimation methods. The
experiment finishes by reaching 200 iterations. Every run was repeated 20 times, and we
plot the average results and the confidence interval (p = 0.05). Therefore, when we say that
a result is significant, we mean statistically significant considering p < 0.05, according to
the result of a Kruskal-Wallis test. In detail, as a first test, we applied the Kruskal-Wallis
to determine whether a statistically significant difference exists between all the algorithms
considered; afterwards, we evaluated each pair of algorithms using a Wilcoxon Rank Sum
Test (with Bonferroni correction) to determine which ones were different from the others.
Following these steps, we could accurately calculate the confidence interval in the results
obtained by each approach, thus finding which one is significantly better than the others.
We avoid presenting every p-value to improve the readability of the work. So, we maintain
our focus on presenting the p-values that are meaningful for our analysis and avoid report-
ing the p-value for results where there is clearly no significance (i.e., p > 0.05). Note that
error bars and coloured regions indicate the confidence interval at a 95% confidence level,
not the standard deviation, supporting the confidence visualisation.

For each scenario, we assume one of the four estimation methods ABU, AGA, POMCP
and OEATE to be agent ¢’s estimation method. We kept a history of estimated parameters
and types for all iterations of each run and calculated the errors by having true parameters
and true types in hand. Then, we evaluate the mean absolute error (as in Equation 6.2) for
the parameters, and 1 — P(6*) for type; and what we show in the plots is the average error
across all parameters. Additionally, since we are aggregating several results, we calculate
and plot the average error across all iterations.

In this way, we first fix the number of possible types as 2 (L1, L2 and C1, C2 for Level-
based Foraging and Capture the Prey domains, respectively), and later we show the impact
of increasing the number of types. Type and parameters of agents in Q are chosen uni-
formly randomly. At the Level-based Foraging environment, the skill level for agent ¢ is
also randomly selected. Every parameter p; € p is a value within the minimum-maximum
interval [p"", p7] = [0.5, 1.0].

Every task is created in random positions, but we exclude the scenario’s borders and
free the adjacent tiles. That allows agents to set up their positions to perform the load
action from any direction (i.e., North, South, East, West), making it always possible for 4 to
simultaneously load an item, which guarantees that all tasks are solvable. For the Capture
the Prey environment, this guarantee is not secured since the tasks are moving.

Estimation methods configuration In our experiments, we used the following configura-
tion for parameters values of OEATE:

the number of estimators N equals to 100;

the threshold for removing estimators & equals to 0.5, and;

mutation rate m equals to 0.2.

"information-level" score (score(e)) is taken as the number of steps between assigning
the Choose Target state and completing the task.

We apply the same configuration for all baselines (AGA, ABU and POMCP) and through
every experiment performed. For UCT-H [41], we run 100 iterations per time step, and the
maximum depth is kept as 100.

@ Springer

45 Page 34 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Level-based Foraging Results Before showing the aggregated results, we will first show
an example of the parameter and type error estimation across successive iterations. Con-
sider the experiment with |Q| = 7, a scenario with dimension equals to 30 X 30 and 30
tasks distributed in the environment. Figure 8 shows this result.

As we can see in Fig. 8a, our parameter estimation error is consistently significantly
lower than the other algorithms from the second iteration, and it (almost) monotoni-
cally decreases as the number of iterations increases. AGA, ABU, and POMCP, on the
other hand, do not show any sign of converging to a low error as the number of iterations
increases. We can also see that our type estimation quickly overcomes the other algorithms
in the mean, becoming significantly better after some iterations, as more and more tasks
are completed.

- Multiple numbers of items: We now show the results for different numbers of items.
Therefore, we fixed the scenario size as 30 X 30 and the number of agents w to 7 (|Q| = 7).
Then, we run experiments for a varying number of items in the environment (20, 40, 60,
80). Figure 9 shows the result plots.

As we can see in the figure, OEATE has consistently lower error than the other algo-
rithms in terms of parameters estimation. Considering the type estimation, OEATE pre-
sents significantly better results for 20, 40 and 80 tasks. We also see that the number of
accomplished tasks is very similar, which means that there is no significant difference
between the results.

It is interesting to see that our parameter error drops for a very large number of items
(80), as OEATE gets a larger number of observations. We can also note that the algorithm
scales well to the number of items, and our performance actually improves in the mean
with more than 20 items. This happens because OEATE gets observations more often for a
larger number of items in the environment.

- Multiple numbers of agents: After comparing with multiple numbers of items, we run
experiments for different numbers of agents. Here, we fix the number of items to 30 and the
scenario size to 30 X 30. Then, we run experiments for a different number of agents (5, 7,
10, 12, 15) and the plots are shown in Fig. 10.

Again, the figure shows that, for different numbers of agents, OEATE can present a
lower or similar error than the other algorithms, both in parameter and type estimation.
Moreover, we can see that the performance of the team by having a learning agent ¢
(which runs OEATE) is also better than others with the increasing number of teammates.
Regarding parameters and type errors, OEATE is significantly better than AGA, ABU and
POMCEP in almost all cases, except for type error with 15 agents where OEATE is very

020 —4AGA ~W-ABU POMCP — ~@-OEATE AAGA T WFABU POMCP — -@-OFATE
§ 0.18 A 0.5
= .
w e
E 0.16 5
(7] (]
£ 014 g o3
© (-
©
S o012
0.10 0.1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Number of Iterations Number of Iterations
(a) Parameter error (b) Type error

Fig. 8 Parameter and type estimation errors for |Q| = 7, dimension 30 x 30 and |T| = 30

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page350f49 45

similar to AGA, respectively. Interestingly, we can see in this case that, even being slightly
worse than AGA, OEATE can improve the coordination and complete a higher number of
tasks than the baselines. Additionally, the experiment with 15 agents presents the higher
difference between the estimation methods performance, where OEATE is clearly the best
one.

- Multiple scenario sizes: After comparing multiple numbers of items and agents, we
run experiments for different scenario sizes to study our scalability to harder problems. For
that, we fix the number of items to 30 and the number of @ agents to 7 (|Q| = 7). Then, we
run experiments for a varying scenario size (20 X 20, 25 x 25, 30 x 30, 35 X 35, 45 x 45)
and the plots are shown in Fig. 11.

As we can see, OEATE has consistently lower error than the other algorithms, both
in terms of parameters and type estimation. In fact, OEATE is significantly better than
AGA, ABU and POMCP in terms of type and parameters error for all scenario sizes, with
p < 0.001. Additionally, in Fig. 11 (c) we see that there is no significant difference between
task completion of the methods. Overall, OEATE seems to maintain good estimation even
with the increasing of scenario dimension.

—A—AGA —W-ABU POMCP —@-OEATE —AAGA —W-ABU POMCP —@-OEATE
0.50
021 |
o | T 1 0.45
o
= \“ I 5
w }[— S 0.40
(U] w
3
2 g
> 035
© J it
S i
0.30
0.1 0.25
20 40 60 80 20 40 60 80
Number of Tasks Number of Tasks
(a) Parameter error (b) Type error
—AAGA —V-ABU POMCP —@-OEATE
kel
g 30
=
Q
g 2
S]
9l
9]
X 20
% -
©
|_
G 15
2 i
[
E
§ 10 ‘
=
5
20 40 60 80

Number of Tasks

(€) Performance

Fig.9 Results for a varying number of tasks with full observability

@ Springer

45 Page 36 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

—A-AGA —W-ABU POMCP —@-OEATE “A-AGA W-ABU POMCP —-@-OEATE
0.50
0.2 T T

0.45

.

o /‘\ T L

= L -

w O 0.40

- | ; £

[w

© o

I o 0.35

>

pu | s

(©

o 030
0.25

0.1
5 7 10 12 15 5 7 10 12 15
Number of Agents Number of Agents
(a) Parameter error (b) Type error
—A-AGA W-ABU POMCP _ —@-OEATE

30

25

20

15

10

Number of Tasks Completed

5 7 10 12 15
Number of Agents

(c¢) Performance

Fig. 10 Results for a varying number of agents with full observability

Partial observability experiment Here, agent ¢ has partial observability of the environ-
ment and employs the POMCP modification for handling that, as described in Sect. 6.4.2.
In these experiments, the number of @ agents is 7 and the environment size is 30 x 30, but
the variation of items is 20, 40, 60, 80. The radius of ¢’s view is 15 and the angle is 180°.

Note that AGA/ABU results for partial observability are not shown in Albrecht and
Stone [2], and thus are presented by us for the first time. Hence, in the cases presented
here, by OEATE, AGA and ABU, we mean the modified POMCP version, following the
approach described in Sect. 6.4.2; and by POMCP we mean the POMCP-based estimation,
as before, which does not embed the ad-hoc teamwork algorithms for type and parameter
estimation.

We show our results for partially observable scenarios in Fig. 12. Again, we obtain sig-
nificantly lower parameter error than previous approaches (Fig. 12a). In the case of type
error (Fig. 12b), OEATE presents worst type estimation than the competitors, except
POMCP. However, they are not significantly better than OEATE. For 20 items, AGA and
ABU present p > 0.2. For 40 and 60, AGA and ABU present p > 0.09. Finally, for 80 items
AGA and ABU present p > 0.35. In Fig. 12c, we see that we obtain similar performance to
the previous approaches in 40 and 60 items.

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page370f49 45

—A-AGA —W-ABU POMCP —@-OEATE “A-AGA —W-ABU POMCP —@-OEATE
0.50

0.2 I

0.40

0.35

Parameter Error
Type Error

0.30

0.25
0.1

20 25 30 35 40 20 25 30 35 40
Scenario Dimension Scenario Dimension
(a) Parameter error (b) Type error
—A-AGA —W-ABU POMCP —@-OEATE

40

35

30

25

20

15

Number of Tasks Completed

10

20 25 30 35 40
Scenario Dimension

(¢) Performance

Fig. 11 Results for various environment sizes in full observability

OEATE represents a task-based solution that depends on the prediction of tasks for
unknown teammates for any possible state of the problem. The difficulty in estimating
types over partial observability is a result of the lack of precision on reasoning about the
part of the map that is not visible. Our proposed modification for POMCP could enable the
estimation of parameters and types over partial observability. However, as the problem pre-
sents a high level of uncertainty, the belief states need not approximate the actual states of
the world, hence OEATE couldn’t perform a good evaluation of its estimators and improve
the prediction. Therefore, finding a manner of refining the POMCP belief state approxima-
tion can adapt OEATE to handle this new layer of uncertainty that can improve the results
as we found for full observability.

- Experiments with larger numbers of types: Besides trying to estimate two types (L1
and L2), we also want to push the uncertainty level of the problem running experiments for
a larger number of potential types (|®]). In this way, we run experiments with four types:
L1, L2, L3 and LA4. Figure 13 shows the results.

Results displayed in Fig. 13a demonstrates parameters error, where we are signifi-
cantly better than all other methods for all number of items with p < 0.011. From Fig. 13b,
OEATE outperforms AGA and ABU only with 20 and 60 items in the environment. AGA

@ Springer

45 Page 38 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

—A—AGA -W-ABU POMCP -@-OEATE “A—AGA -W-ABU POMCP -@-OEATE

0.2

Parameter Error
Type Error
o
&

0.1

20 40 60 80 20 40 60 80
Number of Tasks Number of Tasks
(a) Parameter error (b) Type error

5.0 AAGA —W-ABU POMCP —@-OEATE
®
g 22.5
Q.
£ 200
5]
o
g 175
2 —
— 15.0
o
o
E 12.5
g 1
S 100
=

7.5

20 40 60 80

Number of Tasks

(C) Performance

Fig. 12 Results for a varying number of items in problems with partial observability

and ABU are better than OEATE for 40 and 80 items respectively. In the performance, as
we can see in Fig. 13c, there is no significant difference between the methods.

After studying the four different types case for the @ agents, we experiment with six
potential types (L1, L2, L3, L4, L5, L6). The results are shown in Fig. 14.

Considering parameters error, OEATE is significantly better than the other approaches
with p < 0.0005. Taking type error into account, we are better in all number of items with
p <0.06, except for 40 items, where we are significantly better than POMCP, but against
AGA and ABU, we are worst with p < 0.92 and p < 0.34, respectively. For performance,
OEATE decreases monotonically as the number of tasks increases.

Overall, OEATE presents a better result performing estimation with fewer types. Its
parameter estimation is significantly better for all studied cases. However, when it is facing
a higher number of possible templates for types, its type estimation quality decreases and
its performance is still similar in comparison with the competitors.

- Wrong types: We also study our method’s behaviour when the agent ¢ does not have
full knowledge of the possible types of its teammates. That is, we run experiments where
all agents in Q have a type which is not in ©. In these experiments, we assume that agent
¢ is only aware of type L1 and L2, but we assign L3 and L4 to the @ agents as their type

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page390f49 45

—A-AGA —W-ABU POMCP —@-OEATE —A-AGA —W-ABU POMCP —@-OEATE

0.2 0.8
—_ I 1
(o]
2 L 07
wi r o
= =
Q = T w
9
g L o6
o >
c [
5 |
o

0.5
0.1 0.4
20 40 60 80 20 40 60 80
Number of Tasks Number of Tasks
(a) Parameter error (b) Type error
10/ AAGA W-ABU POMCP —@-OEATE

35

3 | i
LA

15 ‘

10

Number of Tasks Completed

20 40 60
Number of Tasks

(c¢) Performance

Fig. 13 Results for a varying number of items, with randomly selected types among 4 types

(sampled uniformly randomly). We ran experiments with 7 agents and fixed the size of the
scenario to 30 x 30, with various numbers of items (20, 40, 60, 80). We can see our results
for the performance of the team in Fig. 15.

As the figure illustrates, without knowing the possible types that the teammates might
have, OEATE only outperform the competitors with 80 items, except POMCP. Surpris-
ingly, POMCP shows the better performance in the group. We believe that, without the
knowledge of the possible types and considering the difficulty associated with the problem,
acting greedily can show better results in such cases.

Capture the Prey Result As mentioned before, we run experiments into the Capture the
Prey domain. Considering the same settings defined for Level-based Foraging, we define
the experiment with |Q| =7, a scenario with dimension equals to 30 X 30 and the set of
tasks distributed in the environment (20,40,60,80) as the main result from the set of experi-
ments. Figure 16 shows these data plot.

As we can see, OEATE still presenting a significantly lower parameter error in com-
parison with the competitors. Even though showing worse results compared to AGA and
ABU in type estimation, OEATE seems to be able to decrease its error with the increasing

@ Springer

45 Page 40 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

—A-AGA —W-ABU POMCP —@-OEATE 0.00 A—AGA —W-ABU POMCP -@-OEATE
0.2 0.85
= I 0.80
5]
o]
T . S 075
0 W \ﬁ g
3 }[w70
2 2
>
© 2 065
©
o 0.60
0.55
01 050

20 40 60 80 20 40 60 80
Number of Tasks Number of Tasks
(a) Parameter error (b) Type error
—A-AGA —W-ABU POMCP ~@-OFATE

35

1 i

30

25

20

15

Number of Tasks Completed

10

20 40 60 80
Number of Tasks

(¢) Performance

Fig. 14 Results for a varying number of items, with randomly selected types among 6 types

number of tasks, while AGA and ABU seem to converge after considering 60 tasks (preys)
in the scenario. Additionally, the performance of all methods is very similar in the capture
environment.

The defined Capture the Prey domain defines a hard problem to tackle. Improving the
team’s performance relates to choosing actions that will facilitate the preys capture. We
believe that OEATE can present better results against AGA and ABU over an adaptation
of the POMCEP for adversarial contexts, where OEATE will be able to reason about the
preys, and hence increase the number of tasks accomplished and the type estimation (based
on this characteristic).

Overall result Intending to directly present the conclusions found after performing the
complete set of defined experiments and also provide support for further analysis of this
work, we present in Table 5 the compiled results of this section regarding the experiments
performed for the Level-based Foraging and Capture the Prey Environments.

Ablation Study As an interesting piece for the readers, we carried out an ablation study.
The intention of this experiment is to show how our internal method choices impact the
method outcome. We defined 4 different configurations for the OEATE considering their
impact on the quality of the estimation:

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 410f49 45

Fig. 15 Performance of the ad- 50{—4A—AGA -W-ABU POMCP —@-OEATE
hoc team for a varying number of
items without having information

. ©
of correct potential teammates 2 40l
9]
types >
£ I
IS
O
9 30
%]
©
'_
Y
S
o 201
o
1S
=}
=

101

20 40 60 80
Number of Tasks

OEATE: representing the full version of our proposal;

OEATE (No Score): representing the version that doesn’t apply the score approach of
our final proposal, removing the weighting of decisions made in different choose target
states and facing different levels of uncertainty;

e OEATE (Uniform Scored): representing the version that doesn’t perform the process of
generating new estimators from the bag. Hence, we removed the bag from our proposal
and adapt it to work only with the uniform replacement of estimators, and;

e OEATE (Uniform): representing the version that doesn’t apply the score approach of
our final proposal and doesn’t perform the bag generation process, categorising the sim-
plest version of our proposal.

Additionally, considers the experiment with |Q| = 7, a scenario with dimension equals to
30 x 30 and 30 tasks distributed in a Level-based Foraging environment (2 types were used
in this experiment). Figure 17 shows this result.

Regarding the parameter estimation, as the figure shows, we can see that OEATE per-
forms the estimation similarly for all configurations, but the main impact is regarding the
starting point of the estimation method. Using each defined strategy leads OEATE, after
few iterations performing the estimation process, to correct the parameter values. Differ-
ently, from the process carried out by simpler versions of our proposal, OEATE showed to
be capable of fixing its estimation in this ablation study. We attribute this improvement to
the weighting of estimators during the sampling due to the scoring and bag approach.

On the other hand, the improvement in the results related to the type estimation is even
higher. The full version of OEATE presents a significantly better result in comparison
with the simpler versions. Interestingly, the second better result found in this ablation study
comes from the simplest OEATE configuration. Both, the scored and the uniform scored
versions presents higher type error than the uniform one. At this point, we attribute the
improvement to the fact that scores of the estimators help in improving the sampling and
maintenance of good estimators in the estimation set. Without recovering estimators from
the bag, the scoring can only lead to the trivial game of guessing the correct parameter
(hence the type) randomly. Therefore, OEATE represents a fine solution, which combines
two unsuccessful tools to obtain a powerful estimation capability.

@ Springer

45 Page 42 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

—A-AGA —W-ABU POMCP -@-OEATE “A-AGA -W-ABU POMCP -@-OEATE
0.50
0.2 T T
1 | 0.45
5 5
& 5
o] ﬂ ﬂ o 0.40
g g
e =
S 0.35
0.30
0.1
20 40 60 80 20 40 60 80
Number of Tasks Number of Tasks
(a) Parameter error (b) Type error
30{—&—AGA -W-ABU POMCP -@-OEATE

25

20

15

10

Number of Tasks Completed

20 40 60 80
Number of Tasks

(¢) Performance

Fig. 16 Parameter errors, type estimation errors, and performance for a varying number of items in the
Capture the Prey domain

8 Discussion

We showed in this work that by focusing on distributed task completion problems, where
agents autonomously decide which task to perform, we can obtain better type and param-
eter estimations in ad-hoc teamwork than previous works in the literature. Although not
all problems can be modelled as a set of tasks to be completed, it does encompass a great
range of useful problems. For instance, apart from the obvious warehouse management and
the proposed capture the prey game, we could think about situations such as rescuing vic-
tims after a natural disaster or even during some hazard and demining.

Note that different teammates do not need to share the same representation of the prob-
lem, and run algorithms that explicitly “choose” tasks. That is, they could have been pro-
grammed with different paradigms, without using any explicit task representation. How-
ever, their external behaviour would still need to be understood as solving tasks distributed
in an environment in the point of view of our ad-hoc agent. Hence, we do need problems
and teammates that fit the decentralised task allocation representation for our agent, but
the actual teammates’ internal models could be different.Further, our use of the threshold ¢

@ Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page430f49 45

Fig. 17 Ablation Study results 0-20 - BEATE (Uniform) —A_OEATE (No Score)
for parameter and type estima- -W-OEATE (Uniform Scored) ~ -@)-OEATE
tion errors considering |Q| = 7, § 0.181
dimension 30 X 30 and |T| = 30 v} 016
in the Level-based Foraging g
1 []
domain g o
o
©
& 012
0.10 T T T y T T T T T
0 25 50 75 100 125 150 175 200
Number of Iterations
(a) Parameter error
[JFOEATE (Uniform) —A—OEATE (No Score)
-W-OEATE (Uniform Scored) ~@)-OEATE
5 0.5
=
w
(]
o
£ 0.3
0.1

0 25 50 75 100 125 150 175 200
Number of Iterations
(b) Type error

gives us finer control over the evolutionary process of the estimators, by ensuring that only
estimators with a minimum level of quality can survive.

Another interesting characteristic of our algorithm is that it allows learning from scratch
at every run in an on-line manner, following the inspiration from Albrecht and Stone [2].
Therefore, we can quickly adapt to different teams and different situations, without requir-
ing significant pre-training. Neural network-based models, on the other hand, would require
thousands (even millions) of observations, and although they may show some generalis-
ability, eventually re-training may be required as the test situation becomes significantly
different than the training cases.

It is true that our algorithm requires a set of potential types to be given. In the case
where this set cannot be created from domain knowledge, then some training may be
required to initialise this set. Afterwards, however, we would be able to learn on-line at
every run, without carrying further knowledge between executions. Albrecht and Stone
[2] also follow the same paradigm, and directly assumes a set of potential parametrisable
types, without showing exactly how they could be learned. There are several examples of
learning types in ad-hoc teamwork, but they still ignore the possibility of parametrisation.
For instance, PLASTIC-Model [8] employs a supervised learning approach, and learns a
probability distribution over actions given a state representation using C4.5 decision trees.

In order to better understand the impact of this assumption, we also run experiments
where the set of types considered by the ad-hoc agent does not include the real types of
teammates. In these challenging situations, we find that our performance is either similar to
the other works in the literature depending on each case.

We have also shown that our algorithm scales well to a range of different variables, as
we increase the number of items, number of agents, scenario sizes, and number of types.

@ Springer

(2022) 36:45

Autonomous Agents and Multi-Agent Systems

Page 44 of 49

45

sayoroidde snoraaid ay) uey) oourwroyrad reqrwrs syudsard gIyHO uow
-UOIIAUD 9][qeAIasqo [ented oy Jo sjoedwr oY) Suroe] UAAd ‘[[eIAQ "(SE°0 < J Im
‘nq) Jo11d uonewnss adA) 19y31y smoys gILVHO ‘Puey 1yio a3 uQ ‘seyoeoidde
snotadid oyy uey) (_O1 > ¢) uonewnss wjowered 1910q ApuedyIUSIS sjuosald
FLVHO ‘SYSe) Jo Joquinu SuIseaIour ue SULIdPISU0d pue AJIqearasqo [ented a0

uonodwos ysey

Jo Kouanbaiy 1omor Y 03 9[qndadsns uaA9 ‘10113 13joweled pue ad£) Surpredar

‘(uonewns? 2d£) pue 1oowered ur (140°Q0 > d) seurfeseq oy} Juruioy1adino [[1s st

ALVEO 1Y) MOYUS oM ‘[[BISAQ) 9ZIS SUISBAIOUL 3} 1M Jamo] $)35 (suonerayt 00g)

s)uowIadXa A} J0J SWILIF-OWT) PAUYSP oY) UM pajo[dwod syse) Jo requinu

oY) ‘PaXY ST JUSWUOIIAUS Y} UL SYSB} PANQLISIP JO JOqUINU Y} IOUIS "UOTJBWITIS
ad£) 10 107owreIRd 10) pUAL) JBI[O OU SIUASAId 9ZIS JUSWIUOIIAUS FUISBAIOUT Y,

SaseaIoul

‘JouuBwWw PAINQLISIP € Ul ‘pajo[duiod s)se) Jo JoqUInU 9y} 9OUIS JUSWUOIIAUD oY) UT

(9D 9WOS 10J 6£0°0) > ¢ JO 9OUBOYIUSIS YIIM) SIJRWWERI] JO JoqUUINU SUISBIIoUT

Y} YIIM sauIfeseq 9y} WIoj1adino ued FLVHO ‘[EIOAQ "SAJeWIE) JO JOqUINU

Surseaour oy} Ym douLWIO}Id UBdW I9139q SMOYS FILVHO TOAOMOH ‘UONBWNSI
19)owered s 1 VHO 10§ 1oedwr Juead[ar ou Judsaid sjuage Jo roquunu JUISLaIoul Ay,

J[qe[TeAR UQ)JO 20U 218 (UoNI[dWO0d SYSB) PAINQLNSIP) SUONDALISGO

A2y 219yM SOLIBUIDS 10J (Z00'0 > ¢ M 10q) uonewnss 2dA) pue rajouwrered

saurfaseq ay) wopRdino Apueoyrudis ued gIyHO eyl Moys am ‘aanosadsiad

PIseq-ySe) pauyap Ay SULIIPISUOD ‘[[RIAQ "UONRWNS 2dA) 10J syse) Jo Ioqunu

SuISeaIOUT) JO 102 I[qRAISS]O OU ST A1) ‘PUEY ISYIO Y} UQ "SHSE) JO Joquunu
Sursearour oy yIim uonewnsa 1jwered uo juswasoidwr 1y3iys € sjuasard IvHO

(£°9 1098 SIsATeur [8o112103) PadO[IAIP) 0} SAJLIOGOLIOD I NSAT

SIY) PUB SOLIEURDS PIJSa)) JO AwOs UI (8400 > J pue uonewrsd ojouwrered 10y

G70°0 S ¢) saurpaseq ay) wirogradino Apuedyrusis pnod FLVHOQ ‘[eIPAQ 10119
101ourered pue odA) 1oq ur puan SUISEAIOAP JTUOJOUOU JSOWE U. SMOUS HLVHO

AnMIqea1asqo ened 107 s)nNsaY 4!

9ZIS JUQWIUOIIAUD SUISEAIOUT U JOJ SINSIY I1

JUSUIUOIIAUD 9} UI (SI)BWIWEI)) SHuade JO JoquInu SUISLIIOUT UR I0J SNSIY 01
JUQUIUOIIAUD d) UT SYSk) JO JoquInu JUISEIIOUT UR J0J SINSIY 6

INOTARYRq pajoadxy 8

Juauuoaua SuISvLof pasnq-12aa7

SISA[euy

dnyog rejuowradxyg 31

s)[nsa1 pue sjuowradx9 o jo Arewrwng g ajqel

pringer

A s

45

Page 45 of 49

(2022) 36:45

Autonomous Agents and Multi-Agent Systems

(L0000 > ¢) uonewnsa Iv)owered I9MO[puB JUBW

-10330d reqruurs Sunjuesaxd [[ns ST gLVHO Inq o110 uonewnsd ad£) 1oysiy oy

sagnsnl yorgm ‘uonewnss ay) wiiojrad 0} gLVHQ JI0f SUoupa1asqo £2y Jo Ioquinu

19mO] & 03 sped] swo[qoid sty jJo Axardwos oy ‘[reroa “dew oy ur sAaid jo

Ioqunu SUISBAIOUT AU} YIIM SISBAIOOP uonewnsd adA) oy ‘puey J9YI0 Y uQ ‘uon
-ewnse J9)owered I0] puaI) Jea]d ou ST 910y} ‘JuawuoIraud Ka1d oyy axmdeos oy) 1y

juowaaoldur aourwioyiad wapqoid € 9[qeu? 03 aanejudsaidar oq jsnw ued

pue awodno [euy Yy Apoaaip syoedwr sadAy renusjod Jo 10s oy ‘sadAy pauygep oYy

SULISPISUOD “Jey) 235 URD dM ‘[[BIOAQ "PdurwIofIad 21) uo jordwur OU SMOYS UOTRW

-11s9 9d 43 pue 19jowrered oy ‘Tenudjod Jo 19 191399 © JO Yor[Yl YU (86°0 < J)
JDINOd PUe NGV ‘VOV 01 2oueuriojrad ojqeredwod e syuesard gIvHO

$15933ns Juowrradxa sy) se yons wojqoid xordwod

q1ow 9y} 3uroey UAAd uonewnsd as1oa1d e syuasard FLvHO ‘[reteaQ (110> d

ue SULIOPISUOD) SIS A} JO ISOW J0J saurfaseq oY) Sururtojradino s st FLVAO

‘puey] 1210 Ay} uQ "uonewnsd adA) pue 1ajowered s FLyYHO ul 1edwr 1e9[d ou
sjuasaxd JuawuoIIAUR 9y} ur syuage ay) 10} sadA) [enjudjod Jo requinu Fursearour ayJ,

(sysey) sAaxd jJo 1oquinu SuISBAIOUI JO SINSAY 91

Juauonaua Kaad ayy aunidp)

SIsA[euy

sadA) renuojod Suoim 10J s)nsoyY S
soyewrrea) JoJ sad£) Tenuajod Jo oquunu SUISEAIOUT U JOJ SINSIY P1 €T
dmyog [ejuowradxyg 31

(ponunuoo) g s|qey

pringer

As

45 Page 46 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

Usually, models based on neural networks (e.g., [22, 34]) are not yet able to show such
scalability and present only restricted cases. A similar issue happens with I-POMDP based
models (e.g., [12, 17, 19, 23]) which tend to show experiments in simplified scenarios due
to the computational constraints. Therefore, by focusing on distributed task execution sce-
narios, we are able to propose a light-weight algorithm, which could be more easily applied
across a range of different situations.

Concerning partial observability scenarios, our algorithm still requires knowledge of
which agents completed a particular task, even if outside our controlled agent visibility
region. Hence, in a real application, we would still require some hardware in addition to
the agent sensors, such as radio transmitters connected to the boxes that must be collected.
Removing this assumption in task-based ad-hoc teamwork under partial observability is
one of the exciting potential avenues for future work.

Finally, an important implication, which highlights a limitation of our study, is: improv-
ing the knowledge of the ad-hoc agent about non-learning teammate types did not always
lead to an improvement in performance. This outcome may suggest the classic benchmark
problems might not be a good fit for evaluating methods that focus on the importance of
accurate modelling of neighbour types. With such implications and potential discovery,
new benchmarks might be proposed to further evaluate the community’s algorithms or the
current ones refined.

9 Conclusion

In this work we have presented On-line Estimators for Ad-hoc Task Execution (OEATE), a
new algorithm for estimating types and parameters of teammates, specifically designed for
problems where there is a set of tasks to be completed in a scenario. By focusing on decen-
tralised task execution, we are able to obtain lower error in parameter and type estimation
than previous works, which leads to better overall performance.

We also study our algorithm theoretically, showing that it converges to zero error as the
number of tasks increases (under some assumptions), and we experimentally verify that
the error does decrease with the number of iterations. Our theoretical analysis also shows
the importance of having parameter bags in our method, as it significantly decreases the
computational complexity. We experimentally evaluated our algorithm in the level-based
foraging and capture the prey domain. We are also able to consider a range of situations,
increasing number of items, number of agents, scenario sizes, and number of types in our
experiments. Additionally, we evaluated the impact of having an erroneous set of poten-
tial types, the impact of handling situations with partial observability of the scenarios and
the impact of each component within OEATE through a ablation study. We show that we
could outperform the previous works with statistical significance in some of these cases.
Furthermore, we find that our method scales better to an increasing number of agents in
the environment, and is able to show robustness when tackling different scenarios or facing
wrong types templates. This work opens the path to diverse studies regarding the improve-
ment of ad-hoc teams through a task-based perspective and using an information-oriented
approach.

For the interested readers who may want to explore and further extend this work, our
source code, built on AdLeap-MAS simulator [16], is available at https://github.com/Ismco
lab/adleap-mas/.

@ Springer

https://github.com/lsmcolab/adleap-mas/
https://github.com/lsmcolab/adleap-mas/

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page 47 0f49 45

Acknowledgements This research was supported by Lancaster University, which provided financial sup-
port with the FST Studentship program and access to its High-End Computing (HEC) Cluster. We espe-
cially thank Mike Pacey for his best assistance while using and setting the experiments into the cluster. We
thank our colleagues Dr. Yehia Elkathib and Yuri Tavares Dos Passos, who provided comments that greatly
improved this paper, besides kindly delivering us their insights and expertise that supported our research
and improved our methodology. We gratefully thank the AUSPIN visit grant and all the financial support
provided by Fundacdo de Amparo a Pesquisa do Estado de Sdo Paulo (FAPESP) under the Scientific Initia-
tion program, project 2019/14791-6, which was essential to the development of this research and the collec-
tion of the preliminary results. J6 Ueyama and Leandro Marcolino would like to thank FAPESP (Grant ID
2013/07375-0) for funding part of his research project. Finally, we would also like to show our gratitude to
the University of Sdo Paulo and its staff for supporting the first steps of this research, creating the necessary
connections and providing the available support to achieve the current result.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Albrecht, S., Crandall, J., & Ramamoorthy, S. (2015). An empirical study on the practical impact of
prior beliefs over policy types. In Proceedings of the 29th AAAI conference on artificial intelligence.

2. Albrecht, S., & Stone, P. (2017). Reasoning about hypothetical agent behaviours and their parameters.
In Proceedings of the 16th international conference on autonomous agents and multiagent systems,
AAMAS’17, May 2017.

3. Albrecht, S. V., & Ramamoorthy, S. (2016). Exploiting causality for selective belief filtering in
dynamic bayesian networks. Journal of Artificial Intelligence Research, 55.

4. Albrecht, S. V., & Ramamoorthy, S. (2013). A game-theoretic model and best-response learning
method for ad hoc coordination in multiagent systems. Technical report, The University of Edinburgh,
February 2013.

5. Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive sur-
vey and open problems. Artificial Intelligence, 258, 66-95.

6. Barrett, S., & Stone, P. (2015). Cooperating with unknown teammates in complex domains: A robot
soccer case study of ad hoc teamwork. In Proceedings of the 29th AAAI conference on artificial
intelligence.

7. Barrett, S., Stone, P., Kraus, S., & Rosenfeld, A. (2013). Teamwork with limited knowledge of team-
mates. In Proceedings of the 27th AAAI conference on artificial intelligence.

8. Barrett, S., Rosenfeld, A., Kraus, S., & Stone, P. (2017). Making friends on the fly: Cooperating with
new teammates. Artificial Intelligence, 242, 132-171.

9. Barrett, S., & Stone, P. (2012). An analysis framework for ad hoc teamwork tasks. In Proceedings of
the 11th international conference on autonomous agents and multiagent systems, Vol. 1, AAMAS *12
(pp- 357-364), Richland, SC, 2012. International Foundation for Autonomous Agents and Multiagent
Systems.

10. Barrett, S., Stone, P., & Kraus, S. (2011). Empirical evaluation of ad hoc teamwork in the pursuit
domain. In Proceedings of the 11th International conference on autonomous agents and multiagent
systems.

11. Berman, S., Halasz, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allo-
cation in swarms of robots. IEEE Transactions on Robotics, 25(4).

12. Chandrasekaran, M., Doshi, P., Zeng, Y., & Chen, Y. (2014). Team behavior in interactive dynamic
influence diagrams with applications to ad hoc teams. arXiv preprint arXiv:1409.0302.

13. Chen, S., Andrejczuk, E., Irissappane, A. A., & Zhang. J. (2019). Atsis: Achieving the ad hoc team-
work by sub-task inference and selection. In Proceedings of the twenty-eighth international joint

@ Springer

http://creativecommons.org/licenses/by/4.0/

45

Page 48 of 49 Autonomous Agents and Multi-Agent Systems (2022) 36:45

14.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

conference on artificial intelligence, IJCAI-19 (pp. 172-179). International Joint Conferences on Arti-
ficial Intelligence Organization.

Claes, D., Robbel, P., Olichoek, F., Tuyls, K., Hennes, D., & Van der Hoek, W. (2015). Effective
approximations for multi-robot coordination in spatially distributed tasks. In Proceedings of the 14th
international conference on autonomous agents and multiagent systems (AAMAS 2015) (pp. 881-890).
International Foundation for Autonomous Agents and Multiagent Systems.

Czechowski, A., & Oliehoek, F. A. (2020). Decentralized mcts via learned teammate models. arXiv
preprint arXiv:2003.08727.

do Carmo Alves, M. A., Varma, A., Elkhatib, Y., & Soriano Marcolino, L. (2022). AdLeap-MAS: An
open-source multi-agent simulator for ad-hoc reasoning. In International conference on autonomous
agents and multiagent systems (AAMAS)—Demo track.

Doshi, P., Zeng, Y., & Chen, Q. (2009). Graphical models for interactive POMDPs: Representations
and solutions. JAAMAS, 18(3), 376-416.

Eck, A., Shah, M., Doshi, P., & Soh, L.-K. (2019). Scalable decision-theoretic planning in open and
typed multiagent systems. In Proceedings of the thirty-fourth AAAI conference on artificial intelligence
AAAL

Gmytrasiewicz, P., & Doshi, P. (2005). A framework for sequential planning in multiagent settings.
JAIR, 24, 49-79.

Guez, A., Silver, D., & Dayan, P. (2013). Scalable and efficient bayes-adaptive reinforcement learning
based on monte-carlo tree search. Journal of Artificial Intelligence Research (JAIR), 48.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.

Hayashi, A., Ruiken, D., Hasegawa, T., & Goerick, C. (2020). Reasoning about uncertain parameters
and agent behaviors through encoded experiences and belief planning. Artificial Intelligence, 280,
103228.

Hoang, T. N., & Low, K. H. (2013). Interactive POMDP lite: Towards practical planning to predict and
exploit intentions for interacting with self-interested agents. In Proceedings of the twenty-third interna-
tional joint conference on artificial intelligence, IJCAI

Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control and artificial intelligence. Cambridge, MA: MIT Press.

Kaelbling, L. P. Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99—-134.

Kocsis, L., & Szepesvari, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the 17th
European conference on machine learning.

Lerman, K., Jones, C., Galstyan, A., & Matari¢, M. J. (2006). Analysis of dynamic task allocation in
multi-robot systems. The International Journal of Robotics Research, 25(3):225-241.

Matarié, M. J., Sukhatme, G. S., & @stergaard, E. H. (2003). Multi-robot task allocation in uncertain
environments. Autonomous Robots, 14(2-3), 255-263.

Melo, F. S., & Sardinha, A. (2016). Ad hoc teamwork by learning teammates’ task. Autonomous
Agents and Multi-Agent Systems, 30(2).

Nair, R., & Tambe, M. (2005). Hybrid BDI-POMDP framework for multiagent teaming. JAIR, 23,
367-413.

Nair, R., Varakantham, P., Yokoo, M., & Tambe, M. (2005). Networked distributed POMDPs: A syn-
ergy of distributed constraint optimization and POMDPs. In Proceedings of the nineteenth interna-
tional joint conference on artificial intelligence, IJCAI

Pelcner, L., Li, S., Do Carmo Alves, M., Marcolino, L. S., & Collins, A. (2020). Real-time learning
and planning in environments with swarms: A hierarchical and a parameter-based simulation approach.
In Proceedings of the 19th international conference on autonomous agents and multiagent systems,
AAMAS.

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. M. A., & Botvinick, M. (2018). Machine
theory of mind. In Jennifer, D., & Krause, A. (eds.,) Proceedings of the 35th international conference
on machine learning, volume 80 of ICML (pp. 4218-4227).

Rahman, A., Hopner, N., Christianos, F., & Albrecht, S. V. (2020). Open ad hoc teamwork using
graph-based policy learning. arXiv preprint arXiv:2006.10412.

Scerri, P., Pynadath, D., & Tambe, M. (2002). Towards adjustable autonomy for the real-world. JAIR,
17, 171-228.

Shafipour Yourdshahi, E., Do Carmo Alves, M., Marcolino, L. S., & Angelov, P. (2020). On-line esti-
mators for ad-hoc task allocation: Extended abstract. In Proceedings of the 19th international confer-
ence on autonomous agents and multiagent systems, AAMAS.

Springer

Autonomous Agents and Multi-Agent Systems (2022) 36:45 Page490f49 45

37. Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Proceedings of the twenty-
fourth annual conference on neural information processing systems.

38. Stone, P., Kaminka, G. A., Kraus, S., & Rosenschein, J. S. et al. (2010). Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In AAAL

39. Trivedi, M., & Doshi, P. (2018). Inverse learning of robot behavior for collaborative planning. In Pro-
ceedings of the 2018 IEEE/RSJ international conference on intelligent robots and systems, IROS.

40. Wei, C., Hindriks, K. V., & Jonker, C. M. (2016). Dynamic task allocation for multi-robot search and
retrieval tasks. Applied Intelligence, 45(2), 383—401.

41. Yourdshahi, E. S., Pinder, T., Dhawan, G., Marcolino, L. S., & Angelov, P. (2018). Towards large scale
ad-hoc teamwork. In 2018 IEEE international conference on agents, ICA.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Elnaz Shafipour Yourdshahi' - Matheus Aparecido do Carmo Alves? - Amokh Varma3 -
Leandro Soriano Marcolino?® - J6 Ueyama* - Plamen Angelov?

Elnaz Shafipour Yourdshahi
esylv21@soton.ac.uk

Matheus Aparecido do Carmo Alves
m.a.docarmoalves @lancaster.ac.uk

Amokh Varma
Amokh.Varma.mt618 @maths.iitd.ac.in

J6 Ueyama
joueyama@usp.br

Plamen Angelov

p-angelov@lancaster.ac.uk

Lancaster University, Lancaster, UK

Indian Institute of Technology Delhi, New Delhi, India
University of Sdo Paulo, Sdo Carlos, SP, Brazil

University of Southampton, Southampton, UK

@ Springer

http://orcid.org/0000-0002-3337-8611

	On-line estimators for ad-hoc task execution: learning types and parameters of teammates for effective teamwork
	Abstract
	1 Introduction
	2 Background
	3 Related works
	3.1 Type-based parameter estimation
	3.2 Complex models
	3.3 Task-oriented and task-allocation approaches
	3.4 Genetic algorithms
	3.5 Prior contributions

	4 Estimation problem
	5 Previous estimation methods and baselines
	6 On-line estimators for ad-hoc task execution
	6.1 OEATE fundamentals
	6.2 Process of estimation
	6.3 Analysis
	6.4 OEATE with partial observability
	6.4.1 POMDP model
	6.4.2 POMCP modification

	7 Results
	7.1 Level-based foraging domain
	7.2 Capture the prey domain
	7.3 OEATE results

	8 Discussion
	9 Conclusion
	Acknowledgements
	References

