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ABSTRACT
We prove that in any 𝑛-vertex complete graph, there is a collection  of (1 + 𝑜(1))𝑛 paths that strongly separates any pair of distinct
edges 𝑒, 𝑓 , meaning that there is a path in  , which contains 𝑒 but not 𝑓 . Furthermore, for certain classes of 𝑛-vertex 𝛼𝑛-regular
graphs, we find a collection of (

√
3𝛼 + 1 − 1 + 𝑜(1))𝑛 paths that strongly separates any pair of edges. Both results are best-possible

up to the 𝑜(1) term.

1 | Introduction

1.1 | Separating Path Systems

Let  be a family of paths in a graph 𝐺. We say that two edges 𝑒 𝑎𝑛𝑑 𝑓 are weakly separated by  if there is a path in  , which contains
one of these edges but not both. We also say that they are strongly separated by  if there are two paths 𝑃𝑒, 𝑃𝑓 ∈  such that 𝑃𝑒 contains
𝑒 but not 𝑓 , and 𝑃𝑓 contains 𝑓 but not 𝑒.

We are interested in the problem of finding “small” families of paths (“path systems”) that separate any pair of edges in a given graph.
A path system in a graph𝐺 is weak-separating (resp. strong-separating) if all pairs of edges in 𝐺 are weakly (resp. strongly) separated by
it. Let wsp(𝐺) and ssp(𝐺), respectively, denote the size of the smallest such families of paths in a graph 𝐺. Since every strong-separating
path system is also weak-separating, the inequality wsp(𝐺) ≤ ssp(𝐺) holds for any graph 𝐺, but equality is not true in general.

The study of general separating set systems was initiated by Rényi [1] in the 1960s. The variation that considers the separation of
edges using subgraphs has been considered many times in the computer science community, motivated by the application of efficiently
detecting faulty links in networks [2–5]. The question got renewed interest in the combinatorics community after it was raised by
Katona in a conference in 2013 and was considered simultaneously by Falgas–Ravry et al. [6] in its weak version, and by Balogh et al.
[7] in its strong version. Both teams conjectured that 𝑛-vertex graphs 𝐺 admit (weak and strong) separating path systems of size linear
in 𝑛, that is, wsp(𝐺), ssp(𝐺) = 𝑂(𝑛), and both also observed that an 𝑂(𝑛 log 𝑛) bound holds. Letzter [8] made substantial progress in this
question by showing that all 𝑛-vertex graphs 𝐺 satisfy ssp(𝐺) = 𝑂(𝑛 log∗𝑛). The conjecture was settled by Bonamy et al. [9], who proved
that ssp(𝐺) ≤ 19𝑛 holds for any 𝑛-vertex graph 𝐺.
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1.2 | Separating Cliques

An interesting open question is to replace the value of ‘19’ in ssp(𝐺) ≤ 19𝑛 by the smallest possible number. Perhaps, it could be possible
even to replace this value by 1 + 𝑜(1). Studying separating path systems in complete graphs is particularly relevant since 𝐾𝑛 gives the
best-known lower bounds for wsp(𝐺) and ssp(𝐺) over all 𝑛-vertex graphs 𝐺 (see Section 9 for further discussion). Because of this fact,
the behavior of ssp(𝐾𝑛) and wsp(𝐾𝑛) has been enquired repeatedly by many authors (e.g., [6], Sect 7).

For the weak separation, we know that wsp(𝐾𝑛) ≥ 𝑛 − 1 (see the remark before Conjecture 1.2 in [6]). For strong separation, mimicking
that proof shows that the slightly better bound ssp(𝐾𝑛) ≥ 𝑛 holds (this is done in Theorem 2.1). Our first main result shows that this
lower bound is asymptotically correct.

Theorem 1.1. The following holds.

ssp(𝐾𝑛) = (1 + 𝑜(1))𝑛

Let us summarize the history of upper bounds for this problem now. First, we knew that wsp(𝐾𝑛) = 𝑂(𝑛) [6], Theo 1.3, and then
ssp(𝐾𝑛) ≤ 2𝑛 + 4 [7], Theo 3. Wickes [10] studied wsp(𝐾𝑛) in more detail and showed that wsp(𝐾𝑛) ≤ 𝑛 whenever 𝑛 or 𝑛 − 1 is a prime
number and that wsp(𝐾𝑛) ≤ (21∕16 + 𝑜(1))𝑛 in general. After the preprint version of this work had appeared, Kontogeorgiou and Stein
[11] proved that wsp(𝐾𝑛) ≤ 𝑛 + 2.

The problem of estimating ssp(𝐾𝑛) is connected with the older problem of finding orthogonal double covers (ODC), which are collections
 of subgraphs of 𝐾𝑛 in which every edge appears in exactly two elements of , and the intersection of any two elements of  contains
exactly one edge. If each graph in  is isomorphic to some graph 𝐻 , we say that  is an ODC by 𝐻 . If 𝐻 is an 𝑛-vertex path and  is
an ODC by 𝐻 , then each element of  is a Hamiltonian path, and it is easy to check that  must contain exactly 𝑛 paths and forms a
strong-separating path system. Moreover, a counting argument (see Remark 2.2) yields that a strong-separating system in 𝐾𝑛 with 𝑛

paths must form an ODC by Hamiltonian paths. Thus, we know that ssp(𝐾𝑛) = 𝑛 if and only if an ODC by Hamiltonian paths exists.
This statement is known to be false for 𝑛 = 4 (it can be checked that ssp(𝐾4) = 5, see [12], Sect 3.4), but is conjectured to be true for all
other 𝑛 ≥ 3. It is known to be true for infinitely many values of 𝑛, in particular, it holds if 𝑛 can be written as a product of the numbers
5, 9, 13, 17, and 29 [13]. See the survey [12] for more results and details. We discuss this connection further in Section 9.

1.3 | Separating Regular Graphs

Our main result for cliques (Theorem 1.1) follows from a more general result that works for “robustly-connected” graphs, which are
almost regular, meaning that each vertex has approximately the same number of neighbors. For simplicity, we give the statement for
regular graphs here. Let 𝛼 ∈ [0, 1] and consider an 𝛼𝑛-regular graph 𝐺 on 𝑛 vertices. A counting argument (Theorem 2.3) shows that
ssp(𝐺) ≥ (

√
3𝛼 + 1 − 1 − 𝑜(1))𝑛 must hold. Our second main result shows that this bound essentially holds with equality if we also

assume some vertex-connectivity condition. We say an 𝑛-vertex graph 𝐺 is (𝛿, 𝐿)-robustly-connected if, for every 𝑥, 𝑦 ∈ 𝑉 (𝐺), there
exists 1 ≤ 𝓁 ≤ 𝐿 such that there are at least 𝛿𝑛𝓁 (𝑥, 𝑦)-paths with exactly 𝓁 inner vertices each.

Theorem 1.2. Let 𝛼, 𝛿 ∈ (0, 1) and 𝐿 ≥ 1. Suppose that 𝐺 is an 𝑛-vertex graph, which is 𝛼𝑛-regular and (𝛿, 𝐿)-robustly-connected.
Then

ssp(𝐺) = (
√

3𝛼 + 1 − 1 + 𝑜(1))𝑛

We note that at least some kind of connectivity is required for a bound like the one in Theorem 1.2. Indeed, the graph 𝐺 formed by
two vertex-disjoint cliques with 𝑛∕2 vertices is (𝑛∕2 − 1)-regular but has clearly ssp(𝐺) = 2 ⋅ ssp(𝐾𝑛∕2) ≥ 𝑛, whereas Theorem 1.2 would
give an incorrect upper bound around (0.582 + 𝑜(1))𝑛.

Observe that the function 𝑓 (𝛼) =
√

3𝛼 + 1 − 1 satisfies 𝛼 < 𝑓 (𝛼) <
√
𝛼 < 1 for 𝛼 ∈ (0, 1), so in particular this shows that all 𝑛-vertex

graphs 𝐺 covered by Theorem 1.2 satisfy ssp(𝐺) ≤ (1 + 𝑜(1))𝑛. From Theorem 1.2, we can obtain as corollaries results for many inter-
esting classes of graphs as balanced complete bipartite graphs, regular graphs with large minimum degree, regular robust expanders,
etc. (see Section 8 for details).

1.4 | Outline of the Proof

We summarize the idea behind our proof by focusing on the case of estimating ssp(𝐾𝑛). The calculations that give the lower bound
ssp(𝐾𝑛) ≥ 𝑛 (Theorem 2.1) reveal that, if ssp(𝐾𝑛) = 𝑛 holds, then in an optimal strong-separating path system, each path must be
Hamiltonian, each edge must be covered precisely by two paths, and every two different paths intersect precisely on one edge. Guided by
this, our approach can be thought conceptually of taking 𝑡 = (1 + 𝜀)𝑛 different ‘labels’ and finding an injective assignment 𝜙 ∶ 𝐸(𝐾𝑛) →(

𝑡

2

)
where every edge gets two labels. Then, by defining, for each 1 ≤ 𝑖 ≤ 𝑡, the subgraph 𝑄𝑖 ⊆ 𝐾𝑛 consisting of the edges that received

label 𝑖, we get that the family {𝑄𝑖}1≤𝑖≤𝑡 will strongly separate the edges of 𝐾𝑛.

2 of 19 Random Structures & Algorithms, 2025

 10982418, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.70006 by U

niversity O
f Sao Paulo - B

razil, W
iley O

nline L
ibrary on [12/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



To make sure that the graphs 𝑄𝑖 resemble paths, we will obtain the assignment 𝜙 in a more careful way. We will construct 𝜙 with the
help of an almost perfect matching in an auxiliary hypergraph. In this case, the hypergraph can be described as follows: We randomly
orient the edges of 𝐾𝑛 to obtain a digraph 𝐷 where every vertex gets approximately the same number of incoming and outgoing edges.
Then obtain an auxiliary graph 𝐵 by taking two copies 𝑉1, 𝑉2 of 𝑉 (𝐾𝑛) and adding an edge between 𝑢1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2 if the arc
(𝑢, 𝑣) appears in 𝐷. Next, consider a clique 𝐾 on a set of vertices {1, 2, . . . , 𝑛}, vertex disjoint from 𝑉1 ∪ 𝑉2. Form a graph 𝑍 by adding
every edge between a vertex of 𝑉1 ∪ 𝑉2 and a vertex in 𝐾 . Then, if 𝑢1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2, 𝑖, 𝑗 ∈ 𝑉 (𝐾) and these vertices form a 𝐾4 in 𝑍 (say
those copies of 𝐾4 are ‘valid’), we can interpret that as assigning the edge 𝑢𝑣 ∈ 𝐸(𝐾𝑛) to the graphs 𝑄𝑖 and 𝑄𝑗 . Similarly, if we have
edge-disjoint valid copies of 𝐾4 in 𝑍, this can be interpreted as assigning different edges of 𝐸(𝐾𝑛) to different pairs 𝑄𝑖,𝑄𝑗 ; without
repeating pairs, and assigning at most two edges adjacent to the same vertex in 𝐾𝑛 to the same 𝑄𝑖. Thus, if we can find edge-disjoint
valid copies of 𝐾4, which use all edges between 𝑉1 and 𝑉2, we would have obtained an allocation of all the edges of 𝐸(𝐾𝑛) to pairs of
𝑄𝑖,𝑄𝑗 , where each 𝑄𝑖 has maximum degree at most 2. To find such edge-disjoint copies of 𝐾4, we look at the auxiliary 6-graph  with
vertex set 𝐸(𝑍) and each valid copy of 𝐾4 corresponding to an edge in . By construction, an almost perfect matching in  will yield
graphs {𝑄𝑖}1≤𝑖≤𝑡, which separate “almost all” pairs of edges and have the crucial property that Δ(𝑄𝑖) ≤ 2 for each 𝑖. This will ensure
that the graphs 𝑄𝑖 are collections of paths and cycles. To find such an almost perfect matching in , we will use a recent powerful
result on hypergraph matchings by Glock et al. [14], which will allow us to gain even more control of the shape of the graphs 𝑄𝑖 by
avoiding certain undesirable short cycles.

After this is done, we will have covered and separated most, but not all, of the edges of𝐾𝑛 with the graphs {𝑄𝑖}1≤𝑖≤𝑡, which are collections
of paths and cycles. In a next step, we will transform each 𝑄𝑖 by merging (most of) the edges of 𝑄𝑖 into a single path 𝑄′

𝑖
. This is done

carefully to ensure the path system  = {𝑄′
𝑖
}1≤𝑖≤𝑡 still strongly separates most of the edges of the graph.

In the final step, the subgraph 𝐻 ⊆ 𝐺 of edges, which remain unseparated, will be very sparse, and in particular, has very small
maximum degree (at most 𝜀𝑛). Using a probabilistic argument based on the Lovász Local Lemma, we find a small (of size 𝑂(𝜀𝑛))
strong-separating path system  , which strongly separates 𝐻 . Then, our final desired path system will be given by  ∪.

In this sketch of the proof, we glossed over some details. In the actual proof (which covers the general case for 𝐺 ≠ 𝐾𝑛), the situation
is slightly more technical because in an optimal solution, the edges of 𝐺 need to be covered by 2 or 3 paths (as can be seen from
Theorem 2.3). The outline of the proof is the same, but instead, we will use a more intricate auxiliary hypergraph  (in fact, we use an
8-uniform graph) to find the initial assignment.

1.5 | Organization of the Paper

In Section 2, we give simple counting arguments that yield the lower bounds in Theorems 1.1 and 1.2. Then, we begin the proof of
our main result. In Section 3, we gather some probabilistic and hypergraph tools and prove results that will be helpful during the next
sections. In Section 4, we find a family of graphs that separates almost all edges of a graph 𝐺 via a perfect matching in an auxiliary
hypergraph. In Section 5, we transform the given families of graphs into paths, keeping some structural properties. In Section 6, we
find small path systems that separate the remaining leftover edges. Then, the pieces of the main proofs are put together in Section 6.
In Section 8, we describe how to use our main result in some important graph classes, and we finalize with concluding remarks in
Section 9.

2 | Lower Bounds

Given a path system  in a graph 𝐺 and 𝑒 ∈ 𝐸(𝐺), let (𝑒) ⊆  be the paths of  which contain 𝑒. Note that  is weak-separating if
and only if the sets (𝑒) are different for all 𝑒 ∈ 𝐸(𝐺); and  is strong-separating if and only if no set (𝑒) is contained in another (𝑓 ).

Proposition 2.1. For each 𝑛 ≥ 3, ssp(𝐾𝑛) ≥ 𝑛.

Proof. Let 𝑛 ≥ 3. Let  be a strong-separating path system in 𝐾𝑛, and define 1 = {𝑃 ∈  ∶ |𝐸(𝑃 )| = 1}. Note that∑
𝑒∈𝐸(𝐾𝑛)

|(𝑒)| = ∑
𝑃∈

|𝐸(𝑃 )|
≤ |1| + | ⧵ 1|(𝑛 − 1) = ||(𝑛 − 1) − |1|(𝑛 − 2)

where we used that each path can contain at most 𝑛 − 1 edges.

Next, let 𝐸1 ⊆ 𝐸(𝐾𝑛) be the set of edges 𝑒 such that |(𝑒)| = 1. Note that |𝐸1| ≤ |1|, because if an edge 𝑒 is covered by an unique path
𝑃 , then 𝑃 cannot cover any other edge 𝑓 , as otherwise there would be no other path, which covers 𝑒 and not 𝑓 , a contradiction to the
fact that  is strong-separating. We have that
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∑
𝑒∈𝐸(𝐾𝑛)

|(𝑒)| ≥ |𝐸1| + 2
((

𝑛

2

)
− |𝐸1|)

= 𝑛(𝑛 − 1) − |𝐸1| ≥ 𝑛(𝑛 − 1) − |1|
which implies that

𝑛(𝑛 − 1) ≤ ||(𝑛 − 1) − |1|(𝑛 − 3) ≤ ||(𝑛 − 1)

where the last inequality uses 𝑛 ≥ 3. This implies that || ≥ 𝑛. ◽

Remark 2.2. If a strong-separating path system  in 𝐾𝑛 has size 𝑛, then all inequalities in the previous proof become equalities. This
implies that 0 = |𝐸1| = |1|, that every edge of 𝐾𝑛 is covered exactly by two different paths, and that every path must be Hamiltonian
and intersect every other path exactly once; so  is an ODC by Hamiltonian paths, as mentioned in the introduction.

Proposition 2.3. For any 𝛼, 𝜀 ∈ (0, 1], the following holds for all sufficiently large 𝑛. Let 𝐺 be an 𝑛-vertex graph with 𝛼
(

𝑛

2

)
edges. Then

ssp(𝐺) ≥ (
√

3𝛼 + 1 − 1 − 𝜀)𝑛

Proof. Let 𝛼, 𝜀 be given, and suppose 𝑛 is sufficiently large. Given 𝐺 as in the statement, let  be a strong-separating path system
of size ssp(𝐺). Suppose 𝛽 is such that || = 𝛽𝑛 (we know that 𝛽 ≤ 19 by the result of [9]). We need to show that 𝛽 ≥

√
3𝛼 + 1 − 1 − 𝜀.

Note that ∑
𝑒∈𝐸(𝐺)

|(𝑒)| = ∑
𝑃∈

|𝐸(𝑃 )| ≤ 𝛽𝑛(𝑛 − 1) = 2𝛽
(
𝑛

2

)
For 𝑖 ∈ {1, 2}, let 𝐸𝑖 ⊆ 𝐸(𝐺) be the set of edges 𝑒 such that |(𝑒)| = 𝑖. Then

2𝛽
(
𝑛

2

)
≥

∑
𝑒∈𝐸(𝐺)

|(𝑒)| ≥ |𝐸1| + 2|𝐸2| + 3
(
𝛼
(
𝑛

2

)
− |𝐸1| − |𝐸2|) = 3𝛼

(
𝑛

2

)
− 2|𝐸1| − |𝐸2| (2.1)

Since  is strong-separating, if 𝑒 ∈ 𝐸2, then the two paths of  that contain 𝑒 cannot both contain any other edge 𝑓 ∈ 𝐸2. Thus,|𝐸2| ≤ ( ||
2

)
≤

(
𝛽𝑛

2

)
≤ 𝛽2

(
𝑛

2

)
+ 𝛽2𝑛. Note that we also have |𝐸1| ≤ || ≤ 𝛽𝑛. Applying these bounds on |𝐸1| and |𝐸2| in (2.1), we get

𝛽2
(
𝑛

2

)
+ 2𝛽

(
𝑛

2

)
≥ 3𝛼

(
𝑛

2

)
− 𝛽2𝑛 − 2𝛽𝑛 ≥ 3𝛼

(
𝑛

2

)
− 400𝑛

where in the last step we used 𝛽 ≤ 19 to get 𝛽2𝑛 + 2𝛽𝑛 ≤ 400𝑛. Thus, the inequality 𝛽2 + 2𝛽 ≥ 3𝛼 − 800∕𝑛 holds. Since 𝛽 > 0 and 𝑛 is
sufficiently large, solving this quadratic equation in terms of 𝛽 gives that 𝛽 ≥

√
3𝛼 + 1 − 1 − 𝜀, as desired. ◽

3 | Preliminaries

3.1 | Hypergraph Matchings

We use a recent result by Glock et al. [14] (similar results were obtained also by Delcourt and Postle [15]). This result allows us to find
almost perfect matchings in hypergraphs , which avoid certain “conflicts.” Each conflict is a subset of edges 𝑋 ⊆ 𝐸(), which we do
not want to appear together in the matching 𝑀 , that is, we want 𝑋 ⊈ 𝑀 for all such conflicts 𝑋. We encode these conflicts using an
auxiliary “conflict hypergraph”  whose vertex set is 𝐸() and each edge is a different conflict, that is, each edge of  encodes a set of
edges of .

Given a (not necessarily uniform) hypergraph  and 𝑘 ≥ 1, let (𝑘) denote the subgraph of  consisting of all edges of size exactly 𝑘. If
 = (𝑘), then  is a 𝑘-graph. For a hypergraph  and 𝑗 ≥ 1, let 𝛿𝑗() (resp. Δ𝑗()) be the minimum (resp. maximum) of the number
of edges of , which contain 𝑆, taken over all 𝑗-sets 𝑆 of vertices. We say that a hypergraph  is (𝑥 ± 𝑦)-regular if 𝑥 − 𝑦 ≤ 𝛿1() ≤
Δ1() ≤ 𝑥 + 𝑦. Let 𝑁(𝑣) denote the set of neighbors of 𝑣 in . Given a hypergraph  with 𝑉 () = 𝐸(), we say 𝐸 ⊆ 𝐸() is -free
if for every 𝐶 ∈ 𝐸(), 𝐶 is not a subset of 𝐸. Also,  is a (𝑑,𝓁, 𝜌)-bounded conflict system for  if

C1. 3 ≤ |𝐶| ≤ 𝓁 for each 𝐶 ∈ ;

C2. Δ1((𝑗)) ≤ 𝓁𝑑𝑗−1 for all 3 ≤ 𝑗 ≤ 𝓁; and

C3. Δ𝑗′ ((𝑗)) ≤ 𝓁𝑑𝑗−𝑗′−𝜌 for all 3 ≤ 𝑗 ≤ 𝓁 and 2 ≤ 𝑗′ < 𝑗.
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We say that a set of edges 𝑍 ⊆ 𝐸() is (𝑑, 𝜌)-trackable1 if |𝑍| ≥ 𝑑1+𝜌.

Theorem 3.1 ([14], Theo 3.2). For all 𝑘,𝓁 ≥ 2, there exists 𝜌0 > 0 such that for all 𝜌 ∈ (0, 𝜌0), there exists 𝑑0 so that the following
holds for all 𝑑 ≥ 𝑑0. Suppose is a 𝑘-graph on 𝑛 ≤ exp(𝑑𝜌3 ) vertices with (1 − 𝑑−𝜌)𝑑 ≤ 𝛿1() ≤ Δ1() ≤ 𝑑 andΔ2() ≤ 𝑑1−𝜌 and suppose
 is a (𝑑,𝓁, 𝜌)-bounded conflict system for . Suppose  is a set of (𝑑, 𝜌)-trackable sets of edges in  with || ≤ exp(𝑑𝜌3 ). Then, there exists
a -free matching  ⊆  of size at least (1 − 𝑑−𝜌3 )𝑛∕𝑘 with |𝑍 ∩| = (1 ± 𝑑−𝜌3 )|||𝑍|∕|𝐸()| for all 𝑍 ∈ .

3.2 | Counting Cycles

Let 𝐷𝑛 be the complete digraph (having all arcs in both directions). The following lemma is a simple counting argument that will be
used later.

Lemma 3.1. If 𝑅 ⊆ 𝐸(𝐷𝑛) has 𝓁 < 𝑗 edges, then there are at most 𝑗𝓁𝑛𝑗−𝓁−1 length-𝑗 directed cycles in 𝐷𝑛 which contain 𝑅.

Proof. We can assume that 𝑅 is a proper subgraph of some directed cycle (as otherwise there is nothing to count). Thus, 𝑅 is a
collection of vertex-disjoint paths in 𝐷𝑛 with exactly 𝓁 edges in total. All directed cycles on 𝑗 vertices, which contain 𝑅 can be obtained
by assigning a number in {1, . . . , 𝑗} to allocate the starting position for each of the paths in the cycle, and then choosing each of the
𝑗 − |𝑉 (𝑅)| remaining vertices. Note that 𝑅 can consist of at most 𝓁 paths, so the first step can be done in at most 𝑗𝓁 ways. On the other
hand, 𝑅 spans at least 𝓁 + 1 vertices (the minimum number occurs when 𝑅 is a single path), so there are at most 𝑛𝑗−𝓁−1 ways to choose
the vertices in the second step. Therefore, 𝑅 is contained in at most 𝑗𝓁𝑛𝑗−𝓁−1 length-𝑗 directed cycles in 𝐷𝑛. ◽

3.3 | Probabilistic Tools

In this short section, we state some standard probabilistic tools used in our proof.

Lemma 3.2 (Chernoff’s inequalities [16], Remark 2.5, Corollary 2.3 and 2.4). Let 𝑋 be a random variable with binomial
distribution 𝐵(𝑛, 𝑝). Let 𝑡 ≥ 0. Then,

i. Pr[|𝑋 − E[𝑋]| ≥ 𝑡] ≤ 2 exp(−2𝑡2∕𝑛);

ii. if 𝑡 ≤ 3E[𝑋]∕2, then Pr[|𝑋 − E[𝑋]| ≥ 𝑡] ≤ 2 exp(−𝑡2∕(3E[𝑋])); and

iii. if 𝑡 ≥ 7E[𝑋], then Pr[𝑋 ≥ 𝑡] ≤ exp(−𝑡).

The following concentration inequality will also be useful.

Lemma 3.3 (McDiarmid’s inequality [17]). Let 𝑋1, . . . , 𝑋𝑀 be independent random variables, with 𝑋𝑖 taking values on a finite
set 𝐴𝑖 for each 𝑖 ∈ [𝑀]. Suppose that 𝑓 ∶

∏𝑀

𝑗=1𝐴𝑗 → ℝ satisfies |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑐𝑖 whenever the vectors 𝑥 and 𝑥′ differ only in the 𝑖th
coordinate, for every 𝑖 ∈ [𝑀]. Consider the random variable 𝑌 = 𝑓 (𝑋1, . . . , 𝑋𝑀 ) and 𝑡 ≥ 0. Then

Pr[|𝑌 − E(𝑌 )| ≥ 𝑡] ≤ 2 exp

(
− 2𝑡2∑𝑀

𝑗=1𝑐
2
𝑗

)

3.4 | Building a Base Hypergraph

The next lemma constructs an auxiliary hypergraph which we will use as a base to apply Theorem 3.1 later. To motivate this lemma
regarding the proof sketch given in Section 1.4, the hypergraph 𝐽 we build in the next lemma will play a similar role as the clique 𝐾

there.

Lemma 3.4. For any 𝛼, 𝛽, 𝜆 > 0 with 𝛽 =
√

3𝛼 + 1 − 1 < 𝜆, there exists 𝑛0 such that the following holds for every 𝑛 ≥ 𝑛0. There exists
a 3-graph 𝐽 such that

J1. there is a partition {𝑈1, 𝑈2} of 𝑉 (𝐽 ) with |𝑈1| = 𝜆𝑛 and |𝑈2| = 𝜆𝑛𝛽∕2;

J2. there is a partition {𝐽1, 𝐽2} of 𝐸(𝐽 ) such that
• 𝑒 ⊆ 𝑈1 for each 𝑒 ∈ 𝐽1, and
• |𝑒 ∩ 𝑈1| = 2 for each 𝑒 ∈ 𝐽2;

J3. every pair {𝑖, 𝑗} ⊆ 𝑈1 is contained only in edges of 𝐽1, or in at most one edge of 𝐽2;

5 of 19
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J4. Δ2(𝐽 ) ≤ ln2𝑛;

J5. 𝐽 has 𝛼
(

𝑛

2

)
± 𝑛2∕3 edges in total; and

J6. 𝐽 is (𝛽𝑛∕𝜆, 𝑛2∕3)-regular.

Proof. We begin by observing that 3𝛼 = 2𝛽 + 𝛽2 from the definition of 𝛽. Then, defining 𝑑2 = 𝛽2𝑛∕𝜆 and 𝑑3 = 3(𝛼 − 𝛽2)𝑛∕(2𝜆), we
obtain 𝑑2 + 𝑑3 = 𝛽𝑛∕𝜆. A {2, 3}-graph is a hypergraph whose edges have size either 2 or 3. We say it is an antichain if no edge is
contained in another. We begin our construction by defining an antichain {2, 3}-graph on a set of size 𝜆𝑛. Let 𝑈1 be a set of 𝜆𝑛 vertices.
We claim that there is an antichain {2, 3}-graph 𝐼 on 𝑈1 such that

F1. each vertex is adjacent to 𝑑2 ± 𝑛2∕3 edges of size 2 in 𝐼 ;

F2. each vertex is adjacent to 𝑑3 ± 𝑛2∕3 edges of size 3 in 𝐼 .

Indeed, define a random graph 𝐼 (2) on 𝑈1 by including each edge independently with probability 𝑝 ∶= 𝛽2∕𝜆2 < 1. Let 𝐼 be the comple-
ment of 𝐼 (2). In expectation, each vertex is contained in around 𝑝|𝑈1| = 𝑑2 many edges. A standard application of Chernoff’s inequality
(Theorem 3.2(i)) shows that, with overwhelmingly large probability, each vertex of 𝑈1 is contained in 𝑑2 ± 𝑛2∕3 edges of 𝐼 (2), and thus
we can assume that a choice of 𝐼 (2) is fixed and satisfies that property. Similarly, we can also assume that every vertex is contained in
(1 − 𝑝)3

(
𝜆𝑛

2

)
± 𝑛4∕3 triangles in 𝐼 . Next, we form a 3-graph 𝐼 (3) on 𝑈1 by including each triple of vertices, which forms a triangle in 𝐼

with probability 𝑞 ∶= 3(𝛼 − 𝛽2)∕((1 − 𝑝)3𝜆3𝑛). If a vertex 𝑥 is contained in 𝑑 ∶= (1 − 𝑝)3
(

𝜆𝑛

2

)
triangles in 𝐼 , then in expectation it must

be contained in 𝑑𝑞 = 𝑑3 ± 𝑛1∕2 many 3-edges in 𝐼 (3). Using Chernoff again (Theorem 3.2(ii)), we can assume that each vertex in 𝐼 (3) is
contained in 𝑑3 ± 𝑛2∕3 many triangles in 𝐼 (3). We conclude by taking 𝐼 = 𝐼 (2) ∪ 𝐼 (3).

Now, we transform 𝐼 into a 3-graph. To achieve this, we will add a set 𝑈2 of extra vertices to 𝐼 and extend each 2-edge of 𝐼 to a
3-edge by including in it a vertex in 𝑈2. Let 𝑈2 have size 𝑟 ∶= 𝜆𝑛𝛽∕2 and vertices {𝑣1, . . . , 𝑣𝑟}. Randomly partition the 2-edges of 𝐼 (2)

into 𝑟 sets 𝐹1, . . . , 𝐹𝑟 by including each edge of 𝐼 (2) in an 𝐹𝑖 with probability 1∕𝑟. Next, define sets of 3-edges 𝐻1, . . . ,𝐻𝑟 given by
𝐻𝑖 ∶= {𝑥𝑦𝑣𝑖 ∶ 𝑥𝑦 ∈ 𝐹𝑖}.

Let 𝐽 be the 3-graph on vertex set 𝑈1 ∪ 𝑈2 whose edges are 𝐼 (3)∪
⋃𝑟

𝑖=1𝐻𝑖. Note that, by construction, 𝐽 satisfies (J1)–(J3), so it only
remains to verify (J4), (J5), and (J6).

We show that (J4) holds. Let 𝑥 and 𝑦 be a pair of vertices in 𝑉 (𝐽 ) and let us consider the possible cases. If 𝑥, 𝑦 ∈ 𝑈1 and 𝑥𝑦 ∈ 𝐼 (2), then
deg𝐽 (𝑥𝑦) = 1 because its only neighbor is 𝑣𝑖 (if 𝑥𝑦 ∈ 𝐹𝑖). If 𝑥, 𝑦 ∈ 𝑈1 and 𝑥𝑦 ∈ 𝐼 , then deg𝐽 (𝑥𝑦) is precisely the number of triangles of
𝐼 (3) that contain 𝑥𝑦. This is a random variable with expected value at most 𝑛𝑞 = 𝑂(1). Thus, by Theorem 3.2(iii), deg𝐽 (𝑥𝑦) > ln2𝑛 holds
with probability at most 𝑛− ln 𝑛, so we can comfortably use the union bound to ensure that deg𝐽 (𝑥𝑦) ≤ ln2𝑛 for every such pair 𝑥𝑦 ∈ 𝐼 .
If 𝑥 ∈ 𝑈1 and 𝑦 ∈ 𝑈2, then 𝑦 = 𝑣𝑖 for some 1 ≤ 𝑖 ≤ 𝑟, and deg𝐽 (𝑥𝑦) is the number of triangles of the form 𝑥𝑧𝑣𝑖 ∈ 𝐻𝑖. For a fixed 𝑥, there
are at most |𝑈1| = 𝜆𝑛 choices for 𝑧 to form an edge 𝑥𝑧 ∈ 𝐼 (2) and recall that each such edge belongs to 𝐻𝑖 with probability 1∕𝑟 = 𝑂(1∕𝑛).
Thus, the expected value of deg𝐽 (𝑥𝑦) is again of the form 𝑂(1), and we can conclude the argument in a similar way as before. Finally,
if 𝑥, 𝑦 ∈ 𝑈2, then deg𝐽 (𝑥𝑦) = 0 by construction. This finishes the proof of (J4).

Note that |𝐸(𝐽 )| = |𝐸(𝐼 (2))| + |𝐸(𝐼 (3))|. From (F1), we deduce that |𝐸(𝐼 (2))| is 𝜆𝑛(𝑑2 ± 𝑛2∕3)∕2 = 𝛽2𝑛2∕2 ± 𝑛2∕3 and, from (F2), we
deduce that |𝐸(𝐼 (3))| is 𝜆𝑛(𝑑3 ± 𝑛2∕3)∕3 = (𝛼 − 𝛽2)𝑛2∕2 ± 𝑛2∕3, so |𝐸(𝐽 )| = 𝛼𝑛2∕2 ± 𝑂(𝑛2∕3), which proves (J5).

Now we prove (J6). Let 𝑖 ∈ 𝑉 (𝐽 ). If 𝑖 ∈ 𝑈1, then deg𝐽 (𝑖) = deg𝐼 (𝑖). Since 𝑑2 + 𝑑3 = 𝛽𝑛∕𝜆, we have that deg𝐼 (𝑖) = 𝑑2 + 𝑑3 + 𝑂(𝑛2∕3) =
𝛽𝑛∕𝜆 + 𝑂(𝑛2∕3). Assume now that 𝑖 ∈ 𝑈2. Recall that we defined 𝐽 in a way that each vertex of 𝑈2 belongs to |𝐸(𝐼 (2))|∕𝑟 edges, and
we have

|𝐸(𝐼 (2))|
𝑟

=
𝛽2
(

𝑛

2

)
± 𝑂(𝑛4∕3)

𝜆𝑛𝛽∕2
= 𝛽𝑛

𝜆
± 𝑂(𝑛1∕3)

which concludes the proof of the lemma. ◽

4 | Separating Almost All Edges

In this section, we show how to separate most pairs of edges of robustly connected graphs by paths and cycles, guaranteeing additional
structural properties.

6 of 19 Random Structures & Algorithms, 2025
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In what follows, let 𝜀, 𝛿 > 0, let 𝐿 be an integer, and let 𝐺 be an 𝑛-vertex graph. A 2-matching in 𝐺 is a collection of vertex-disjoint cycles
and paths in 𝐺. We say a 2-matching 𝑄 in 𝐺 is (𝛿, 𝐿)-robustly-connected if, for every 𝑥, 𝑦 ∈ 𝑉 (𝑄), there exists 𝓁 with 1 ≤ 𝓁 ≤ 𝐿 such
that there are at least 𝛿𝑛𝓁 (𝑥, 𝑦)-paths with exactly 𝓁 inner vertices each, all in 𝑉 (𝐺) ⧵ 𝑉 (𝑄). Furthermore, a collection  of 2-matchings
in 𝐺 is (𝛿, 𝐿)-robustly-connected if each 𝑄 ∈  is (𝛿, 𝐿)-robustly-connected. A 2-matching 𝑄 in 𝐺 is 𝜀-compact if each cycle in 𝑄 has
length at least 1∕𝜀 and 𝑄 contains at most 𝜀𝑛 paths. For a collection  of 2-matchings in 𝐺, we say  is 𝜀-compact if each 𝑄 in  is
𝜀-compact.

Let  = {𝑄1, . . . , 𝑄𝑡} be a collection of subgraphs of 𝐺. We use 𝐸() to denote the set
⋃𝑡

𝑖=1𝐸(𝑄𝑖). We say  separates an edge 𝑒 from
all other edges of 𝐺 if the set {𝑖 ∶ 𝑒 ∈ 𝐸(𝑄𝑖)} is not contained in the set {𝑗 ∶ 𝑓 ∈ 𝐸(𝑄𝑗)} for each 𝑓 ∈ 𝐸(𝐺) ⧵ {𝑒}. Clearly, if an edge 𝑒

is separated from all other edges of 𝐺 by , then 𝑒 ∈ 𝐸(). We also say that  strongly separates a set 𝐸′ of edges if, for every distinct
𝑒, 𝑓 ∈ 𝐸′, the sets {𝑖 ∶ 𝑒 ∈ 𝐸(𝑄𝑖)} and {𝑗 ∶ 𝑓 ∈ 𝐸(𝑄𝑗)} are not contained in each other.

For brevity, we put together some of the above definitions in one single concept that will be used in the next result and also in some
lemmas in Section 5 (see Lemmas 5.1 and 5.2).

Definition 4.1. Given a graph 𝐺 and 𝛿, 𝐿, 𝛽, and 𝜀, we say a collection of 2-matchings  is a (𝛿, 𝐿, 𝛽, 𝜀)-separator for 𝐺 if the
following holds.

Q1.  is 𝜀-compact and (𝛿, 𝐿)-robustly-connected;

Q2. || = 𝛽𝑛 and  strongly separates 𝐸();

Q3. each vertex in 𝐺 is the endpoint of at most 𝜀𝑛 paths among all 𝑄 ∈ ;

Q4. each 𝑒 ∈ 𝐸() is contained in at most three of the 2-matchings in ; and

Q5. Δ(𝐺 − 𝐸()) ≤ 𝜀𝑛.

In the next result, we show that large enough (𝛿, 𝐿)-robustly-connected “almost regular” graphs contain a suitable collection of
2-matchings that is a (𝜀𝓁𝛿∕2, 𝐿, 𝛽∕(1 − 𝜀), 𝜀′)-separator, for any 𝜀 and 𝜀′.

Lemma 4.2. Let 1∕𝑛 ≪ 𝜀, 𝜀′, 𝛼, 𝛿, 1∕𝐿, 𝜌. Let 𝛽 =
√

3𝛼 + 1 − 1. If 𝐺 is an 𝑛-vertex (𝛼𝑛 ± 𝑛1−𝜌)-regular graph that is
(𝛿, 𝐿)-robustly-connected, then there exists a (𝜀𝓁𝛿∕2, 𝐿, 𝛽∕(1 − 𝜀), 𝜀′)-separator for 𝐺.

Proof. Our proof has five steps. First, we build an auxiliary hypergraph  such that a large matching 𝑀 ⊆ , which avoids certain
conflicts, yields a family of subgraphs of 𝐺 with the desired properties. We wish to apply Theorem 3.1 to find such a matching. In
the second step, we verify that  satisfies the hypotheses of Theorem 3.1. In the third step, we define our conflict hypergraph . In
the fourth step, we define some test sets and prove they are trackable. Having done this, we are ready to apply Theorem 3.1, which is
done in the last step. Then, we verify that the construction gives the desired graphs. From now on, we can assume that 𝜌 is sufficiently
small (since that only weakens our assumptions). Also, we assume that 𝑛 is sufficiently large with respect to 𝜀, 𝜀′, 𝛼, 𝛿, 𝐿, 𝜌 so that every
calculation that requires it is valid.

Step 1: Constructing the auxiliary hypergraph. Obtain an oriented graph𝐷 by orienting each edge of 𝐺 uniformly at random. Each vertex
𝑣 has expected in-degree and out-degree 𝑑𝐺(𝑣)∕2 = (𝛼𝑛 ± 𝑛1−𝜌)∕2. So, by Chernoff’s inequality (Theorem 3.2(i)) and a union bound, we
can assume that in 𝐷 every vertex has in-degree and out-degree of the form 𝛼𝑛∕2 ± 2𝑛1−𝜌.

Next, consider an auxiliary bipartite graph 𝐵 whose clusters are copies 𝑉1 and 𝑉2 of 𝑉 (𝐺), where each vertex 𝑥 ∈ 𝑉 (𝐺) is represented
by two copies 𝑥1 ∈ 𝑉1 and 𝑥2 ∈ 𝑉2, and such that 𝑥1𝑦2 ∈ 𝐸(𝐵) if and only if (𝑥, 𝑦) ∈ 𝐸(𝐷). Thus, we have that |𝐸(𝐵)| = |𝐸(𝐺)| =
𝛼
(

𝑛

2

)
± 𝑛2−𝜌, because 𝐺 is (𝛼𝑛 ± 𝑛1−𝜌)-regular. Finally, let 𝜆 = 𝛽∕(1 − 𝜀). Apply Theorem 3.4 with 𝛼, 𝛽, 𝛾 to obtain a 3-graph 𝐽 that

satisfies (J1)–(J6) and assume that 𝑈1 = [𝜆𝑛] and 𝑉 (𝐽 ) = [|𝑉 (𝐽 )|].
Now, we build an initial auxiliary 8-graph ′ as follows. Let 𝑍 be the complete bipartite graph between clusters 𝑉 (𝐵) and 𝑉 (𝐽 ). The
vertex set of ′ is 𝐸(𝐵) ∪ 𝐸(𝐽 ) ∪ 𝐸(𝑍). Each edge in ′ is determined by a choice 𝑥1𝑦2 ∈ 𝐸(𝐵) and 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ), which form an edge
together with the 6 edges in 𝑍 that join 𝑥1 and 𝑦2 to 𝑖, 𝑗, and 𝑘. More precisely, the edge determined by 𝑥1𝑦2 ∈ 𝐸(𝐵) and 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ) is
Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∶= {𝑥1𝑦2, 𝑖𝑗𝑘, 𝑥1𝑖, 𝑥1𝑗, 𝑥1𝑘, 𝑦2𝑖, 𝑦2𝑗, 𝑦2𝑘}; and the edge set of ′ is given by

𝐸(′) = {Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∶ 𝑥1𝑦2 ∈ 𝐸(𝐵), 𝑖𝑗𝑘 ∈ 𝐸(𝐽 )}

The idea behind the construction of ′ is as follows: Suppose that 𝑀 is a matching in ′, and that 𝑥1𝑦2 ∈ 𝐸(𝐵) is covered by 𝑀 and
appears together with 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ) in an edge of 𝑀 . By (J2), {𝑖, 𝑗, 𝑘} ∩ 𝑈1 has size 2 or 3. Recall that we want to obtain a collection
 ∶= {𝑄1, . . . , 𝑄𝑡} of 2-matchings in 𝐺, where 𝑡 = 𝜆𝑛, satisfying (Q1)–(Q5). We will add edges 𝑥𝑦 ∈ 𝐸(𝐺) such that Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∈ 𝑀

or Φ(𝑦1𝑥2, 𝑖𝑗𝑘) ∈ 𝑀 to the graphs 𝑄𝑎 if 𝑎 ∈ {𝑖, 𝑗, 𝑘} ∩ 𝑈1.

7 of 19
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By construction, and since 𝑀 is a matching, at most one edge in 𝐵 involving 𝑥1 (resp. 𝑥2) appears in an edge of 𝑀 together with some
𝑎 ∈ 𝑈1. By considering the contributions of the two copies 𝑥1, 𝑥2 ∈ 𝑉 (𝐵) of a vertex 𝑥 ∈ 𝑉 (𝐺), this means that the subgraphs 𝑄𝑎 ⊆ 𝐺

have maximum degree 2, and thus these graphs are 2-matchings in 𝐺, as we wanted. By construction and property (J2), each edge in
𝐸(𝐺) belongs to either 0, 2, or 3 graphs 𝑄𝑎. Importantly, property (J3) implies that, for two distinct edges 𝑒, 𝑓 ∈ 𝐸(𝐺), no two nonempty
sets of the type {𝑎 ∶ 𝑒 ∈ 𝐸(𝑄𝑎)} and {𝑏 ∶ 𝑓 ∈ 𝐸(𝑄𝑏)} can be contained in each other. Straightforward calculations reveal the degrees
of the vertices in 𝑉 (′).

Claim 4.3. The following hold.

(i) deg′ (𝑥1𝑦2) = 𝛼
(

𝑛

2

)
± 𝑛2∕3 for each 𝑥1𝑦2 ∈ 𝐸(𝐵);

(ii) deg′ (𝑖𝑗𝑘) = 𝛼
(

𝑛

2

)
± 𝑛2−𝜌 for each 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ); and

(iii) deg′ (𝑥𝑎𝑖) =
𝛼𝛽

𝜆

(
𝑛

2

)
± 2𝑛2−𝜌 for each 𝑥𝑎𝑖 ∈ 𝐸(𝑍). ◽

Proof of the Claim. The first two points can be easily verified: given any 𝑥1𝑦2 ∈ 𝐸(𝐵), by construction 𝑑′ (𝑥1𝑦2) is the number of
edges in 𝐽 , which is 𝛼

(
𝑛

2

)
± 𝑛2∕3 by (J5). Moreover, given any 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ), 𝑑′ (𝑖𝑗𝑘) is the number of edges of𝐸(𝐵), which is 𝛼

(
𝑛

2

)
± 𝑛2−𝜌

by construction.

Finally, consider 𝑥𝑎 ∈ 𝑉1 (the case 𝑥𝑎 ∈ 𝑉2 is symmetric) and 𝑖 ∈ 𝑉 (𝐽 ). The degree deg′ (𝑥𝑎𝑖) corresponds to the edgesΦ(𝑥𝑎𝑦2, 𝑖𝑗𝑘)with
𝑦2 ∈ 𝑁𝐵(𝑥1) and 𝑗𝑘 ∈ 𝑁𝐽 (𝑖). Next, we estimate the number of valid choices for 𝑦2 and 𝑗𝑘. There are deg𝐵(𝑥1) = 𝑑+

𝐷
(𝑥) = 𝛼𝑛∕2 ± 2𝑛1−𝜌

possible choices for 𝑦2, and there are deg𝐽 (𝑖) = 𝛽𝑛∕𝜆 ± 𝑛2∕3 possible choices for 𝑗𝑘 by (J6). Thus, we deduce that

deg′ (𝑥1𝑖) =
(
𝛼𝑛

2
± 2𝑛1−𝜌

)(𝛽𝑛

𝜆
± 𝑛2∕3

)
= 𝛼𝛽

𝜆

(
𝑛

2

)
± 2𝑛2−𝜌

as desired. ◽

Since ′ is not quite regular, we will actually work with a carefully chosen subgraph  of ′. Let 𝑝 ∶= 𝛽∕𝜆 = 1 − 𝜀. For each 𝑖 ∈ 𝑉 (𝐽 ),
select a subset 𝑋𝑖 ⊆ 𝑉 (𝐺) by including in 𝑋𝑖 each vertex of 𝐺 independently at random with probability 𝑝. This defines a family {𝑋𝑖 ∶
𝑖 ∈ 𝑉 (𝐽 )} of subsets of 𝑉 (𝐺). For each 𝑥 ∈ 𝑉 (𝐺), consider the random set 𝑌𝑥 = {𝑖 ∈ 𝑉 (𝐽 ) ∶ 𝑥 ∈ 𝑋𝑖}. Finally, let  ⊆ ′ be the induced
subgraph of ′ obtained after removing all vertices 𝑥1𝑖, 𝑥2𝑖 ∈ 𝐸(𝑍) whenever 𝑥 ∉ 𝑋𝑖 (or, equivalently, 𝑖 ∉ 𝑌𝑥). Thus, we have that

𝐸() =
{
Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∶ 𝑥1𝑦2 ∈ 𝐸(𝐵), 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ), {𝑥, 𝑦} ⊆ 𝑋𝑖 ∩𝑋𝑗 ∩𝑋𝑘

}
Claim 4.4. The following hold simultaneously with positive probability.

(i) 𝑋𝑖 has 𝑝𝑛 ± 𝑛2∕3 vertices of 𝐺 for each 𝑖 ∈ 𝑉 (𝐽 );

(ii) 𝑌𝑥 has 3𝛼𝑛∕2 ± 𝑛2∕3 vertices of 𝐽 for each 𝑥 ∈ 𝑉 (𝐺);

(iii)  is (𝑝6𝛼
(

𝑛

2

)
± 2𝑛2−𝜌)-regular; and

(iv) for each 𝑖 ∈ 𝑉 (𝐽 ) and each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑋𝑖, there exists 𝓁 with 1 ≤ 𝓁 ≤ 𝐿 such that there are at least 𝜀𝓁𝛿𝑛𝓁∕2
(𝑥, 𝑦)-paths in 𝐺 with exactly 𝓁 inner vertices each, all in 𝑉 (𝐺) ⧵𝑋𝑖. ◽

Proof of the Claim. Item (i) follows directly from Chernoff’s inequality (Theorem 3.2) as, for each 𝑖 ∈ 𝑉 (𝐽 ), we have E[|𝑋𝑖|] = 𝑝𝑛.
For (ii), note that |𝑉 (𝐽 )| = 𝜆(1 + 𝛽∕2)𝑛 by (J1) and, for any 𝑥 ∈ 𝑉 (𝐺), we have

E[|𝑌𝑥|] = 𝑝|𝑉 (𝐽 )| = (
𝛽 + 𝛽2

2

)
𝑛 = 3𝛼𝑛

2

Then (ii) also follows from Chernoff’s inequality. For (iii), observe that any given edge Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∈ ′ survives in  with probability
𝑝6. Using this, we easily see that E[deg(𝑥1𝑦2)] = 𝑝6 deg′ (𝑥1𝑦2) = 𝑝6𝛼

(
𝑛

2

)
± 𝑛2−𝜌 for each 𝑥1𝑦2 ∈ 𝐸(𝐵); a similar calculation holds for

E[deg(𝑖𝑗𝑘)] for any 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ). It remains to calculate the expected degree of the edges in 𝐸(𝑍) ∩ 𝑉 (). Let 𝑥𝑎𝑖 ∈ 𝐸(𝑍). Condition-
ing on the event that 𝑥 ∈ 𝑋𝑖 (and thus that 𝑥𝑎𝑖 ∈ 𝑉 ()), each edge in ′ containing 𝑥𝑎𝑖 survives with probability 𝑝5. Using this, we
obtain that

8 of 19 Random Structures & Algorithms, 2025
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E[deg(𝑥𝑎𝑖)] = 𝑝5 deg′ (𝑥𝑎𝑖) = 𝑝5
(
𝛼𝛽

𝜆

(
𝑛

2

)
± 2𝑛2−𝜌

)
= 𝑝6𝛼

(
𝑛

2

)
± 2𝑛2−𝜌

So (iii) follows from Chernoff’s inequality.

In the remainder of the proof, we use McDiarmid’s inequality (Theorem 3.3) to check that (iv) holds. Given 𝑖 ∈ 𝑉 (𝐽 ), since 𝐺 is
(𝛿, 𝐿)-robustly-connected, for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑋𝑖, there exists 𝓁 with 1 ≤ 𝓁 ≤ 𝐿 such that there are at least 𝛿𝑛𝓁
(𝑥, 𝑦)-paths in 𝐺 with exactly 𝓁 inner vertices each. Hence, the expected number of such paths with all internal vertices in 𝑉 (𝐺) ⧵𝑋𝑖 is
at least (1 − 𝑝)𝓁𝛿𝑛𝓁 . Since the removal or addition of a vertex in𝑋𝑖 changes the number of (𝑥, 𝑦)-paths by𝑂(𝑛𝓁−1) paths, one can check by
using McDiarmid’s inequality that, for a given 𝑖 ∈ 𝑉 (𝐽 ) and a pair 𝑥, 𝑦 ∈ 𝑋𝑖, the probability that we have less than 𝜀𝓁𝛿𝑛𝓁∕2 (𝑥, 𝑦)-paths
with exactly 𝓁 inner vertices, all in 𝑉 (𝐺) ⧵𝑋𝑖, is exp(−Ω(𝑛)). Since |𝑉 (𝐽 )| = 𝑂(𝑛) and there are 𝑂(𝑛2) possible pairs 𝑥, 𝑦 ∈ 𝑋𝑖, item (iv)
follows from the union bound. ◽

From now on, we assume that the sets {𝑋𝑖 ∶ 𝑖 ∈ 𝑉 (𝐽 )}, {𝑌𝑥 ∶ 𝑥 ∈ 𝑉 (𝐺)}, and the hypergraph  satisfy properties (i)–(iv) of Claim 4.4.

Step 2: Verifying properties of . We start by defining 𝑑 ∶= Δ1(). Note that from Claim 4.4(iii), we have 𝑑 = 𝑝6𝛼
(

𝑛

2

)
± 2𝑛2−𝜌. We will

apply Theorem 3.1 to . The following claim guarantees that  satisfies the required hypotheses.

Claim 4.5. The following facts about  hold.

(H1)  has at most exp(𝑑𝜌3 ) vertices;

(H2) 𝑑(1 − 𝑑−𝜌∕3) ≤ 𝛿1() ≤ Δ1() = 𝑑; and

(H3) Δ2() ≤ 𝑑2∕3. ◽

Proof of the Claim. Item (H1) follows from the fact that |𝑉 ()| = |𝐸(𝐵)| + |𝐸(𝐽 )| + |𝐸(𝑍)| ≤ 𝛼𝑛2 + 𝛼𝑛2 + 2𝑛(𝜆 + 𝜆𝛽∕2)𝑛 ≤

exp(𝑑𝜌3 ), where the last inequality holds with a lot of room to spare.

For (H2), the upper bound follows from the definition of 𝑑 and the lower bound follows from 𝛿1() ≥ 𝑝6𝛼
(

𝑛

2

)
− 2𝑛2−𝜌 ≥ 𝑑 − 𝑑1−𝜌∕3.

It remains to verify that Δ2() ≤ 𝑑2∕3. This will require some work. First, note that each edge in  is of the form Φ(𝑥1𝑦2, 𝑖𝑗𝑘) for
𝑥1 ∈ 𝑉1, 𝑦2 ∈ 𝑉2, and 𝑖𝑗𝑘 ∈ 𝑉 (𝐽 ). We need to select two distinct vertices 𝑒, 𝑓 in 𝑉 () and calculate deg(𝑒, 𝑓 ). A vertex 𝑒 of  can
belong to 𝐸(𝐵), 𝐸(𝐽 ), or 𝐸(𝑍). We consider all the six possible combinations for 𝑒, 𝑓 .

Let 𝑒, 𝑓 ∈ 𝑉 (). Since each edge of  is of type Φ(𝑥1𝑦2, 𝑖𝑗𝑘) for 𝑥1𝑦2 ∈ 𝐸(𝐵) and 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ), and each of these contains exactly one
vertex in 𝐸(𝐵) and one vertex in 𝐸(𝐽 ), for 𝑒, 𝑓 ∈ 𝐸(𝐵) or 𝑒, 𝑓 ∈ 𝐸(𝐽 ), we have deg(𝑒, 𝑓 ) = 0. Furthermore, since 𝑥1𝑦2 ∈ 𝐸(𝐵) and
𝑖𝑗𝑘 ∈ 𝐸(𝐽 ) completely determine the edge Φ(𝑥1𝑦2, 𝑖𝑗𝑘), if 𝑒 ∈ 𝐸(𝐵) and 𝑓 ∈ 𝐸(𝐽 ), then we have deg(𝑒, 𝑓 ) ≤ 1.

In view of the above discussion, we may assume that 𝑒 ∈ 𝐸(𝑍), and without loss of generality, we assume 𝑒 = 𝑥1𝑖 for some 𝑥1 ∈ 𝑉1,
and 𝑖 ∈ 𝑉 (𝐽 ). There are now three cases to consider, depending whether 𝑓 belongs to 𝐸(𝐵), 𝐸(𝐽 ), or 𝐸(𝑍).

Suppose first that 𝑓 = 𝑥1𝑦2 ∈ 𝐸(𝐵). We will count the number of pairs {𝑗, 𝑘} such that Φ(𝑥1𝑦2, 𝑖𝑗𝑘) is an edge of . In particular, it
must happen that 𝑗𝑘 ∈ 𝑁𝐽 (𝑖), thus deg(𝑒, 𝑓 ) ≤ deg𝐽 (𝑖) ≤ 𝑛 ≤ 𝑑2∕3. Similarly, if 𝑓 = 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ), then we count the number of vertices
𝑦2 ∈ 𝑉2 such that Φ(𝑥1𝑦2, 𝑖𝑗𝑘) is an edge of , which is at most deg𝐵(𝑥1) ≤ 𝑛 ≤ 𝑑2∕3.

Finally, suppose that 𝑓 ∈ 𝐸(𝑍) and recall that 𝑒 = 𝑥1𝑖. If 𝑓 = 𝑦2𝑗 with 𝑦2 ∈ 𝑉2 and 𝑗 ∈ 𝑉 (𝐽 ), then deg𝐻 (𝑒, 𝑓 ) is the number of edges
of 𝐽 containing 𝑖 and 𝑗. In the worst case, 𝑖 = 𝑗, we have deg𝐻 (𝑒, 𝑓 ) = deg𝐽 (𝑖) ≤ 𝑛 ≤ 𝑑2∕3. On the other hand, if 𝑓 = 𝑥1𝑗 with 𝑗 ∈ 𝑉 (𝐽 ),
we have 𝑗 ≠ 𝑖 and then to estimate deg𝐻 (𝑒, 𝑓 ) we need to count the number of 𝑦2 ∈ 𝑁𝐵(𝑥1) ⊆ 𝑉2 and the number of 𝑘 ∈ 𝑁𝐽 (𝑖𝑗). The
number of choices for 𝑦2 is at most 𝑛 and the number of choices for 𝑘 is at most Δ2(𝐽 ) ≤ log2𝑛. Therefore, deg𝐻 (𝑒, 𝑓 ) ≤ 𝑛log2𝑛 ≤ 𝑑2∕3,
as required. ◽

Step 3: Setting the conflicts. We must ensure that the collection  of 2-matchings we want to obtain is 𝜀′-compact: each 2-matching in 

has at most 𝜀′𝑛 paths and each cycle in  has length at least 1∕𝜀′. This condition on the cycle lengths will be encoded by using conflicts.

Recall that 𝐷 is the oriented graph obtained by orienting each edge of 𝐺 uniformly at random. In what follows, let 𝑟 ∶= 1∕𝜀′. We define
our conflict hypergraph  on vertex set 𝐸() and edge set defined as follows: For each 𝓁 with 3 ≤ 𝓁 ≤ 𝑟, each 𝓁-length directed cycle
𝐶 ⊆ 𝐷 with vertices {𝑣1, . . . , 𝑣𝓁}, each 𝑖 ∈ 𝑈1, and each 𝑗1𝑘1, . . . , 𝑗𝓁𝑘𝓁 ∈ 𝑁𝐽 (𝑖), we define the following edge:

9 of 19
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𝐹 (𝐶, 𝑖, 𝑗1𝑘1, . . . , 𝑗𝓁𝑘𝓁) = {Φ(𝑣𝑎1𝑣
𝑎+1
2 , 𝑖 𝑗𝑎𝑘𝑎) ∶ 1 ≤ 𝑎 ≤ 𝓁}

where 𝑣𝓁+1
2 = 𝑣1

2. Note that 𝐹 (𝐶, 𝑖, 𝑗1𝑘1, . . . , 𝑗𝓁𝑘𝓁) corresponds to a set of 𝓁 edges of ′, associated to the triples (𝑖 𝑗1𝑘1), . . . , (𝑖 𝑗𝓁𝑘𝓁)
and the edges of the 𝓁-length directed cycle 𝐶 in 𝐷. In such a case, we say 𝑖 is the monochromatic color of the conflicting cycle 𝐶 .
The edges of the conflict hypergraph  consist of all edges of type 𝐹 (𝐶, 𝑖, 𝑗1𝑘1, . . . , 𝑗𝓁𝑘𝓁) which are contained in 𝐸(). The next claim
establishes that  is a (𝑑, 𝑟, 𝜌)-bounded conflict system for .

Claim 4.6. The following facts about  hold.

(C1) 3 ≤ |𝐹 | ≤ 𝑟 for each 𝐹 ∈ ; and

(C2) Δ𝑗′ ((𝑗)) ≤ 𝑟𝑑𝑗−𝑗′−𝜌 for each 3 ≤ 𝑗 ≤ 𝑟 and 1 ≤ 𝑗′ < 𝑗. ◽

Proof of the Claim. Fact (C1) is immediate from the construction of .

In order to prove (C2), fix 𝑗 and 𝑗′ with 3 ≤ 𝑗 ≤ 𝑟 and 1 ≤ 𝑗′ < 𝑗. To prove thatΔ𝑗′ ((𝑗)) ≤ 𝑟𝑑𝑗−𝑗′−𝜌, we need to show that any set of 𝑗′ edges
of  is contained in at most 𝑟𝑑𝑗−𝑗′−𝜌 conflicts of size 𝑗 in . Let  be any set of 𝑗′ edges in , say  = {Φ(𝑥𝑎1𝑦

𝑎
2, 𝑖

𝑎𝑗𝑎𝑘𝑎) ∶ 1 ≤ 𝑎 ≤ 𝑗′}.
We want to bound the degree of  in (𝑗). Each conflict of size 𝑗 is defined by a length-𝑗 directed cycle in 𝐷, the monochromatic color
of the conflict, and a corresponding choice of labels for each edge in the cycle; now we estimate the number of valid choices for each
of these three elements.

We begin by estimating how many possibilities there are for choosing a suitable cycle. Note that 𝑅 ∶= {(𝑥𝑎, 𝑦𝑎) ∶ 1 ≤ 𝑎 ≤ 𝑗′} is a set of
at most 𝑗′ edges of 𝐷. If |𝑅| < 𝑗′, then there are repeated edges from 𝐷 in 𝑅, and in this case the degree of  in (𝑗) is zero. So we can
assume that |𝑅| = 𝑗′ and, by Theorem 3.1, there are at most 𝑗𝑗′𝑛𝑗−𝑗′−1 length-𝑗 directed cycles in 𝐷 which contain 𝑅.

Now, we consider the possible choices for the monochromatic color 𝑖 of the conflicting cycle. Note that if there is no common 𝑖 ∈ 𝑉 (𝐽 )
among all labels 𝑖𝑎𝑗𝑎𝑘𝑎 for 1 ≤ 𝑎 ≤ 𝑗′, the degree of  in (𝑗) is zero, because there is no available “monochromatic color” at all. This
also implies that there are at most three possible choices for 𝑖 because it must be one of the three labels which belong to 𝑖1𝑗1𝑘1, say.

Having fixed a directed cycle 𝐶 , which contains 𝑅, and a monochromatic color 𝑖 for the conflict, now we count the number of labels
associated with each edge of 𝐶 . For edges of , the choices are already given, and for the remaining 𝑗 − 𝑗′ edges of 𝐶 not in , the
labels must be chosen among the neighbors of 𝑖 in the hypergraph 𝐽 . Since 𝑖 has 𝛽𝑛∕𝜆 ± 𝑛2∕3 ≤ 𝑛 neighbors in 𝐽 by (J6), in this step we
have at most 𝑛𝑗−𝑗′ possible choices. Therefore,

Δ𝑗′ ((𝑗)) ≤ 𝑗𝑗
′
𝑛𝑗−𝑗

′−1 ⋅ 3 ⋅ 𝑛𝑗−𝑗
′ = 3𝑗𝑗′𝑛2(𝑗−𝑗′)−1 ≤ 𝑟𝑑𝑗−𝑗′−𝜌

where in the last step we used that 𝑑 = Θ(𝑛2) and 𝑛 is sufficiently large. ◽

Step 4: Setting the test sets. For each 𝑥1 ∈ 𝑉1 ⊆ 𝑉 (𝐵) and each 𝑦2 ∈ 𝑉2 ⊆ 𝑉 (𝐵), define 𝑍𝑥1
= {Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∈ 𝐸() ∶ 𝑦2 ∈ 𝑁𝐵(𝑥1), 𝑖𝑗𝑘 ∈

𝐸(𝐽 )} and define 𝑍𝑦2
in a similar manner. Furthermore, define 𝑍𝑖 = {Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∈ 𝐸() ∶ 𝑥, 𝑦 ∈ 𝑋𝑖} for each 𝑖 ∈ 𝑉 (𝐽 ). We claim

that  ∶= {𝑍𝑥1
∶ 𝑥1 ∈ 𝑉1} ∪ {𝑍𝑦2

∶ 𝑦2 ∈ 𝑉2} ∪ {𝑍𝑖 ∶ 𝑖 ∈ 𝑉 (𝐽 )} is a suitable family of trackable sets. Specifically, the next claim shows
that  is not very large and has only (𝑑, 𝜌)-trackable sets.

Claim 4.7. The following facts about  hold.

(Z1) || ≤ exp(𝑑𝜌3 ); and

(Z2) each 𝑍 ∈  is (𝑑, 𝜌)-trackable. ◽

Proof of the Claim. Because || = |𝑉 (𝐵)| + |𝑉 (𝐽 )| ≤ 3𝑛 and 𝑑 = Θ(𝑛2), we have || ≤ exp(𝑑𝜌3 ). It remains to check (Z2), which
means to prove that |𝑍𝑣| ≥ 𝑑1+𝜌 for each 𝑣 ∈ 𝑉1 ∪ 𝑉2, and |𝑍𝑖| ≥ 𝑑1+𝜌 for each 𝑖 ∈ 𝑉 (𝐽 ).

First, suppose 𝑣 = 𝑥1 ∈ 𝑉1. From (H2) and 𝛿(𝐵) ≥ 𝛼𝑛∕2 − 2𝑛1−𝜌 ≥ 𝛼𝑛∕3, we have

|𝑍𝑥1
| = ∑

𝑦2∈𝑁𝐵 (𝑥1)
deg(𝑥1𝑦2)

≥ 𝛿1()|𝑁𝐵(𝑥1)| ≥ 𝑑(1 − 𝑑−𝜌∕3)𝛼𝑛∕3 ≥ 𝑑1+𝜌

where in the last step we used that 𝑑 = Θ(𝑛2) and that 𝑛 is large. The calculations for 𝑣 = 𝑦2 ∈ 𝑉2 are identical. Next, we note that for
any 𝑖 ∈ 𝑉 (𝐽 ) we have
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|𝑍𝑖| = ∑
𝑥∈𝑋𝑖

deg(𝑥1𝑖) ≥ 𝛿1()|𝑋𝑖|
≥ 𝑑(1 − 𝑑−𝜌∕3)(𝑝𝑛 − 𝑛2∕3) ≥ 𝑑1+𝜌

◽

Step 5: Finishing the proof . Recall that 𝑑 = Δ1(). By Claims 4.5, 4.6, and 4.7, we can apply Theorem 3.1 to , using  as a conflict
system and  as a set of trackable sets, and 𝜌∕3 in place of 𝜌. By doing so, we obtain a matching  ⊆  such that

i.  is -free,

ii.  has size at least (1 − 𝑑−(𝜌∕3)3 )|𝑉 ()|∕8, and

iii. |𝑍𝑎 ∩| = (1 ± 𝑑−(𝜌∕3)3 )|||𝑍𝑎|∕|𝐸()| for each 𝑎 ∈ 𝑉 (𝐵) ∪ 𝑉 (𝐽 ).

Recall that 𝜆 = 𝛽∕(1 − 𝜀) and let 𝑡 = 𝜆𝑛. Using , we define the graphs {𝑄𝑖}𝑡𝑖=1 as follows. For an edge 𝑥1𝑦2 ∈ 𝐸(𝐵), suppose there
exists 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ) such that Φ(𝑥1𝑦2, 𝑖𝑗𝑘) ∈ . In that case, we will add the edge 𝑥𝑦 ∈ 𝐸(𝐺) to the graph 𝑄𝑎 such that 𝑎 ∈ {𝑖, 𝑗, 𝑘} ∩ 𝑈1.
To finish, we verify that  = {𝑄𝑖}𝑡𝑖=1 is an (𝜀𝓁𝛿∕2, 𝐿, 𝜆, 𝜀′)-separator for 𝐺, which means we need to show that  is a collection of
2-matchings in 𝐺 that satisfies (Q1)–(Q5) with 𝜀𝓁𝛿∕2, 𝜆 and 𝜀′ in the place of 𝛿, 𝛽 and 𝜀, respectively.

We start by verifying that  is a collection of 2-matchings. Note that, for each 1 ≤ 𝑖 ≤ 𝑡, the graph 𝑄𝑖 has maximum degree at most 2.
Indeed, let 𝑥 ∈ 𝑉 (𝐺) be any vertex. Since  is a matching in , at most two edges in  can cover the vertices 𝑥1𝑖, 𝑥2𝑖 ∈ 𝑉 (); and
this will yield at most two edges adjacent to 𝑥 belonging to 𝑄𝑖.

Now we verify that (Q1) holds. First, we check that  is 𝜀′-compact, that is, each 2-matching in  has at most 𝜀′𝑛 paths and each cycle
in  has length at least 1∕𝜀′. The latter holds because we avoided the conflicts in . More precisely, an 𝓁-cycle in 𝑄𝑖 corresponds to a
sequence of 𝓁 edges, all of which are in𝑄𝑖. This means the cycle was formed from a length-𝓁 directed cycle in𝐷, all of whose edges were
joined (via) to triples in 𝐽 , all containing vertex 𝑖 ∈ 𝑉 (𝐽 ). Recall that 𝑟 = 1∕𝜀′. If𝓁 ≤ 𝑟, this forms a conflict in, so, as is-free, we
deduce that 𝓁 > 𝑟. To check that 𝑄𝑖 has few paths, first observe that 𝑉 (𝑄𝑖) ⊆ 𝑋𝑖 for each 𝑖 ∈ 𝑉 (𝐽 ). Indeed, if 𝑥𝑦 ∈ 𝐸(𝑄𝑖), then we have
that, say, (𝑥, 𝑦) ∈ 𝐸(𝐷) and Φ(𝑥1𝑦2, 𝑖𝑗𝑘) is an edge in  for some 𝑗, 𝑘. But, since  ⊆ , by the definition of , we have 𝑥, 𝑦 ⊆ 𝑋𝑖, as
required. Now, from (ii), (iii), the fact that  is an 8-graph close to 𝑑-regular, and |𝑍𝑖| ≤ 𝑑|𝑋𝑖|, we have that |𝐸(𝑄𝑖)| = |𝑍𝑖 ∩| ≥ (1 −
𝜀′∕2)|𝑋𝑖| ≥ (1 − 𝜀′∕2)|𝑉 (𝑄𝑖)|, and then the number of degree-one vertices in 𝑄𝑖 is at most 2(|𝑉 (𝑄𝑖)| − |𝐸(𝑄𝑖)|) ≤ 𝜀′|𝑉 (𝑄𝑖)| ≤ 𝜀′𝑛. To
see the second part of (Q1), we need to show that is (𝜀𝓁𝛿∕2, 𝐿)-robustly-connected. Because𝑉 (𝑄𝑖) ⊆ 𝑋𝑖, we deduce from Claim 4.4(iv)
that 𝑄𝑖 is (𝜀𝓁𝛿∕2, 𝐿)-robustly-connected, as required. We conclude that (Q1) holds.

We have already stated that || = 𝜆𝑛, so the first part of (Q2) holds. The second part of (Q2) can be checked as follows: Let 𝑒, 𝑓 be
distinct edges of 𝐸(). Thus, there are orientations (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸(𝐷) of 𝑒, 𝑓 respectively, and edges 𝑖𝑗𝑘, 𝑖′𝑗′𝑘′ ∈ 𝐸(𝐽 ) such that
Φ(𝑥1𝑦2, 𝑖𝑗𝑘) and Φ(𝑥′1𝑦

′
2, 𝑖

′𝑗′𝑘′) belong to . We have, respectively, that 𝐴𝑒 ∶= {𝑎 ∶ 𝑒 ∈ 𝐸(𝑄𝑎)} = {𝑖, 𝑗, 𝑘} ∩ 𝑈1 and 𝐴𝑓 ∶= {𝑎 ∶ 𝑓 ∈
𝐸(𝑄𝑎)} = {𝑖′, 𝑗′, 𝑘′} ∩ 𝑈1. For a contradiction, suppose 𝐴𝑒 ⊆ 𝐴𝑓 . If |𝐴𝑒| = 3, then we would have that 𝑖𝑗𝑘 = 𝑖′𝑗′𝑘′, contradicting that
 is a matching, so |𝐴𝑒| = 2; say, 𝐴𝑒 = {𝑖, 𝑗}, and 𝑖𝑗 is a pair in 𝑉1 (from the construction of 𝐽 ). We recall that by (J3) no pair 𝑖𝑗 is
contained both in an edge with two vertices in 𝑉1 and at the same time in an edge with with three vertices in 𝑉1, so this rules out
the case |𝐴𝑓 | = 3. Thus, we can only have 𝐴𝑒 = 𝐴𝑓 = {𝑖, 𝑗}. But again (J3) implies 𝑖𝑗 is contained in a unique edge in 𝐽 , say, 𝑖𝑗𝑟. This
implies that 𝑖𝑗𝑘 = 𝑖′𝑗′𝑘′ = 𝑖𝑗𝑟, contradicting the fact that  is a matching. Therefore  strongly separates 𝐸(), and (Q2) holds.

To prove (Q3), let 𝑥 ∈ 𝑉 (𝐺). Recall that 𝑌𝑥 ⊆ 𝑉 (𝐽 ) is the random set 𝑌𝑥 = {𝑖 ∶ 𝑥 ∈ 𝑋𝑖} and from Claim 4.4(ii) we have that |𝑌𝑥| =
3𝛼𝑛∕2 ± 𝑛2∕3. Note that if 𝑥 is the end of a path in some 2-matching 𝑄𝑖, then there is an edge Φ(𝑥1𝑦2, 𝑖𝑗𝑘) in 𝑍𝑥1

∩, but no edge
Φ(𝑥2𝑦1, 𝑖𝑗𝑘) is in 𝑍𝑥2

∩; or there is an edge Φ(𝑥2𝑦1, 𝑖𝑗𝑘) in 𝑍𝑥2
∩, but no edge Φ(𝑥1𝑦2, 𝑖𝑗𝑘) is in 𝑍𝑥1

∩. This motivates the
following definition: for each 𝑥 ∈ 𝑉 (𝐺), a set 𝐹 (𝑥1) of indexes 𝑖 ∈ 𝑉 (𝐽 ) such that there is an edge Φ(𝑥1𝑦2, 𝑖𝑗𝑘) in ; and a set 𝐹 (𝑥2)
of indexes 𝑖 ∈ 𝑉 (𝐽 ) such that there is Φ(𝑥2𝑦1, 𝑖𝑗𝑘) in . Note that, from the way we construct , we know that 𝐹 (𝑥1), 𝐹 (𝑥2) ⊆ 𝑌𝑥. In
view of the above discussion, the number of times 𝑥 is the endpoint of a path in the 2-matchings of  is the number of indexes 𝑖 ∈ 𝑌𝑥
such that 𝑖 ∉ 𝐹 (𝑥1) ∩ 𝐹 (𝑥2). Therefore, this number of indexes 𝑖 such that 𝑥 is the endpoint of a path in 𝑄𝑖 is at most

|𝑌𝑥 ⧵ 𝐹 (𝑥1)| + |𝑌𝑥 ⧵ 𝐹 (𝑥2)| ≤ 3𝛼𝑛 + 2𝑛2∕3 − 3(|𝑍𝑥1
∩| + |𝑍𝑥2

∩|)
≤ 3𝛼𝑛 + 2𝑛2∕3 − 3(deg𝐺(𝑥) − 𝜀′𝑛∕2)

≤ 3𝛼𝑛 + 2𝑛2∕3 − 3(𝛼𝑛 − 𝑛1−𝜌 − 𝜀′𝑛∕2)

≤ 𝜀′𝑛

where in the first inequality we use the facts that |𝐹 (𝑥1)| = 3|𝑍𝑥1
∩| and |𝐹 (𝑥2)| = 3|𝑍𝑥2

∩|, and also that 𝑌𝑥 ≤ 3𝛼𝑛 + 𝑛2∕3; in the
second inequality we use (4.1); the third inequality follows from deg𝐺(𝑥) ≥ 𝛼𝑛 − 𝑛1−𝜌; and since 𝑛 is sufficiently large, the last inequality
holds. This verifies (Q3).
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To see (Q4), let 𝑒 ∈ 𝐸() be arbitrary. As explained before, there exists an orientation (𝑥, 𝑦) ∈ 𝐸(𝐷) of 𝑒 and an edge 𝑖𝑗𝑘 ∈ 𝐸(𝐽 ) such
that Φ(𝑥1𝑦2, 𝑖𝑗𝑘) belongs to , and {𝑎 ∶ 𝑒 ∈ 𝐸(𝑄𝑎)} = {𝑖, 𝑗, 𝑘} ∩ 𝑈1. Since the latter set obviously has at most three elements, (Q4)
follows.

Finally, property (Q5) follows from the properties of the chosen test sets. More precisely, we want to prove thatΔ(𝐺′) ≤ 𝜀′𝑛 for𝐺′ ∶= 𝐺 −
𝐸(). Since for any 𝑥 ∈ 𝑉 (𝐺) we have deg𝐺′ (𝑥) = deg𝐺(𝑥) − (|𝑍𝑥1

∩| + |𝑍𝑥2
∩|), it is enough to prove that |𝑍𝑥1

∩| + |𝑍𝑥2
∩

| ≥ deg𝐺(𝑥) − 𝜀′𝑛. For that, by using (ii) and (iii) and the facts that |𝐸()| ≤ |𝑉 ()|Δ1()∕8 and |𝑍𝑥1
| + |𝑍𝑥2

| ≥ 𝛿1()(|𝑁𝐵(𝑥1)| +|𝑁𝐵(𝑥2)|) ≥ 𝑑(1 − 𝑑−𝜌∕3) deg𝐺(𝑥), we have the following for any 𝑥 ∈ 𝑉 (𝐺):

|𝑍𝑥1
∩| + |𝑍𝑥2

∩| ≥ (1 − 𝑑−(𝜌∕3)3 )2(|𝑍𝑥1
| + |𝑍𝑥2

|)|𝑉 ()|∕8|𝑉 ()|Δ1()∕8

≥ (1 − 𝑑−(𝜌∕3)3 )2(1 − 𝑑−𝜌∕3) deg𝐺(𝑥)

≥ deg𝐺(𝑥) − 𝜀′𝑛∕2 (4.1)

where inequality (4.1) holds for sufficiently large 𝑛 because deg𝐺(𝑥) = Θ(𝑛) and 𝑑 = Θ(𝑛2). Then, we verified that (Q5) holds. This
finishes the proof of the lemma. ◽

5 | Breaking Cycles and Connecting Paths

For a real number 𝜀 ≥ 0, a collection  of paths in 𝐺 is an 𝜀-almost separating path system if there exists a set 𝐸′ ⊆ 𝐸(𝐺) such that 
separates every edge in 𝐸′ from all other edges in 𝐺 and Δ(𝐺 − 𝐸′) ≤ 𝜀𝑛. Note that such  strongly separates 𝐸′.

A 2-matching that has no cycle is called acyclic. A collection  of 2-matchings is acyclic if each 2-matching in  is acyclic. The next
lemma shows that a collection of 2-matchings as in the output of Theorem 4.2 (that is, a separator, as in Theorem 4.1) can be converted
into an acyclic 2-matching with only a very small loss in its properties.

Lemma 5.1. Let 1∕𝑛 ≪ 𝛿,𝐿, 𝛽, 𝜀. If 𝐺 is an 𝑛-vertex graph and there exists a (𝛿, 𝐿, 𝛽, 𝜀)-separator for 𝐺, then there also exists an acyclic
(𝛿, 𝐿, 𝛽, 5𝜀)-separator for 𝐺.

Proof. Let  be a (𝛿, 𝐿, 𝛽, 𝜀)-separator for 𝐺. Our goal is to prove that there is a set of edges with at most 4𝜀𝑛 edges incident to each
vertex, obtained by deleting one edge from each cycle in the 2-matchings of . We argue that this is enough to conclude the proof.
First note that, after removing one edge from each cycle of an 𝜀-compact 2-matching 𝑄, we obtain an acyclic 2𝜀-compact 2-matching,
because the maximum number of cycles in 𝑄 is 𝜀𝑛. Since 𝑄 is (𝛿, 𝐿)-robustly-connected, then it remains so after the removal of such
edges. Thus, the collection of 2-matchings obtained after the removal of these edges from  satisfies (Q1) with 2𝜀 in the place of 𝜀.
Note that such collection also satisfies (Q2) and (Q4). Moreover, if we remove from the 2-matchings at most 4𝜀𝑛 edges incident to each
vertex of 𝐺, then (Q3) will hold with 5𝜀𝑛 in the place of 𝜀𝑛. Moreover, the degree of 𝑢 in 𝐺 − 𝐸𝑖 will increase by at most 4𝜀𝑛, which
implies condition (Q5) with 5𝜀 in the place of 𝜀𝑛.

Let 𝐶1, . . . , 𝐶𝑇 be the cycles in 2-matchings of  and note that 𝑇 ≤ 𝜀𝛽𝑛2. For 1 ≤ 𝑖 ≤ 𝑇 , let 𝑖 be the edges of the cycle 𝐶𝑖, and let 𝑋𝑖

be an edge chosen uniformly at random from 𝑖.

Let 𝑆 be the edge set {𝑋1, . . . , 𝑋𝑇 } and, for each vertex 𝑢, let 𝑓𝑢(𝑋1, . . . , 𝑋𝑇 ) be the degree of 𝑢 in 𝐺[𝑆]. Note that, since 𝑢 is in at most
one cycle 𝐶𝑖 of a 2-matching of  and each cycle has length at least 1∕𝜀, the edge 𝑋𝑖 was chosen as one of the two edges incident to 𝑢

with probability at most 2𝜀. Then, because the number of 2-matchings is at most 𝛽𝑛, we have that E[𝑓𝑢(𝑋1, . . . , 𝑋𝑇 )] ≤ 2𝜀𝛽𝑛.

Let (𝑥1, . . . , 𝑥𝑇 ) and (𝑥′1, . . . , 𝑥
′
𝑇
) be in 1 × · · · × 𝑇 , differing in exactly one coordinate, that is, 𝑥𝑗 = 𝑥′

𝑗
for every 𝑗 ∈ {1, . . . , 𝑇 } with

𝑗 ≠ 𝑖. Note that 𝑓 is such that |𝑓𝑢(𝑥1, . . . , 𝑥𝑇 ) − 𝑓𝑢(𝑥′1, . . . , 𝑥
′
𝑇
)| ≤ 1. In fact, 𝑓𝑢(𝑥1, . . . , 𝑥𝑇 ) = 𝑓𝑢(𝑥′1, . . . , 𝑥

′
𝑇
) if 𝑢 is not in 𝐶𝑖. So we

can set 𝑐𝑖 = 1 if 𝑢 is in 𝐶𝑖 and 𝑐𝑖 = 0 otherwise. As 𝑢 is in at most 𝛽𝑛 of the 𝑇 cycles, we have that
∑

𝑗 𝑐
2
𝑗
≤ 𝛽𝑛. By using McDiarmid’s

inequality (Theorem 3.3), we obtain

Pr
[
𝑓𝑢(𝑋1, . . . , 𝑋𝑇 ) ≥ 4𝜀𝛽𝑛

]
≤ exp

(
−8𝜀2𝛽2𝑛2

𝛽𝑛

)
≤ exp

(
−8𝜀2𝛽𝑛

)
Thus, by the union bound, the probability that the maximum degree in 𝐺[𝑆] is less than 4𝜀𝛽𝑛 is at least 1 − 𝑛 ⋅ exp

(
−8𝜀2𝛽𝑛

)
, which,

for large enough 𝑛, is positive. This means there is a choice of edges whose removal from the cycles in the 2-matchings of  makes 
acyclic and satisfying (Q1)–(Q5), with 5𝜀 in the place of 𝜀. ◽

The next lemma is the main result of this section, and will be used in Section 7 to prove our main result. In this lemma, we will construct
an 𝜀-almost separating path system from a separator, which is a collection of 2-matchings. By Lemma 5.1, we can assume the given
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collection of 2-matchings is acyclic, so we need to transform each path collection into a path by merging its paths one by one into a long
path. This merging process can be done by repeated applications of the (𝛿, 𝐿)-robustly-connected property, but each such application
adds new edges to the current path collection and thus might affect the original separating property in certain places. This means we
need to track carefully the effects of adding a path for every time we modify the current path collection.

Lemma 5.2. For each 𝜀, 𝛿, and 𝐿, there exist 𝜀′ and 𝑛0 such that the following holds for every 𝑛-vertex graph 𝐺 with 𝑛 ≥ 𝑛0 and every
𝛽 ∈ (0, 1). If  is a (𝛿, 𝐿, 𝛽, 𝜀′)-separator for 𝐺, then there exists an 𝜀-almost separating path system with 𝛽𝑛 paths.

Proof. Let 𝑡 = 𝛽𝑛. We can apply Lemma 5.1 to transform  into an acyclic collection of 2-matchings, adjusting the value of 𝜀′ accord-
ingly. Let  = {𝑄1, . . . , 𝑄𝑡}.

We will describe a sequence 0, . . . ,𝑡 of collections of acyclic 2-matchings in 𝐺 and sets 𝐸0, . . . , 𝐸𝑡 of edges of 𝐺, the idea being that
𝑖 strongly separates 𝐸𝑖, and that each 𝑖 will be obtained from 𝑖−1 by replacing 𝑄𝑖 with a path 𝑃𝑖. Then 𝑡 will be the desired path
system.

For each vertex 𝑢 and 0 ≤ 𝑖 ≤ 𝑡, let 𝑑𝑖(𝑢) be the total number of paths in the 2-matchings in 𝑄𝑖+1, . . . , 𝑄𝑡 that have 𝑢 as an endpoint. We
will make sure the following invariants on 𝑖 and 𝐸𝑖 hold for each 0 ≤ 𝑖 ≤ 𝑡:

I1. each 𝑖 separates every edge in 𝐸𝑖 from all other edges of 𝐺;

I2. edges in more than three of the 2-matchings in 𝑖 are in 𝐸(𝑖) ⧵ 𝐸(0); and

I3. the degree of each vertex 𝑢 in 𝐺 − 𝐸𝑖 is at most 𝜀𝑛 if 𝑑𝑖(𝑢) = 0 and at most
√
𝜀′𝑛 − 2𝑑𝑖(𝑢) if 𝑑𝑖(𝑢) > 0.

Let 𝐸0 = 𝐸() and 0 = . Note that 0 and 𝐸0 satisfy the three invariants. We will define 𝑖 = (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑃𝑖} for 𝑖 = 1, . . . , 𝑡,
where 𝑃𝑖 is a path that contains all paths in 𝑄𝑖. Therefore, if invariants (I1) and (I3) hold for 𝑖 = 𝑡 and 𝜀′ ≤ 𝜀2, then 𝑡 will be an
𝜀-almost separating path system with 𝑡 paths, and the proof of the lemma will be complete, as 𝑡 = 𝛽𝑛.

Suppose 𝑖 ≥ 1. To describe how we build 𝑃𝑖 from 𝑄𝑖, we need some definitions. Let 𝑓 be an edge of 𝐺 not in 𝑄𝑖 such that 𝑄𝑖 + 𝑓 is a
2-matching. Let 𝐸𝑓 be 𝑓 plus the set of edges of 𝑄𝑖 in 𝐸𝑖−1 that are not separated from 𝑓 by (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑄𝑖 + 𝑓}.

Claim 5.3. If 𝑓 is in at most three of the 2-matchings in 𝑖−1, then |𝐸𝑓 | ≤ 4. ◽

Proof. Suppose there are three edges 𝑎, 𝑏, and 𝑐 in𝐸(𝑄𝑖) ∩ 𝐸𝑖−1 that are not separated from 𝑓 by (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑄𝑖 + 𝑓}. By invariant
(I1), there are 2-matchings 𝑄

𝑎𝑏
, 𝑄𝑏𝑐 , and 𝑄𝑐𝑎̄ in 𝑖−1 such that 𝑎 ∈ 𝐸(𝑄

𝑎𝑏
) but 𝑏 ∉ 𝐸(𝑄

𝑎𝑏
), 𝑏 ∈ 𝐸(𝑄𝑏𝑐) but 𝑐 ∉ 𝐸(𝑄𝑏𝑐), and 𝑐 ∈ 𝐸(𝑄𝑎̄𝑐)

but 𝑎 ∉ 𝐸(𝑄𝑎̄𝑐). Clearly, these three 2-matchings are distinct and are not 𝑄𝑖, because 𝑎, 𝑏, and 𝑐 are in 𝑄𝑖. So they are in (𝑖−1 ⧵ {𝑄𝑖}) ∪
{𝑄𝑖 + 𝑓} and they must contain 𝑓 because 𝑎, 𝑏, and 𝑐 are not separated from 𝑓 in (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑄𝑖 + 𝑓}. By the hypothesis of the
claim, these are the only 2-matchings in 𝑖−1 containing 𝑓 . Hence, repeating the argument for 𝑎, 𝑏, 𝑐 in the inverse order, we deduce
that either 𝑎 ∈ 𝑄𝑏𝑐 , 𝑏 ∈ 𝑄𝑎̄𝑐 , and 𝑐 ∈ 𝑄

𝑎𝑏
, or 𝑎 ∉ 𝑄𝑏𝑐 , 𝑏 ∉ 𝑄𝑎̄𝑐 , and 𝑐 ∉ 𝑄

𝑎𝑏
.

Now, suppose there is a fourth edge 𝑑 in 𝐸(𝑄𝑖) ∩ 𝐸𝑖−1 not separated from 𝑓 by the collection (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑄𝑖 + 𝑓}. Consider the
former of the two cases above and, for clarity, rename the three 2-matchings to 𝑄𝑎𝑏𝑐 , 𝑄𝑎̄𝑏𝑐 , and 𝑄

𝑎𝑏𝑐
. Then 𝑑 must be in 𝑄𝑎̄𝑏𝑐 , to be

separated from 𝑎, and 𝑑 must be in 𝑄
𝑎𝑏𝑐

, to be separated from 𝑏. But now there is no way to separate 𝑐 from 𝑑, a contradiction. The
other case is analogous. Indeed, for clarity, rename the three 2-matchings to 𝑄𝑎̄𝑏𝑐 , 𝑄

𝑎̄𝑏𝑐
, and 𝑄

𝑎𝑏𝑐
. Then 𝑑 must not be in 𝑄𝑎̄𝑏𝑐 so

that 𝑏 is separated from 𝑑, and 𝑑 must not be in 𝑄
𝑎𝑏𝑐

so that 𝑎 is separated from 𝑑. But now there is no way to separate 𝑑 from 𝑐, a
contradiction. ◽

A vertex 𝑢 is tight if its degree in 𝐺 − 𝐸𝑖−1 is more than 𝜀𝑛 − 2 if 𝑑𝑖−1(𝑢) = 0, or more than
√
𝜀′𝑛 − 2𝑑𝑖−1(𝑢) − 2 if 𝑑𝑖−1(𝑢) > 0. An edge 𝑓

is available for 𝑃𝑖 if 𝑓 ∉ 𝐸(𝑖−1) ⧵ 𝐸(0) and the extremes of the edges in 𝐸𝑓 are not tight.

To transform 𝑄𝑖 into 𝑃𝑖, we will proceed as follows. Start with 𝑃 ′
𝑖

being one of the paths in 𝑄𝑖 and let 𝑄′
𝑖
= 𝑄𝑖 ⧵ {𝑃 ′

𝑖
}. While 𝑄′

𝑖
is

nonempty, let 𝑃 be one of the paths in 𝑄′
𝑖
. Call 𝑦 one of the ends of 𝑃 and 𝑥 one of the ends of 𝑃 ′

𝑖
. An (𝑥, 𝑦)-path in 𝐺 is good if it has

length at most 𝐿, all of its edges are available and its inner vertices are not in 𝑉 (𝑃𝑖) ∪ 𝑉 (𝑄′
𝑖
). If a good (𝑥, 𝑦)-path exists, we extend

𝑃 ′
𝑖

by gluing 𝑃 ′
𝑖

and 𝑃 ; we remove 𝑃 from 𝑄′
𝑖
, and repeat this process until 𝑄′

𝑖
is empty. When 𝑄′

𝑖
is empty, we let 𝑃𝑖 be 𝑃 ′

𝑖
. Recall

that 𝑖 = (𝑖−1 ⧵ {𝑄𝑖}) ∪ {𝑃𝑖}, and we let 𝐸𝑖 be 𝐸𝑖−1 minus all edges contained in more than three 2-matchings of 𝑖 and all edges not
separated by 𝑖 from some other edge of 𝐺.

This process is well-defined if the required (𝑥, 𝑦)-good path exists at every point in the construction. We will show that, indeed, assuming
that the invariants hold, there is always a good (𝑥, 𝑦)-path to be chosen in the gluing process above. Then, to complete the proof, we
will prove that the invariants hold even after 𝑄𝑖 is modified by the choice of any good path.

13 of 19
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First, note that the number of vertices in 𝑃 ′
𝑖

not in 𝑄𝑖 is less than 𝐿𝜀′𝑛. Indeed, each connecting path has at most 𝐿 inner vertices and
𝑄𝑖 is 𝜀′-compact, hence 𝑄𝑖 has no more than 𝜀′𝑛 paths. Thus, we use less than 𝜀′𝑛 connecting paths to get to 𝑃𝑖. If 𝜀′ < 𝛿∕(4𝐿), then
the number of vertices in 𝑃 ′

𝑖
not in 𝑄𝑖 is less than 𝛿𝑛∕4.

Second, let us consider the tight vertices. We start by arguing that 𝑥 is not tight. This happens because 𝑑𝑖(𝑥) = 𝑑𝑖−1(𝑥) − 1 and, by
invariant (I3), the degree of 𝑥 in 𝐺 − 𝐸𝑖−1 is at most

√
𝜀′𝑛 − 2𝑑𝑖−1(𝑥) =

√
𝜀′𝑛 − 2𝑑𝑖(𝑥) − 2. For the same reasons, 𝑦 is not tight. Now,

note that 𝐸𝑖 ⧵ 𝐸𝑖−1 ⊆
⋃
{𝐸𝑓 ∶ 𝑓 ∈ 𝐸(𝑃𝑖) ⧵ 𝐸(𝑄𝑖)}. Hence, |𝐸𝑖 ⧵ 𝐸𝑖−1| ≤ 4𝐿𝜀′𝑛 by Claim 5.3 and because 𝑄𝑖 consists of at most 𝜀′𝑛

paths. This, Δ(𝐺 − 𝐸()) ≤ 𝜀′𝑛, and 𝑑𝑖(𝐺) ≤ 𝜀′𝑛 imply that the maximum number of tight vertices is at most (𝜀′𝑛 + 4𝐿𝜀′𝛽𝑛)∕(
√
𝜀′ −

2𝜀′) = 𝜀′(1 + 4𝐿𝛽)𝑛∕(
√
𝜀′ − 2𝜀′). As long as 2𝜀′ <

√
𝜀′∕2, that is, 𝜀′ < 1∕16, we have that this number is less than 2

√
𝜀′(1 + 4𝐿𝛽)𝑛. If

additionally 𝜀′ < (𝛿∕(8(1 + 4𝐿𝛽)))2, we have that the number of tight vertices is less than 2
√
𝜀′(1 + 4𝐿𝛽)𝑛 < 𝛿𝑛∕4.

Third, |𝐸(𝑖−1) ⧵ 𝐸(0)| < 4𝐿𝜀′𝑛(𝑖 − 1) < 4𝐿𝜀′𝛽𝑛2 because 𝑖 ≤ 𝛽𝑛. Hence, by invariant (I2), at most 4𝐿𝜀′𝛽𝑛2 edges are used more than
three times by 𝑖−1. Let 𝑒 ∈ 𝐸(𝑖−1) ⧵ 𝐸(0). Because 𝑄𝑖 is (𝛿, 𝐿)-robustly-connected, there exist 𝓁 ≤ 𝐿 and 𝛿𝑛𝓁 (𝑥, 𝑦)-paths in 𝐺, each
with 𝓁 internal vertices, all in 𝑉 (𝐺) ⧵ 𝑉 (𝑄𝑖). If 𝑒 is not incident to 𝑥 or 𝑦, then the number of (𝑥, 𝑦)-paths in 𝐺 with 𝓁 internal vertices
and containing 𝑒 is at most 𝑛𝓁−2. Hence, the number of (𝑥, 𝑦)-paths in 𝐺 with 𝓁 internal vertices, containing an edge in 𝐸(𝑖−1) ⧵ 𝐸(0)
not incident to 𝑥 or 𝑦, is less than 4𝐿𝜀′𝛽𝑛𝓁 . If 𝑒 is incident to 𝑥 or 𝑦, then the number of (𝑥, 𝑦)-paths in 𝐺 with 𝓁 internal vertices and
containing 𝑒 is at most 𝑛𝓁−1. But, there are less than

√
𝜀′𝑛 edges incident to 𝑥 and less than

√
𝜀′𝑛 edges incident to 𝑦 contained in more

than three 2-matchings in 𝑖−1, by invariant (I3). Thus, the number of (𝑥, 𝑦)-paths in𝐺 of length 𝓁 containing an edge in 𝐸(𝑖−1) ⧵ 𝐸(0)
incident to 𝑥 or 𝑦 is less than 2

√
𝜀′𝑛𝓁 . We can choose 𝜀′ small enough so that 4𝐿𝜀′𝛽 + 2

√
𝜀′ < 𝛿∕4, and thus at most 𝛿𝑛𝓁∕4 (𝑥, 𝑦)-paths

of length 𝓁 contain some edge of 𝐸(𝑖−1) ⧵ 𝐸(0).

Summarizing, we have concluded that, for 𝜀′ small enough, the number of vertices in 𝑃 ′
𝑖

not in 𝑄𝑖 is less than 𝛿𝑛∕4 ≤ 𝛿𝑛𝓁∕4, the
number of tight vertices is also less than 𝛿𝑛∕4 ≤ 𝛿𝑛𝓁∕4, and the number of (𝑥, 𝑦)-paths containing some edge in 𝐸(𝑖−1) ⧵ 𝐸(0) is less
than 𝛿𝑛𝓁∕4. This means that at least 𝛿𝑛𝓁∕4 of the 𝛿𝑛𝓁 (𝑥, 𝑦)-paths in 𝐺, each with 𝓁 internal vertices, all in 𝑉 (𝐺) ⧵ 𝑉 (𝑄𝑖), are good. As
long as 𝑛0 is such that 𝛿𝑛𝓁0∕4 ≥ 𝛿𝑛0∕4 ≥ 1, there is a good (𝑥, 𝑦)-path.

Now, let us verify the invariants. By the definition of 𝐸𝑖, invariant (I1) holds for 𝑖 because 𝑖 separates every edge in 𝐸𝑖 from all other
edges of 𝐺. Invariant (I2) holds because edges in more than three 2-matchings in 𝑖 lie in used connecting paths, that is, lie in 𝐸(𝑃𝑗) ⧵
𝐸(𝑄𝑗) for some 𝑗 with 1 ≤ 𝑗 ≤ 𝑖. For invariant (I3), observe that 𝐸𝑖 ⧵ 𝐸𝑖−1 ⊆ 𝐸(𝑃𝑖), so the degree of 𝑣 from 𝐺 − 𝐸𝑖−1 to 𝐺 − 𝐸𝑖 decreases
only for untight vertices, and by at most two. As the degree of an untight vertex 𝑢 in 𝐺 − 𝐸𝑖−1 is at most 𝜀𝑛 − 2 if 𝑑𝑖−1(𝑢) = 0 and at most√
𝜀′𝑛 − 2𝑑𝑖−1(𝑢) − 2 if 𝑑𝑖−1(𝑢) > 0, every vertex 𝑢 in 𝐺 − 𝐸𝑖 has degree at most 𝜀𝑛 if 𝑑𝑖(𝑢) = 0 and at most

√
𝜀′𝑛 − 2𝑑𝑖(𝑢) if 𝑑𝑖(𝑢) > 0, also

because 𝑑𝑖(𝑢) ≤ 𝑑𝑖−1(𝑢). So invariant (I3) holds. ◽

6 | Separating the Last Few Edges

In this section, we deal with a subgraph 𝐻 of 𝐺, of small maximum degree, whose edges are not separated by the path family obtained
in the previous sections. This is done in Theorem 6.3 but first we need some auxiliary results. The first step of the proof is to find a
family of matchings which separates the edges of 𝐻 .

Lemma 6.1. Let Δ ≥ 0 and let 𝐻 be an 𝑛-vertex graph with Δ(𝐻) ≤ Δ. Then there is a collection of 𝑡 ≤ 300
√
Δ𝑛 matchings

𝑀1, . . . ,𝑀𝑡 ⊆ 𝐻 such that

M1. each edge in 𝐻 belongs to exactly two matchings 𝑀𝑖,𝑀𝑗 ; and

M2. for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑡, the matchings 𝑀𝑖,𝑀𝑗 have at most one edge in common.

We also need the asymmetric version of the Lovász Local Lemma (cf. [18], Theorem 1.1).

Theorem 6.2 (Asymmetric Lovász Local Lemma). Let  = {𝐴1, . . . , 𝐴𝑛} be a collection of events such that each 𝐴𝑖 is mutually
independent of  − (𝑖 ∪ 𝐴𝑖), for some 𝑖 ⊆  . Let 0 < 𝑥1, . . . , 𝑥𝑛 < 1 be real numbers such that, for each 𝑖 ∈ {1, . . . , 𝑛},

Pr[𝐴𝑖] ≤ 𝑥𝑖
∏
𝐴𝑗∈𝑖

(1 − 𝑥𝑗) (6.1)

Then Pr
[⋂𝑛

𝑖=1𝐴𝑖

]
≥
∏𝑛

𝑖=1(1 − 𝑥𝑖) > 0.

Proof of Theorem 6.1. Let 𝐷 = 256
√
Δ𝑛. Let 𝑀 = {1, . . . , 𝐷 + 1} and let 𝑀 (2) consist of all subsets of size two of 𝑀 . We define

a function 𝜙 ∶ 𝐸(𝐻) → 𝑀 (2) by choosing 𝜙(𝑒) ∈ 𝑀 (2) uniformly at random for each 𝑒 ∈ 𝐸(𝐻). We will show that, with positive
probability,

14 of 19 Random Structures & Algorithms, 2025
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i. 𝜙 is injective, and

ii. for each vertex 𝑣 ∈ 𝑉 (𝐻), the sets 𝜙(𝑣𝑤) for 𝑤 ∈ 𝑁(𝑣) are pairwise disjoint.

We define a sequence of “bad” events to use Theorem 6.2. For distinct 𝑒, 𝑓 ∈ 𝐸(𝐻), let 𝑒,𝑓 be the event that 𝜙(𝑒) = 𝜙(𝑓 ). For each
pair of adjacent edges 𝑒, 𝑓 ∈ 𝐸(𝐻), let 𝑒,𝑓 be the event that 𝜙(𝑒) ∩ 𝜙(𝑓 ) ≠ ∅. Thus (i)–(ii) hold if we avoid all 𝑒,𝑓 and 𝑒,𝑓 .

Note first that, for each 𝑒, 𝑓 , we have

Pr[𝑒,𝑓 ] =
(
𝐷 + 1

2

)−1
= 2

𝐷(𝐷 + 1)
≤

2
𝐷2

Pr[𝑒,𝑓 ] = (2𝐷 − 1)
(
𝐷 + 1

2

)−1
= 2(2𝐷 − 1)

𝐷(𝐷 + 1)
≤

4
𝐷

Define 𝑑𝐴 ∶= Δ𝑛 and 𝑑𝐵 ∶= 4Δ. Note that each event 𝑒,𝑓 or 𝑒,𝑓 is independent of all other events 𝑒′ ,𝑓 ′ except if {𝑒, 𝑓} ∩ {𝑒′, 𝑓 ′} ≠ ∅.
Given {𝑒, 𝑓}, the number of such intersecting pairs {𝑒′, 𝑓 ′} is at most 𝑑𝐴. Similarly, each event 𝑒,𝑓 or 𝑒,𝑓 is independent of all but at
most 𝑑𝐵 events of type 𝑒′ ,𝑓 ′ .

For each event 𝑒,𝑓 define 𝑥𝑒,𝑓 ∶= 𝑥𝐴 ∶= 𝑑−1
𝐴

and for each event 𝑒,𝑓 define 𝑦𝑒,𝑓 ∶= 𝑥𝐵 ∶= 𝑑−1
𝐵

. We will show that the requirement
(6.1) of the Asymmetric Lovász Local Lemma is satisfied with these choices.

Indeed, for an event of type 𝑒,𝑓 , we use the fact that 1 − 𝑥 ≥ 2−2𝑥 for 0 ≤ 𝑥 ≤ 1∕2 to show that

𝑥𝐴
(
1 − 𝑥𝐴

)𝑑𝐴(1 − 𝑥𝐵
)𝑑𝐵

≥ 𝑥𝐴2−2𝑥𝐴𝑑𝐴2−2𝑥𝐵𝑑𝐵

= 𝑥𝐴2−4 = 1
16Δ𝑛

≥
2
𝐷2

≥ Pr[𝑒,𝑓 ]

and, for an event of type 𝑒,𝑓 , we have

𝑥𝐵
(
1 − 𝑥𝐴

)𝑑𝐴(1 − 𝑥𝐵
)𝑑𝐵

≥ 𝑥𝐵2−2𝑥𝐴𝑑𝐴2−2𝑥𝐵𝑑𝐵

= 𝑥𝐵2−4 = 1
64Δ

≥
4
𝐷

≥ Pr[𝑒,𝑓 ]

Thus, Theorem 6.2 guarantees there is a function 𝜙 satisfying (i)–(ii). This function defines the matchings: for each 1 ≤ 𝑖 ≤ 𝐷 + 1 we
let 𝑀𝑖 consist of the edges 𝑒 ∈ 𝐸(𝐻) such that 𝑖 ∈ 𝜙(𝑒). Then 𝜙(𝑒) ∈ 𝑀 (2) ensures that each edge belongs to exactly two 𝑀𝑖’s, condition
(i) ensures that each pair of 𝑀𝑖, 𝑀𝑗 has at most one edge in common, and condition (ii) ensures that each 𝑀𝑖 is a matching. Since
𝐷 + 1 ≤ 300

√
Δ𝑛, we are done. ◽

Now, we prove the main result of this section, which finds the required family of paths that separate 𝐸(𝐻). The proof proceeds by using
the matchings found in the previous lemma and covering those matchings with paths. We note that our task here is substantially easier
than in Lemma 5.2 (where we also needed to extend a path family into a single path by adding new paths) because here the connecting
paths are found outside the set of edges we are trying to separate.

Lemma 6.3. Let 𝜀, 𝛿, 𝐿 > 0 and let 𝐺 and 𝐻 be 𝑛-vertex graphs with 𝐻 ⊆ 𝐺 such that Δ(𝐻) ≤ 𝜀𝑛 and 𝐺 is (𝛿, 𝐿)-robustly-connected.
Then there exist paths {𝑃𝑖}𝑟𝑖=1, {𝑄𝑖}𝑟𝑖=1 in 𝐺, with 𝑟 ≤ 600𝐿𝛿−1

√
𝜀𝑛, such that, for each 𝑒 ∈ 𝐸(𝐻), there exist distinct 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 such

that {𝑒} = 𝐸(𝑃𝑖) ∩ 𝐸(𝑃𝑗) ∩ 𝐸(𝑄𝑖) ∩ 𝐸(𝑄𝑗).

Proof. Apply Theorem 6.1 to 𝐻 (with 𝜀𝑛 in place of Δ), to obtain a collection of 𝑡 ≤ 300
√
𝜀𝑛 matchings 𝑀1, . . . ,𝑀𝑡 such that each

edge in 𝐻 belongs to exactly two of these matchings; and each two distinct matchings have at most one edge in common.

Separate the edges of each 𝑀𝑖 into 𝑟𝑖 ≤ 2𝐿𝛿−1 matchings 𝑀𝑖,1, . . . ,𝑀𝑖,𝑟𝑖
where each 𝑀𝑖,𝑗 has less than 𝛿𝑛∕(4𝐿) edges. Let 𝑟 =

∑
𝑖 𝑟𝑖 be

the total number of matchings obtained after doing this. Since we have 𝑡 matchings 𝑀𝑖 initially, after this process, we have obtained at
most 𝑟 ≤ 𝑡2𝐿𝛿−1 ≤ 600𝐿𝛿−1

√
𝜀𝑛 matchings 𝑀𝑖,𝑗 . We rename and enumerate the new matchings to be 𝑀 ′

1, . . . ,𝑀
′
𝑟

from now on.

The next step is to obtain, for each 1 ≤ 𝑖 ≤ 𝑟, two paths 𝑃𝑖 and 𝑄𝑖 of 𝐺 with the property that 𝐸(𝑃𝑖) ∩ 𝐸(𝑄𝑖) = 𝑀 ′
𝑖
. For that, let

𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝓁𝑦𝓁 be the edges of 𝑀 ′
𝑖
. Since 𝐺 is (𝛿, 𝐿)-robustly-connected, there exist 1 ≤ 𝓁 ≤ 𝐿 and at least 𝛿𝑛𝓁 many inter-

nally vertex-disjoint (𝑥1, 𝑥2)-paths with 𝓁 inner vertices each. Because |𝑉 (𝑀 ′
𝑖
)| = 2|𝑀 ′

𝑖
| ≤ 𝛿𝑛∕(2𝐿) < 𝛿𝑛, there exists an (𝑥1, 𝑥2)-path

𝑃
(1)
𝑖 of length at most 𝐿 which is internally vertex-disjoint from 𝑉 (𝑀 ′

𝑖
). Similarly, we can find a (𝑦1, 𝑦2)-path 𝑄

(1)
𝑖 of length at most

𝐿 which is internally disjoint from 𝑉 (𝑀 ′
𝑖
) ∪ 𝑉 (𝑃 (1)

𝑖 ). We proceed in this fashion iteratively, finding for each 1 ≤ 𝑘 < 𝓁, in order,
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some (𝑥𝑘, 𝑥𝑘+1)-path 𝑃
(𝑘)
𝑖 and a (𝑦𝑘, 𝑦𝑘+1)-path 𝑄

(𝑘)
𝑖 , both of length at most 𝐿, and both internally disjoint from 𝑉 (𝑀 ′

𝑖
) and from all

previously chosen paths. This can be achieved, because in each step the number of vertices we need to avoid is at most 2|𝑀 ′
𝑖
| +

2𝐿|𝑀 ′
𝑖
| ≤ 4𝐿|𝑀 ′

𝑖
| < 𝛿𝑛, which implies that there is always one path available to choose. We define 𝑃𝑖 as the path which starts with

the edge 𝑥1𝑦1, then traverses the path 𝑄
(1)
𝑖 , then uses 𝑦2𝑥2, then 𝑃

(2)
𝑖 , etc., alternatingly using the paths 𝑃 (𝑘)

𝑖 and 𝑄
(𝑘)
𝑖 , and covering all

edges of 𝑀 ′
𝑖
. We define 𝑄𝑖 similarly, starting by the edge 𝑦1𝑥1, but then using the path 𝑃

(1)
𝑖 , then 𝑥2𝑦2, then 𝑄

(2)
𝑖 , and so on. Then 𝑃𝑖, 𝑄𝑖

satisfy that 𝐸(𝑃𝑖) ∩ 𝐸(𝑄𝑖) = 𝑀 ′
𝑖
, as required.

We define = {𝑃1, . . . , 𝑃𝑟} and = {𝑄1, . . . , 𝑄𝑟}. By construction, each of them has the required number of paths. Now we check that
these families satisfy the required property. Let 𝑒 ∈ 𝐸(𝐻) be arbitrary. By the choice of the matchings, there exist distinct 𝑖1, 𝑖2 such that
{𝑒} = 𝑀𝑖1

∩𝑀𝑖2
. Suppose that 𝑖, 𝑗 are distinct such that 𝑒 ∈ 𝑀 ′

𝑖
⊆ 𝑀𝑖1

and 𝑒 ∈ 𝑀 ′
𝑗
⊆ 𝑀𝑖2

. It must happen that {𝑒} = 𝑀 ′
𝑖
∩𝑀 ′

𝑗
. Then, by

the choice of 𝑃𝑖, 𝑄𝑖, 𝑃𝑗 , 𝑄𝑗 , we have that 𝑀 ′
𝑖
= 𝐸(𝑃𝑖) ∩ 𝐸(𝑄𝑖) and 𝑀 ′

𝑗
= 𝐸(𝑃𝑗) ∩ 𝐸(𝑄𝑗), and therefore 𝐸(𝑃𝑖) ∩ 𝐸(𝑄𝑖) ∩ 𝐸(𝑃𝑗) ∩ 𝐸(𝑄𝑗) =

𝑀 ′
𝑖
∩𝑀 ′

𝑗
= {𝑒}, as required. ◽

7 | Proof of the Main Result

Now, we have the tools to prove our main result, from which Theorems 1.1 and 1.2 immediately follow (in combination with the lower
bounds from Theorems 2.1 and 2.3).

Theorem 7.1. Let 𝛼, 𝜌, 𝜀, 𝛿 ∈ (0, 1) and 𝐿 > 0. Let 𝑛 be sufficiently large, and let 𝐺 be an 𝑛-vertex (𝛼𝑛 ± 𝑛1−𝜌)-regular graph which is
(𝛿, 𝐿)-robustly-connected. Then ssp(𝐺) ≤ (

√
3𝛼 + 1 − 1 + 𝜀)𝑛.

Proof. Let 𝜀2 ∶= 1 − 1∕(1 + 𝜀∕2) and 𝛿′ = 𝜀𝓁2 𝛿∕2. Choose 𝜀′ and 𝑛0 such that Lemma 5.2 holds with (𝜀𝛿∕(2400𝐿))2, 𝐿 and 𝛿′ playing
the roles of 𝜀, 𝐿 and 𝛿, respectively. From now on, we assume 𝑛 ≥ 𝑛0 and let 𝛽 ∶=

√
3𝛼 + 1 − 1. Apply Theorem 4.2 to 𝐺 with 𝜀2 and 𝜀′

playing the roles of 𝜀 and 𝜀′, respectively. By doing this, we obtain a family  of 2-matchings which is a (𝛿′, 𝐿, (1 + 𝜀∕2)𝛽, 𝜀′)-separator.
Thus  consists of 𝑡 ∶= (1 + 𝜀∕2)𝛽𝑛 ≤ (

√
3𝛼 + 1 − 1 + 𝜀∕2)𝑛 many 2-matchings 𝑄1, . . . , 𝑄𝑡, satisfying (Q1)–(Q5) (with 𝛿′, (1 + 𝜀∕2)𝛽

and 𝜀′ in place of 𝛿, 𝛽 and 𝜀). Next, we apply Lemma 5.2 to 𝐺 and . By the choice of 𝜀′ and 𝑛0, we obtain an (𝜀𝛿∕(2400𝐿))2-almost
separating path system  in 𝐺 of size 𝑡.

Let 𝐸′ ⊆ 𝐸(𝐺) be the subset of edges which are strongly separated by  from every other edge. Since  is (𝜀𝛿∕(2400𝐿))2-almost
separating, the subgraph 𝐽 ∶= 𝐺 − 𝐸′ satisfies Δ(𝐽 ) ≤ (𝜀𝛿∕(2400𝐿))2𝑛. By assumption, 𝐺 is (𝛿, 𝐿)-robustly-connected, which allows
us to apply Theorem 6.3 with 𝐽 and (𝜀𝛿∕(2400𝐿))2 playing the roles of 𝐻 and 𝜀, respectively. By doing so, we obtain two fami-
lies 1,2 of at most 𝜀𝑛∕4 paths each, such that, for each 𝑒 ∈ 𝐸(𝐽 ), there exist two paths 𝑃𝑖, 𝑃𝑗 ∈ 1 and 𝑄𝑖,𝑄𝑗 ∈ 2 such that
{𝑒} = 𝐸(𝑃𝑖) ∩ 𝐸(𝑃𝑗) ∩ 𝐸(𝑄𝑖) ∩ 𝐸(𝑄𝑗).

We let  ′ ∶=  ∪1 ∪2. Note that  ′ has at most 𝑡 + 𝜀𝑛∕2 ≤ (
√

3𝛼 + 1 − 1 + 𝜀)𝑛 many paths. We claim that  ′ is a strong-separating
path system for 𝐺. Indeed, let 𝑒, 𝑓 be distinct edges in 𝐸(𝐺); we need to show that there exists a path in  ′ which contains 𝑒 and not
𝑓 . If 𝑒 ∈ 𝐸′, then such a path is contained in  , so we can assume that 𝑒 ∈ 𝐸(𝐽 ). There exist four paths 𝑃𝑖, 𝑃𝑗 , 𝑄𝑖, 𝑄𝑗 ∈  ′ such that
{𝑒} = 𝐸(𝑃𝑖) ∩ 𝐸(𝑃𝑗) ∩ 𝐸(𝑄𝑖) ∩ 𝐸(𝑄𝑗), which in particular implies that one of these paths does not contain 𝑓 . ◽

8 | Corollaries

Now, we apply Theorem 7.1 to bound ssp(𝐺) for graphs 𝐺 belonging to certain families of graphs. In all cases, we just need to check
that the corresponding graphs are (𝛿, 𝐿)-robustly-connected for suitable parameters.

We begin by considering complete balanced bipartite graphs. Previously, Wickes [19], Chap 9 studied upper and lower bounds for
ssp(𝐾𝑛∕2, 𝐾𝑛∕2), and obtained the lower bound ssp(𝐾𝑛∕2, 𝐾𝑛∕2) ≥ (

√
5∕2 − 1)𝑛 − 1∕2, which coincides with the main term from our

lower bound from Theorem 2.3. We can obtain a corresponding upper bound, which is then asymptotically tight.

Corollary 8.1. For each 𝜀 > 0 and sufficiently large 𝑛, ssp(𝐾𝑛∕2,𝑛∕2) ≤ (
√

5∕2 − 1 + 𝜀)𝑛.

Proof. Let 𝜀 > 0 be arbitrary and 𝑛 sufficiently large in terms of 𝜀. The graph 𝐾𝑛∕2,𝑛∕2 is 𝑛∕2-regular, so it is 𝛼𝑛-regular with 𝛼 = 1∕2.
Pairs of vertices 𝑥, 𝑦 in the same part of the bipartition have 𝑛∕2 neighbors in common; and pairs of vertices 𝑥, 𝑦 in different parts of
the bipartition have ((𝑛∕2) − 1)2 ≥ 𝑛2∕5 many (𝑥, 𝑦)-paths with two inner vertices each. Hence, 𝐾𝑛∕2,𝑛∕2 is (1∕5, 2)-robustly-connected.
By applying Theorem 7.1 with 𝛼 = 1∕2, 𝜀, 𝜌 and 𝛿 = 1∕5 we obtain that ssp(𝐾𝑛) ≤ (

√
5∕2 − 1 + 𝜀)𝑛. ◽

Let us now describe a well-known family of graphs which satisfies the connectivity assumptions of Theorem 7.1. Given 0 < 𝜈 ≤ 𝜏 ≤ 1,
a graph 𝐺 on 𝑛 vertices, and a set 𝑆 ⊆ 𝑉 (𝐺), the 𝜈-robust neighborhood of 𝑆 is the set RN𝜈,𝐺(𝑆) ⊆ 𝑉 (𝐺) of all vertices with at least 𝜈𝑛
neighbors in𝑆. We say that𝐺 is a robust (𝜈, 𝜏)-expander if, for every𝑆 ⊆ 𝑉 (𝐺)with 𝜏𝑛 ≤ |𝑆| ≤ (1 − 𝜏)𝑛, we have |RN𝜈,𝐺(𝑆)| ≥ |𝑆| + 𝜈𝑛.

16 of 19 Random Structures & Algorithms, 2025
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Many families of graphs are robust (𝜈, 𝜏)-expanders for suitable values of 𝜈, 𝜏, including large graphs with 𝛿(𝐺) ≥ 𝑑𝑛 for fixed 𝑑 > 1∕2,
dense random graphs, dense regular quasirandom graphs [20], Lemma 5.8, etc.

Corollary 8.2. For each 𝜀, 𝛼, 𝜏, 𝜈, 𝜌 > 0 with 𝛼 ≥ 𝜏 + 𝜈, there exists 𝑛0 such that the following holds for each 𝑛 ≥ 𝑛0. Let 𝐺 be an 𝑛-vertex
(𝛼𝑛 ± 𝑛1−𝜌)-regular robust (𝜈, 𝜏)-expander. Then ssp(𝐺) ≤ (

√
3𝛼 + 1 − 1 + 𝜀)𝑛.

Proof. By Theorem 7.1, it is enough to prove that 𝐺 is (𝛿, 𝐿)-robustly-connected with 𝛿, 𝐿 depending on 𝜈 only. We will prove this
holds with 𝐿 ∶= ⌈𝜈−1⌉ and 𝛿 ∶= (𝜈∕4)𝐿4−𝐿2 .

Let 𝑥 be any vertex, and let𝑁(𝑥) be its neighborhood. We define𝑅0 = ∅ and for each 𝑖 ≥ 0 we let𝑅𝑖+1 = 𝑅𝑖 ∪ (RN𝜈,𝐺(𝑁(𝑥) ∪ 𝑅𝑖) ⧵𝑁(𝑥))
if |𝑁(𝑥) ∪𝑅𝑖| ≤ (1 − 𝜏)𝑛; or 𝑅𝑖+1 = 𝑉 (𝐺) otherwise. By definition, 𝑅0 ⊆ 𝑅1 ⊆ 𝑅2 ⊆ · · ·.

Since 𝐺 is a robust (𝜈, 𝜏)-expander and |𝑁(𝑥)| ≥ 𝛼𝑛 ≥ 𝜏𝑛, it can be quickly checked that, for each 𝑖 ≥ 0 such that |𝑁(𝑥) ∪𝑅𝑖| ≤ (1 − 𝜏)𝑛,
the bound |𝑅𝑖+1 ⧵ 𝑅𝑖| ≥ 𝜈𝑛 holds. In particular, this implies that 𝑅𝐿 = 𝑉 (𝐺). Indeed, suppose otherwise. Then 𝑅𝐿 ≠ 𝑉 (𝐺), therefore|𝑁(𝑥) ∪𝑅𝑖| ≤ (1 − 𝜏)𝑛 for all 0 ≤ 𝑖 < 𝐿, which implies that |𝑅𝑖 ⧵𝑅𝑖−1| ≥ 𝜈𝑛 holds for each 1 ≤ 𝑖 ≤ 𝐿. But then, since 𝐿 ≥ 𝜈−1, we have

𝑛 > |𝑅𝐿| = |𝑅𝐿 ⧵ 𝑅𝐿−1| + · · · + |𝑅2 ⧵𝑅1| + |𝑅1| ≥ 𝐿𝜈𝑛 ≥ 𝑛

a contradiction.

Given 𝑗 ≥ 1, we let 𝑇𝑗 ⊆ 𝑉 (𝐺) be the set of vertices 𝑣 for which there are at least (𝜈𝑛∕4)𝑗4−𝑗2 many (𝑥, 𝑣)-paths in 𝐺 with 𝑗 inner vertices
each. We claim that, for each 0 ≤ 𝑖 ≤ 𝐿, it holds that𝑅𝑖 ⊆ 𝑇1 ∪ · · · ∪ 𝑇𝑖. Before proving the claim we note that this is enough to conclude:
as discussed before we have that 𝑉 (𝐺) = 𝑅𝐿 ⊆ 𝑇1 ∪ · · · ∪ 𝑇𝐿, so for each vertex 𝑦 ∈ 𝑉 (𝐺) there would exist 1 ≤ 𝓁 ≤ 𝐿 such that 𝑦 ∈ 𝑇𝓁 .
This implies that there exist at least (𝜈𝑛∕4)𝓁4−𝓁2

≥ 𝛿𝑛𝓁 many (𝑥, 𝑦)-paths with 𝓁 inner vertices each, as required.

Now, we prove the claim by induction on 𝑖, where the base case 𝑖 = 0 holds vacuously. Assuming the claim for some 𝑖 < 𝐿, we prove it
for 𝑖 + 1. Let 𝑦 ∈ 𝑅𝑖+1 be arbitrary, it is enough to check that 𝑦 ∈ 𝑇1 ∪ · · · ∪ 𝑇𝑖+1. By the inductive hypothesis, we can assume that 𝑦 ∈
𝑅𝑖+1 ⧵𝑅𝑖. Note that 𝑦 has at least 𝜈𝑛 neighbors in 𝑁(𝑥) ∪ 𝑅𝑖. Indeed, if |𝑁(𝑥) ∪𝑅𝑖| ≤ (1 − 𝜏)𝑛 then 𝑦 ∈ 𝑅𝑖+1 ⧵𝑅𝑖 ⊆ RN𝜈,𝐺(𝑁(𝑥) ∪𝑅𝑖)
so indeed 𝑦 must have at least 𝜈𝑛 neighbors in 𝑁(𝑥) ∪𝑅𝑖. Otherwise, if |𝑁(𝑥) ∪𝑅𝑖| > (1 − 𝜏)𝑛 then, since 𝑦 has at least 𝛼𝑛 ≥ (𝜏 + 𝜈)𝑛
neighbors, at least 𝜈𝑛 of them must be in 𝑁(𝑥) ∪ 𝑅𝑖.

We are done if 𝑦 has at least 𝜈𝑛∕2 neighbors in 𝑁(𝑥) because that immediately implies that 𝑦 ∈ 𝑇1. We assume from now on that|𝑁(𝑦) ∩𝑁(𝑥)| < 𝜈𝑛∕2 and therefore |𝑁(𝑦) ∩𝑅𝑖| ≥ 𝜈𝑛∕2. By the induction hypothesis, 𝑅𝑖 ⊆ 𝑇1 ∪ · · · ∪ 𝑇𝑖. Observe that there must exist
1 ≤ 𝑟 ≤ 𝑖 such that |𝑁(𝑥) ∩ 𝑇𝑟| ≥ 𝜈𝑛∕2𝑟+1, as otherwise we would have |𝑁(𝑥) ∩𝑅𝑖| < (𝜈𝑛∕2)

∑
𝑟≥1 2−𝑟 ≤ 𝜈𝑛∕2, a contradiction. Fix such

an 𝑟 from now on, and we will conclude by showing that 𝑦 ∈ 𝑇𝑟+1.

Indeed, for each 𝑧 ∈ 𝑁(𝑦) ∩ 𝑇𝑟 there is a family 𝑧 of at least (𝜈𝑛∕4)𝑟4−𝑟2 many (𝑥, 𝑧)-paths with 𝑟 inner vertices each. We wish to extend
the paths in 𝑧 by including 𝑦 to obtain (𝑥, 𝑦)-paths with 𝑟 + 1 inner vertices each. This can only fail for some 𝑃 ∈ 𝑧 if 𝑦 ∈ 𝑉 (𝑃 ), but
that can happen only for at most 𝑟𝑛𝑟−1 paths. Since |𝑧| ≥ (𝜈𝑛∕4)𝑟4−𝑟2 , using that 𝑟 ≤ 𝐿 and 1∕𝑛 ≪ 𝜈 we can deduce that |𝑧|∕2 ≥ 𝑟𝑛𝑟−1.
This allows us to conclude that there are at least |𝑧|∕2 many (𝑥, 𝑦)-paths with 𝑟 + 1 inner vertices which end with 𝑧𝑦. By counting the
paths for each choice of 𝑧 ∈ 𝑁(𝑦) ∩ 𝑇𝑟, the number of desired (𝑥, 𝑦)-paths is at least

∑
𝑧∈𝑁(𝑦)∩𝑇𝑟

|𝑧|
2

≥
|𝑁(𝑦) ∩ 𝑇𝑟|

2

(
𝜈𝑛

4

)𝑟

4−𝑟2

≥
𝜈𝑛

4 ⋅ 2𝑟

(
𝜈𝑛

4

)𝑟

4−𝑟2

≥

(
𝜈𝑛

4

)𝑟+1
4−(𝑟+1)2

so 𝑦 ∈ 𝑇𝑟+1, as claimed. This finishes the proof. ◽

9 | Conclusion

9.1 | Separating All 𝒏-Vertex Graphs

To determine the maximum of wsp(𝐺) and ssp(𝐺) over all 𝑛-vertex graphs 𝐺 remains an interesting problem. Falgas–Ravry, et al. (see
[6], Conjecture 1.2 and the remarks afterwards) said that “it is not inconceivable” that wsp(𝐺) ≤ (1 + 𝑜(1))𝑛 holds for all 𝑛-vertex graphs
𝐺. We have shown that ssp(𝐺) ≤ (1 + 𝑜(1))𝑛 holds for dense, regular, sufficiently connected 𝑛-vertex graphs. Even the following could
be true2:
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Question 9.1. Does ssp(𝐺) ≤ (1 + 𝑜(1))𝑛 hold for all connected 𝑛-vertex graphs 𝐺?

We need to consider connected graphs for this question, because we have ssp(𝐾4) = 5, and so the graph 𝐺 consisting of 𝑛∕4
vertex-disjoint copies of 𝐾4 satisfies ssp(𝐺) = 5𝑛∕4.

9.2 | Separating Nonregular or Nonconnected Graphs

It would also be interesting to estimate wsp(𝐺) and ssp(𝐺) for graphs not covered by our main result. Complete bipartite graphs𝐾𝑎,𝑏 with
𝑎 < 𝑏 are an interesting open case. It is also of interest to weaken the conditions in our main result. For instance, can the connectivity
conditions in Theorem 7.1 be weakened? Does Ω(𝑛)-vertex-connectivity suffice?

Another way to weaken the connectivity conditions in Theorem 7.1 could be as follows: by a result of Kühn et al. [21], each near-regular
and dense graph can be vertex-partitioned into parts which are robust expanders or “bipartite robust expanders” (see [21], Section 5),
so one could try to apply our result separately in each part of the partition and then deal with the remaining edges. As we have already
seen (by the example shown after Theorem 1.2), the connectivity condition cannot be removed completely. The chief reason behind it
is that the lower bound from Theorem 2.3 becomes close to tight whenever most of the paths are close to being Hamiltonian (as can
be seen from inspecting that proof). This means we would need a method to join the paths together in a coherent way to make sure
they become close to Hamiltonian and still separate most the edges; to make such a strategy work would require some connectivity
condition and new ideas.

9.3 | Exact Results, and Orthogonal Cover Decompositions

As mentioned before, we have ssp(𝐾𝑛) = 𝑛 if and only if an ODC with Hamiltonian paths exists for 𝐾𝑛. Gronau, Müllin, and Rosa [22]
conjectured that an ODC by 𝐻 in 𝐾𝑛 can be found whenever 𝐻 is any 𝑛-vertex tree which is not a path with three edges. If true, this
would imply that ssp(𝐾𝑛) = 𝑛 holds for every 𝑛 ≠ 4. An approximate version of this conjecture (obtained as a corollary of general results
about “rainbow trees”) was obtained by Montgomery, Pokrovskiy and Sudakov [23], Theo 1.7 whenever 𝑛 is a large power of two.

It would be interesting to see if Theorem 1.1 could be deduced from the partial known results on ODCs, but we note that we do not
see an easy reduction here. For our approach to work it is crucial that the “leftover” graph has bounded maximum degree to be able to
separate it with few extra edges (as we do in Section 6), and we did not see a way to obtain this from the known results.
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Endnotes
1 This corresponds to the 𝑗 = 1 and 𝜀 = 𝜌 case of the definition of (𝑑, 𝜀,)-trackable test systems of [14], Section 3. The original definition requires more

properties but reduces to the definition we have given when 𝑗 = 1. In particular,  does not play a role anymore, so we opted for removing it from the
notation.

2 In [7], Theorem 10 it is stated that for each 𝜀 ∈ (0, 1∕2) there exists some 𝑛 and an 𝑛-vertex graph 𝐺 such that ssp(𝐺) ≥ 2(1 − 2𝜀)𝑛, but unfortunately
the proof has a flaw. The error in the proof appears in [7], Remark 10, because the length of the longest path in 𝐾𝜀𝑛,(1−𝜀)𝑛 is 2𝜀𝑛 and not 𝜀𝑛 + 1.
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