

1 This is the accepted version of the following article: Rodrigo Cogni, Tiago B. Quental, Paulo
2 R. Guimarães Jr. (2002). Ehrlich and Raven escape and radiate coevolution hypothesis at
3 different levels of organization: past and future perspectives, which has been published in
4 final form at <https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.14456>. This article may
5 be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [
6 <http://www.wileyauthors.com/self-archiving>].

7 **Ehrlich and Raven escape and radiate coevolution hypothesis at different levels of
8 organization: past and future perspectives**

9 **Rodrigo Cogni*,#, Tiago B. Quental*, Paulo R. Guimarães Jr***

10 Department of Ecology, University of São Paulo, São Paulo, Brazil

11 * contributed equally

12 #correspondence: rcogni@usp.br

13

14 **Authors contributions**

15 The authors contributed jointly to all stages of manuscript development.

16

17 **Acknowledgements**

18 We would like to thank our former supervisors and professors that guided us
19 on the study of plant-insect interactions and more broadly in the study of species
20 interactions at different temporal scales: P. S. Oliveira, N. E. Pierce, C. R. Marshall, D.
21 J. Futuyma, J. N. Thompson, A. V. L. Freitas, S. F. dos Reis, M. Galetti, P. Jordano, J.
22 Bascompte, M. A. M. de Aguiar, F. M. Jiggins, and T. M. Lewinsohn. We are especially
23 grateful to J. R. Trigo, who introduced us to the field of chemical ecology of plant-
24 herbivore interactions. We thank J. N. Thompson and two anonymous referees for
25 suggestions on the manuscript. D. Rother and E. Santana helped us with data
26 visualization. RC is funded by the São Paulo Research Foundation (FAPESP)
27 (2013/25991-0), the National Council for Scientific and Technological Development
28 (CNPq) (307447/2018-9) and a Newton Advanced Fellowship from the Royal Society
29 (NAF\R1\180244). PRG is funded by CNPq (307134/2017-2), FAPESP (2018/14809-
30 0), and the Royal Society, London (CHL\R1\180156). TBQ is funded by FAPESP
31 (2021/06780-4).

32 **Abstract**

33

34 The classic paper by Ehrlich and Raven on coevolution will soon be 60 years
35 old. Although they were not the first to develop the idea of coevolution, their thought-
36 provoking paper certainly popularized this idea and inspired several generations of
37 scientists interested in coevolution. Here we describe some of their main
38 contributions, quantitatively measure the impact of their seminal paper on different
39 fields of research and discuss how ideas related to their original paper might push the
40 study of coevolution forward. To guide our discussion, we explore their original
41 hypothesis into three research fields that are associated with distinct scales/levels of
42 organization: 1- the genetic mechanisms underlying coevolutionary interactions; 2-
43 the potential association between coevolutionary diversification and the organization
44 of ecological networks; 3- the micro and macroevolutionary mechanisms and expected
45 patterns under their hypothesis. By doing so we discuss potentially overlooked
46 aspects and future directions for the study of coevolutionary dynamics and
47 diversification.

48

49 **Introduction**

50 *“One approach to what we would like to call coevolution is the examination of patterns of*
51 *interaction between two major groups of organisms with a close and evident ecological*
52 *relationship, such as plants and herbivores”* (Ehrlich and Raven 1964).

53 In a classic paper published in *Evolution*, Ehrlich and Raven (1964) presented
54 and discussed factors that determine food choice in phytophagous insects and how
55 those factors would scale up to determine macroevolutionary patterns in both plants
56 and herbivores. In this article, we celebrate Ehrlich and Raven's study, by first briefly
57 describing their main contributions and then by describing its impact. We then explore
58 its potential future relevance in helping the development of three different research
59 areas, namely: the genetic mechanisms of species interactions, the assembly of species
60 into ecological networks, and the micro and macroevolutionary consequences of

61 coevolution. We selected these three research areas primarily because of our personal
62 interests. In doing so, we use this opportunity to recognize and thank the long-lasting
63 impact of Ehlich and Raven's study in our own research careers.

64

65 **The Ehrlich and Raven 1964 paper**

66 In the 1964 paper, Ehrlich and Raven started by explaining that butterfly food
67 plant choice is: (i) restricted to geographical and ecological range, (ii) affected by
68 oviposition and larvae choice, (iii) strongly affected by chemical factors that are
69 repellent for most herbivores, but may be an attractant for a few, and to a less extent
70 by mechanical defenses such as trichomes, and (iv) modified by predators and
71 parasites, as well as ants in the case of Lycaenidae butterflies. They pointed out that
72 *"despite all of these modifying factors, there is a general and long-recognized pattern running*
73 *through the food plants of various groups of butterflies, and it is this pattern with which we*
74 *shall be concerned."*

75 Their inferences were based on information on the diversity of five butterfly
76 families, and they estimated that there are 730-930 genera, of which about half had
77 food plant records available at the time. They searched the extensive and scattered
78 literature for food plant records and obtained information and confirmation from
79 experts around the world. Being conservative about accepting records, they focused
80 primarily on broad, repeatedly verified patterns of relationships. They present
81 detailed information on the main patterns of food plant choice by each butterfly
82 group. For example, they reported that some whites (Pierinae) feed on Capparidaceae,
83 Cruciferae, Resedaceae, Salvadoraceae, and Tropaeolaceae, which all contain mustard
84 oil glucosides, and that very few butterflies outside Pieridae feed on these plants. As
85 another example, they reported that the brush-footed butterflies (Danainae) feed
86 primarily on Apocynaceae and Asclepiadaceae, but there are also records on
87 Moraceae and Caricaceae. All these plants have milky juice, but Apocynaceae and
88 Asclepiadaceae also have abundant bitter glycosides and alkaloids and share at least
89 some alkaloids and pyridines with Moraceae. They suggest that it is likely that the
90 acquisition of the ability to feed on Apocynaceae and Asclepiadaceae opened the

91 opportunity for the Danainae to penetrate a new adaptive zone, in which they have
92 radiated. Their survey and evaluation point to three main implications regarding the
93 usage of host plants by butterflies.

94 First, the few butterfly groups that feed on monocotyledons have ancestors that
95 feed in dicotyledons, and that the switch from dicotyledons to monocotyledons
96 occurred independently many times. Second, there is a general pattern that plant
97 groups are usually fed upon by a single, phenetically coherent group of butterflies (or
98 several very closely related groups), and that plant groups used by each group of
99 butterflies are either very close phylogenetically or have similar chemistry. Finally,
100 they discuss examples of plant groups, such as Araceae, that are very rarely or never
101 utilized by butterflies, suggesting that they may have chemical or mechanical
102 properties that render them unpalatable to butterfly larvae. They suggest that shifts
103 into the adaptive zones represented by these plant groups have not occurred in
104 butterflies, but they are theoretically possible and have indeed occurred by different
105 moth lineages. They also pointed out the leading role of secondary plant substances
106 in determining the reported patterns of host plant utilization by butterflies, and the
107 similar effect they have for all phytophagous groups.

108 To explain these patterns, Ehrlich and Raven proposed a coevolutionary
109 scenario in which occasional mutations and recombination in plants produced a series
110 of secondary chemical compounds. Some of these compounds, by chance, reduce or
111 eliminate the palatability of the plant that produces them, and the new chemicals may
112 be fixed in the species by selection imposed by herbivores. With this new defense the
113 plant escapes from herbivores and, consequently, become the ancestor of an adaptive
114 radiation in which all the descendants share the new chemical defense. Thus,
115 eventually what began as a chance mutation or recombination might characterize an
116 entire family or group of related families. Later a recombination or mutation may
117 appear in an insect population that enabled individuals to feed on some previously
118 protected plant group. By allowing feeding on an additional food plant, this ability to
119 overcome the plant defense would spread and become fixed in the population. This
120 herbivore population would enter a new adaptive zone and would be free to diversify
121 largely in the absence of competition from other herbivores. Consequently, this

122 population becomes the ancestor of an adaptive radiation in which the descendants
123 will feed on different species of the plant clade. In time, the process may be repeated
124 with the evolution of new plant defenses.

125 Ehrlich and Raven (1964) concluded that the coevolution processes provide a
126 starting point for understanding community evolution and suggested that similar
127 approaches investigating stepwise reciprocal selective responses should be applied to
128 other ecological interactions. They go as far to suggest that coevolution between
129 interacting species groups may help solve the origin of broad patterns such as the
130 differences in diversity between tropical and temperate areas. They conclude with a
131 very powerful message: *“Probably our most important overall conclusion is that the*
132 *importance of reciprocal selective responses between ecologically closely linked organisms has*
133 *been vastly underrated in considerations of the origins of organic diversity. Indeed, the plant*
134 *herbivore “interface” may be the major zone of interaction responsible for generating terrestrial*
135 *organic diversity.”*

136 The coevolutionary scenario proposed by Ehrlich and Raven was later codified
137 by John. N. Thompson in the form of a coevolutionary hypothesis, the “escape-and-
138 radiate” hypothesis (Thompson 1989) and a suite of predictions for the hypothesis
139 (Thompson 2005). He emphasized that, because escape and radiate coevolution would
140 produce starbursts of speciation in interacting lineages, cospeciation – i.e., matching
141 phylogenies at the species level – could not result from the hypothesized process. That
142 is, adaptation and speciation are partially decoupled in escape-and-radiate
143 coevolution.

144

145 **Different coevolution concepts before and after Ehrlich and Raven 1964**

146 Ehrlich and Raven were not the first to develop the idea of coevolution. The
147 main idea of Ehrlich and Raven’s coevolutionary scenario, that plant-herbivore
148 interactions affect diversification of both groups, have been previously studied (e.g.,
149 see reviews by Thompson 2005 and Janz 2011). Darwin discussed how plants and
150 insect pollinators could evolve through reciprocal evolutionary changes, even though

151 he did not use the term coevolution (Darwin 1859). Müller (1879) created a
152 mathematical model - probably the first application of mathematics on evolution
153 studies - to explain how interactions may shape traits in mimetic butterflies. Flor
154 (1955) developed the concept of gene-for-gene interaction to explain variation in
155 resistance and virulence in a plant-pathogen system. Mode (1958) used the proposed
156 gene-for-gene mechanism to develop the since then influential mathematical model of
157 coevolution. Pimentel (1961) developed the idea that reciprocal genetic changes can
158 regulate population size in resource-consumer interactions. Even though the idea of
159 coevolution was already there, it was Ehrlich and Raven's thought-provoking
160 publication in 1964 that popularized the term coevolution, impacting ideas even
161 outside biology (O'Reilly et al. 2020). During those same years, Janzen's (1966)
162 landmark studies on coevolution of plants and ants, and Smith's (1970) studies of
163 coevolution of pines and squirrels, were published and influenced subsequent studies
164 especially in evolutionary ecology.

165 Ehrlich and Raven's scenario was intended to explain diversity of plants and
166 herbivores by the process of increased cladogenesis in enemy-free space for plants and
167 competitor-free space for herbivores. Many recent reviews addressed the ideas of
168 coevolution and coevolutionary diversification in insect-plant interactions (Rausher
169 2001; Thompson 2005; Agrawal 2007; Janz 2011; Althoff et al. 2014; Suchan and
170 Alvarez 2015; Agrawal and Zhang 2021). During the 1960s and 1970s the word
171 coevolution was used in an overly broad sense, meaning the adaptation of one species
172 to the traits of the species with which it interacts. Coevolution became "*synonymous of*
173 *anything having to do with interactions between species*" (Thompson 1994). Some authors
174 advocated for the restricted use of the term for just the reciprocal selection imposed
175 by the ecological interaction between two or more species (Janzen 1980; Thompson
176 1982; Futuyma and Slatkin 1983). In subsequent years, researchers characterized a
177 range of coevolutionary patterns and processes at both the microevolutionary and
178 macroevolutionary scales (Thompson 1989). Some of the different related coevolution
179 concepts can be classified as follows: (1) *pairwise (specific) coevolution* - the adaptive
180 response of two species to evolutionary changes in each other and examples of
181 pairwise coevolution include *gene to gene* correspondence between the traits evolving

182 in the two species and the *coevolutionary arms race* in which there is an escalation of
183 traits in one species and the counter responses in the other; (2) *diffuse (guild) coevolution*
184 – reciprocal adaptation of a group of ecological similar species to selection imposed
185 by another group of species. Both pairwise and guild coevolution can foster
186 *diversifying coevolution* (Thompson 2005). *Diversifying coevolution* includes distinct
187 coevolutionary dynamics that promote diversification of interacting species. *Escape-*
188 *and-radiate coevolution* is one particular form of diversifying coevolution in which
189 guilds of interacting species affect the diversification across broad temporal and
190 spatial scales. All these concepts relate to the idea of reciprocity, meaning the
191 interacting species affect each other's evolution (Thompson 1989; Janz 2011), but
192 represent different processes occurring at different scales. Hypotheses on how
193 adaptation and speciation occur during the coevolutionary process have continued to
194 be refined and expanded in recent decades (Thompson 2013).

195 Ehrlich and Raven coevolution's model does not specify how the fixation of a
196 character that increases individual fitness (a chemical defense or the herbivore ability
197 to overcome a plant defense) would lead to a higher diversification rate.
198 Independently of the mechanism connecting fitness to diversification, a common
199 misunderstanding about Ehrlich and Raven coevolution's model is that their
200 coevolutionary scenario involving plants and herbivores would require a
201 simultaneous *co-diversification* – coincident diversification between two interacting
202 species – and lead to *parallel cladogenesis* – the phylogenetic relationships of plants is
203 mirrored by phylogenetic relationships of an interacting herbivores (Thompson 2005).
204 In contrast, escape-and-radiate dynamics predict bursts of asynchronous
205 diversification which, in turn, implies that co-diversification and parallel cladogenesis
206 are not only unlikely to occur but actually evidence against the escape-and-radiate
207 dynamics (Thompson 2005). Indeed, the adaptive radiation of the herbivorous insects
208 largely postdates the radiation of the plants (Mitter and Brooks 1983; Futuyma and
209 Keese 1992). This much earlier diversification of plants implies that the selection for
210 the evolution of a particular chemical defense was imposed by herbivores other than
211 the ones currently associated with the plant species, as clearly recognized by Ehrlich
212 and Raven (1964).

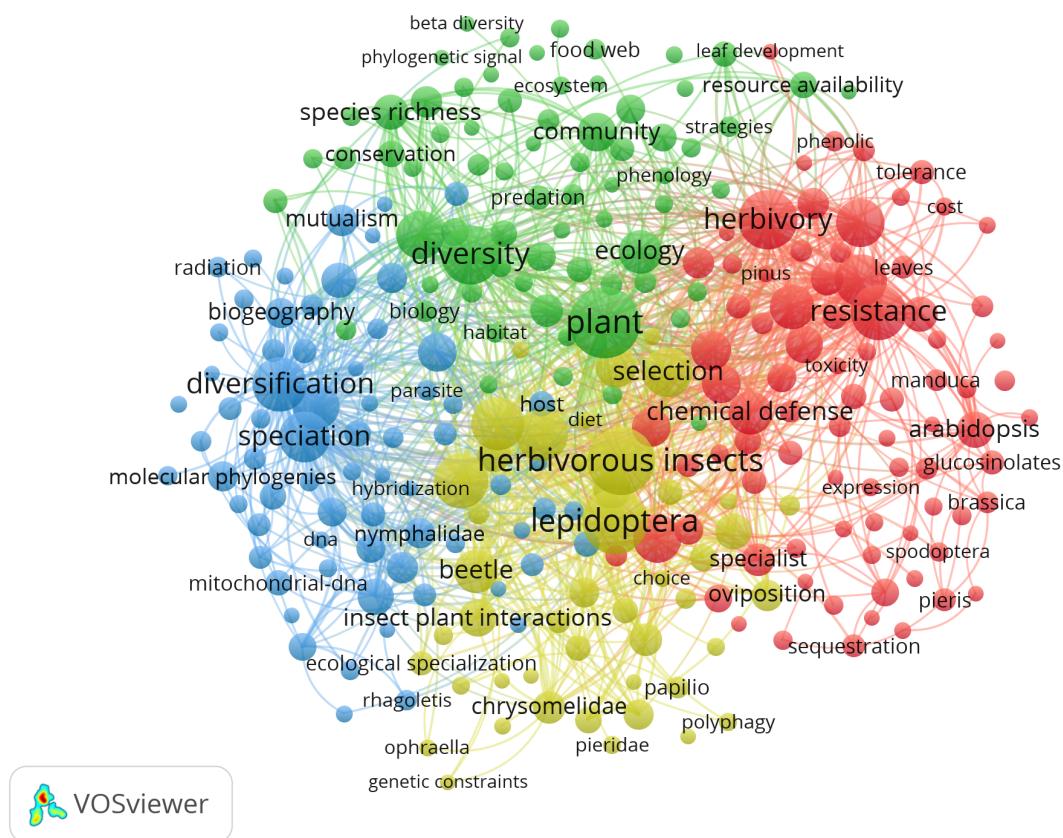
213 **Bibliometric analysis**

214

215 We explored the impact of Ehrlich and Raven (1964)'s paper (hereafter E&R
216 paper) in the literature by searching the ISI Web of Science for the papers that cited it.
217 Our search, performed on May 4th, 2021, found 2,489 scientific papers citing E&R
218 paper. We then explored how those papers were distributed across scientific fields of
219 study by extracting the authors' keywords and additional keywords assigned to the
220 paper, i.e., "keyword plus". We recorded 9,095 keywords and investigated their co-
221 occurrences using a network framework (Figure 1). We used a two-step process to
222 analyze the co-occurrences among keywords. First, we cleaned our dataset of typos
223 and truncated keywords. Then, we synonymized words with different spellings (e.g.,
224 defense and defence) or that were too similar in meaning (e.g., insect herbivore and
225 herbivorous insect). Although the latter criteria is subjective, it heuristically allowed
226 us to circumvent the problem of ignoring the impact of E&R paper in a given field
227 because multiple similar keywords were used. The vast majority of keywords were
228 singletons ($n = 6236$ keywords, 68.56%) and 98.68% of the keywords were present in
229 less than 30 papers. In contrast, just 22 keywords were presented in more than 100
230 documents (Table S1).

231 We then explored patterns of co-occurrence of keywords as a bibliometric
232 network in which nodes describe keywords and there is a link connecting two
233 keywords if these are present in the same paper. We focused our analysis on the more
234 common keywords that were recorded in at least 15 papers ($n = 271$ keywords) but
235 we removed the two most used keywords "evolution" and "coevolution" because
236 their wide presence in our dataset in the documents would blur the emergence of
237 modules of co-occurred keywords, i.e., groups of keywords that occurred more
238 frequently in the same document than with other keywords. We identified modules
239 by using a smart local moving algorithm (Waltman and van Eck 2013) that optimizes
240 a modularity function (Waltman et al. 2010). All analyses were performed in
241 VOSviewer 1.6.16 (van Eck and Waltman 2010). We used the default parameters of
242 VOSviewer to identify modules in the network (attraction = 2.0, repulsion = 0.0,
243 resolution = 1.0) performing full counting of co-occurrences between keywords,

244 association strength normalization (Waltman et al. 2010), and allowing the algorithm
245 to merge small modules.


246 Our analysis indicates four different modules, mapping to different areas of
247 evolutionary and ecological studies (Figure 1). Two modules were directly associated
248 with plant-herbivore interactions. The first module is formed by studies on chemical
249 ecology of plant-herbivore interactions (red module, Figure 1). Among the main
250 keywords associated with this module include “resistance”, “herbivory”, “tolerance”,
251 and “chemical defense”. The second module focuses on studies of biology of
252 herbivorous insects, in particular butterflies (yellow module, Figure 1), and it is
253 characterized by the following keywords “Lepidoptera”, “performance”,
254 “preference”, and “oviposition”.

255 The next two modules are associated with broader implications of E&R’s ideas
256 to evolution (blue module, Figure 1) and ecology (green module, Figure 1). The blue
257 module is formed by genetic, phylogenetic and macroevolutionary studies, as
258 indicated by keywords such as “diversification”, “molecular phylogenies”,
259 “speciation”, “adaptive radiation”, and “mitochondrial DNA”, despite the fact
260 “macroevolution” itself is on the green module. Among evolutionary studies, our
261 citation analysis suggests that E&R paper did not equally permeate the
262 paleontological and evolutionary ecology literature. There are very few keywords that
263 are typical paleontological keywords (e.g., “fossil record”, at the blue module, which
264 only shows up 16 times). It is interesting to note that the macroevolution papers that
265 typically cited E&R paper were those that used phylogenies (mostly molecular) to
266 study macroevolutionary patterns (Figure 1).

267 Finally, the green module, in contrast, is characterized by studies of ecological
268 patterns and processes, especially on (plant) community ecology (Figure 1). Among
269 the keywords characterizing the green module are: “plant”, “diversity”, “patterns”,
270 “ecology”, “community”, and “species richness”. Having said that, the green module
271 also shows keywords associated with evolutionary processes at different scales, such
272 as “local adaptation”, “geographic mosaic of coevolution”, “arms race”, and
273 “macroevolution”. It is also interesting to note that many ecological interactions are
274 spread across different modules, as illustrated by “herbivory” (red module),
275 “parasitism” (yellow module), “mimicry” and “mutualism” (blue module), and

276 “competition”, “predation”, and “ecological network” (green module). Thus, different
277 types of ecological interactions are associated with different combinations of
278 keywords, which may indicate that different studied systems have been used to
279 explore different consequences of ecological interactions - and the ideas of Ehrlich and
280 Raven - in evolution and ecology.

281

284
285
286
287
288
289
290
291
292
293
294
295

Figure 1. Bibliographic network of papers that cite Ehrlich and Raven 1964's describing words as nodes and in which two words were connected if they were present as keywords in the same document. Node size is proportional to the sum of association strengths of the word in the network. The pairwise association strength is a measure of similarity between the set of documents in which two words were presented as keywords (Waltman et al. 2010). Colors identify four modules that we associate to four major fields in which Ehrlich and Raven 1964's paper have an impact: (green) community ecology, (red) chemical defence of plant-herbivore interactions, (yellow) insect (mostly butterfly) - plant interactions, and (blue) mostly phylogenetic and macroevolution. The keywords "evolution" and "coevolution" were removed

296 prior to the analysis because they were too common (see Table S1) and were
297 obscuring the underlying pattern.
298

299

300

301

302 **The origin of adaptations in plants and herbivorous insects: chance mutations and**
303 **recombination**

304 The E&R paper was published about a decade after Watson and Crick
305 discovered the DNA double helix structure and two decades before PCR was
306 invented. At that time there was very limited knowledge on the molecular
307 mechanisms behind organisms' adaptations. A key aspect of the coevolutionary
308 escape and radiate hypothesis they proposed were the origin of adaptations in plants
309 and herbivores. They said "*Angiosperms have, through occasional mutations and*
310 *recombination, produced a series of chemical compounds not directly related to their basic*
311 *metabolic pathways but not inimical to normal growth and development. Some of these*
312 *compounds, by chance, serve to reduce or destroy the palatability of the plant in which they are*
313 *produced*" and that "*if a recombinant or mutation appeared in a population of insects that*
314 *enabled individuals to feed on some previously protected plant group, selection could carry the*
315 *line into a new adaptive zone*". In the past few decades, with the technological revolution
316 in molecular biology and genomics, there have been many discoveries of the detailed
317 molecular mechanisms behind these adaptations, and in many cases complex
318 adaptations such as the ability to feed in a toxic plant can evolve with just a few
319 mutations (e.g., Zhen et al. 2012).

320 Recent decades have also produced great advances in the molecular
321 mechanisms and evolutionary origins behind important secondary metabolites. For
322 example, pyrrolizidine alkaloids, a typical plant secondary metabolite that acts as a
323 defense against herbivores. Homospermidine synthase, a specific enzyme for
324 pyrrolizidine alkaloids synthesis, evolved by duplication of a gene involved in
325 primary metabolism. This gene duplication occurred several times independently in
326 different angiosperm lineages (Ober and Kaltenegger 2009). Another example is the
327 evolution of the pathway to produce nicotine, a defensive neurotoxin against

328 herbivores, in wild tobacco. Xu et al. (2017) showed that nicotine biosynthesis evolved
329 by the duplication of two ancient primary metabolic pathways. They also showed that
330 transposable elements (TEs) derived transcription factor binding motifs may be
331 responsible for coexpression of the genes in the pathway. This study shows the
332 importance of the interplay of gene duplications and transposable element insertions
333 in the evolution of specialized secondary metabolite pathways.

334 Accordingly, we have now many examples on the molecular variation that
335 gave rise to herbivore adaptations to overcome plant chemical defenses. Examples
336 include the flavin-dependent monooxygenase system in arctiid moths used against
337 pyrrolizidine alkaloids (Naumann et al. 2002), the cytochrome P450 monooxygenase
338 gene family in *Papilio* butterflies used against furanocoumarins (Li et al. 2003),
339 modifications in the alpha subunit of the sodium/potassium-transporting ATPase
340 (ATP α) that allow insects to feed on plants containing cardenolides (Zhen et al. 2012),
341 a glucoside malonyltransferase enzyme used to detoxify phenolic glucosides in
342 whiteflies (Aleyrodidae) (Xia et al. 2021), and glucosinolate sulfatase in a plutellid
343 moth (Ratzka et al. 2002), and nitrile-specifying protein in pierid butterflies (Wittstock
344 et al. 2004), both used against toxic glucosinolates.

345 Three examples deserve further discussion. First, in the case of the
346 identification of the nitrile-specifying protein gene in pierid butterflies that detoxify
347 glucosinolates, this key innovation was linked to macroevolutionary patterns (Wheat
348 et al. 2007). By studying many species of the Pieridae butterfly family, Wheat et al.
349 (2007) showed that the nitrile-specifying protein activity matched the presence of
350 glucosinolate in the host plant. They also constructed calibrated phylogenies and
351 concluded that this enzyme evolved shortly after the diversification of the host plant
352 Brassicales. They also showed higher diversification rates in pierid clades that
353 colonized the Brassicales (Wheat et al. 2007). These observations are predicted by the
354 escape-and-radiate hypothesis.

355 Second, many insects, such as the monarch butterfly, can feed on cardenolides
356 containing plants and even sequester some cardenolides to become resistant to
357 predators. By comparing sodium/potassium-transporting ATPase (ATP α) sequences

358 of 14 species that feed in cardenolide containing host plants, Zhen et al. (2012) showed
359 that amino acid substitutions in cardenolide feeding species are highly clustered with
360 many parallel substitutions, a strong evidence for convergent evolution. Later,
361 Karageorgi et al. (2019) expanded this work to combine convergent evolution with
362 CRISPR-Cas9 genome editing technology to validate the patterns of molecular
363 variation in whole organisms. They observed convergent mutations in insects from
364 six orders that independently colonized cardenolid-containing plants. When they
365 edited the native ATP α gene in *Drosophila melanogaster* and introduced the three most
366 common mutations present in cardenolid feeding insects, they produced flies that
367 were as resistant to cardenolides as monarch butterflies and were able to retain small
368 amounts of cardenolides through metamorphosis. It is amazing that only three
369 mutations can make fruit-flies as resistant to cardenolides as monarch butterflies. This
370 example illustrates how different herbivore clades could in principle colonize novel
371 hosts, as predicted in the E&R paper.

372 Third, it was recently discovered that the ability of whiteflies to neutralize host-
373 plant phenolic glucosides occurred by an exceptional horizontal gene transfer event
374 of a plant-derived phenolic glucoside malonyltransferase gene (Xia et al. 2021). While
375 the importance of horizontal gene transfer has been widely recognized in prokaryotes,
376 only recently studies have shown its importance in eukaryotes' adaptations. In
377 arthropods, horizontal gene transfers seem common from microorganism donors, so
378 this plant-to-insect horizontal gene transfer event seems very unique (Xia et al. 2021).
379 It is an interesting case in which an herbivore has adopted their opponent's combat
380 strategy to resist it, providing a novel mechanism that could speed up a
381 macroevolutionary arms race between plants and herbivores.

382 The genes associated with traits that are important for ecological interactions
383 have also been identified in other types of interactions such as predation (Barrett et al.
384 2019), host- parasite (Cogni et al. 2016), and pollination (Fattorini and Glover 2020).
385 But still, we have no knowledge on the molecular variation responsible for the vast
386 majority of key plant defenses and herbivore counteradaptation traits, as well as key
387 traits in other types of ecological interactions. Additionally, in just a very few plant-
388 herbivore systems we know the mechanism of both the plant defense and the

389 herbivore counteradaptation. We expect great advances in this area due to
390 development of increasingly sophisticated and affordable molecular and genomic
391 methods.

392 The discovery of genes associated with key traits is essential for a golden
393 standard in current evolutionary biology, namely linking genotypic variation,
394 phenotypic variation, and fitness in wild populations (Feder and Mitchell-Olds 2003;
395 Hoekstra 2010). We believe future studies should try to link genotypic, phenotypic
396 and fitness variation in traits important for ecological interactions. For example,
397 Carley et al. (2021) investigated ecological and genetic processes acting on a molecular
398 polymorphism associated with variation in leaf chemical profiles in the wildflower
399 *Boechera stricta* (Brassicaceae). They showed balancing selection on the alleles
400 associated with leaf chemical profiles by contrasting fitness effects across
401 environments caused by herbivory and drought. Studies like this are crucial to
402 understand how natural selection acts on key traits to ecological interactions.

403 However, a great challenge in the escape-and-radiate coevolution model is to
404 understand how the fixation of a key trait in a population can affect cladogenesis (see
405 discussion below). Here, knowing the genes associated with key traits for ecological
406 interactions can also help. We can use experimental approaches to test how herbivory
407 may lead to local population extinction and affect extinction probability of incipient
408 species. A promising approach for future studies is to experimentally test how plant
409 defenses may affect herbivory and consequently plant populations and patterns of
410 interaction between plants and herbivores at the local level. If the molecular details of
411 a particular plant defense are known, it is possible to produce transgenic plants
412 lacking the defense and the effect of herbivores on those plants can be tested under
413 field conditions (e.g., Steppuhn et al. 2004).

414

415

416 **The escape-and-radiate hypothesis and its potential consequences for ecological
417 networks**

418

419 Our analysis of keyword co-occurrences indicates that community ecology is
420 one of the fields impacted by E&R's study (green module, Figure 1). This is not
421 surprising. The very first sentence of their study focuses on "*community evolution*",
422 specifically, on "*evolutionary interactions found among different kinds of organisms*". The
423 first paragraph of their manuscript also emphasizes the overlooked role of "*reciprocal*
424 *aspects of these interactions*" on "*the understanding of organic diversification*" (Ehrlich and
425 Raven 1964). In the past decades, we progressed in our understanding of the
426 organization and the underlying evolutionary processes shaping interacting
427 assemblages. In this sense, interacting assemblages often show nonrandom patterns
428 of interaction that can be quantified through network descriptors (Pascual and Dunne
429 2006). Hence, network descriptors may provide fingerprints of evolutionary and
430 ecological processes that shape and are shaped by ecological interactions (Pascual and
431 Dunne 2006; Bascompte and Jordano 2013).

432 Network ecology has provided insights into the trophic organization (Elton
433 2001; Cohen and Stephens 2020) and stability (May 1973) of ecological communities,
434 and the flow of information (Margalef 1996), energy and matter (Odum 1960; Hannon
435 1973) in ecosystems. Network thinking underlies the understanding of the empirical
436 results that revealed how indirect effects can shape diversity patterns (Paine 1966;
437 Estes et al. 2013) and in studies showing how coextinction may imperil interacting
438 assemblages (Memmott et al. 2004; Rogers et al. 2017). Similarly, network thinking has
439 been used to explore a number of evolutionary problems, including (i) the emergence
440 of evolutionary innovations (Wagner 2011); (ii) the way ecological interactions are
441 associated with particular coevolutionary dynamics (Fonseca and Ganade 1996),
442 reshape adaptive landscapes (Kauffman and Johnsen 1991), and fuel the evolution of
443 novel lifestyles (Thompson 2005); and (iii) how evolution and coevolution may favor
444 species-rich networks to emerge (Loeuille and Loreau 2005; Montoya 2007; Peralta
445 2016; Harmon et al. 2019; Ponisio et al. 2019).

446 In contrast to its foundational role in the study of community evolution, the
447 exploration of E&R hypothesis is very limited in the study of ecological networks
448 (Braga et al. 2018; Harmon et al. 2019). E&R hypothesis is often used to illustrate the
449 potential of interactions to fuel biodiversity, but testing the conditions in which
450 escape-and-radiate coevolution would shape or be shaped by ecological networks are

451 rare (Braga et al. 2018; Harmon et al. 2019). This absence of tests might be partially a
452 consequence of the ER hypothesis being inherently difficult to test. Moreover,
453 multiple ecological and evolutionary processes may generate network patterns at the
454 community level, masquerading the potential causes of observed patterns (Guimarães
455 2020).

456 In trying to understand how escape-and-radiate dynamics may affect the
457 network structure, a fundamental problem is to define the relevant temporal and
458 spatial scales. Thus, although aiming in understanding community coevolution,
459 escape-and-radiate hypothesis is a macroevolutionary hypothesis (Hembry and
460 Weber 2020) on exploring how “*patterns of interaction between two major groups of*
461 *organisms with a close and evident ecological relationship*” (Ehrlich and Raven 1964) is
462 associated with the diversification of these groups across large spatial and longer
463 temporal scales. Thus, clade-based networks depicting interactions among species (or
464 higher taxa) of two (or more) clades across large spatio-temporal scales might be a
465 more natural system descriptor than the local ecological, species-based networks often
466 studied in community ecology (Guimarães 2020).

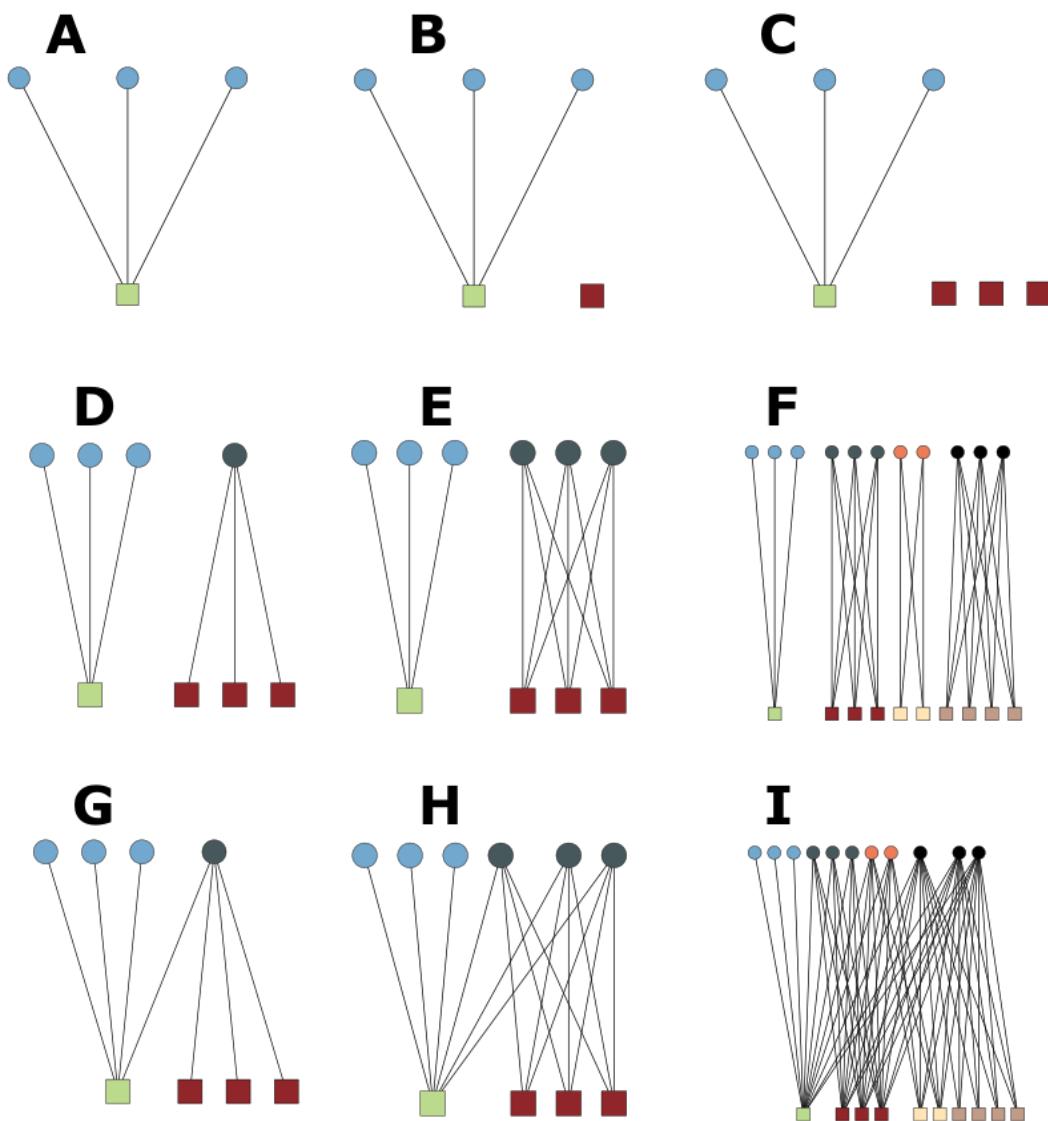
467 Once the relevant temporal and spatial scales are defined, the most
468 fundamental attribute of an ecological network is its species richness. From an
469 evolutionary point of view, the crux of the problem is the link between adaptation of
470 traits of interacting species in a network with diversification of clades. Escape-and-
471 radiate dynamics predicts an increase in the diversity of interacting assemblages. This
472 increased diversity generated by diversification promoted by coevolution actually
473 makes the escape-and-radiate hypothesis distinct from most putative coevolutionary
474 processes. Indeed, just a small fraction of potential coevolutionary dynamics would
475 favor speciation and diversification (Thompson 1989; Hall et al. 2020), i.e.,
476 diversification can be generated by coevolution but coevolution does not imply
477 diversification (Page 2003; Thompson 2005). Rather, coevolutionary models of small
478 networks of interacting hosts and parasites indicate the possibility of trait change
479 without generating arms races (Nuismer and Thompson 2006).

480 In systems in which coevolution favors diversification, i.e., diversifying
481 coevolution, escape-and-radiate is only one possible way to foster species-rich
482 networks. Indeed, the geographic mosaic of coevolution may favor speciation

483 (Thompson 2009), but this diversification mediated by coevolution may not show
484 sequential bursts of diversification expected by escape-and-radiate dynamics.
485 Alternatively, ecological interactions may fuel diversification without necessarily
486 involving coevolution (see review by Hembry and Weber 2020). Finally, coevolution
487 may allow ecological networks to collect species, leading to increased diversity of local
488 ecological networks (Thompson 2005; Bascompte and Jordano 2013), without
489 necessarily affecting speciation and diversification rates. Indeed, increased diversity
490 of ecological networks may be a result of ecological sorting, without direct impact of
491 the coevolutionary process. Thus, although escape-and-radiate dynamics favors
492 species-rich networks, multiple processes, including - but not limited to - other forms
493 of coevolution, may also generate the same pattern.

494 Escape-and-radiate dynamics may favor particular patterns of interaction in
495 ecological networks. As described by Harmon et al. (2019), the initial condition of
496 these networks would be specialized herbivores feeding in one or a small group of
497 plant species (Figure 2a). The evolution of a defense against herbivores would
498 disconnect the plant species from the network (Figure 2b). The plant species diversify
499 in the new adaptive zone (Figure 2c). Then, the evolution of counter-defenses in an
500 herbivore allows it to colonize the plant species (Figure 2d,2g) and then diversify
501 (Figure 2e-f, 2h-i). However, small differences in the macroevolutionary arms race
502 may lead to large differences in network structure. For example, if the colonization of
503 new hosts imply the loss of the interactions with previous hosts (host shift or
504 interaction rewiring; figure 2d), this macroevolutionary arms race operating
505 iteratively would build up an ecological network characterized by modules of
506 interacting species (Figure 2d-f). Indeed, some forms of plant-herbivore interactions
507 often show highly modular networks at different levels of organization (Meskens et
508 al. 2011; Pires and Guimarães 2013; Lau et al. 2016; Braga et al. 2018; Cosmo et al. 2021)
509 and modules may be the outcome of diversification process (Qin et al. 2018).

510 Modularity, however, is a possible but not unavoidable outcome of escape-and-
511 radiate dynamics. If interactions with ancestral hosts are kept after novel host
512 colonization, the resulting network would be much different: older herbivore species
513 interact with a subset of the hosts of the younger species, leading to a nested pattern
514 (Figure 2g-i). Although insect herbivores are often specialists (Fontaine et al. 2009),


515 there is also evidence that lineages of herbivore insects retain the ability of using the
516 ancestral hosts. By retaining the ability of using ancestral hosts, alternative
517 macroevolutionary dynamics may be generated, in which specialization in lineages
518 oscillates across time (the oscillation hypothesis, Nylin and Janz 2008; Nylin et al.
519 2018), leading to nested host ranges across clades of herbivores (Braga et al. 2018).
520 Thus, extreme variation in network structure will depend on details of the escape-and-
521 radiate dynamics, such as the likelihood of a novel herbivore species to retain the
522 interactions of their ancestral species in addition to exploring the formerly unavailable
523 plant resources (Braga et al. 2021). In this sense, the complex network patterns
524 empirically observed in plant-butterfly networks suggest that the interplay between
525 host switching and host retention is shaping diversification and patterns of interaction
526 between plants and herbivores across large temporal scales (Braga et al. 2018, 2021).

527 Hence, when host switching prevails, escape-and-radiate dynamics foster the
528 emergence of modular networks. It is important to note that other processes may also
529 lead to modular ecological networks. For example, modules may be generated by
530 different macroevolutionary regimes (Braga et al. 2018, 2021) or by arms race
531 dynamics without diversification (Andreazzi et al. 2017). Moreover, ecological
532 dynamics in antagonisms may favor the emergence of modules due to habitat
533 heterogeneity (Pimm and Lawton 1980) or to differential extinction of interacting
534 species (Thébault and Fontaine 2010). Therefore, as in the case of species richness,
535 particular network structures can be generated by escape-and-radiate dynamics, but
536 these patterns may have other alternative explanations. In this context, a route to
537 detangle the processes that are indeed shaping ecological patterns is to explore
538 associations between these patterns and the evolutionary history of the organisms.

539 For example, escape-and-radiate dynamics is often used to justify phylogenetic
540 patterns in local interacting networks (Joppa et al. 2009; Tallamy and Shropshire 2009;
541 Burghardt et al. 2010; Jorge et al. 2017; Wang et al. 2020). Having said that, escape-
542 and-radiate dynamics predicts a very specific scale in which network patterns should
543 be associated with phylogenies: at the module level. A strong phylogenetic signal at
544 the module level is expected because, if complete host shifting is occurring, each
545 module will be mostly formed by closely-related species of both plants and
546 herbivores. In contrast, at the level of the entire network (i.e., including all species of

547 both interacting clades), escape-and-radiate dynamics does predict weak phylogenetic
548 patterns (e.g., no co-phylogenies) because diversity increases as a consequence of the
549 burst of diversification resulting from the colonization of novel adaptive zones by
550 hosts and herbivores (Thompson 2005). These bursts are expected to show no pattern
551 of co-diversification because they occur asynchronously and because the herbivores
552 colonizing a novel plant host are not necessarily from the lineage that explored the
553 ancestrals of the novel host (Thompson 2005). Accordingly, at the within-module
554 level, multiple ecological processes, such as neutral, abundance-based effects on
555 interaction patterns and geographic mismatch among different partners, may blur
556 phylogenetic patterns of interaction (Lewinsohn et al. 2006), leading to weak
557 phylogenetic patterns. Phylogenetic-based modules are indeed observed in intimate
558 plant-herbivore interactions showing extreme levels of modularity (Prado and
559 Lewinsohn 2004; Thébault and Fontaine 2010; Pires and Guimarães 2013).
560 Interestingly, the same is true for some intimate mutualisms, such as the interactions
561 between ants and myrmecophytes (Fonseca and Ganade 1996). If the same
562 macroevolutionary processes are shaping the tight association between phylogenies
563 and modules in disparate mutualisms and antagonisms is still an open question.

564 To sum up, E&R's hypothesis has had a major impact in community ecology
565 and, as originally formulated, is strongly associated with the role of patterns of
566 interaction in species-rich assemblages on macroevolution. These patterns of
567 interaction can be described through networks, but E&R's hypothesis generates
568 patterns similar to those predicted by a myriad of ecological and evolutionary models.
569 Escape-and-radiate dynamics combines multiple elements in a single model, such as
570 coevolutionary arms races, adaptive zones, specialization, geographic spreading,
571 speciation, and interaction rewiring. Small changes in the fundamental aspects of the
572 escape-and-radiate dynamics may lead to disparate network structures (Figure 2). We
573 can improve our understanding of how coevolution shapes networks at long temporal
574 scales by exploring the role of each of these components independently. By doing so,
575 we would be able to create and test a theoretical map on how distinct elements of
576 coevolutionary dynamics shape particular network patterns. Moreover, by building
577 up this theoretical map, we could also explore which network patterns are more likely
578 to favor diversification (Bakkes et al. 2021).

581 **Figure 2.** Escape-and-radiate hypothesis may generate distinct network structures
 582 depending on the details of the coevolutionary process, based on Braga et al. 2018 and
 583 Harmon et al. 2019. (A-I) Plant species are depicted as squares and herbivore species
 584 as circles. Colors indicate the same defenses (in plants) or the counter-defenses (in
 585 herbivores). (A) A plant species hosts herbivore species, (B) The evolution of a new
 586 defense allows the emergence of a new species in an enemy-free adaptive zone. (C)
 587 The new plant species diversify, (D) The evolution of a counter-defense allows host
 588 switching and the formation of a new herbivore species. (E) Herbivore species
 589 diversify, (F) the repetition of steps C and D lead to the formation of a highly modular

590 network. (G-I) the same sequence as in D-F but now colonization of a novel host does
591 not imply a host switch, leading to a nested network.
592

593

594 **Predictions, limitations and empirical work of the escape-and-radiate hypothesis at**
595 **the macroevolutionary scale**

596

597 Ehrlich and Raven (1964) argued that species interaction can act as a relevant
598 motor of diversification, but the lack of phylogenies, a adequate fossil record, and
599 suitable comparative methods precluded direct macroevolutionary tests of the escape-
600 and-radiate hypothesis for several decades (Futuyma and Agrawal 2009). In their own
601 words: "*Although the data we gathered permit us to make some reasonable sequence*
602 *predictions about phylogenetic patterns (e.g. diversification of Apocynaceae and Solanaceae*
603 *before Danainae and Ithomiinae, respectively), these predictions cannot be tested and the*
604 *relationships cannot be specified further in the absence of a fossil record. The reconstruction of*
605 *phylogenies on the basis of this sort of information would seem an unwarranted imposition on*
606 *the data, since evolutionary rate and time are still inseparable*". Since the original
607 publication by Ehrlich and Raven (1964) the field of macroevolutionary has seen a
608 spectacular accumulation of molecular phylogenies, new dating approaches that
609 combine DNA sequences with the fossil record, and the development of new
610 comparative tools. Curiously, there are still a small number of empirical studies on
611 the macroevolution of insect-plant interactions using molecular phylogenies and the
612 comparative methods (Suchan and Alvarez 2015; Jousselin and Elias 2019). Moreover,
613 reevaluations of macroevolutionary predictions of the escape-and-radiate hypothesis
614 using the comparative methods and phylogenies have casted doubt on some previous
615 results, for example on how plant defenses might or not increase diversification rates
616 (e.g., Foisy et al. 2019).

617 Although the paleontological community (another field interested in the
618 controls of diversification) has also shown some interest in the role of species
619 interactions on diversification, the prevalent perception was for quite a while, that
620 abiotic factors, not biotic interactions, might be a more relevant motor of
621 diversification at deep time and large spatial scales (Benton 2009). Even though some
622 early paleobiology work, with clear overlap with the escape-and radiate hypothesis,

623 strongly advocated for the role of species interactions in deep time diversification (Van
624 Valen 1973; Vermeij 1977, 1994; Sepkoski 1996), and the role of species interactions has
625 gained recent support in paleobiology (e.g., Ezard et al. 2011; Liow et al. 2015; Silvestro
626 et al. 2015), most recent studies have focused on just one form of species interaction:
627 the interspecific competition. Hence, we feel that the effect of species interaction on
628 diversification still needs further empirical scrutiny, and the escape-and-radiate
629 hypothesis might serve as a fruitful venue to do that, in particular if the crosstalk
630 between neontologists and paleontologists is further promoted.

631 Our literature analysis suggests that even though the Ehrlich and Raven (1964)
632 paper had a very strong impact in community, chemical and insect ecology (figure 1),
633 we suspect that not enough crosstalk on how antagonistic interactions, such plant-
634 herbivore interactions, might affect diversification dynamics have happened between
635 neontologists and paleobiologists. This is evidenced in our bibliography analysis in
636 the “diversification” module which shows keywords that are usually related to the
637 neontological research using molecular phylogenies to study the macroevolutionary
638 aspects of the escape-and-radiate hypothesis (e.g., “molecular phylogenies”, “dna”,
639 “mitochondrial dna”, “speciation”), and just a few words that are typical of the
640 paleontological literature (e.g., “fossil record”). Other words related to paleontological
641 literature, such as “macroevolution” and “extinction” are used in strong association
642 of ecological keywords, suggesting they are used in the context of ecological studies
643 (green module). Of course, paleobiologists are aware of Ehrlich and Raven’s work
644 (e.g., Vermeij 1994; Jablonski 2008), and the views of neontologists are influenced by
645 paleo literature (e.g., Hembry and Weber 2020), but given how the subsequent
646 discussions on the underlying mechanisms of the escape-and-radiate hypothesis
647 unfolded (e.g., Althoff et al. 2014; Maron et al. 2019), we suspect that this lack of
648 crosstalk might have hindered a broader discussion on ideas related to the escape-
649 and-radiate hypothesis. In particular, we argue that this lack of exchange might have
650 predisposed evolutionary ecologists to overlook potential relevant mechanistic routes
651 underlying the escape and radiate hypothesis, most notably the potential effect of
652 coevolution on extinction dynamics at population and macroevolutionary scales.

653

654

655 **The escape-and-radiate coevolution and its overlooked potential consequences for**
656 **extinction dynamics**

657

658 Futuyma and Agrawal (2009), Janz (2011), and Nylin and Wahlberg 2008, (and
659 likely few others) briefly mention (in one sentence each, typically with no further
660 discussion on mechanisms) that an adaptive trait allowing insects to overcome plant
661 defense could in theory lower insect extinction probability, but most evolutionary
662 studies that followed the E&R paper typically focused on mechanisms leading to
663 changes in speciation rate. Those mechanisms have been discussed in terms of how
664 coevolution might directly or indirectly increase speciation rate (e.g., Althoff et al.
665 2014; Maron et al. 2019). Although it is quite possible that most mechanisms act
666 through speciation dynamics, it is striking to see the paucity of discussion on
667 mechanisms acting through extinction. This is relevant given that in theory an increase
668 in diversification rate (a prediction of the escape-and-radiate hypothesis) could be
669 produced either by an increase in speciation as by a decrease in extinction rate.

670 It is worth emphasizing that several empirical examples (e.g., Farrell et al 1991;
671 Farrell 1998; Wheat et al. 2007; Winkler et al. 2009) of the escape and radiate hypothesis
672 have detected an increase in net diversification (speciation minus extinction) not in
673 speciation *per se*. Although there are few examples suggesting that the interaction
674 might indeed affect speciation rate *per se*, one should note that: 1- those are not
675 abundant (see review by Jousselin and Elias 2019); 2- the few studies showing such
676 effect typically do not control for confounding effects (Jousselin and Elias 2019); 3-
677 estimating extinction from molecular phylogenies (the prevalent approach to study
678 coevolutionary diversification) is very difficult (Rabosky 2010); 4- simulation studies
679 have shown that model inference using molecular phylogenies might wrongly suggest
680 changes in speciation rate when in reality change in extinction rate were simulated
681 (Burin et al. 2019); 5- recent theoretical work has casted serious doubts on our ability
682 to properly differentiate different diversification models solely using molecular
683 phylogenies (Louca and Pennell 2020); 6- empirical studies are concentrated in few
684 phylogenetic groups (Jousselin and Elias 2019).

685 Hence although it is intuitive to think, and in fact likely, that coevolution might
686 result in an increasing speciation rate, we still lack ample and solid direct evidence of

687 that at the macroevolutionary scale (see review by Jousselin and Elias 2019). Moreover,
688 it might be interesting to explicitly consider the potential effects of coevolution on
689 extinction rates, which at first might be seen as a "non-intuitive" mechanism. We
690 suspect it might be more relevant than previously thought, as indicated by studies
691 suggesting coevolution may be a fundamental process shaping population persistence
692 at short temporal scales (Thompson 2005)

693 This proposal is also motivated by paleontological results that suggest "non-
694 intuitive" controls of biodiversity and those that suggest that extinction is indeed a
695 relevant macroevolutionary process. For example, Bambach et al. (2004) made the
696 intriguing suggestion that 2 out of the 5 so-called "mass extinction events", might have
697 been more controlled by a drop in origination than a rise in extinction *per se*,
698 suggesting renaming those events "mass-depletions". Additionally, diversity
699 declines, so commonly seen for several clades in the fossil record, might be equally
700 controlled by a lack of speciation as by a rise in extinction rate *per se* (Gilinsky and
701 Bambach 1987; Quental and Marshall 2013). Although those two examples underplay
702 the role of extinction dynamics, they illustrate what we call "non-intuitive" controls of
703 biodiversity, which might characterize the effect of coevolution on extinction
704 dynamics rather than speciation. Lastly, and perhaps more akin to our general
705 argument on the potential effect of coevolution on extinction, some radiations such as
706 the rise in family diversity of Holometabolous insects might be more affected by a
707 drop in extinction than a rise in origination *per se* (Nicholson et al. 2014).

708 As discussed for speciation (Janz 2011; Althoff et al. 2014), it will be important
709 to think of the potential direct and indirect effects of coevolution on extinction. The
710 possibility that coevolution between herbivores and plants results in direct effects on
711 extinction involve ideas such as the acquisition of plant defenses lowering the
712 probability of extinction. The plausibility of such direct mechanisms rests on the idea
713 that herbivory should have a direct effect on individual plant survival and
714 reproduction, and that such effects would cascade up to affect population
715 demography and eventually the species persistence. Herbivory has been shown to
716 reduce plant reproduction or growth (Crawley 1989; Ancheta and Heard 2011), and
717 even lead to individual plant death (Crawley 1989). Although Crawley (1989), at the
718 time of his review, did not argue that such effects would necessarily translate into a

719 significant population suppression, there is now growing evidence that herbivory
720 might indeed affect plant population demography (Ancheta and Heard 2011; Myers
721 and Sarfraz 2017) and even drive local populations to extinction (e.g., Schöps 2002), at
722 least for rare plants species or for those with fragmented populations. It is unlikely
723 that all herbivores will impose such detrimental effects, and very likely that the effect
724 on host plants is context dependent (Myers and Sarfraz 2017), but there is at least
725 evidence that herbivores might affect individual plant fitness, survival and population
726 demography. Hence it is at least possible that escaping herbivory might indeed lower
727 extinction risk, at least at the population level.

728 Indirect effects would, similar to the arguments on speciation (Althoff et al.
729 2014), result from changes in organismal biology or geography (e.g., species range
730 size) that reduce extinction probability. Those indirect changes would consist of a
731 secondary effect resulting from the evolutionary changes directly related to the
732 interaction between plants and herbivores. For example, the acquisition of a new
733 chemical defense might allow plants to expand their geographical range, a condition
734 that has been associated with lower extinction probability, although the causal
735 direction might be hard to establish or even act in both directions (Foote et al. 2008).

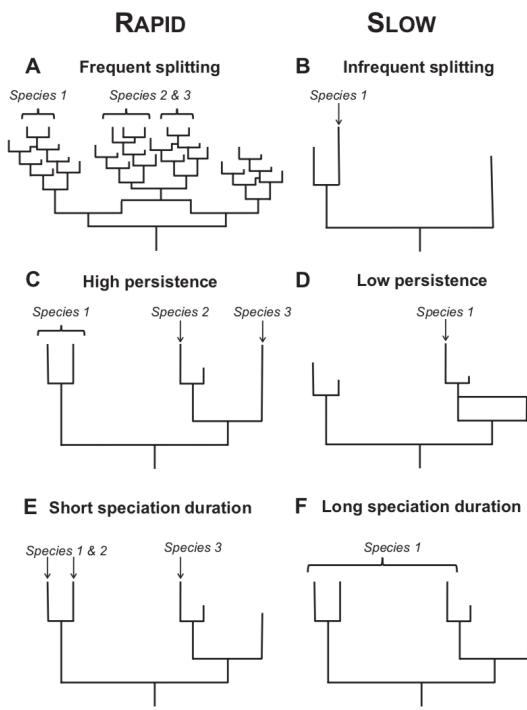
736 The importance of those direct and indirect effects on extinction and speciation
737 might be difficult to infer or predict, but it might be worth exploring the possibility
738 that it is related to the asymmetry on how insect and plants might affect each other's
739 diversification according to the escape-and-radiate scenario (Ehrlich and Raven 1964;
740 Janz 2011). Although the effect of plants on insect diversification might be direct
741 because they offer different hosts on which the subsequent herbivore diversification
742 might occur, the effect of insects on plants is rather indirect because it is the absence
743 of insects that would in theory allow plants to radiate (Ehrlich and Raven 1964; Janz
744 2011; Hembry et al. 2014). We see no clear expectation of whether increases in diversity
745 due to either an increase in speciation or decrease in extinction might preferentially
746 operate in plants and herbivores, but the asymmetry described above and the
747 neglected effect through extinction might serve as motivation for further theoretical
748 and empirical work. For example, it is possible that the “escape” from herbivory might
749 lead to direct effects on lowering plant extinction due to lack of population
750 suppression effects, and indirect effects on plant speciation due to increased

751 opportunities for allopatric speciation due to the extended range. Alternatively, it is
752 possible that the herbivore's ability to use a new suit of host-plants might have direct
753 effect on herbivore speciation by allowing specialization on slightly different host-
754 plants, and an indirect effects on extinction by allowing largest ranges if the access to
755 new hosts represents an increase in diet breath.

756 Measuring extinction rates will be particularly challenging because molecular
757 phylogenies have shown to be limited when trying to infer deep time diversification
758 dynamics (Louca and Pennell 2021). In that respect focusing on tip rates might be more
759 promising (Louca and Pennell 2021), and in fact suffice for the challenge. The fossil
760 record, which in theory would be a more direct source to infer extinction rates, is
761 usually incomplete, limiting detailed inference at the species level to few lineages, but
762 could also be explored. This might indeed, and perhaps not surprisingly, be part of
763 the reason why such processes might have been neglected in the past. While the
764 challenge is big, we suspect that the study of herbivore-plant interactions should
765 prosper with this endeavor.

766
767

768 **The escape-and-radiate coevolution hypothesis as “a bridge” from micro to 769 macroevolution**


770

771 Another important aspect of E&R paper is that it nicely exemplifies the
772 difficulty of bridging micro and macroevolution. Although the original paper lacked
773 an explicit mechanism, it prompted the discussion on how
774 population/microevolutionary mechanisms, in particular the evolution of
775 reproductive isolation would result in an increase in speciation rate (or more correctly,
776 the increase in net diversification rate) as predicted by the escape-and-radiate
777 hypothesis (Janz 2011; Althoff et al. 2014; Hembry et al. 2014). Although we do not
778 doubt the importance of reproductive isolation to explain differences in speciation
779 rate, there has been a growing sense that other mechanisms might be relevant when
780 one is trying to bridge the gap between micro and macroevolution (Harvey et al. 2019).
781 For example, a comparative study of birds and flies suggested that the rate of
782 evolution of reproductive isolation (measured within species) is not associated with

783 the rate of speciation in a phylogenetic comparative framework, suggesting that other
784 mechanisms might be at play (Rabosky and Matute 2013).

785 One excellent paper that lays out those mechanisms is the paper by Dynesius
786 and Jansson (2014). Under their framework (see figure 3) three different
787 population/microevolutionary mechanisms are at play: population splitting,
788 population persistence, and speciation duration, which might be defined slightly
789 differently according to the species definition used (Dynesius and Jansson 2014). In
790 the case of the biological species concept (which might be seen as the most frequent
791 concept adopted for microevolutionary studies interested in the escape-and-radiate
792 hypothesis), the inverse of speciation duration can be described as the rate of evolution
793 of reproductive isolation. Under this framework it is the combination of those three
794 processes that will produce what we measure at the macroevolutionary scale, the
795 speciation rate (figure 3).

796 Lineages that quickly evolve reproductive isolation (those with shorter
797 speciation duration) would expect to show higher speciation rates but if those newly
798 formed species do not last long enough (lower persistence), then we should not expect
799 speciation rate to be high when measured at a macroevolutionary scale (Harvey et al.
800 2019; see also figure 3). This argument was also presented by Rosenblum et al. (2012)
801 which suggested that the low persistence of “incipient species” would explain the
802 discrepancy between rates of speciation measured at different time scales (young vs
803 old radiations) or using different approaches (theoretical models vs fossil record and
804 phylogenies). Those authors propose the ephemeral speciation model where species
805 emerge fairly quickly, but most of those do not last long. Similarly, Futuyma (1987,
806 2010) suggested that long term stasis seen in the fossil record could be due to what he
807 called the “ephemeral divergence” hypothesis where populations that diverge from
808 the ancestral stock eventually merge back together to the ancestral population or go
809 locally extinct. In that sense lower population persistence prevents new forms and
810 species to emerge not only affecting morphological evolution but also speciation rate
811 (Dynessius et al. 2014).

812
813

814 Figure 3: Schematic proposed by Dynesius and Jansson (2014) to illustrate the different
 815 population/microevolutionary level mechanisms that might eventually affect
 816 speciation rate measured at the macroevolutionary scale, namely splitting (panels A
 817 and B), persistence (panels C and D) and speciation duration (panels E and F).
 818 Phylogenies contain extant and extinct populations and species. Scenarios shown in
 819 panels A, C, E would lead to higher speciation rates than their corresponding panels
 820 B, D, F. We advocate the study of herbivores and plants to consider these different
 821 hypothetical effects when studying the macroevolutionary effects of such interactions.
 822 Figure reproduced from Dynesius and Jansson (2014) with permission.
 823

824 In most microevolutionary studies, related or not to the escape-and-radiate
 825 hypothesis, the typical population/microevolution level mechanism studied is the
 826 evolution of reproductive isolation, and to a lesser extent, the rate of population
 827 splitting. We note that most literature on herbivore-plant interaction, and in particular
 828 those directly related to the escape-and-radiate hypothesis, do not explicitly consider
 829 how coevolution might separately affect the rate of evolution of reproductive
 830 isolation, population splitting and population persistence. Fewer exceptions exist, but
 831 even those (e.g. Althoff et al. 2014; Hembry et al. 2014) typically neglect population

832 persistence or do not treat reproductive isolation and persistence separately. Hembry
833 et al. (2014) and Thompson (2005) discussed how coevolution might “*make geographical*
834 *isolation more probable*”, which in the context of figure 3 would be related to changing
835 the rate of population splitting. Similarly, Althoff et al. (2014) allude to the splitting
836 mechanism to discuss how coevolution might lead to limited gene flow between
837 different populations and hence influence the evolution of reproductive isolation.
838 Although their argument is centered in the evolution of reproductive isolation, ideas
839 related to the rate of splitting are there. In fact, Althoff et al. (2014) suggest that we
840 have evidence that coevolution can lead to divergent evolution (and hence eventually
841 rate of splitting), but the effects of such divergent evolution on reproductive isolation
842 is not well understood or documented. Although previous work has touched the
843 aspect of splitting, we are not aware of studies that have explicitly considered all three
844 mechanisms (splitting, reproductive isolation and persistence) simultaneously. In
845 particular, most mechanistic discussions that succeed the Ehrlich and Raven paper
846 (1964) have, for the most part, neglected the effect of coevolution on population
847 persistence, and according to Suchan and Alvarez (2015), persistence has never been
848 empirically tested in the context of herbivore-plant interactions.

849 If lower persistence of incipient species is indeed a common phenomenon
850 (Futuyma 2010; Rosenblum et al. 2012; Dynessius et al. 2014), and if coevolutionary
851 diversification preferentially acts through population persistence, then as pointed in
852 a broader context, speciation rates measured at macroevolutionary scale might be
853 more influenced by persistence than by the evolution of reproductive isolation *per se*
854 (Rosenblum et al. 2012; Rabosky 2013; Harvey et al. 2019). It might therefore be
855 interesting to revisit the biological mechanisms proposed to underlie the escape-and-
856 radiate hypothesis and discuss, as pointed out by Dynessius et al. (2014) in a broader
857 context, how coevolution could affect separately the splitting rate, reproductive
858 isolation, and in particular, population persistence.

859 We argue that using this framework might turn the study of herbivore-plant
860 interaction, and more specifically the escape-and-radiate hypothesis, into a powerful
861 tool/framework to help us bridge the micro and macroevolution gap. There is already
862 the perception that linking population and microevolutionary processes to
863 macroevolutionary patterns should enhance our understanding on how coevolution

864 could act as an engine of diversification (Althoff et al. 2014; Thompson 2005), there are
865 already a reasonable amount of data and interest in either micro and
866 macroevolutionary aspects of coevolution (e.g. see reviews and references therein by
867 Althoff et al. 2014; Maron et al. 2019; Hembry and Weber 2020), there are some insect-
868 plant systems that are amenable to experimental studies (e.g., Gaba and Ebert 2009),
869 and we have some knowledge of the underlying genetic mechanisms (e.g., Xia et al.
870 2021).

871 Althoff et al. (2014) conclude their very insightful paper suggesting that three
872 different criteria must be met before a solid inference on the role of coevolution on
873 diversification could be made: *“First, coevolution must be important in facilitating*
874 *divergence among populations within a coevolving species. Second, coevolving traits should*
875 *influence reproductive isolation, either directly or indirectly, among diverging populations.*
876 *Finally, coevolving lineages should have higher net diversification rates than non-coevolving*
877 *lineages.”* We agree with those criteria but given recent advances in both micro and
878 macroevolution fields, we feel inclined to add a few more. We argue that
879 coevolutionary diversification might happen when coevolution also changes
880 population persistence or extinction dynamics. In that sense coevolution might still
881 have a strong effect at macroevolutionary scales even if it does not affect the rate of
882 evolution of reproductive isolation or population splitting. Further studies on
883 population level consequences of herbivore-plant interactions will be particularly
884 valuable to evaluate the idea that coevolutionary diversification acts through
885 extinction dynamics, either of fully fledged species or of incipient ones. Inferences
886 gathered at the population/microevolutionary level, ideally of the three processes
887 discussed here, should then be compared, in a similar manner as that done by Rabosky
888 and Matute (2013), ideally to both speciation and extinction rates measured at the
889 macroevolutionary scale.

890

891 **Conclusion**

892 After almost 60 years of its publication, E&R paper is still a major source of
893 insights and venues of research to the study of ecological interactions, and in
894 particular of insect herbivores and their host plants. By proposing a macro-
895 coevolutionary hypothesis for the diversification of two dominant groups of

896 organisms (in terms of species richness), E&R ideas impacted several different lines of
897 research, from genetic controls of traits mediating interactions to ecological networks,
898 to the natural history of plants and associated herbivores to macroevolutionary
899 dynamics of interacting clades. The inherent complexity of the coevolutionary process
900 that was tackled by the E&R paper called for the combination of multiple processes
901 and patterns operating at different spatial, temporal, and organizational scales.
902 Because of that complexity, to attain some of the future goals proposed in this
903 perspective, we suspect that a multi-disciplinary approach will be required. However,
904 in that respect, we envision that the research centered around the elements of the
905 escape-and-radiate coevolution hypothesis might eventually help us to better
906 understand how the genetic controls of species interactions may shape ecological
907 networks that are influenced and influence the macroevolutionary dynamics of
908 interacting groups of organisms. We think that the integration of these three different
909 fields may eventually help us to bridge the micro and macroevolutionary gap, creating
910 an unified theoretical map for how coevolution affects the diversity of life.

911

912

913

914

915 **Literature Cited**

916 Agrawal, A. A. 2007. Macroevolution of plant defense strategies. *Trends. Ecol. Evol.*
917 22:103-109.

918 Agrawal, A. A., and X. Zhang. 2021. The evolution of coevolution in the study of
919 species interactions. *Evolution* 75:1594-1606.

920 Althoff, D. M., K. A. Segraves, and M. T. J. Johnson. 2014. Testing for coevolutionary
921 diversification: linking pattern with process. *Trends Ecol. Evol.* 29:82-89.

922 Ancheta, J., and S. B. Heard. 2011. Impacts of insect herbivores on rare plant
923 populations. *Biol. Conserv.* 144:2395-2402.

924 Andreazzi, C. S., J. N. Thompson, and P. R. Guimarães Jr. 2017. Network Structure
925 and Selection Asymmetry Drive Coevolution in Species-Rich Antagonistic
926 Interactions. *Am. Nat.* 190:99-115.

927 Bakkes, D. K., A. Ropiquet, L. Chitimia-Dobler, D. E. Matloa, D. A. Apanaskevich, I.

928 G. Horak, B. J. Mans, and C. A. Matthee. 2021. Adaptive radiation and speciation
929 in *Rhipicephalus* ticks: A medley of novel hosts, nested predator-prey food
930 webs, off-host periods and dispersal along temperature variation gradients. *Mol.*
931 *Phylogen. Evol.* 162:107178

932 Bambach, R. K., A. H. Knoll, and S. C. Wang. 2004. Origination, extinction, and mass
933 depletions of marine diversity. *Paleobiology* 30:522–542.

934 Barrett, R. D. H., S. Laurent, R. Mallarino, S. P. Pfeifer, C. C. Y. Xu, M. Foll, K.
935 Wakamatsu, J. S. Duke-Cohan, J. D. Jensen, and H. E. Hoekstra. 2019. Linking a
936 mutation to survival in wild mice. *Science* 363:499-504.

937 Bascompte, J., and P. Jordano. 2013. Mutualistic Networks. Princeton Univ. Pres,
938 Princeton, NJ.

939 Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role
940 of biotic and abiotic factors through time. *Science* 323:728–32.

941 Braga, M. P., P. R. Guimaraes Jr, C. W. Wheat, S. Nylin, and N. Janz. 2018. Unifying
942 host-associated diversification processes using butterfly-plant networks. *Nat.*
943 *Commun.* 9:5155.

944 Braga, M. P., N. Janz, S. Nylin, F. Ronquist, and M. J. Landis. 2021. Phylogenetic
945 reconstruction of ancestral ecological networks through time for pierid butterflies
946 and their host plants. *Ecol. Lett.* 24:2134–2145.

947 Burghardt, K. T., D. W. Tallamy, C. Philips, and K. J. Shropshire. 2010. Non-native
948 plants reduce abundance, richness, and host specialization in lepidopteran
949 communities. *Ecosphere* 1:art11.

950 Burin, G., L. R. V. Alencar, J. Chang, M. E Alfaro, and T. B. Quental. 2019. How well
951 can we estimate diversity dynamics for clades in diversity decline? *Syst. Biol.* 68:
952 47–62.

953 Carley, L. N., J. P. Mojica, B. Wang, C.-Y. Chen, Y.-P. Lin, K. V. S. K. Prasad, E. Chan,
954 C.-W. Hsu, R. Keith, C. L. Nuñez, C. F. Olson-Manning, C. A. Rushworth, M. R.
955 Wagner, J. Wang, P.-M. Yeh, M. Reichelt, K. Ghattas, J. Gershenson, C.-R. Lee, and
956 T. Mitchell-Olds. 2021. Ecological factors influence balancing selection on leaf
957 chemical profiles of a wildflower. *Nat. Ecol. Evol.* 5:1135–1144.

958 Cogni, R., C. Cao, J. P. Day, C. Bridson, and F. M. Jiggins. 2016. The genetic architecture
959 of resistance to virus infection in *Drosophila*. *Mol. Ecol.* 25:5228–5241.

960 Cohen, J. E., and D. W. Stephens. 2020. Food Webs and Niche Space. (MPB-11),
961 Volume 11. Princeton Univ. Pres, Princeton, NJ.

962 Cosmo, L. G., L. F. Yamaguchi, G. M. F. Felix, M. J. Kato, R. Cogni, and M. Pareja. 2021.
963 From the leaf to the community: Distinct dimensions of phytochemical diversity
964 shape insect-plant interactions within and among individual plants. *J. Ecol.*
965 109:2475–2487.

966 Crawley, M. 1989. Insect herbivores and plant population dynamics. *Annu. Rev.*
967 *Entomol.* 34: 531–564.

968 Darwin, C. 1859. *On the Origin of Species by Means of Natural Selection: Or The*
969 *Preservation of Favoured Races in the Struggle for Life*. Werner Company.

970 Dynesius, M., and R. Jansson. 2014. Persistence of within-species lineages: a neglected
971 control of speciation rates. *Evolution* 68: 923–934.

972 Ehrlich, P. R., and P. H. Raven. 1964. Butterflies and plants: a study in coevolution.
973 *Evolution* 18:586-608.

974 Elton, C. S. 2001. *Animal Ecology*. Univ.Chicago Pres, Chicago, IL.

975 Estes, J. A., J. S. Brashares, and M. E. Power. 2013. Predicting and Detecting
976 Reciprocity between Indirect Ecological Interactions and Evolution. *Am. Nat.*
977 181:S76–S99.

978 Ezard, T. H., T. Aze, P. N. Pearson, and A. Purvis. 2011. Interplay between changing
979 climate and species' ecology drives macroevolutionary dynamics. *Science* 332:
980 349–351.

981 Farrell, B. D. 1998. Inordinate fondness explained: Why are there so many beetles?
982 *Science* 281: 555–559.

983 Farrell, B. D., D. E. Dussourd, and C. Mitter. 1991. Escalation of plant defense: do latex
984 and resin canals spur plant diversification? *Am. Nat.* 138:881–900.

985 Fattorini, R., and B. J. Glover. 2020. Molecular mechanisms of pollination biology.
986 *Annu. Rev. Plant Biol.* 71:487–515.

987 Feder, M. E., and T. Mitchell-Olds. 2003. Evolutionary and ecological functional
988 genomics. *Nat. Rev. Genet.* 4:649–655.

989 Flor, H. 1955. Host-parasite interactions in flax rust-its genetics and other implications.
990 *Phytopathology* 45:680–685.

991 Foisy, M. R., L. P. Albert, D. W. Hughes, M. G. Weber. 2019. Do latex and resin canals
992 spur plant diversification? Re-examining a classic example of escape and radiate
993 coevolution. *J. Ecol.* 107:1606–1609

994 Fonseca, C. R., and G. Ganade. 1996. Asymmetries, Compartments and Null
995 Interactions in an Amazonian Ant-Plant Community. *J. Anim. Ecol.* 65:339–347.

996 Fontaine, C., E. Thébault, I. Dajoz. 2009. Are Insect Pollinators More Generalist than
997 Insect Herbivores?. *Proc. Royal. Soc. B.* 276(1669): 3027–33.

998 Foote, M., J. S. Crampton, A. G. Beu, R. A. Cooper. 2008. On the bidirectional
999 relationship between geographic range and taxonomic duration. *Paleobiology*
1000 34:421–433.

1001 Futuyma, D. J. 1987. On the role of species anagenesis. *Am. Nat.* 130: 467–473.

1002 Futuyma, D. J. 2010. Evolutionary constraint and ecological consequences. *Evolution*
1003 64: 1865–1884.

1004 Futuyma, D. J., and A. A. Agrawal. 2009. Macroevolution and the biological diversity
1005 of plants and herbivores. *PNAS.* 106: 18054–18061.

1006 Futuyma, D. J., and M. C. Keese. 1992. Evolution and coevolution of plants and
1007 phytophagous arthropods. Pages 439–475 in G. A. Rosenthal and M. R.
1008 Berenbaum, editors. *Herbivores: their interactions with secondary plant*
1009 *metabolites.* Academic Pres, London.

1010 Futuyma, D. J., and M. Slatkin. 1983. *Coevolution.* Sinauer Associates Inc, Sunderland,
1011 MA.

1012 Gaba, S. and D. Ebert. 2009. Time-shift experiments as a tool to study antagonistic
1013 coevolution. *Trends Ecol. Evol.* 24: 226–232.

1014 Gilinsky, N. L., and R.K. Bambach. 1987. Asymmetrical patterns of origination and
1015 extinction in higher taxa. *Paleobiology* 13(4):427–445.

1016 Guimarães, P. R. 2020. The Structure of Ecological Networks Across Levels of
1017 Organization. *Annu. Rev. Ecol. Evol. Syst.* 51(1):433–460.

1018 Hall, A. R., B. Ashby, J. Bascompte, and K. C. King. 2020. Measuring Coevolutionary
1019 Dynamics in Species-Rich Communities. *Trends Ecol. Evol.* 35:539–550.

1020 Hannon, B. 1973. The structure of ecosystems. *J. Theor. Biol.* 41:535–546.

1021 Harmon, L. J., C. S. Andreazzi, F. Debarre, J. Drury, E. E. Goldberg, A. B. Martins, C.
1022 J. Melian, A. Narwani, S. L. Nuismer, M. W. Pennell, S. M. Rudman, O. Seehausen,
1023 D. Silvestro, M. Weber, and B. Matthews. 2019. Detecting the macroevolutionary
1024 signal of species interactions. *J. Evol. Biol.* 32:769–782.

1025 Harvey, M.G., S. Singhal, and D. L. Rabosky. 2019. Beyond the reproductive isolation:
1026 demographic controls on the speciation process. *Annu. Rev. Ecol. Evol. Syst.* 50:
1027 3.1–3.21.

1028 Hembry, D. H. and M. G. Weber 2020. Ecological interactions and macroevolution: a
1029 new field with old roots. *Annu. Rev. Ecol. Evol. Syst.* 51: 215–243.

1030 Hembry, D. H., J. B. Yoder, and K. R. Goodman. 2014. Coevolution and diversification
1031 of life. *Am. Nat.* 184:425–438

1032 Hoekstra, H. E. 2010. Evolutionary biology: the next 150 years. *in* M. Bell, D. J.
1033 Futuyma, W. F. Eanes, and J. Levinton, editors. *Evolution Since Darwin: The*
1034 *First 150 Years*. Sinauer Associates Inc, Sunderland, MA.

1035 Jablonski, D. 2008. Biotic interactions and macroevolution: extensions and
1036 mismatches across scales and levels. *Evolution* 64:715–39.

1037 Janz, N. 2011. Ehrlich and Raven Revisited: Mechanisms Underlying
1038 Codiversification of Plants and Enemies. *Annu. Rev. Ecol. Evol. Syst.* 42:71–89.

1039 Janzen, D. H. 1966. Coevolution of Mutualism Between Ants and Acacias in Central
1040 America 20:249–275.

1041 Janzen, D. H. 1980. When is it coevolution? *Evolution* 34:611–612.

1042 Joppa, L. N., J. Bascompte, J. M. Montoya, R. V. Sole, J. Sanderson, and S. L. Pimm.
1043 2009. Reciprocal specialization in ecological networks. *Ecol. Lett.* 12:961–969.

1044 Jorge, L. R., V. Novotny, S. T. Segar, G. D. Weiblen, S. E. Miller, Y. Basset, and T. M.
1045 Lewinsohn. 2017. Phylogenetic trophic specialization: a robust comparison of
1046 herbivorous guilds. *Oecologia* 185:551–559.

1047 Jousselin, E., and M. Elias M. 2019. Testing host-plant driven speciation in
1048 phytophagous insects: a phylogenetic perspective. *BioArXiv.* 2019020215.

1049 Karageorgi, M., S. C. Groen, F. Sumbul, J. N. Pelaez, K. I. Verster, J. M. Aguilar, A. P.
1050 Hastings, S. L. Bernstein, T. Matsunaga, M. Astourian, G. Guerra, F. Rico, S.
1051 Dobler, A. A. Agrawal, and N. K. Whiteman. 2019. Genome editing retraces
1052 the evolution of toxin resistance in the monarch butterfly. *Nature* 574:409–412.

1053 Kauffman, S. A., and S. Johnsen. 1991. Coevolution to the edge of chaos: coupled
1054 fitness landscapes, poised states, and coevolutionary avalanches. *J. Theor.*
1055 *Biol.* 149:467–505.

1056 Lau, M. K., A. R. Keith, S. R. Borrett, S. M. Shuster, and T. G. Whitham. 2016.
1057 Genotypic variation in foundation species generates network structure that
1058 may drive community dynamics and evolution. *Ecology* 97:733–742.

1059 Lewinsohn, T. M., P. I. Prado, P. Jordano, J. Bascompte, and J. M. Olesen. 2006.
1060 Structure in plant-animal interaction assemblages. *Oikos* 113:174–184.

1061 Li, W., M. A. Schuler, and M. R. Berenbaum. 2003. Diversification of
1062 furanocoumarin-metabolizing cytochrome P450 monooxygenases in two
1063 papilionids: specificity and substrate encounter rate. *PNAS*. 100(suppl
1064 2):14593-14598.

1065 Liow, L. H., T. Reitan, and P. G. Harnik. 2015. Ecological interactions on
1066 macroevolutionary time scales: clams and brachiopods are more than ships
1067 that pass in the night. *Ecol. Lett.* 18:1030–1039.

1068 Loeuille, N., and M. Loreau. 2005. Evolutionary emergence of size-structured food
1069 webs. *Proc. Natl. Acad. Sci. U. S. A.* 102:5761–5766.

1070 Louca, S. and M. W. Pennell. 2020. Extant timetrees are consistent with a myriad of
1071 diversification histories. *Nature* 580: 502–506.

1072 Louca, S. and M. W. Pennell. 2021. Why extinction estimates from extant phylogenies
1073 are so often zero. *Curr. Biol.* 31(14): 3168-3173.

1074 Margalef, R. 1996. Information and uncertainty in living systems, a view from
1075 ecology. *Biosystems*. 38:141–146.

1076 Maron, J. L., A. A. Agrawal, and D. W. Schemske. 2019. Plant-herbivore coevolution
1077 and plant speciation. *Ecology* 100(7):e02704.

1078 May, R. M. 1973. Qualitative stability in model ecosystems. *Ecology* 54:638–641.

1079 Memmott, J., N. M. Waser, and M. V. Price. 2004. Tolerance of pollination networks
1080 to species extinctions. *Proc. Biol. Sci.* 271:2605–2611.

1081 Meskens, C., D. Mckenna, T. Hance, and D. Windsor. 2011. Host plant taxonomy and
1082 phenotype influence the structure of a neotropical host plant-hispine beetle
1083 food web. *Ecol. Entomol.* 36:480–489.

1084 Mitter, C., and D. R. Brooks. 1983. Phylogenetic aspects of coevolution. Pages 65–98
1085 in D. J. Futuyma and M. Slatkin, editors. Coevolution. Sinauer, Sunderland,
1086 MA.

1087 Mode, C. J. 1958. A mathematical model for the co-evolution of obligate parasites
1088 and their hosts. *Evolution* 12:158–165.

1089 Montoya, J. M. 2007. Evolution within food webs: The possible and the actual.
1090 *Heredity* 99:477–478.

1091 Müller, Fritz. 1879. Ituna and Thyridia: A Remarkable Case of Mimicry in Butterflies.
1092 *Trans. Entomol. Soc. Lond.* 1879:20–29.

1093 Myers, J. H., and R. M. Sarfraz. 2017. Impacts of insect herbivores on plant
1094 populations. *Annu. Rev. Entomol.* 62:207–230.

1095 Naumann, C., T. Hartmann, and D. Ober. 2002. Evolutionary recruitment of a flavin-
1096 dependent monooxygenase for the detoxification of host plant-acquired
1097 pyrrolizidine alkaloids in the alkaloid-defended arctiid moth *Tyria jacobaeae*.
1098 *PNAS*. 99:6085–6090.

1099 Nicholson D.B., A. J. Ross, and P. J. Mayhew. 2014. Fossil evidence for key
1100 innovations in the evolution of insect diversity. *Proc. Roy. Soc. B.* 281:
1101 e20141823.

1102 Nuismer, S. L., and J. N. Thompson. 2006. Coevolutionary alternation in antagonistic
1103 interactions. *Evolution* 60:2207–2217.

1104 Nylin, S., S. Agosta, S. Bensch, W. A. Boeger, M. P. Braga, D. R. Brooks, M. L.
1105 Forister, P. A. Hämäkä, E. P. Hoberg, T. Nyman, A. Schäpers, A. L. Stigall, C.
1106 W. Wheat, M. Österling, and N. Janz. 2018. Embracing Colonizations: A New
1107 Paradigm for Species Association Dynamics. *Trends Ecol. Evol.* 33:4–14.

1108 Nylin, S., and N. Janz. 2008. 15. The Oscillation Hypothesis Of Host-Plant Range
1109 And Speciation. Pp. 203–215 in *Specialization, Speciation, and Radiation*.
1110 Univ. California Pres, Oakland, CA.

1111 Nylin, S., and N. Wahlberg. 2008. Does plasticity drive speciation? Host-plant shifts
1112 and diversification in nymphaline butterflies (Lepidoptera : Nymphalidae)
1113 during the tertiary. *Biol. J. Linn. Soc.* 94:115–130.

1114 Ober, D., and E. Kaltenegger. 2009. Pyrrolizidine alkaloid biosynthesis, evolution of
1115 a pathway in plant secondary metabolism. *Phytochemistry* 70:1687–1695.

1116 Odum, H. T. 1960. Ecological potential and analogue circuits for the ecosystem. *Am.*
1117 *Sci.* 48:54A–8.

1118 O'Reilly, U.-M., J. Toutouh, M. Pertierra, D. P. Sanchez, D. Garcia, A. E. Luogo, J.
1119 Kelly, and E. Hemberg. 2020. Adversarial genetic programming for cyber
1120 security: a rising application domain where GP matters. *Genet. Program.*
1121 *Evolvable Mach.* 21:219–250.

1122 Page, R. D. M. 2003. *Tangled Trees: Phylogeny, Cospeciation, and Coevolution.*
1123 University of Chicago Press.

1124 Paine, R. T. 1966. Food Web Complexity and Species Diversity. *Am. Nat.* 100:65–75.

1125 Pascual, M., and J. Dunne. 2006. *Ecological Networks: Linking Structure to*
1126 *Dynamics in Food Webs.* Oxford Univ. Pres, Oxford, UK.

1127 Peralta, G. 2016. Merging evolutionary history into species interaction networks.
1128 *Funct. Ecol.* 30:1917–1925.

1129 Pimentel, D. 1961. Animal population regulation by the genetic feed-back
1130 mechanism. *Am. Nat.* 95:65–79.

1131 Pimm, S. L., and J. H. Lawton. 1980. Are Food Webs Divided into Compartments? *J.*
1132 *Anim. Ecol.* 49:879–898.

1133 Pires, M. M., and P. R. Guimarães Jr. 2013. Interaction intimacy organizes networks
1134 of antagonistic interactions in different ways. *J. R. Soc. Interface* 10:20120649.

1135 Ponisio, L. C., F. S. Valdovinos, K. T. Allhoff, M. P. Gaiarsa, A. Barner, P. R.
1136 Guimaraes Jr, D. H. Hembry, B. Morrisong, and R. Gillespie. 2019. A Network
1137 Perspective for Community Assembly. *Front. Ecol. Evol.* 7:103.

1138 Prado, P. I., and T. M. Lewinsohn. 2004. Compartments in insect-plant associations
1139 and their consequences for community structure. *J. Anim. Ecol.* 73:1168–1178.

1140 Qin, Y.-G., Q.-S. Zhou, F. Yu, X.-B. Wang, J.-F. Wei, C.-D. Zhu, Y.-Z. Zhang, and A. P.
1141 Vogler. 2018. Host specificity of parasitoids (Encyrtidae) toward armored
1142 scale insects (Diaspididae): Untangling the effect of cryptic species on
1143 quantitative food webs. *Ecol. Evol.* 8:7879–7893.

1144 Quental, T. B., and C. R. Marshall. 2013. How the Red Queen drives terrestrial
1145 mammals to extinction. *Science* 341: 290–292.

1146 Rabosky, D. L. 2010. Extinction rates should not be estimated from molecular
1147 phylogenies. *Evolution* 64:1816–1824.

1148 Rabosky, D. L., 2013. Diversity-dependence, ecological speciation, and the role of
1149 competition in macroevolution. *Annu. Rev. Ecol. Evol. Syst.* 44:481–502

1150 Rabosky, D. L., and D. R. Matute. 2013. Macroevolutionary speciation rates are
1151 decoupled from the evolution of intrinsic reproductive isolation in *Drosophila*
1152 and birds. *PNAS.* 110(38):15354-15359.

1153 Ratzka, A., H. Vogel, D. J. Kliebenstein, T. Mitchell-Olds, and J. Kroymann. 2002.
1154 Disarming the mustard oil bomb. *PNAS.* 99:11223–11228.

1155 Rausher, M. D. 2001. Co-evolution and plant resistance to natural enemies. *Nature*
1156 411:857–864.

1157 Rogers, H. S., E. R. Buhle, J. HilleRisLambers, E. C. Fricke, R. H. Miller, and J. J.
1158 Tewksbury. 2017. Effects of an invasive predator cascade to plants via
1159 mutualism disruption. *Nat. Commun.* 8:14557.

1160 Rosenblum E. B., B. A. Sarver, J. W. Brown, S. Des Roches, K. M. Hardwick, K. M.
1161 Hardwick, T. D. Hether, J. M. Eastman, M. W Pennell, and L. J. Harmon. 2012.
1162 Goldilocks meets Santa Rosalia: an ephemeral speciation model explains
1163 patterns of diversification across time scales. *Evol. Biol.* 39:255–261.

1164 Schöps, K. 2002. Local and regional dynamics of a specialist herbivore:
1165 overexploitation of a patchily distributed host plant. *Oecologia* 132:256–263

1166 Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited.
1167 In *Evolutionary Paleobiology*, ed. D. Jablonski, D.H. Erwin, J. H Lipps, pp.
1168 211–55. Chicago: Univ. Chicago Pres, Chicago, IL.

1169 Silvestro D., A. Antonelli, N. Salamin, T. B. Quental. 2015. The role of clade
1170 competition in the diversification of North American canids. *PNAS.* 112:8684–
1171 8689.

1172 Smith, C. C. 1970. The Coevolution of Pine Squirrels (*Tamiasciurus*) and Conifers.
1173 *Ecological Monographs* 40:349–371.

1174 Steppuhn, A., K. Gase, B. Krock, R. Halitschke, and I. T. Baldwin. 2004. Nicotine's
1175 defensive function in nature. *PLoS Biol.* 2:E217.

1176 Suchan, T., and N. Alvarez. 2015. Fifty years after Ehrlich and Raven, is there
1177 support for plant-insect coevolution as a major driver of species
1178 diversification? *Entomol. Exp. Appl.* 157(1):98–112.

1179 Tallamy, D. W., and K. J. Shropshire. 2009. Ranking Lepidopteran Use of Native
1180 Versus Introduced Plants. *Conserv. Biol.* 23:941–947.

1181 Thébault, E., and C. Fontaine. 2010. Stability of ecological communities and the
1182 architecture of mutualistic and trophic networks. *Science* 329:853–856.

1183 Thompson, J. N. 1982. *Interaction and Coevolution*. John Wiley & Sons, New York,
1184 NY.

1185 Thompson, J. N. 1989. Concepts of coevolution. *Trends Ecol. Evol.* 4:179–183.

1186 Thompson, J. N. 1994. *The coevolutionary process*. Univ. Chicago Pres, Chicago, IL.

1187 Thompson, J. N. 2005. *The Geographic Mosaic of Coevolution*. Univ. Chicago Pres,
1188 Chicago, IL.

1189 Thompson, J. N. 2009. *The Coevolving Web of Life*. *Am. Nat.* 173:125–140

1190 Thompson, J. N. 2013. *Relentless Evolution*. Univ. Chicago Press, Chicago, IL.

1191 Van Eck, N.J., & Waltman, L. 2010. Software survey: VOSviewer, a computer
1192 program for bibliometric mapping. *Scientometrics* 84(2):523–538.

1193 Van Valen, L. M. 1973. A new evolutionary law. *Evol. Theory*. 1:1–30

1194 Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators
1195 and grazers. *Paleobiology* 3:245–258

1196 Vermeij, G. J. 1994. The evolutionary interaction among species: selection,
1197 escalation, and coevolution. *Annu. Rev. Ecol. Syst.* 25:219–236.

1198 Wagner, A. 2011. Genotype networks shed light on evolutionary constraints. *Trends
1199 Ecol. Evol.* 26:577–584.

1200 Waltman, L., and Van Eck, N. J. 2013. A smart local moving algorithm for large-scale
1201 modularity-based community detection. *Eur. Phys. J. B* 86: 471.

1202 Waltman, L., N. J. Van Eck, and E. C. M. Noyons. 2010. A unified approach to
1203 mapping and clustering of bibliometric networks. *J. Informetr.* 4:629–635.

1204 Wang, M. Q., Y. Li, D. Chesters, H. Bruelheide, K. Ma, P. F. Guo, Q. S. Zhou, M.
1205 Staab, C.-D. Zhu, and A. Schuldt. 2020. Host functional and phylogenetic
1206 composition rather than host diversity structure plant-herbivore networks.
Mol. Ecol. 29:2747–2762.

1208 Wheat, C. W., H. Vogel, U. Wittstock, M. F. Braby, D. Underwood, and T. Mitchell-
1209 Olds. 2007. The genetic basis of a plant-insect coevolutionary key innovation.
1210 PNAS 104:20427–20431.

1211 Winkler, I. S., C. Mitter, and S. J. Scheffer. 2009. Repeated climate-linked host shifts
1212 have promoted diversification in a temperate clade of leaf-mining flies. PNAS.
1213 106:18103–18108.

1214 Wittstock, U., N. Agerbirk, E. J. Stauber, C. E. Olsen, M. Hippler, T. Mitchell-Olds, J.
1215 Gershenzon, and H. Vogel. 2004. Successful herbivore attack due to metabolic
1216 diversion of a plant chemical defense. PNAS. 101:4859–4864.

1217 Xia, J., Z. Guo, Z. Yang, H. Han, S. Wang, H. Xu, X. Yang, F. Yang, Q. Wu, W. Xie, X.
1218 Zhou, W. Dermauw, T. C. J. Turlings, and Y. Zhang. 2021. Whitefly hijacks a
1219 plant detoxification gene that neutralizes plant toxins. Cell 184:1693–
1220 1705.e1617.

1221 Xu, S., T. Brockmöller, A. Navarro-Quezada, H. Kuhl, K. Gase, Z. Ling, W. Zhou, C.
1222 Kreitzer, M. Stanke, H. Tang, E. Lyons, P. Pandey, S. P. Pandey, B.
1223 Timmermann, E. Gaquerel, and I. T. Baldwin. 2017. Wild tobacco genomes
1224 reveal the evolution of nicotine biosynthesis. PNAS. 114:6133–6138.

1225 Zhen, Y., M. L. Aardema, E. M. Medina, M. Schumer, and P. Andolfatto. 2012.
1226 Parallel molecular evolution in an herbivore community. Science 337:1634–
1227 1637.