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ABSTRACT

We prove that in any n-vertex complete graph, there is a collection P of (1 + o(1))n paths that strongly separates any pair of distinct
edges e, f, meaning that there is a path in 7, which contains e but not f. Furthermore, for certain classes of n-vertex an-regular
graphs, we find a collection of (1/3a + 1 — 1 + o(1))n paths that strongly separates any pair of edges. Both results are best-possible
up to the o(1) term.

1 | Introduction
1.1 | Separating Path Systems

Let P be a family of paths in a graph G. We say that two edges e and f are weakly separated by P if there is a path in 7, which contains
one of these edges but not both. We also say that they are strongly separated by P if there are two paths P,, P, € P such that P, contains
ebutnot f, and P, contains f but not e.

We are interested in the problem of finding “small” families of paths (“path systems”) that separate any pair of edges in a given graph.
A path system in a graphG is weak-separating (resp. strong-separating) if all pairs of edges in G are weakly (resp. strongly) separated by
it. Let wsp(G) and ssp(G), respectively, denote the size of the smallest such families of paths in a graph G. Since every strong-separating
path system is also weak-separating, the inequality wsp(G) < ssp(G) holds for any graph G, but equality is not true in general.

The study of general separating set systems was initiated by Rényi [1] in the 1960s. The variation that considers the separation of
edges using subgraphs has been considered many times in the computer science community, motivated by the application of efficiently
detecting faulty links in networks [2-5]. The question got renewed interest in the combinatorics community after it was raised by
Katona in a conference in 2013 and was considered simultaneously by Falgas—Ravry et al. [6] in its weak version, and by Balogh et al.
[7] in its strong version. Both teams conjectured that n-vertex graphs G admit (weak and strong) separating path systems of size linear
in n, that is, wsp(G), ssp(G) = O(n), and both also observed that an O(n log n) bound holds. Letzter [8] made substantial progress in this
question by showing that all n-vertex graphs G satisfy ssp(G) = O(nlog"n). The conjecture was settled by Bonamy et al. [9], who proved
that ssp(G) < 19x holds for any n-vertex graph G.
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1.2 | Separating Cliques

An interesting open question is to replace the value of ‘19’ in ssp(G) < 19n by the smallest possible number. Perhaps, it could be possible
even to replace this value by 1 + o(1). Studying separating path systems in complete graphs is particularly relevant since K|, gives the
best-known lower bounds for wsp(G) and ssp(G) over all n-vertex graphs G (see Section 9 for further discussion). Because of this fact,
the behavior of ssp(K,,) and wsp(K,,) has been enquired repeatedly by many authors (e.g., [6], Sect 7).

For the weak separation, we know that wsp(K,,) > n — 1 (see the remark before Conjecture 1.2 in [6]). For strong separation, mimicking
that proof shows that the slightly better bound ssp(K,) > » holds (this is done in Theorem 2.1). Our first main result shows that this
lower bound is asymptotically correct.

Theorem 1.1. The following holds.
ssp(K,) = (1 +o(1)n

Let us summarize the history of upper bounds for this problem now. First, we knew that wsp(K,) = O(n) [6], Theo 1.3, and then
ssp(K,) < 2n+ 4 [7], Theo 3. Wickes [10] studied wsp(K,,) in more detail and showed that wsp(K,) < n whenever n or n — 1 is a prime
number and that wsp(K,,) < (21/16 + o(1))n in general. After the preprint version of this work had appeared, Kontogeorgiou and Stein
[11] proved that wsp(K,,) < n + 2.

The problem of estimating ssp(K,,) is connected with the older problem of finding orthogonal double covers (ODC), which are collections
C of subgraphs of K, in which every edge appears in exactly two elements of C, and the intersection of any two elements of C contains
exactly one edge. If each graph in C is isomorphic to some graph H, we say that C is an ODC by H. If H is an n-vertex path and C is
an ODC by H, then each element of C is a Hamiltonian path, and it is easy to check that C must contain exactly » paths and forms a
strong-separating path system. Moreover, a counting argument (see Remark 2.2) yields that a strong-separating system in K, with n
paths must form an ODC by Hamiltonian paths. Thus, we know that ssp(K,) = n if and only if an ODC by Hamiltonian paths exists.
This statement is known to be false for n = 4 (it can be checked that ssp(K,) = 5, see [12], Sect 3.4), but is conjectured to be true for all
other n > 3. It is known to be true for infinitely many values of n, in particular, it holds if n can be written as a product of the numbers
5,9,13,17, and 29 [13]. See the survey [12] for more results and details. We discuss this connection further in Section 9.

1.3 | Separating Regular Graphs

Our main result for cliques (Theorem 1.1) follows from a more general result that works for “robustly-connected” graphs, which are
almost regular, meaning that each vertex has approximately the same number of neighbors. For simplicity, we give the statement for
regular graphs here. Let a € [0, 1] and consider an an-regular graph G on n vertices. A counting argument (Theorem 2.3) shows that
ssp(G) > (v/3a + 1 —1 — o(1))n must hold. Our second main result shows that this bound essentially holds with equality if we also
assume some vertex-connectivity condition. We say an n-vertex graph G is (8, L)-robustly-connected if, for every x, y € V(G), there
exists 1 < # < L such that there are at least 6n” (x, y)-paths with exactly # inner vertices each.

Theorem 1.2. Let a,6 € (0,1) and L > 1. Suppose that G is an n-vertex graph, which is an-regular and (8, L)-robustly-connected.
Then

ssp(G) = (V3a+1—-1+o0(1)n

We note that at least some kind of connectivity is required for a bound like the one in Theorem 1.2. Indeed, the graph G formed by
two vertex-disjoint cliques with n/2 vertices is (n/2 — 1)-regular but has clearly ssp(G) = 2 - ssp(K,, ;) > n, whereas Theorem 1.2 would
give an incorrect upper bound around (0.582 + o(1))n.

Observe that the function f(a) = v/3a + 1 — 1 satisfies a < f(a) < \/E < 1 for a« € (0, 1), so in particular this shows that all n-vertex
graphs G covered by Theorem 1.2 satisfy ssp(G) < (1 + o(1))n. From Theorem 1.2, we can obtain as corollaries results for many inter-
esting classes of graphs as balanced complete bipartite graphs, regular graphs with large minimum degree, regular robust expanders,
etc. (see Section 8 for details).

1.4 | Outline of the Proof

We summarize the idea behind our proof by focusing on the case of estimating ssp(K,,). The calculations that give the lower bound
ssp(K,) > n (Theorem 2.1) reveal that, if ssp(K,,) = n holds, then in an optimal strong-separating path system, each path must be
Hamiltonian, each edge must be covered precisely by two paths, and every two different paths intersect precisely on one edge. Guided by
this, our approach can be thought conceptually of taking t = (1 + €)n different ‘labels’ and finding an injective assignment ¢ : E(K,) —
(; ) where every edge gets two labels. Then, by defining, for each 1 < i < ¢, the subgraph Q; C K,, consisting of the edges that received
label i, we get that the family {Q, },;, will strongly separate the edges of K.
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To make sure that the graphs Q, resemble paths, we will obtain the assignment ¢ in a more careful way. We will construct ¢ with the
help of an almost perfect matching in an auxiliary hypergraph H. In this case, the hypergraph can be described as follows: We randomly
orient the edges of K, to obtain a digraph D where every vertex gets approximately the same number of incoming and outgoing edges.
Then obtain an auxiliary graph B by taking two copies V;,V, of V(K,) and adding an edge between u; € V; and v, € V, if the arc
(u, v) appears in D. Next, consider a clique K on a set of vertices {1,2, ..., n}, vertex disjoint from V; U V,. Form a graph Z by adding
every edge between a vertex of V; UV, and a vertex in K. Then, ifu;, € V,v, € V,,i,j € V(K) and these vertices form a K, in Z (say
those copies of K, are ‘valid’), we can interpret that as assigning the edge uv € E(K,) to the graphs Q; and Q;. Similarly, if we have
edge-disjoint valid copies of K, in Z, this can be interpreted as assigning different edges of E(K,) to different pairs Q;, Q; without
repeating pairs, and assigning at most two edges adjacent to the same vertex in K, to the same Q,. Thus, if we can find edge-disjoint
valid copies of K,, which use all edges between ¥; and V,, we would have obtained an allocation of all the edges of E(K,) to pairs of
0;. Q;, where each O, has maximum degree at most 2. To find such edge-disjoint copies of K,, we look at the auxiliary 6-graph H with
vertex set E(Z) and each valid copy of K, corresponding to an edge in . By construction, an almost perfect matching in H will yield
graphs {Q;},;,, which separate “almost all” pairs of edges and have the crucial property that A(Q;) < 2 for each i. This will ensure
that the graphs Q; are collections of paths and cycles. To find such an almost perfect matching in H, we will use a recent powerful
result on hypergraph matchings by Glock et al. [14], which will allow us to gain even more control of the shape of the graphs O, by
avoiding certain undesirable short cycles.

After this is done, we will have covered and separated most, but not all, of the edges of K, with the graphs { O, }, .., which are collections
of paths and cycles. In a next step, we will transform each Q; by merging (most of) the edges of Q; into a single path Q. This is done
carefully to ensure the path system Q = {Q!}, ., still strongly separates most of the edges of the graph.

In the final step, the subgraph H C G of edges, which remain unseparated, will be very sparse, and in particular, has very small
maximum degree (at most en). Using a probabilistic argument based on the Lovéasz Local Lemma, we find a small (of size O(en))
strong-separating path system P, which strongly separates H. Then, our final desired path system will be given by P U Q.

In this sketch of the proof, we glossed over some details. In the actual proof (which covers the general case for G # K,,), the situation
is slightly more technical because in an optimal solution, the edges of G need to be covered by 2 or 3 paths (as can be seen from
Theorem 2.3). The outline of the proof is the same, but instead, we will use a more intricate auxiliary hypergraph H (in fact, we use an
8-uniform graph) to find the initial assignment.

1.5 | Organization of the Paper

In Section 2, we give simple counting arguments that yield the lower bounds in Theorems 1.1 and 1.2. Then, we begin the proof of
our main result. In Section 3, we gather some probabilistic and hypergraph tools and prove results that will be helpful during the next
sections. In Section 4, we find a family of graphs that separates almost all edges of a graph G via a perfect matching in an auxiliary
hypergraph. In Section 5, we transform the given families of graphs into paths, keeping some structural properties. In Section 6, we
find small path systems that separate the remaining leftover edges. Then, the pieces of the main proofs are put together in Section 6.
In Section 8, we describe how to use our main result in some important graph classes, and we finalize with concluding remarks in
Section 9.

2 | Lower Bounds

Given a path system P in a graph G and e € E(G), let P(e) C P be the paths of 7 which contain e. Note that P is weak-separating if
and only if the sets P(e) are different for all e € E(G); and P is strong-separating if and only if no set P(e) is contained in another P(f).

Proposition 2.1. Foreachn > 3, ssp(K,) > n.

Proof. Letn > 3. Let P be a strong-separating path system in K,, and define P, = {P € P : |E(P)| = 1}. Note that

Y, 1P@I= Y IEP)

e€E(K,) PeP
SIPU+IP\P -1 = [Pl(n—1) = [P|(n - 2)
where we used that each path can contain at most n — 1 edges.
Next, let E; C E(K,) be the set of edges e such that |P(e)| = 1. Note that | E,| < |P, |, because if an edge e is covered by an unique path

P, then P cannot cover any other edge f, as otherwise there would be no other path, which covers e and not f, a contradiction to the
fact that P is strong-separating. We have that
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Y PElzIE+2((5)-1E)

e€E(K,)

=n(n=1) = [E| 2 n(n=1) = |P]

which implies that
nn—1)<|Pl(n—1)—|P|(n—-3) < |P|(n—-1)

where the last inequality uses n > 3. This implies that |P| > n. O

Remark 2.2. If a strong-separating path system P in K|, has size n, then all inequalities in the previous proof become equalities. This
implies that 0 = | E;| = | P, |, that every edge of K, is covered exactly by two different paths, and that every path must be Hamiltonian
and intersect every other path exactly once; so P is an ODC by Hamiltonian paths, as mentioned in the introduction.

Proposition 2.3. Forany a, e € (0, 1], the following holds for all sufficiently large n. Let G be an n-vertex graph with a( ; ) edges. Then

ssp(G) > (V3a+1—-1—-¢)n

Proof. Let a, ¢ be given, and suppose n is sufficiently large. Given G as in the statement, let P be a strong-separating path system
of size ssp(G). Suppose f is such that |P| = pn (we know that g < 19 by the result of [9]). We need to show that # > /3a+1—1—e.
Note that

Y P@l= YIEP)| < pnin=1) = 25(} )

e€E(G) PeP

Fori € {1,2},let E; C E(G) be the set of edges e such that |[P(e)| = i. Then

(%) ee;@m(en > 1B+ 215, +3(a( ) ) - 1B - 1El) =30(} ) - 21E, - |E,| @1)

Since P is strong-separating, if e € E,, then the two paths of P that contain e cannot both contain any other edge f € E,. Thus,
|E,| < ('?') < (”2") < ﬂz(;) + f*n. Note that we also have |E;| < |P| < pn. Applying these bounds on |E, | and | E, | in (2.1), we get

ﬁ2(3> +2ﬁ(;> > 3a<g> —fPn—2pn> 30((;) — 400n
where in the last step we used f < 19 to get f?n + 2fn < 400n. Thus, the inequality f? + 28 > 3a — 800/n holds. Since # > 0 and n is
sufficiently large, solving this quadratic equation in terms of g gives that § > \/3a +1 — 1 — ¢, as desired. O

3 | Preliminaries
3.1 | Hypergraph Matchings

We use a recent result by Glock et al. [14] (similar results were obtained also by Delcourt and Postle [15]). This result allows us to find
almost perfect matchings in hypergraphs H, which avoid certain “conflicts.” Each conflict is a subset of edges X C E(H), which we do
not want to appear together in the matching M, that is, we want X ¢ M for all such conflicts X. We encode these conflicts using an
auxiliary “conflict hypergraph” C whose vertex set is E(H) and each edge is a different conflict, that is, each edge of C encodes a set of
edges of H.

Given a (not necessarily uniform) hypergraph C and k > 1, let C® denote the subgraph of C consisting of all edges of size exactly k. If
C = CW, then C is a k-graph. For a hypergraph H and j > 1, let 5,(H) (resp. A;(H)) be the minimum (resp. maximum) of the number
of edges of H, which contain S, taken over all j-sets .S of vertices. We say that a hypergraph H is (x + y)-regular if x — y < 6,(H) <
A;(H) < x + y. Let Ny, (v) denote the set of neighbors of v in H. Given a hypergraph C with V(C) = E(H), we say E C E(H) is C-free
if for every C € E(C), C is not a subset of E. Also, C is a (d, Z, p)-bounded conflict system for H if

Cl. 3<|C| < ¢ foreach C € C;
C2. A(CY) < ¢d'forall 3 < j < ¢;and

C3. A, (CY) < gd/~*forall3<j<fand2<j <.
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We say that a set of edges Z C E(H) is (d, p)-trackable® if | Z| > d'**.

Theorem 3.1 ([14], Theo 3.2). Forall k,¢ > 2, there exists p, > 0 such that for all p € (0, p,), there exists d, so that the following
holds foralld > d,. Suppose H isa k-graphonn < exp(d”3)verticeswith (1—-d=")d < 6,(H) < A{(H) < dand A,(H) < d'= and suppose
Cisa(d,?, p)-bounded conflict system for H. Suppose Z is a set of (d, p)-trackable sets of edges in H with |Z| < exp(df’3). Then, there exists
a C-free matching M C H of size at least (1 — d~""n/k with |Z A M| = A £ d~")|M||Z|/|E(H)| forall Z € Z.

3.2 | Counting Cycles

Let D, be the complete digraph (having all arcs in both directions). The following lemma is a simple counting argument that will be
used later.

Lemma3.1. If RC E(D,) has¢ < j edges, then there are at most j*n’~"~ length-j directed cycles in D, which contain R.

Proof. We can assume that R is a proper subgraph of some directed cycle (as otherwise there is nothing to count). Thus, R is a
collection of vertex-disjoint paths in D, with exactly # edges in total. All directed cycles on j vertices, which contain R can be obtained
by assigning a number in {1, ..., j} to allocate the starting position for each of the paths in the cycle, and then choosing each of the
j — |[V(R)| remaining vertices. Note that R can consist of at most # paths, so the first step can be done in at most j* ways. On the other
hand, R spans at least # + 1 vertices (the minimum number occurs when R is a single path), so there are at most »/~~! ways to choose
the vertices in the second step. Therefore, R is contained in at most j*n/~“~! length-j directed cycles in D,,. O

3.3 | Probabilistic Tools

In this short section, we state some standard probabilistic tools used in our proof.

Lemma 3.2 (Chernoff’s inequalities [16], Remark 2.5, Corollary 2.3 and 2.4). Let X be a random variable with binomial
distribution B(n, p). Lett > 0. Then,
i. Pr[|X — E[X]| > 1] < 2exp(—212/n);
ii. if t < 3E[X]/2, then Pr[|X — E[X]| > 1] < 2exp(—12/(3E[X))); and
iii. if t > 7E[X], then Pr[X > t] < exp(—1).
The following concentration inequality will also be useful.
Lemma 3.3 (McDiarmid’s inequality [17]). Let Xy, ..., X,, be independent random variables, with X, taking values on a finite

set A; for each i € [M]. Suppose that f : HinlAj — R satisfies | f(x) — f(x")| < ¢; whenever the vectors x and x’ differ only in the ith
coordinate, for every i € [M]. Consider the random variableY = f(X;, ..., X,,) andt > 0. Then

212
Pr[|Y —E(Y)| > ] <2exp| — 5

._,C%

j=17j

3.4 | Building a Base Hypergraph

The next lemma constructs an auxiliary hypergraph which we will use as a base to apply Theorem 3.1 later. To motivate this lemma
regarding the proof sketch given in Section 1.4, the hypergraph J we build in the next lemma will play a similar role as the clique K
there.

Lemma3.4. Foranya,p,A>0with f =+/3a+1—1 < A, there exists n, such that the following holds for every n > n. There exists
a 3-graph J such that
J1. thereis a partition {U,, U, } of V(J) with |U,| = An and |U,| = Anf/2;

J2. thereis a partition {J,, J,} of E(J) such that
e e CU, foreache € J,and
o lenU,| =2foreache € Jy;

J3. every pair {i, j} C U, is contained only in edges of J,, or in at most one edge of J,;
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J4, A,(J) < In’n;

J5. J has a( ;) + n?/3 edges in total; and

J6. J is (fn/ A, n*3)-regular.

Proof. 'We begin by observing that 3a = 24 + p? from the definition of 5. Then, defining d, = f*n/2 and d, = 3(a — f*)n/(24), we
obtain d, +d; = pn/A. A {2,3}-graph is a hypergraph whose edges have size either 2 or 3. We say it is an antichain if no edge is
contained in another. We begin our construction by defining an antichain {2, 3}-graph on a set of size An. Let U, be a set of An vertices.
We claim that there is an antichain {2, 3}-graph I on U, such that

2/3

F1. each vertex is adjacent to d, + n*/> edges of size 2 in I;

F2. each vertex is adjacent to d; + n*/? edges of size 3in I.

Indeed, define a random graph I® on U, by including each edge independently with probability p := f?/4? < 1. Let 1 be the comple-
ment of /. In expectation, each vertex is contained in around p|U, | = d, many edges. A standard application of Chernoff’s inequality
(Theorem 3.2(i)) shows that, with overwhelmingly large probability, each vertex of U, is contained in d, + n%*3 edges of I®, and thus
we can assume that a choice of I® is fixed and satisfies that property. Similarly, we can also assume that every vertex is contained in

1-p) ( 2") + n*/3 triangles in I. Next, we form a 3-graph I® on U, by including each triple of vertices, which forms a triangle in T

with probability g := 3(a — ?)/((1 — p)>43n). If a vertex x is contained in d := (1 — p)3< 12" ) triangles in I, then in expectation it must

be contained in dgq = d; + n*/?> many 3-edges in I®. Using Chernoff again (Theorem 3.2(ii)), we can assume that each vertex in I is
contained in d; + #*/? many triangles in I®. We conclude by taking I = 1® u I®.

Now, we transform 7 into a 3-graph. To achieve this, we will add a set U, of extra vertices to I and extend each 2-edge of I to a
3-edge by including in it a vertex in U,. Let U, have size r := inf/2 and vertices {v;, ...,v,}. Randomly partition the 2-edges of 1®
into r sets F, ..., F, by including each edge of I® in an F, with probability 1/r. Next, define sets of 3-edges H;, ..., H, given by
H, := {xyv; : xy € F;}.

Let J be the 3-graph on vertex set U, U U, whose edges are I®u|J7_, H,. Note that, by construction, J satisfies (J1)-(J3), so it only
remains to verify (J4), (J5), and (J6).

We show that (J4) holds. Let x and y be a pair of vertices in V' (J) and let us consider the possible cases. If x, y € U, and xy € I®, then
deg;(xy) = 1 because its only neighbor is v; (if xy € F,). If x,y € U, and xy € 1, then deg, (xy) is precisely the number of triangles of
I® that contain xy. This is a random variable with expected value at most ng = O(1). Thus, by Theorem 3.2(iii), deg, (xy) > In%n holds
with probability at most n~™", so we can comfortably use the union bound to ensure that deg (xy) < In®n for every such pair xy € 1.
Ifx € U, and y € U,, then y = v, for some 1 < i < r, and deg;(xy) is the number of triangles of the form xzv; € H,. For a fixed x, there
are atmost |U;| = An choices for z to form an edge xz € I® and recall that each such edge belongs to H, with probability 1/r = O(1/n).
Thus, the expected value of deg; (xy) is again of the form O(1), and we can conclude the argument in a similar way as before. Finally,
if x, y € U,, then deg, (xy) = 0 by construction. This finishes the proof of (J4).

Note that |E(J)| = |[EUI?®)| + |[EUI®)|. From (F1), we deduce that |E(I®)| is An(d, + n*/?)/2 = ?>n*/2 + n*/* and, from (F2), we
deduce that | E(I®)| is An(d; + n?/)/3 = (a — *)n? /2 £ n?/3, s0 | E(J)| = an? /2 + O(n?*/?), which proves (J5).

Now we prove (J6). Let i € V/(J). If i € U,, then deg, (i) = deg, (i). Since d, + d; = fin/ 4, we have that deg; (i) = d, + d; + O(n*?) =
pn/ A+ O(n?/?). Assume now that i € U,. Recall that we defined J in a way that each vertex of U, belongs to | E(I®)|/r edges, and
we have

E(® ﬁz n iO(n4/3)
| (r )| _ (22nﬂ/2 =7niO(n1/3)

which concludes the proof of the lemma. O

4 | Separating Almost All Edges

In this section, we show how to separate most pairs of edges of robustly connected graphs by paths and cycles, guaranteeing additional
structural properties.

6 0f 19 Random Structures & Algorithms, 2025

8518017 SUOWWOD BAIEa.D 3(gedlidde ayy Aq peusenob a e sajolie VO ‘8sN JO S9INJ 10j A%eiqi78ulIUQ AB|IM UO (SUOHIPUOD-PUR-SUR)ALIO" A3 1M ARIq U1 |UO//STIL) SUOIPUOD PUe SWe 1 84} 88S *[5202/90/2T] U0 AkidiTauliuo A&[IM *[1Zeig - oled 0es JO Alsienlun Aq 9000L ©S1/200T 0T/I0p/uoo" A3 (1M Aeiqpul|uo//sdny Wwolj pepeojumod ‘€ ‘SZ0Z ‘8TrZ860T



In what follows, let €, § > 0, let L be an integer, and let G be an n-vertex graph. A 2-matching in G is a collection of vertex-disjoint cycles
and paths in G. We say a 2-matching Q in G is (8, L)-robustly-connected if, for every x, y € V(Q), there exists # with 1 < # < L such
that there are at least 5n” (x, y)-paths with exactly # inner vertices each, all in V(G) \ V(Q). Furthermore, a collection Q of 2-matchings
in G is (8, L)-robustly-connected if each Q € Q is (8, L)-robustly-connected. A 2-matching Q in G is e-compact if each cycle in Q has
length at least 1/¢ and Q contains at most en paths. For a collection Q of 2-matchings in G, we say Q is e-compact if each Q in Q is
e-compact.

Let Q = {Q;, ..., 0,} be a collection of subgraphs of G. We use E(Q) to denote the set U§=1E(Qi). We say Q separates an edge e from
all other edges of G if the set {i : e € E(Q,)} is not contained in the set {j : f € E(Q,)} for each f € E(G)\ {e}. Clearly, if an edge e
is separated from all other edges of G by O, then e € E(Q). We also say that Q strongly separates a set E’ of edges if, for every distinct
e,f € E',thesets {i : e€ E(Q)}and {j : f € E(Q;)} are not contained in each other.

For brevity, we put together some of the above definitions in one single concept that will be used in the next result and also in some
lemmas in Section 5 (see Lemmas 5.1 and 5.2).

Definition 4.1. Given a graph G and 6, L, f, and &, we say a collection of 2-matchings Q is a (5, L, f, £)-separator for G if the
following holds.

Q1. Qis e-compact and (8, L)-robustly-connected;

Q2. |Q| = pn and Q strongly separates E(Q);

Q3. each vertex in G is the endpoint of at most en paths among all O € Q;
Q4. each e € E(Q) is contained in at most three of the 2-matchings in Q; and

Q5. A(G - E(Q)) < ¢&n.

In the next result, we show that large enough (6, L)-robustly-connected “almost regular” graphs contain a suitable collection of
2-matchings that is a (¢°8/2, L, /(1 — €), €')-separator, for any € and &'.

Lemmad4.2. Let 1/n<¢e,e,a,6,1/L,p. Let p=+3a+1-1. If G is an n-vertex (an=+n'?)-regular graph that is
(6, L)-robustly-connected, then there exists a (¢°6/2, L, /(1 — €), €')-separator for G.

Proof.  Our proof has five steps. First, we build an auxiliary hypergraph H such that a large matching M C H, which avoids certain
conflicts, yields a family of subgraphs of G with the desired properties. We wish to apply Theorem 3.1 to find such a matching. In
the second step, we verify that H satisfies the hypotheses of Theorem 3.1. In the third step, we define our conflict hypergraph C. In
the fourth step, we define some test sets and prove they are trackable. Having done this, we are ready to apply Theorem 3.1, which is
done in the last step. Then, we verify that the construction gives the desired graphs. From now on, we can assume that p is sufficiently
small (since that only weakens our assumptions). Also, we assume that n is sufficiently large with respect to e, ¢/, a, 8, L, p so that every
calculation that requires it is valid.

Step 1: Constructing the auxiliary hypergraph. Obtain an oriented graph D by orienting each edge of G uniformly at random. Each vertex
v has expected in-degree and out-degree d;(v)/2 = (an + n'=?)/2. So, by Chernoff’s inequality (Theorem 3.2(i)) and a union bound, we
can assume that in D every vertex has in-degree and out-degree of the form an/2 + 2.

Next, consider an auxiliary bipartite graph B whose clusters are copies V; and V, of V(G), where each vertex x € V(G) is represented
by two copies x; € V; and x, € V,, and such that x;y, € E(B) if and only if (x,y) € E(D). Thus, we have that |E(B)| = |E(G)| =
a(Z) + n?7*, because G is (an + n'~’)-regular. Finally, let 4 = /(1 — €). Apply Theorem 3.4 with «, §,y to obtain a 3-graph J that
satisfies (J1)-(J6) and assume that U; = [An] and V' (J) = [|V (J)]].

Now, we build an initial auxiliary 8-graph H' as follows. Let Z be the complete bipartite graph between clusters V' (B) and V' (J). The
vertex set of H' is E(B) U E(J) U E(Z). Each edge in H’ is determined by a choice x,y, € E(B) and ijk € E(J), which form an edge
together with the 6 edges in Z that join x; and y, to i, j, and k. More precisely, the edge determined by x,y, € E(B) and ijk € E(J) is
D(xyy,,ijk) 1= {x1y,, ijk, xqi,x,j,x1k, y,i, y,j, y,k}; and the edge set of H' is given by

EH') = {®(x,y,,ijk) : x;y, € E(B),ijk € E(J)}

The idea behind the construction of H’ is as follows: Suppose that M is a matching in H’, and that x, y, € E(B) is covered by M and
appears together with ijk € E(J) in an edge of M. By (J2), {i, j, k} n U; has size 2 or 3. Recall that we want to obtain a collection
Q :={0;, ...,0,} of 2-matchings in G, where t = An, satisfying (Q1)-(Q5). We will add edges xy € E(G) such that ®(x,y,,ijk) € M
or ®(y,x,,ijk) € M to the graphs Q, ifa € {i,j,k} nU;.
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By construction, and since M is a matching, at most one edge in B involving x, (resp. x,) appears in an edge of M together with some
a € U,. By considering the contributions of the two copies x,, x, € V(B) of a vertex x € V(G), this means that the subgraphs 0, C G
have maximum degree 2, and thus these graphs are 2-matchings in G, as we wanted. By construction and property (J2), each edge in
E(G) belongs to either 0, 2, or 3 graphs Q,. Importantly, property (J3) implies that, for two distinct edges e, f € E(G), no two nonempty
sets of the type {a : e € E(Q,)} and {b : f € E(Q,)} can be contained in each other. Straightforward calculations reveal the degrees
of the vertices in V (H').

Claim 4.3. The following hold.
(i) degyp(x1y,) = a(;) + n?/? for each x,y, € E(B);
(ii) degyp(ijk) = a(;) + n*>* for each ijk € E(J); and
(iii) deg,, (x,i) = 7’7( ;) + 2> for each x,i € E(Z). 0

Proof of the Claim. The first two points can be easily verified: given any x,y, € E(B), by construction d,, (x,y,) is the number of
edgesin J, which is a( ; ) + n?/3 by (J5). Moreover, given any i jk € E(J), d; (i jk) is the number of edges of E(B), which is a( ; ) +n>"
by construction.

Finally, consider x, € V; (the case x, € V, is symmetric) and i € V' (J). The degree deg;, (x,i) corresponds to the edges ®(x,y,, ijk) with
¥, € Ng(x,) and jk € N,(i). Next, we estimate the number of valid choices for y, and jk. There are degz(x;) = d;(x) =an/2 +2n'’
possible choices for y,, and there are deg, (i) = fn/ A + n*/* possible choices for jk by (J6). Thus, we deduce that

et = (5 22070) (B ) = (7

as desired. o

Since H’ is not quite regular, we will actually work with a carefully chosen subgraph H of H'. Letp := /A =1—¢.Foreachi € V(J),
select a subset X; C V' (G) by including in X, each vertex of G independently at random with probability p. This defines a family { X :
i € V(J)} of subsets of V' (G). For each x € V' (G), consider the randomset Y, = {i € V(J) : x € X,}. Finally, let H C H’ be the induced
subgraph of H’ obtained after removing all vertices x,i, x,i € E(Z) whenever x ¢ X, (or, equivalently, i ¢ Y,). Thus, we have that

E(M) = {®(x,y,.ijk) : x,y, € E(B),ijk € E(J),{x,y} CX,nX;nX,}
Claim 4.4. The following hold simultaneously with positive probability.
(i) X, has pn + n?/3 vertices of G for each i € V(J);
(ii) Y, has 3an/2 + n*/? vertices of J for each x € V(G);
(iii) H is (pﬁa( ; ) + 2n%~P)-regular; and

(iv) for each i € V'(J) and each pair of distinct vertices x, y € X;, there exists # with 1 < # < L such that there are at least £/ 6n’ /2
(x, y)-paths in G with exactly # inner vertices each, all in V(G) \ X,. O

Proof of the Claim.  Ttem (i) follows directly from Chernoff’s inequality (Theorem 3.2) as, for each i € V'(J), we have E[|X;|] = pn.
For (ii), note that |V (J)| = A(1 + f/2)n by (J1) and, for any x € V(G), we have

E[|Y,|] = plV ()| = (ﬂ + —>n = 3an

Then (ii) also follows from Chernoff’s inequality. For (iii), observe that any given edge ®(x, y,,ijk) € H’ survives in H with probability
p®. Using this, we easily see that E[deg;, (x;,)] = p° deg;y (x1y,) = péa( ; ) + n?~ for each x, y, € E(B); a similar calculation holds for
E[deg; (ijk)] for any ijk € E(J). It remains to calculate the expected degree of the edges in E(Z) NV (H). Let x,i € E(Z). Condition-
ing on the event that x € X, (and thus that x,i € V' (H)), each edge in H’ containing x i survives with probability p>. Using this, we
obtain that
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E[deg,(x,i)] = p° degyy (x,i) = p° (% (5)= 2n2“’>

_ 6 ”) 2-p
=pa =+ 2n
P <2 =

So (iii) follows from Chernoff’s inequality.

In the remainder of the proof, we use McDiarmid’s inequality (Theorem 3.3) to check that (iv) holds. Given i € V'(J), since G is
(6, L)-robustly-connected, for each pair of distinct vertices x,y € X, there exists # with 1 < # < L such that there are at least 6n’
(x, y)-paths in G with exactly £ inner vertices each. Hence, the expected number of such paths with all internal vertices in V' (G) \ X; is
atleast (1 — p)”6n’. Since the removal or addition of a vertex in X, changes the number of (x, y)-paths by O(n” ') paths, one can check by
using McDiarmid’s inequality that, for a given i € V(J) and a pair x, y € X;, the probability that we have less than 7 6n” /2 (x, y)-paths
with exactly # inner vertices, all in V(G) \ X;, is exp(—=Q(n)). Since |V (J)| = O(n) and there are O(n?) possible pairs x, y € X, item (iv)
follows from the union bound. o

From now on, we assume that the sets { X, : i € V(J)}, {Y, : x € V(G)}, and the hypergraph H satisfy properties (i)-(iv) of Claim 4.4.

Step 2: Verifying properties of H. We start by defining d := A, (). Note that from Claim 4.4(iii), we have d = pﬁa( 0 ) + 2n?~%. We will
apply Theorem 3.1 to H. The following claim guarantees that H satisfies the required hypotheses.

Claim 4.5. The following facts about H hold.

(H1) H has at most exp(d/’3) vertices;
(H2) d(1 —d=*/%) < 6,(H) < A{(H) = d; and

(H3) A,(H) < d*3. o

Proof of the Claim. Ttem (H1) follows from the fact that |V(H)| = |E(B)| + |E(J)| + |E(Z)| < an® + an® + 2n(A + AB/2)n <
exp(d”"), where the last inequality holds with a lot of room to spare.

For (H2), the upper bound follows from the definition of d and the lower bound follows from &, (H) > p6a< ; > —2n%7 > d —d'"r/3,
It remains to verify that A,(H) < d?/3. This will require some work. First, note that each edge in H is of the form D(x,y,,ijk) for
x, € V1.y, € V,, and ijk € V(J). We need to select two distinct vertices e, f in V(H) and calculate deg;, (e, f). A vertex e of H can
belong to E(B), E(J), or E(Z). We consider all the six possible combinations for e, f.

Let e, f € V(H). Since each edge of H is of type ®(x,y,,ijk) for x;y, € E(B) and ijk € E(J), and each of these contains exactly one
vertex in E(B) and one vertex in E(J), for e, f € E(B) or e, f € E(J), we have degy, (e, f) = 0. Furthermore, since x,y, € E(B) and
ijk € E(J) completely determine the edge ®(x,y,,ijk),ife € E(B) and f € E(J), then we have degy, (e, f) < 1.

In view of the above discussion, we may assume that e € E(Z), and without loss of generality, we assume e = x,i for some x; € V;,
and i € V(J). There are now three cases to consider, depending whether f belongs to E(B), E(J), or E(Z).

Suppose first that f = x;y, € E(B). We will count the number of pairs {j, k} such that ®(x,y,,ijk) is an edge of H. In particular, it
must happen that jk € N, (i), thus degy (e, /) < deg;(i) <n < d?/3. Similarly, if f = ijk € E(J), then we count the number of vertices
y, € V, such that ®(x, y,, ijk) is an edge of H, which is at most deg(x;) < n < d?/3.

Finally, suppose that f € E(Z) and recall that e = x,i. If f = y,j with y, € V;, and j € V(J), then deg, (e, f) is the number of edges
of J containing i and ;. In the worst case, i = j, we have deg, (e, f) = deg; (i) <n < d?/3. On the other hand, if f = x,j with j € V(J),
we have j # i and then to estimate deg (e, /) we need to count the number of y, € N(x;) C V, and the number of k € N,(ij). The
number of choices for y, is at most n and the number of choices for k is at most A,(J) < log®n. Therefore, deg ule, f) < nlogn < d*/3,
as required. O

Step 3: Setting the conflicts. We must ensure that the collection O of 2-matchings we want to obtain is ’-compact: each 2-matching in QO
has at most €’n paths and each cycle in Q has length at least 1/¢’. This condition on the cycle lengths will be encoded by using conflicts.

Recall that D is the oriented graph obtained by orienting each edge of G uniformly at random. In what follows, let r := 1/¢’. We define
our conflict hypergraph C on vertex set E(H) and edge set defined as follows: For each # with 3 < ¢ < r, each #-length directed cycle
C C D with vertices {0, ...,v"}, eachi € U,, and each j,k,, ..., j k, € N, (i), we define the following edge:
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F(C.i jyky, .. joky) = (@IS i jk,) 1 1<a <7}

where uf“ = ui. Note that F(C,i, j,ky, ..., j-k,) corresponds to a set of # edges of H’, associated to the triples (i j k,), ..., (i j-k,)
and the edges of the #-length directed cycle C in D. In such a case, we say i is the monochromatic color of the conflicting cycle C.
The edges of the conflict hypergraph C consist of all edges of type F(C,i, j, k., ..., j-k,) which are contained in E(}). The next claim
establishes that C is a (d, r, p)-bounded conflict system for H.

Claim 4.6. The following facts about C hold.

(C1) 3<|F|<rforeach F € C;and

(C2) A (CY) <rdi~/'~foreach3 <j<rand1</’ <. o
Proof of the Claim.  Fact (C1) is immediate from the construction of C.

In order to prove (C2), fix j and j' with 3 < j < rand1 < j’ < j.To prove that A, (CY) < rd’=/'=7, we need to show that any set of j/ edges
of H is contained in at most rd/=/'=* conflicts of size j in C. Let R be any set of j edges in H, say R = {D(x]y5,i%j%%") 1 <a< j'.
We want to bound the degree of R in C%. Each conflict of size j is defined by a length-; directed cycle in D, the monochromatic color
of the conflict, and a corresponding choice of labels for each edge in the cycle; now we estimate the number of valid choices for each
of these three elements.

We begin by estimating how many possibilities there are for choosing a suitable cycle. Note that R := {(x%,y?) : 1 <a < j'}isasetof
at most j’ edges of D. If |R| < j/, then there are repeated edges from D in R, and in this case the degree of R in C%) is zero. So we can
assume that |R| = j’ and, by Theorem 3.1, there are at most j/’#/~/'~! length-j directed cycles in D which contain R.

Now, we consider the possible choices for the monochromatic color i of the conflicting cycle. Note that if there is no common i € V' (J)
among all labels i¢j?k* for 1 < a < j’, the degree of R in CY) is zero, because there is no available “monochromatic color” at all. This
also implies that there are at most three possible choices for i because it must be one of the three labels which belong to il j'k!, say.

Having fixed a directed cycle C, which contains R, and a monochromatic color i for the conflict, now we count the number of labels
associated with each edge of C. For edges of R, the choices are already given, and for the remaining j — j’ edges of C not in R, the
labels must be chosen among the neighbors of i in the hypergraph J. Since i has fin/ A + n?/3> < n neighbors in J by (J6), in this step we
have at most n/~/" possible choices. Therefore,

N a2l o
A (C) < W 3T = 3 20T < i e

where in the last step we used that d = ©(r?) and n is sufficiently large. O
Step 4: Setting the test sets. For each x; € V; C V(B) and each y, € V, C V(B), define Z, = {D(x,y,,ijk) € E(H) : y, € Ng(xy),ijk €
E(J)} and define z, in a similar manner. Furthermore, define Z;, = {®(x,y,,ijk) € E(H) : x,y € X,} for each i € V(J). We claim
that Z :={Z, 1 x, €V}u{Z, 1y, €V} }U{Z i€ V(J)}isasuitable family of trackable sets. Specifically, the next claim shows
that Z is not very large and has only (d, p)-trackable sets.

Claim 4.7. The following facts about Z hold.

(Z1) |Z| < exp(d”’); and

(Z2) each Z € Z is (d, p)-trackable. O

Proof of the Claim. Because |Z| = |V(B)| + |V(J)| < 3n and d = ©(n?), we have | Z| < exp(d”’). It remains to check (Z2), which
means to prove that | Z,| > d'** foreach v € V; U V,, and | Z;| > d*** for each i € V' (J).

First, suppose v = x; € V;. From (H2) and 6(B) > an/2 — 2n'= > an/3, we have
1Z 1= ) degy(x,y,)
72ENp(x1)

> 6,(H)|Ng(x))| > d(1 —d~"*)an/3 > d'**

where in the last step we used that d = ©(n?) and that n is large. The calculations for v = y, € V, are identical. Next, we note that for
any i € V(J) we have
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|1Z,| = 2 degy,(x,0) > 6,(H)|X;|

x€X;

>d(1 —d " pn—n*?) > d'** O

Step 5: Finishing the proof. Recall that d = A, (H). By Claims 4.5, 4.6, and 4.7, we can apply Theorem 3.1 to H, using C as a conflict
system and Z as a set of trackable sets, and p/3 in place of p. By doing so, we obtain a matching M C H such that

i. M is C-free,
ii. M has size at least (1 — d=*/3")|V(})|/8, and

iii. |Z,n M| =(1xd“?)M||Z,|/|EH)| foreacha € V(B)UV (J).

Recall that 4 = #/(1 — ¢) and let t = An. Using M, we define the graphs {Q;}!_, as follows. For an edge x,y, € E(B), suppose there
exists ijk € E(J) such that ®(x,y,,ijk) € M. In that case, we will add the edge xy € E(G) to the graph O, such thata € {i, j,k} N Uj;.
To finish, we verify that Q = {Q,}]_, is an (€76/2, L, A, €')-separator for G, which means we need to show that Q is a collection of
2-matchings in G that satisfies (Q1)-(Q5) with £”6/2, A and €’ in the place of 8, f and ¢, respectively.

We start by verifying that Q is a collection of 2-matchings. Note that, for each 1 < i <7, the graph O, has maximum degree at most 2.
Indeed, let x € V(G) be any vertex. Since M is a matching in H, at most two edges in M can cover the vertices x, i, x,i € V(H); and
this will yield at most two edges adjacent to x belonging to Q,.

Now we verify that (Q1) holds. First, we check that Q is ¢’-compact, that is, each 2-matching in O has at most &’n paths and each cycle
in Q has length at least 1/¢’. The latter holds because we avoided the conflicts in C. More precisely, an #-cycle in Q; corresponds to a
sequence of £ edges, all of which are in Q,. This means the cycle was formed from a length-# directed cycle in D, all of whose edges were
joined (via M) to triplesin J, all containing vertexi € V' (J). Recall thatr = 1/¢'.1f £ < r, this forms a conflict in C, so, as M is C-free, we
deduce that £ > r. To check that Q, has few paths, first observe that ¥(Q,) C X, foreach i € V(J). Indeed, if xy € E(Q,), then we have
that, say, (x, y) € E(D) and ®(x, y,,ijk) is an edge in M for some j, k. But, since M C H, by the definition of H, we have x, y C X, as
required. Now, from (ii), (iii), the fact that  is an 8-graph close to d-regular, and | Z;| < d|X,|, we have that |[E(Q))| = |Z,n M| > (1 —
/2)|X;| > (1 —-¢€/2)|V(Q,)|, and then the number of degree-one vertices in Q, is at most 2(|V (Q,)| — |E(Q,)|) < €'|V(Q,)| < €'n. To
see the second part of (Q1), we need to show that Q is (¢7 5 /2, L)-robustly-connected. Because V' (Q,) C X;, we deduce from Claim 4.4(iv)
that Q, is (¢”6/2, L)-robustly-connected, as required. We conclude that (Q1) holds.

We have already stated that |Q| = An, so the first part of (Q2) holds. The second part of (Q2) can be checked as follows: Let e, f be
distinct edges of E(Q). Thus, there are orientations (x, y), (x’,)’) € E(D) of e, f respectively, and edges ijk,i’j’k’ € E(J) such that
D(x,y,,ijk) and @(x},.i'j'k") belong to M. We have, respectively, that A, :={a : e € E(Q,)} = {i,j,k}nU,and A, :={a: f €
EQ,)} = {/,j’,kK'} nU,. For a contradiction, suppose A, C A,. If |4,| = 3, then we would have that ijk = i’ j'k’, contradicting that
M is a matching, so |A,| = 2; say, A, = {i,j}, and ij is a pair in V] (from the construction of J). We recall that by (J3) no pair ij is
contained both in an edge with two vertices in ¥; and at the same time in an edge with with three vertices in V7, so this rules out
the case |A ;| = 3. Thus, we can only have A, = A, = {i, j}. But again (J3) implies i/ is contained in a unique edge in J, say, ijr. This
implies that ijk = i’j'k’ = ijr, contradicting the fact that M is a matching. Therefore Q strongly separates E(Q), and (Q2) holds.

To prove (Q3), let x € V(G). Recall that Y, C V' (J) is the random set Y, = {i : x € X} and from Claim 4.4(ii) we have that |Y,| =
3an/2 + n?/3. Note that if x is the end of a path in some 2-matching Q,, then there is an edge ®(x,y,, ijk) in Z, N M, but no edge
@(x,y,,ijk) is in Z, N M; or there is an edge @(x,y,,ijk) in Z, N M, but no edge @(x,y,,ijk) is in Z, N M. This motivates the
following definition: for each x € V(G), a set F(x,) of indexes i € V(J) such that there is an edge ®(x,y,, ijk) in M; and a set F(x,)
of indexes i € V' (J) such that there is ®(x,y,, ijk) in M. Note that, from the way we construct H, we know that F(x,), F(x,) CY,.In
view of the above discussion, the number of times x is the endpoint of a path in the 2-matchings of Q is the number of indexes i € Y,
such thati ¢ F(x;) N F(x,). Therefore, this number of indexes i such that x is the endpoint of a path in Q, is at most

1Y, \ FGepl + Y\ F(xy)l < 3an+2n°7 =3(1Z, n M| +|Z, 0 M))
< 3an 4 2n*/% = 3(deg;(x) — €'n/2)
<3an+2n*? = 3(an—-n""" —€'n/2)
<én
where in the first inequality we use the facts that | F(x,)| = 31z, n M| and |F(x,)| = 31z, n M|, and also that Y, < 3an + n?/3;in the

second inequality we use (4.1); the third inequality follows from deg(x) > an — n'~?; and since n is sufficiently large, the last inequality
holds. This verifies (Q3).
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To see (Q4), let e € E(Q) be arbitrary. As explained before, there exists an orientation (x, y) € E(D) of e and an edge ijk € E(J) such
that ®(x;y,,ijk) belongs to M, and {a : e € E(Q,)} = {i,j, k} nU,. Since the latter set obviously has at most three elements, (Q4)
follows.

Finally, property (Q5) follows from the properties of the chosen test sets. More precisely, we want to prove that A(G’) < e’nfor G’ := G —
E(Q). Since for any x € V(G) we have deg, (x) = deg,(x) — (|ZXl nM|+ |Zx2 N M), it is enough to prove that |ZX1 nM|+ |ZX2 n
M| > deg;(x) — €'n. For that, by using (ii) and (iii) and the facts that | E(H)| < |V (H)|A,(H)/8 and |ZX1 | + |ZX2| > 6, (H)(|Ng(x| +
[N p(x,)]) > d(1 — d*/3) deg(x), we have the following for any x € V(G):

A—d=CI(Z | +1Z, DIV (H)I/8
[V (H)|A,(H)/8
> (1= d~/PA - d73) degg(x)

1 Z, " M|+1Z, n M| >

> degg(x) —€'n/2 (4.1)

where inequality (4.1) holds for sufficiently large n because deg;(x) = ©(n) and d = ©(n?). Then, we verified that (Q5) holds. This
finishes the proof of the lemma. O

5 | Breaking Cycles and Connecting Paths

For a real number € > 0, a collection P of paths in G is an e-almost separating path system if there exists a set E’ C E(G) such that P
separates every edge in E’ from all other edges in G and A(G — E’) < en. Note that such P strongly separates E’.

A 2-matching that has no cycle is called acyclic. A collection Q of 2-matchings is acyclic if each 2-matching in Q is acyclic. The next
lemma shows that a collection of 2-matchings as in the output of Theorem 4.2 (that is, a separator, as in Theorem 4.1) can be converted
into an acyclic 2-matching with only a very small loss in its properties.

Lemma5.1. Letl/n< 6, L,p, e If Gisan n-vertexgraph and there exists a (6, L, B, €)-separator for G, then there also exists an acyclic
(6, L, p, 5¢)-separator for G.

Proof. LetQbea (s, L, f,e)-separator for G. Our goal is to prove that there is a set of edges with at most 4en edges incident to each
vertex, obtained by deleting one edge from each cycle in the 2-matchings of Q. We argue that this is enough to conclude the proof.
First note that, after removing one edge from each cycle of an e-compact 2-matching Q, we obtain an acyclic 2e-compact 2-matching,
because the maximum number of cycles in Q is en. Since Q is (5, L)-robustly-connected, then it remains so after the removal of such
edges. Thus, the collection of 2-matchings obtained after the removal of these edges from Q satisfies (Q1) with 2¢ in the place of e.
Note that such collection also satisfies (Q2) and (Q4). Moreover, if we remove from the 2-matchings at most 4en edges incident to each
vertex of G, then (Q3) will hold with 5en in the place of en. Moreover, the degree of u in G — E; will increase by at most 4en, which
implies condition (Q5) with 5¢ in the place of en.

Let Cy, ..., Cy be the cycles in 2-matchings of Q and note that T < efin®. For 1 <i < T, let X, be the edges of the cycle C,, and let X,
be an edge chosen uniformly at random from &’,.

Let .S be the edge set { X, ..., X} and, for each vertex u, let f*(X,, ..., X;) be the degree of u in G[.S]. Note that, since « is in at most
one cycle C; of a 2-matching of Q and each cycle has length at least 1/¢, the edge X, was chosen as one of the two edges incident to u
with probability at most 2e. Then, because the number of 2-matchings is at most fn, we have that E[ f“(X,, ..., X;)] < 2¢fn.

Let (x, ..., x7) and (x], . ..,x’T) bein &) X - - - X Xp, differing in exactly one coordinate, that is, x; = x;. forevery j € {1, ..., T} with
Jj #i. Note that f is such that | f“(x;, ..., x;) — f“(x], ...,x/T)| < 1. Infact, f“Cxy, ..., xp) = fX), ...,x’T) if u is not in C;. So we
canset ¢; = 1 if u is in C; and ¢; = 0 otherwise. As u is in at most fn of the T cycles, we have that ¥, cj? < pn. By using McDiarmid’s
inequality (Theorem 3.3), we obtain

8e22n?

n

Pr[f“(X,. ... Xy) > 4epn| < eXp(— ) < exp(—8¢°pn)

Thus, by the union bound, the probability that the maximum degree in G[.S] is less than 4efn is at least 1 — n - exp(—SeZﬂn), which,
for large enough n, is positive. This means there is a choice of edges whose removal from the cycles in the 2-matchings of Q makes Q
acyclic and satisfying (Q1)-(Q5), with 5¢ in the place of €. O

The next lemma is the main result of this section, and will be used in Section 7 to prove our main result. In this lemma, we will construct
an e-almost separating path system from a separator, which is a collection of 2-matchings. By Lemma 5.1, we can assume the given
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collection of 2-matchings is acyclic, so we need to transform each path collection into a path by merging its paths one by one into a long
path. This merging process can be done by repeated applications of the (6§, L)-robustly-connected property, but each such application
adds new edges to the current path collection and thus might affect the original separating property in certain places. This means we
need to track carefully the effects of adding a path for every time we modify the current path collection.

Lemma5.2. Foreache,§, and L, there exist €’ and n, such that the following holds for every n-vertex graph G with n > n, and every
p€0,1).If Qisa (6, L, B, €' )-separator for G, then there exists an e-almost separating path system with fin paths.

Proof. Lett = fn. We can apply Lemma 5.1 to transform Q into an acyclic collection of 2-matchings, adjusting the value of ¢’ accord-
ingly. Let Q = {Q;, ..., O, }.

We will describe a sequence C,, ..., C, of collections of acyclic 2-matchings in G and sets E,, ..., E, of edges of G, the idea being that
C, strongly separates E;, and that each C; will be obtained from C,_, by replacing O, with a path P.. Then C, will be the desired path
system.

For each vertex u and 0 < i <1, let d,(u) be the total number of paths in the 2-matchingsin Q,,, ..., Q, that have u as an endpoint. We
will make sure the following invariants on C; and E, hold foreach 0 <i < r:

I1. each C, separates every edge in E,; from all other edges of G;
12. edges in more than three of the 2-matchings in C, are in E(C;) \ E(Cy); and

I13. the degree of each vertex u in G — E, is at most en if d;(u) = 0 and at most \/Zn —2d,(u)if d;(u) > 0.

Let E, = E(Q) and C, = Q. Note that C, and E, satisfy the three invariants. We will define C; = (C;_; \ {Q;})) U {P} fori=1,...,1,
where P, is a path that contains all paths in Q,. Therefore, if invariants (I1) and (I3) hold for i = ¢ and &’ < €2, then C, will be an
e-almost separating path system with 7 paths, and the proof of the lemma will be complete, as = fin.

Suppose i > 1. To describe how we build P, from Q,, we need some definitions. Let f be an edge of G not in Q; such that O, + f isa
2-matching. Let E/ be f plus the set of edges of Q, in E,_, that are not separated from f by (C,_; \ {Q;}) U {Q; + f}.

Claim 5.3. If f is in at most three of the 2-matchings in C,_;, then |E/| < 4. O

Proof.  Suppose there are three edges a, b, and c in E(Q;) N E,_, that are not separated from f by (C;_; \ {Q;}) U {Q; + f}. By invariant
(I1), there are 2-matchings Q ;, Q,z, and Q,; in C;_; such thata € E(Q ;) but b & E(Q ;), b € E(Q,;) but ¢ ¢ E(Q,;), and ¢ € E(Q,,)
buta ¢ E(Qj;,). Clearly, these three 2-matchings are distinct and are not Q,, because a, b, and ¢ are in Q,. So they are in (C;,_; \ {Q;}) U
{O; + f} and they must contain f because a, b, and ¢ are not separated from f in (C;_; \ {Q;}) U {Q; + f}. By the hypothesis of the
claim, these are the only 2-matchings in C,_; containing f. Hence, repeating the argument for a, b, c in the inverse order, we deduce
that eithera € Qyz, b € Oy, andc € Q ;,0ra € Oy, b & Oy, and ¢ € O ;.

Now, suppose there is a fourth edge d in E(Q;) n E,_; not separated from f by the collection (C;_; \ {Q;}) U {Q; + f}. Consider the
former of the two cases above and, for clarity, rename the three 2-matchings to Q 4z, Q> and Q ;.. Then d must be in Q. to be
separated from a, and d must be in Q ; , to be separated from b. But now there is no way to separate ¢ from d, a contradiction. The
other case is analogous. Indeed, for clarity, rename the three 2-matchings to Q;, Q.. and Q ;.. Then d must not be in Qg so
that b is separated from d, and d must not be in Q ;- so that a is separated from d. But now there is no way to separate d from c, a
contradiction. O

A vertex u is tight if its degree in G — E,_; is more than en — 2 if d,_; (u) = 0, or more than \/Qn —2d,_;(w)—2ifd,_;(u) > 0. An edge f
is available for P,if f & E(C,_,) \ E(C,) and the extremes of the edges in E/ are not tight.

To transform Q; into P,, we will proceed as follows. Start with P/ being one of the paths in Q, and let Q) = Q; \ { P}. While Q] is
nonempty, let P be one of the paths in Q. Call y one of the ends of P and x one of the ends of P/. An (x, y)-path in G is good if it has
length at most L, all of its edges are available and its inner vertices are not in V(P,) U V(Q)). If a good (x, y)-path exists, we extend
P! by gluing P/ and P; we remove P from Q/, and repeat this process until Q] is empty. When Q! is empty, we let P, be P/. Recall
that C; = (C,_; \ {Q;}) U { P}, and we let E; be E;,_, minus all edges contained in more than three 2-matchings of C; and all edges not
separated by C; from some other edge of G.

This process is well-defined if the required (x, y)-good path exists at every point in the construction. We will show that, indeed, assuming
that the invariants hold, there is always a good (x, y)-path to be chosen in the gluing process above. Then, to complete the proof, we
will prove that the invariants hold even after Q, is modified by the choice of any good path.
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First, note that the number of vertices in P/ not in Q, is less than Le'n. Indeed, each connecting path has at most L inner vertices and
Q, is €’-compact, hence Q, has no more than £'n paths. Thus, we use less than ¢'n connecting paths to get to P,. If ¢’ < §/(4L), then
the number of vertices in P/ not in Q, is less than én/4.

Second, let us consider the tight vertices. We start by arguing that x is not tight. This happens because d,(x) = d,_;(x) — 1 and, by
invariant (I3), the degree of x in G — E,_; is at most \/;n —2d,_;(x) = \/En — 2d,(x) — 2. For the same reasons, y is not tight. Now,
note that E;\ E;_; € J{E’/ : f € E(P)\ E(Q,)}. Hence, |E; \ E,_;| <4Le'n by Claim 5.3 and because Q, consists of at most &'n
paths. This, A(G — E(Q)) < ¢’n, and d,(G) < &'n imply that the maximum number of tight vertices is at most (¢'n + 4Lz—:’ﬂn)/(\/; -
26" =€ 1+ 4Lﬁ)n/(\/; —2¢’). Aslong as 2¢’ < \/?/2, that is, ¢/ < 1/16, we have that this number is less than 2\/;(1 +4Lp)n. If
additionally £’ < (5/(8(1 + 4Lf3)))?, we have that the number of tight vertices is less than 2\/; (1 +4Lp)n < én/4.

Third, |E(C;_;) \ E(Cy)| < 4Le'n(i — 1) < 4L’ pn® because i < pn. Hence, by invariant (12), at most 4 Le’ fn? edges are used more than
three times by C,_;. Let e € E(C,_,) \ E(C,). Because Q, is (5, L)-robustly-connected, there exist # < L and én” (x, y)-paths in G, each
with £ internal vertices, all in V(G) \ V(Q,). If e is not incident to x or y, then the number of (x, y)-paths in G with ¢ internal vertices
and containing e is at most n“ 2. Hence, the number of (x, y)-paths in G with # internal vertices, containing an edge in E(C,_;) \ E(C,)
not incident to x or y, is less than 4Le’ fn”. If e is incident to x or y, then the number of (x, y)-paths in G with # internal vertices and
containing e is at most n“~!. But, there are less than \/y n edges incident to x and less than \/; n edges incident to y contained in more
than three 2-matchings in C,_;, by invariant (I3). Thus, the number of (x, y)-paths in G of length # containing an edge in E(C;_;) \ E(C,)
incident to x or y is less than 2\/§n"ﬂ. We can choose ¢’ small enough so that 4Le'f + 2\/? < 8/4, and thus at most 6n” /4 (x, y)-paths
of length ¢ contain some edge of E(C,_;) \ E(C,).

Summarizing, we have concluded that, for ¢ small enough, the number of vertices in P,-, not in Q; is less than én/4 < én’ /4, the
number of tight vertices is also less than 6n/4 < §n” /4, and the number of (x, y)-paths containing some edge in E(C,_;) \ E(C,) is less
than 6n’ /4. This means that at least 6n” /4 of the 5n’ (x, y)-paths in G, each with # internal vertices, all in V(G) \ V(Q,), are good. As
long as n, is such that 6n, /4 > 6ny/4 > 1, there is a good (x, y)-path.

Now, let us verify the invariants. By the definition of E,, invariant (I1) holds for i because C; separates every edge in E; from all other
edges of G. Invariant (12) holds because edges in more than three 2-matchings in C; lie in used connecting paths, that is, lie in E(P;) \
E(Q;) for some j with 1 < j < i. For invariant (I3), observe that E; \ E;_; C E(P)), so the degree of v from G — E;_, to G — E, decreases
only for untight vertices, and by at most two. As the degree of an untight vertexu in G — E,_; isat most en — 2if d,_; (u) = 0 and at most
\/;n —2d,_,(u) —2ifd,_,(u) > 0, every vertex u in G — E, has degree at most en if d,(u) = 0 and at most \/;n —2d,(u)if d,(u) > 0, also
because d,(u) < d;_;(u). So invariant (I3) holds. O

6 | Separating the Last Few Edges
In this section, we deal with a subgraph H of G, of small maximum degree, whose edges are not separated by the path family obtained
in the previous sections. This is done in Theorem 6.3 but first we need some auxiliary results. The first step of the proof is to find a

family of matchings which separates the edges of H.

Lemma 6.1. Let A >0 and let H be an n-vertex graph with A(H) < A. Then there is a collection of t < 300y/An matchings
M,,...,M, C H such that

M1. each edge in H belongs to exactly two maichings M;, M ;; and

M2. foreach 1 <i < j <t, the matchings M;, M; have at most one edge in common.
We also need the asymmetric version of the Lovasz Local Lemma (cf. [18], Theorem 1.1).

Theorem 6.2 (Asymmetric Lovasz Local Lemma). Let € = {A,, ..., A,} be a collection of events such that each A, is mutually
independent of £ — (D, U A,), forsome D; C €. Let 0 < xy, ...,x, < 1 be real numbers such that, foreach i € {1, ...,n},

Pria) <x [T a-x) (6.1)

A;€D,
Then Pr[ﬂLlXi] > 1,1 —x) > 0.

Proof of Theorem 6.1. Let D = 2564/An. Let M = {1, ..., D+ 1} and let M® consist of all subsets of size two of M. We define
a function ¢ : E(H) —» M® by choosing ¢(e) € M® uniformly at random for each e € E(H). We will show that, with positive
probability,
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i. ¢ isinjective, and

ii. for each vertex v € V(H), the sets ¢(vw) for w € N(v) are pairwise disjoint.

We define a sequence of “bad” events to use Theorem 6.2. For distinct e, f € E(H), let A, , be the event that ¢(e) = ¢(f). For each
pair of adjacent edges e, f € E(H), let BB, ; be the event that ¢(e) N ¢(f) # @. Thus (i)-(ii) hold if we avoid all A, rand B, .

Note first that, for each e, f, we have

_(D+1\' 2 2
Pr[Aeqf]_( 2 ) = DD+D D2
-1 22D-1

p5,, 1= @p-1( 1) =ﬁ5%

Defined, := Ananddy :=4A. Note thateach event A, , or B, , isindependent of all other events A, , exceptif {e, f} N {¢’, f'} # 0.
Given {e, f}, the number of such intersecting pairs {¢’, '} is at most d ;. Similarly, each event A, , or B, , is independent of all but at
most d events of type B, .

For each event A,  define x, ; := x, :=d;' and for each event B, ; define y, ; := x; :=d}'. We will show that the requirement
(6.1) of the Asymmetric Lovasz Local Lemma is satisfied with these choices.

Indeed, for an event of type A, ;, we use the fact that 1 — x > 272 for 0 < x < 1/2 to show that

x4 (1~ xA)dA (1- xB)dE > x 4274t

and, for an event of type B3, 1> We have

xB(l _ xA)dA (1 _ xB)dB > sz—ZxAdAz—szdB

L >25pn,,

= 2_4 =
B 64A =D =

Thus, Theorem 6.2 guarantees there is a function ¢ satisfying (i)-(ii). This function defines the matchings: foreach1 <i < D+ 1 we
let M, consist of the edges e € E(H) such thati € ¢(e). Then ¢p(e) € M@ ensures that each edge belongs to exactly two M,’s, condition
(i) ensures that each pair of M;, M; has at most one edge in common, and condition (ii) ensures that each M, is a matching. Since

D +1 <3004/ An, we are done. [m]

Now, we prove the main result of this section, which finds the required family of paths that separate E(H). The proof proceeds by using
the matchings found in the previous lemma and covering those matchings with paths. We note that our task here is substantially easier
than in Lemma 5.2 (where we also needed to extend a path family into a single path by adding new paths) because here the connecting
paths are found outside the set of edges we are trying to separate.

Lemma6.3. Lete, 6, L > 0andlet G and H be n-vertex graphs with H C G such that A(H) < en and G is (6, L)-robustly-connected.
Then there exist paths { P,}/_;, {Q;}/_, in G, with r < 6OOL6‘1\/En, such that, for each e € E(H), there exist distinct 1 < i < j < r such
that {e} = E(P)n E(P;)) N E(Q,) N E(Q)).

Proof.  Apply Theorem 6.1 to H (with en in place of A), to obtain a collection of 7 < 300\/En matchings M, ..., M, such that each
edge in H belongs to exactly two of these matchings; and each two distinct matchings have at most one edge in common.

Separate the edges of each M; into r; < 2L~ matchings M, ,, ..., M;, where each M, ; has less than 6n/(4L) edges. Letr = ¥, r; be
the total number of matchings obtained after doing this. Since we have # matchings M, initially, after this process, we have obtained at
most r < 12L571 < 600L57! \/En matchings M, ;. We rename and enumerate the new matchings to be M1, ..., M from now on.

The next step is to obtain, for each 1 <i <r, two paths P, and Q, of G with the property that E(P)n E(Q;) = M,.’. For that, let
X1¥1: X35, -, X, ¥, be the edges of M. Since G is (8, L)-robustly-connected, there exist 1 <# < L and at least 6n” many inter-
nally vertex-disjoint (x;, x,)-paths with £ inner vertices each. Because |V (M ,’ ) =2|M ,’ | <én/(2L) < én, there exists an (x;, x,)-path
Pi(l) of length at most L which is internally vertex-disjoint from V' (M/). Similarly, we can find a (y,, y,)-path QI(.I) of length at most

L which is internally disjoint from V(M/)u V(Pi(l)). We proceed in this fashion iteratively, finding for each 1 < k < ¢, in order,
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some (x;, x;,,)-path P,.(k) and a (y, y,,1)-path QE"), both of length at most L, and both internally disjoint from V(M) and from all
previously chosen paths. This can be achieved, because in each step the number of vertices we need to avoid is at most 2| M/| +
2L|M!| < 4L|M]| < én, which implies that there is always one path available to choose. We define P, as the path which starts with
the edge x, y,, then traverses the path Qfl), then uses y,x,, then P‘.(Z), etc., alternatingly using the paths P‘.(k) and ka), and covering all
edges of M. We define Q; similarly, starting by the edge y, x,, but then using the path Pl.(l), then x,y,, then sz), and so on. Then P, O,
satisfy that E(P,) n E(Q,) = M/, as required.

Wedefine? = {P, ..., P.}andQ = {Q,, ..., Q,}. By construction, each of them has the required number of paths. Now we check that
these families satisfy the required property. Let e € E(H) be arbitrary. By the choice of the matchings, there exist distinct i, i, such that
{e} = M; n M, .Suppose thati, j are distinct such thate € M/ C M; ande € MI’ C M, .Itmusthappen that {e} = M| n MJ’,.Then, by

the choice of P, Q,, P;, Q;, we have that M = E(P,) n E(Q,) and M; = E(P)) N E(Q)), and therefore E(P,) N E(Q,) N E(P)) N E(Q;) =
M!n M]’ = {e}, as required. O

7 | Proof of the Main Result

Now, we have the tools to prove our main result, from which Theorems 1.1 and 1.2 immediately follow (in combination with the lower
bounds from Theorems 2.1 and 2.3).

Theorem 7.1. Leta,p,e,56 € (0,1) and L > 0. Let n be sufficiently large, and let G be an n-vertex (an + n'=")-regular graph which is
(8, L)-robustly-connected. Then ssp(G) < (\/3a +1—1+ ¢€)n.

Proof. Lete, :=1-1/(1+¢/2)and 8’ = ¢€%5/2. Choose & and n, such that Lemma 5.2 holds with (¢5/(2400L))%, L and &' playing
the roles of £, L and 8, respectively. From now on, we assume n > n, and let § := /3« + 1 — 1. Apply Theorem 4.2 to G with ¢, and ¢’
playing the roles of € and €', respectively. By doing this, we obtain a family O of 2-matchings which is a (§', L, (1 + £/2)p, £')-separator.
Thus Q consists of r := (1 +&/2)pn < (v/3a +1—1+ £/2)n many 2-matchings Q, ..., Q,, satisfying (Q1)-(Q5) (with &', (1 + £/2)p
and &’ in place of 6, f and ¢). Next, we apply Lemma 5.2 to G and Q. By the choice of ¢’ and n,,, we obtain an (¢5/(2400L))*-almost
separating path system P in G of size ¢.

Let E' C E(G) be the subset of edges which are strongly separated by P from every other edge. Since P is (£5/(2400L))*>-almost
separating, the subgraph J := G — E’ satisfies A(J) < (¢56/(2400L))*n. By assumption, G is (5, L)-robustly-connected, which allows
us to apply Theorem 6.3 with J and (£6/(2400L))? playing the roles of H and &, respectively. By doing so, we obtain two fami-
lies R, R, of at most en/4 paths each, such that, for each e € E(J), there exist two paths P, P, eR, and Q;, 0,eR, such that
{e} = E(P)n E(P)n E(Q) N EQ)).

Welet P’ := P UR, UR,. Note that P’ hasat most 7 + en/2 < (v/3a + 1 — 1 + £)n many paths. We claim that P’ is a strong-separating
path system for G. Indeed, let e, f be distinct edges in E(G); we need to show that there exists a path in P’ which contains e and not
f.If e € E’, then such a path is contained in P, so we can assume that e € E(J). There exist four paths P, P,0,,0; € P’ such that
{e} = E(P)n E(P) N E(Q;) N E(Q;), which in particular implies that one of these paths does not contain f. |

8 | Corollaries

Now, we apply Theorem 7.1 to bound ssp(G) for graphs G belonging to certain families of graphs. In all cases, we just need to check
that the corresponding graphs are (8, L)-robustly-connected for suitable parameters.

We begin by considering complete balanced bipartite graphs. Previously, Wickes [19], Chap 9 studied upper and lower bounds for
ssp(K,». K, /»), and obtained the lower bound ssp(K, ,. K, ;) > (1/5/2 — 1)n — 1/2, which coincides with the main term from our
lower bound from Theorem 2.3. We can obtain a corresponding upper bound, which is then asymptotically tight.

Corollary 8.1.  Foreach € > 0 and sufficiently large n, ssp(K,, /5 ,/2) < (1/5/2 =1+ €)n.

Proof.  Lete > 0be arbitrary and » sufficiently large in terms of . The graph K, , ,/, is n/2-regular, so it is an-regular with a = 1/2.
Pairs of vertices x, y in the same part of the bipartition have n/2 neighbors in common; and pairs of vertices x, y in different parts of
the bipartition have ((n/2) — 1)*> > n?/5 many (x, y)-paths with two inner vertices each. Hence, K, /2072 18 (1 /5, 2)-robustly-connected.

By applying Theorem 7.1 with @ = 1/2, €, p and 6 = 1/5 we obtain that ssp(K,,) < (1/5/2 — 1 + &)n. O

Let us now describe a well-known family of graphs which satisfies the connectivity assumptions of Theorem 7.1. Given0 < v <7 < 1,
a graph G on n vertices, and a set .S C V(G), the v-robust neighborhood of S is the set RN, () C V'(G) of all vertices with at least vn
neighbors in S. We say that G is a robust (v, )-expander if, for every S C V(G) with zn < | S| < (1 — 7)n, we have |RN, ;(S)| > |.S| + vn.
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Many families of graphs are robust (v, 7)-expanders for suitable values of v, z, including large graphs with 6(G) > dn for fixed d > 1/2,
dense random graphs, dense regular quasirandom graphs [20], Lemma 5.8, etc.

Corollary 8.2. Foreache,a,t,v,p > Owitha > 7 + v, there exists n, such that the following holds for each n > n,,. Let G be an n-vertex
(an + n'=?)-regular robust (v, t)-expander. Then ssp(G) < (\/3a +1 -1+ ¢&)n.

Proof. By Theorem 7.1, it is enough to prove that G is (5, L)-robustly-connected with &, L depending on v only. We will prove this
holds with L := [v™'] and 6 := (v/4)L4~1.

Let x be any vertex, and let N (x) be its neighborhood. We define R, = fand foreachi > Owelet R;,; = R; U(RN, 5(N(x) U R)) \ N(x))
if IN(x) UR;| £ (1 —7)n; or R, = V(G) otherwise. By definition, R, C R, C R, C---.

Since G is arobust (v, 7)-expander and | N (x)| > an > 7n, it can be quickly checked that, for each i > O such that |[N(x) U R;| < (1 — 7)n,
the bound |R;,; \ R;| > vn holds. In particular, this implies that R; = V(G). Indeed, suppose otherwise. Then R; # V(G), therefore
IN(x)UR;| < (1 —7)nforall0 <i < L,which implies that |R; \ R,_;| > vnholds for each 1 <i < L. But then, since L > v~!, we have

n>|Rp| =R\ Ry 4|+ -+ |Ry\ Ry|+|R| > Lvn 2 n
a contradiction.

Given j > 1,weletT; C V(G) be the set of vertices v for which there are at least (va /4y 47 many (x, v)-paths in G with j inner vertices
each. We claim that, foreach 0 < i < L,itholdsthat R; C T; U - - - U T;. Before proving the claim we note that this is enough to conclude:
as discussed before we have that V(G) = R; C T, U--- U T, so for each vertex y € V(G) there would exist 1 < ¢ < Lsuchthaty € T,.
This implies that there exist at least (vi/4)”4~¢ P> on’ many (x, y)-paths with # inner vertices each, as required.

Now, we prove the claim by induction on i, where the base case i = 0 holds vacuously. Assuming the claim for some i < L, we prove it
fori+ 1. Let y € R,,, be arbitrary, it is enough to check that y € T; U - - - U T},,. By the inductive hypothesis, we can assume that y €
R, ;1 \ R;. Note that y has at least vn neighbors in N(x) U R;. Indeed, if [IN(x) UR;| < (1 —7)ntheny € R;,; \ R, CRN, ;(N(Xx)UR))
so indeed y must have at least vn neighbors in N(x) U R;. Otherwise, if [ N(x) U R;| > (1 — 7)n then, since y has at least an > (7 + v)n
neighbors, at least v of them must be in N(x) U R;.

We are done if y has at least vn/2 neighbors in N(x) because that immediately implies that y € T;. We assume from now on that
N () N N(x)| < vn/2and therefore |[N(y) N R;| > vn/2. By the induction hypothesis, R; C T} U - - - U T;. Observe that there must exist
1 <r <isuchthat|N(x)nT,| > vn/2"", as otherwise we would have | N(x) N R;| < (vi/2) Y51 27" < vn/2,acontradiction. Fix such
an r from now on, and we will conclude by showing that y € T, ;. B

Indeed, for each z € N(y) N T, there is a family P, of at least (vn/ 4y 4" many (x, z)-paths with r inner vertices each. We wish to extend
the paths in P, by including y to obtain (x, y)-paths with r + 1 inner vertices each. This can only fail for some P € P, if y € V(P), but
that can happen only for at most rn"~! paths. Since |P,| > (vn/ 4y4™", using that » < L and 1/n < v we can deduce that |P,|/2 > rn""L.
This allows us to conclude that there are at least |P,|/2 many (x, y)-paths with  + 1 inner vertices which end with zy. By counting the
paths for each choice of z € N(y) N T,, the number of desired (x, y)-paths is at least

|7 > IN(y)zﬂ T, <m>’44

4
> vn <m)r4—r2
4.2"\ 4

( m )r+1 4—(r+1)2
4

zeN(y)nT,

v

soy € T,,,, as claimed. This finishes the proof. O

9 | Conclusion
9.1 | Separating All n-Vertex Graphs

To determine the maximum of wsp(G) and ssp(G) over all n-vertex graphs G remains an interesting problem. Falgas—Ravry, et al. (see
[6], Conjecture 1.2 and the remarks afterwards) said that “it is not inconceivable” that wsp(G) < (1 + o(1))n holds for all n-vertex graphs
G. We have shown that ssp(G) < (1 + o(1))n holds for dense, regular, sufficiently connected n-vertex graphs. Even the following could
be true:
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Question 9.1. Does ssp(G) < (1 + o(1))n hold for all connected n-vertex graphs G?

We need to consider connected graphs for this question, because we have ssp(K,) =5, and so the graph G consisting of n/4
vertex-disjoint copies of K, satisfies ssp(G) = 5n/4.

9.2 | Separating Nonregular or Nonconnected Graphs

Itwould also be interesting to estimate wsp(G) and ssp(G) for graphs not covered by our main result. Complete bipartite graphs K, , with
a < b are an interesting open case. It is also of interest to weaken the conditions in our main result. For instance, can the connectivity
conditions in Theorem 7.1 be weakened? Does Q(n)-vertex-connectivity suffice?

Another way to weaken the connectivity conditions in Theorem 7.1 could be as follows: by a result of Kiithn et al. [21], each near-regular
and dense graph can be vertex-partitioned into parts which are robust expanders or “bipartite robust expanders” (see [21], Section 5),
so one could try to apply our result separately in each part of the partition and then deal with the remaining edges. As we have already
seen (by the example shown after Theorem 1.2), the connectivity condition cannot be removed completely. The chief reason behind it
is that the lower bound from Theorem 2.3 becomes close to tight whenever most of the paths are close to being Hamiltonian (as can
be seen from inspecting that proof). This means we would need a method to join the paths together in a coherent way to make sure
they become close to Hamiltonian and still separate most the edges; to make such a strategy work would require some connectivity
condition and new ideas.

9.3 | Exact Results, and Orthogonal Cover Decompositions

As mentioned before, we have ssp(K,,) = n if and only if an ODC with Hamiltonian paths exists for K,. Gronau, Miillin, and Rosa [22]
conjectured that an ODC by H in K, can be found whenever H is any n-vertex tree which is not a path with three edges. If true, this
would imply that ssp(K,,) = n holds for every n # 4. An approximate version of this conjecture (obtained as a corollary of general results
about “rainbow trees”) was obtained by Montgomery, Pokrovskiy and Sudakov [23], Theo 1.7 whenever # is a large power of two.

It would be interesting to see if Theorem 1.1 could be deduced from the partial known results on ODCs, but we note that we do not
see an easy reduction here. For our approach to work it is crucial that the “leftover” graph has bounded maximum degree to be able to
separate it with few extra edges (as we do in Section 6), and we did not see a way to obtain this from the known results.
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Endnotes

! This corresponds to the j = 1 and & = p case of the definition of (d, &, C)-trackable test systems of [14], Section 3. The original definition requires more
properties but reduces to the definition we have given when j = 1. In particular, C does not play a role anymore, so we opted for removing it from the
notation.

2In [7], Theorem 10 it is stated that for each & € (0, 1/2) there exists some n and an n-vertex graph G such that ssp(G) > 2(1 — 2¢)n, but unfortunately
the proof has a flaw. The error in the proof appears in [7], Remark 10, because the length of the longest path in K, ;_,,, is 2en and not en + 1.
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