ABOUT $x^4 = \omega (x)^3 x$ TRAIN ALGEBRAS

R. Benavides and C. Mallol ¹
Universidad de la Frontera - Facultad de Ingeniería
Departamento de Matemática
Casilla 54-D
Temuco, Chile
rbenavid@ufro.cl and cmallol@ufro.cl
and

R. Costa²

Instituto de Matemática e Estatística - USP Caixa Postal 66281- CEP 05389-970 - Ag. Cidade de São Paulo São Paulo, SP - Brazil rcosta@ime.usp.br

Received March 20, 2001

Abstract

The purpose of this paper is to study in particular a class of train algebras of rank 4 that satisfy the t-equation $x^4 = \omega(x)^3 x$. Some results concerning to structure theorems of these algebras are given.

 2 Sposored by CNPq, Proc. 300645/93-7

¹Sponsored by FONDECYT 8990001 (Líneas Complementarias)

1. Introduction

Let \mathbf{F} be an infinite field of characteristic not 2 and \mathbf{A} a finite dimensional, commutative, non-associative algebra over \mathbf{F} . If $\omega : \mathbf{A} \to \mathbf{F}$ is a non-zero homomorphism, the ordered pair (\mathbf{A}, ω) is called a baric algebra and ω the weight function of (\mathbf{A}, ω) . The ideal $\mathbf{B} = ker\omega$ has codimension 1 in \mathbf{A} and if $c \in \mathbf{A}$, $\omega(c) = 1$ then \mathbf{A} can be descomposed as $\mathbf{A} = \mathbf{F}e \oplus \mathbf{B}$. If there exist elements $\gamma_1, \dots, \gamma_{n-1} \in \mathbf{F}$ such that the equation

$$x^{r} + \gamma_{1}\omega(x)x^{r-1} + \dots + \gamma_{r-1}\omega(x)^{r-1}x = 0$$
 (1)

holds identically in **A**, then **A** is called a train algebra. The equation like (1) with minimum degree is the rank equation of **A**, r is the rank of **A** and the roots of the algebraic equation $x^r + \gamma_1 x^{r-1} + \cdots + \gamma_{r-1} x = 0$ in some extension field of **F** are the train roots of **A**. We will assume that all these train roots are in **F** itself. In these conditions, $1 + \gamma_1 + \cdots + \gamma_{n-1} = 0$ and **B** satisfies the monomial equation $x^r = 0$.

We will be mainly concerned in this note with train algebras of rank 4, for which equation (1) becomes $x^4 + \gamma_1 \omega(x) x^3 + \gamma_2 \omega(x)^2 x^2 + \gamma_3 \omega(x)^3 x = 0$.

Every baric algebra with an idempotent of weight 1 can be obtained in the following way. Suppose **B** is an arbitrary commutative finite dimensional algebra over **F**. Take the direct sum $\mathbf{A} = \mathbf{F} \oplus \mathbf{B}$ and define a multiplication in **A** by

$$(\alpha, a)(\beta, b) = (\alpha\beta, ab + \tau_{\mathbf{B}}(\alpha b + \beta a)), \ \alpha, \beta \in \mathbf{F}; \ a, b \in \mathbf{B}$$
 (2)

where $\tau_{\mathbf{B}}: \mathbf{B} \to \mathbf{B}$ is an arbitrary linear mapping. Then $\omega: \mathbf{A} \to \mathbf{F}$ given by $\omega(\alpha, a) = \alpha$ is non-zero homomorphism, (\mathbf{A}, ω) is a baric algebra and (1,0) is an idempotent of weight 1. As $(1,0)(0,a) = (0,\tau(a))$, multiplication by (1,0) is the same as the operator $\tau_{\mathbf{B}}$ acting on \mathbf{B} . In general two different $\tau's$ may give rise to \mathbf{B} -isomorphic algebras.

The theory of train algebras of rank 2 is trivial and for r = 3, the papers [1] and [2] contain some basic material. In this paper we try to develop the theory for r = 4, where a small number of results are

known. For instance, it is known that every nuclear Bernstein algebra satisfies the train equation $x^4 - \frac{3}{2}\omega(x)x^3 + \frac{1}{2}\omega(x)^2x^2 = 0$. We shall study mainly the case particular of algebras that satisfy the t-equation $x^4 = \omega(x)^3x$.

2. General results

With the previous notation, if **B** satisfies the identity $a^4 = 0$ for all $a \in \mathbf{B}$, it is easy to see that **A** satisfies the rank equation

$$x^{4} + \gamma_{1}\omega(x)x^{3} + \gamma_{2}\omega(x)^{2}x^{2} + \gamma_{3}\omega(x)^{3}x = 0$$
 (3)

if and only if the following identities hold:

$$2[\tau(a)a]a + \tau(a^2)a + \tau(a^3) + \gamma_1 a^3 = 0 \tag{4}$$

$$(\tau^{2} + \gamma_{1}\tau + \gamma_{2}\mathbf{I}_{\mathbf{B}})(a^{2}) + [2\tau + (1 + 2\gamma_{1})\mathbf{I}_{\mathbf{B}}](a\tau(a)) + 2\tau^{2}(a)a = 0$$
 (5)

$$+ \gamma_2 \mathbf{I}_{\mathbf{B}}(a) + (2\tau + (1 + \gamma_1 + 2\gamma_2)\tau + \gamma_3 \mathbf{I}_{\mathbf{B}} = 0$$

$$2\tau^3 + (1 + 2\gamma_1)\tau^2 + (1 + \gamma_1 + 2\gamma_2)\tau + \gamma_3 \mathbf{I}_{\mathbf{B}} = 0$$
(6)

where a is an arbitrary element of $\mathbf B$ and $I_{\mathbf B}$ is the identity operator in $\mathbf B$.

in B.

These equations are obtained by substituting $x = (\alpha, a) \in \mathbf{A} = \mathbf{F} \oplus \mathbf{B}$ in the equation (3), where

F
$$\oplus$$
 B in the equation (3), where $x^2 = (\alpha^2, a^2 + 2\alpha\tau(a))$
 $x^3 = (\alpha^3, a^3 + \alpha[2\tau(a)a + \tau(a^2)] + \alpha^2[\tau(a) + 2\tau^2(a)]$
 $x^4 = (\alpha^4, a^4 + \alpha[2(\tau(a)a)a + \tau(a^2)a + \tau(a^3)] + \alpha^2[\tau(a)a + 2\tau^2(a)a + \tau(a^2)a + \tau(a$

Conversely, the proof is obvious, up to the calculations which are long. The equation (6) can be written as

equation (9)
$$(2\tau - \mathbf{I_B})[\tau^2 + (1+\gamma_1)\tau + (1+\gamma_1+\gamma_2)\mathbf{I_B}] = 0$$
(7)

We shall study now the case $\gamma_1 = \gamma_2 = 0$ and $\gamma_3 = -1$, that is, algebras that satisfy the t-equation

$$x^4 = \omega(x)^3 x \tag{3'}$$

Furthermore the relation (7) in this case can be written as

$$(2\tau - I_{\mathbf{B}})(\tau^2 + \tau + I_{\mathbf{B}}) = 0$$
 (7')

thus the proper values of τ are $\frac{1}{2}$, λ , δ , where λ and δ are the roots of the polynomial

 $x^2 + x + 1 = 0 ag{8}$

We note that they satisfy the following relations: $\lambda^3 = \delta^3 = 1$, $\lambda + \delta = -1$ and $\lambda \delta = 1$.

If we have a train algebra **A** of rank 4, constructed as it is explained before, we can decompose $\mathbf{B} = \mathbf{U} \oplus \mathbf{V} \oplus \mathbf{W}$ where $\mathbf{U} = ker(\tau - \frac{1}{2}\mathbf{I_B})$, $\mathbf{V} = ker(\tau - \lambda \mathbf{I_B})$ and $\mathbf{W} = ker(\tau - \delta \mathbf{I_B})$.

On the other hand, the linearization of the equation (3') yields

$$2x[x(xy)] + x(x^2y) + x^3y = \omega(x)^3y + 3\omega(x)^2\omega(y)x$$
(9)

or

$$2z[x(xy)] + 2x[z(xy)] + 2x[x(yz)] + z(x^2y) + 2x[y(xz)] + y(zx^2)$$
$$+2y[x(xz)] = 6\omega(x)\omega(z)\omega(y)x + 3\omega(x)^2\omega(y)z + 3\omega(x)^2\omega(z)y \quad (10)$$
or

$$t[x(yz)+y(xz)+z(xy)]+x[y(zt)+z(yt)+t(yz)]+y[x(zt)+z(xt)+t(xz)]$$

$$+z[t(xy)+x(ty)+y(xt)] = 3[\omega(xyz)t+\omega(xyt)z+\omega(xtz)y+\omega(ytz)x]$$
(11)

From (11) we obtain some relations between the above defined subspaces. We note also that they are obtained from [4]:

$$\mathbf{U}^{2} \subset \mathbf{V} \oplus \mathbf{W}, \ \mathbf{V}^{2} \subset \mathbf{W}, \ \mathbf{W}^{2} \subset \mathbf{V}$$

$$\mathbf{U}\mathbf{V} \subset \mathbf{U} \oplus \mathbf{W}, \ \mathbf{U}\mathbf{W} \subset \mathbf{U} \oplus \mathbf{V} \text{ and } \mathbf{V}\mathbf{W} = \{0\}$$
(12)

Remark.

In relation to the subspaces \mathbf{V} and \mathbf{W} above defined, we can deduce immediately from (12) that $\mathbf{V}^3 = 0$ and $\mathbf{W}^3 = 0$. Besides from [4] it is known that $\mathbf{V}^2\mathbf{W} = 0$, $\mathbf{W}^2\mathbf{V} = 0$ and the subspace $\mathbf{Z} = \mathbf{V} \oplus \mathbf{W}$ satisfies $\mathbf{Z}^3 = 0$.

On the other hand, in view of these results we obtain easily:

$$\begin{array}{lll} \textbf{Corollary 1} & \mathbf{U}^2\mathbf{V}^2=0, \ \mathbf{U}^2\mathbf{W}^2=0, \ \mathbf{V}^2\mathbf{W}^2=0, \ (\mathbf{V}^2)^2=0, \\ (\mathbf{W}^2)^2=0, \ (\mathbf{U}^2)^2\mathbf{V}=0, \ (\mathbf{U}^2)^2\mathbf{W}=0 \ \textit{and} \ (\mathbf{U}^2)^2\mathbf{U}^2=0. \end{array}$$

Also from [4] it is known that:

Corollary 2 Let A satisfy (3'). Then (3') is a train equation of minimal degree for A if only if V and W are both nonzero subspaces.

Corollary 3 The algebra $C = Fe \oplus U \oplus V$ (where W = 0) is a train algebra of rank 3.

Proof: In these conditions and from (12) we have that:

$$\mathbf{U}\mathbf{V} \subset \mathbf{U}, \ \mathbf{U}^2 \subset \mathbf{V}, \ \mathbf{V}^2 = 0$$

Now, similarly as was proved in the corollary 2 (see [4]), we obtain that (\mathbf{C}, ω) satisfies the t-equation: $x^3 - (1+\lambda)\omega(x)x^2 + \lambda\omega(x)^2x = 0$. A similar result is obtained when $\mathbf{V} = \mathbf{0}$. Thus the assertion is valid.

Proposition 1 For all $k \geq 1$, \mathbf{B}^k is an ideal of \mathbf{A} .

Proof: This is obvious for k = 1 and we proceed by induction. We note that it is sufficient to show that $e \cdot \mathbf{B}^{k+1} \subset \mathbf{B}^{k+1}$, that is, \mathbf{B}^{k+1} is L_e -invariant. Suppose that \mathbf{B}^k is an ideal of \mathbf{A} . From (10) and taking $x \in \mathbf{B}$, $z \in \mathbf{B}^{k-1}$, y = e we have

$$2z[x(ex)] + 2x[z(ex)] + 2x[x(ez)] + z(ex^{2}) + 2x[e(xz)]$$
$$+e(zx^{2}) + 2e[x(xz)] = 0$$

besides, $zx^2 + 2x(xz) \in \mathbf{B}^{k+1}$ whence $e[zx^2 + 2x(xz)] \in \mathbf{B}^{k+1}$ since all the other sumands of the above relation are in \mathbf{B}^{k+1} . Thus \mathbf{B}^k is an ideal of \mathbf{A} .

Proposition 2 If A is a train algebra satisfying (3') then it is not a power-associative algebra.

Proof: This is trivial from [5].

3. Some special cases

(A) In the following, we shall do reference to the algebra $\mathbf{C} = \mathbf{F}e \oplus \mathbf{Z}$ ($\mathbf{U} = 0$). We do note that if $e \in I_p(\mathbf{C})$ then $\omega(e) = 1$. In fact, if $e \in I_p(\mathbf{C})$ and $\omega(e) = 0$, then $e \in \ker \omega$ and $e^4 = e = 0$, a contradiction. Hence $\omega(e) \neq 0$. Besides as $\omega(e) = \omega(e^2) = \omega(e)^2$ then $\omega(e)[\omega(e) - 1] = 0$ and so $\omega(e) = 1$.

Proposition 3 The algebra $C = Fe \oplus Z$ has exactly one idempotent element.

Proof: Let $x = \alpha e + v + w$ be a nonzero idempotent element in C. From $x^2 = x$ we deduce that

$$\alpha^2 e + v^2 + w^2 + 2\alpha ev + 2\alpha ew = \alpha e + v + w$$

and this shows that

$$\alpha^2 = \alpha$$
, $2\alpha \lambda v + w^2 = v$, $2\alpha \delta w + v^2 = w$

If $\alpha = 0$ then $x = x^4 = 0$. Thus $\alpha = 1$, besides we find $(2\lambda - 1)v^2 = 0$ whence $v^2 = 0$ which implies w = 0 and v = 0. Therefore x = e, which proves the proposition.

Proposition 4 $C = Fe \oplus Z$ is a special train algebra and hence genetic.

Proof: We know that C is a train algebra of rank 4 and that $\mathbf{Z}^3 = 0$ then \mathbf{Z} is a nilpotent algebra. Furthermore, from the proposition 1 we can conclude that C is a special train algebra and so consequently a genetic algebra.

(B) Now, we shall study the algebra $\mathbf{A} = \mathbf{F}c \oplus \mathbf{U} \oplus \mathbf{Z}$ with some restrictions of the proper subspaces \mathbf{U} , \mathbf{V} and \mathbf{W} . Also, we do note that the results obtained for \mathbf{V} also are verified for \mathbf{W} . All this by the symmetric properties of the mentioned subspaces.

Proposition 5 If $UV \subset W$ then Z(UV) = 0 and $UV^2 = 0$.

(a) As $UV \subset W$ it follows immediately that V(UV) = 0. On the other hand, we choose $x=u\in \mathbf{U},\ y=v\in \mathbf{V},\ z=w\in \mathbf{W}$ and t=e. Therefore from (11) it follows that e[u(vw)+v(uw)+w(uv)]+u[v(ew) + w(ev) + e(vw)] + v[u(ew) + w(eu) + e(uw)] + w[e(uv) + u(ev) + w(ev) + w(ev)] + v[e(uv) + e(uv) + w(ev) + wv(eu)] = 0. In this conditions we obtain that 2e[w(uv)] = w(uv)and so $w(uv) \in \mathbf{U}$. But also $w(uv) \in \mathbf{V}$, then w(uv) = 0 whence

 $\mathbf{W}(\mathbf{U}\mathbf{V}) = 0$. Therefore $\mathbf{Z}(\mathbf{U}\mathbf{V}) = 0$. (b) Also, from (11) with $x=u\in \mathbf{U},\ y=z=v\in \mathbf{V}$ and t=e we have $e[uv^2 + 2v(uv)] + u[2v(ev) + ev^2] + 2v[u(ev) + v(eu)e(uv)] = 0$ or else $e(uv^2) + (\delta + 2\lambda)uv^2 = 0$ whence $e(uv^2) = (1 - \lambda)uv^2$ so $uv^2 = 0$ because $1 - \lambda$ is not a proper value. Therefore $\mathbf{U}\mathbf{V}^2 = 0$.

Proposition 6 If $UZ \subset Z$ then u(uZ) = 0, $u \in U$.

Proof: Let $x = y = u \in \mathbf{U}$, $z = v \in \mathbf{V}$ and t = e. Then from (11) we have $e[2u(uv) + vu^2] + 2u[u(ev) + v(eu) + e(uv)] + v[eu^2 + 2u(eu)] = 0$ or else $(2\lambda-1)u(uv)+(\delta+1)vu^2+v(\epsilon u^2)=0$. As $\mathbf{U}^2\subset\mathbf{Z}$ hence we do $u^2 = v' + w'$ whence we get $(2\lambda - 1)u(uv) + (\delta + 1)vu^2 + \lambda vv' = 0$ and so finally we obtain $(2\lambda - 1)u(uv) + (\lambda^2 + \lambda + 1)vu^2 = 0$, remember that $\lambda^2 + \lambda + 1 = 0$. Therefore u(uv) = 0 for all $v \in \mathbf{V}$, that is, $u(u\mathbf{V})=0$. Analogously we have $u(u\mathbf{W})=0$ and so $u(u\mathbf{Z})=0$.

Now, we want to determine some theorems of structure of these algebras. We shall analize the case $\mathbf{U}^2\subset Ann(ker\omega)$

(1)
$$U^2 \neq 0$$
.

In this situation we have the following results:

Proposition 7 $\mathbf{B} = \mathbf{U} \oplus \mathbf{Z}$ is a nilalgebra.

Proof: Let $x \in \mathbf{U} \oplus \mathbf{Z}$ then x = u + v + w where $u \in \mathbf{U}, v \in \mathbf{V}$ and $w \in \mathbf{W}$. Thus $x^2 = u^2 + v^2 + w^2 + 2uv + 2uw$ and immediately it follows from above facts that $x^3 = 0$.

Proposition 8 The set of idempotent elements of A are given by

on 8 The see sy
$$I_p(\mathbf{A}) = \{e_u := e + u + \frac{1}{7}(3u^2 + 2eu^2)/u \in \mathbf{U}\}$$

where e is an idempotent element of ${f A}$.

Proof: Let e' = e + u + v + w be a nonzero idempotent element in **A**. From $e'^2 = e'$ we have that $u^2 + v^2 + w^2 + 2\lambda v + 2\delta w + 2uv + 2uw = v + w$. Thus uv = 0, uw = 0, $v^2 = 0$ and $w^2 = 0$. Let $u^2 = v' + w'$ then it is clear that $v' = (1 - 2\lambda)v$ and $w' = (1 - 2\delta)w$. Therefore $u^2 = (1 - 2\lambda)v + (1 - 2\delta)w$.

On the other hand, if e' = e + u + x with $x \in \mathbb{Z}$ and as $e'^2 = e'$ then $x = 2ex + u^2$ hence $2ex = 4e(ex) + 2eu^2$ and besides $4e(ex) = 8e(e(ex)) + 4e(eu^2)$, thus we obtain $x = -\frac{1}{7}[u^2 + 2eu^2 + 4e(eu^2)]$. But from (10) we have $e(eu^2) + eu^2 + u^2 = 0$ and so finally

$$e' = e + u + \frac{1}{7}(3u^2 + 2eu^2)$$

(2) $U^2 = 0$.

In this case we have the following new property:

Proposition 9 The set of idempotent elements of A are given by

$$I_p(\mathbf{A}) = \{e_u := e + u/u \in \mathbf{U}\}\$$

Proof: Let $x = \alpha c + u + v + w$ be a nonzero idempotent element in **A**. From $x^2 = x$ we have that

$$\alpha^{2}e + v^{2} + w^{2} + 2\alpha\lambda v + 2\alpha\delta w + 2uv + 2uw = \alpha e + u + v + w$$

Therefore $\alpha^2 = \alpha$, $w^2 + 2\lambda v + 2uw = v$ and $v^2 + 2\delta w + 2uv = w$. whence

$$\alpha = 1$$
, $w^2 + 2uw = (1 - 2\lambda)v$ and $v^2 + 2uv = (1 - 2\delta)w$

Hence $w^2v + 2v(uw) = (1-2\lambda)v^2 \implies v^2 = 0$ because v(uw) = 0. Analogously $w^2 = 0$ and this show that $v = 2(1-2\lambda)^{-1}uw$ and $w = 2(1-2\delta)^{-1}uv$, but $uv = 2(1-2\lambda)^{-1}u(uw) = 0$ and $uw = 2(1-2\delta)^{-1}u(uv) = 0$. Finally we deduce that v = w = 0 and so $e_u = e + u$.

4. Train algebras of rank 4 in fields of characteristic 2

In the following, we shall assume that F has characteristic 2.

Proposition 10 If A verifies the t-equation (3'), then the following assertions are satisfied:

(a) A admit an unique idempotent element e.

(b) If besides, A is a power-associative algebra then it is a quasiconstant algebra of order 2.

Proof: (a) Let $x \in \mathbf{A}$ such that $\omega(x) = 1$ then $x^2 - x \in \ker \omega$ therefore $(x^2 - x)^4 = 0 \iff (x^2 - x)^2 (x^2 - x)^2 = (x^2)^2 (x^2)^2 + x^2 x^2 = 0$ whence $(x^2)^2(x^2)^2 = x^2x^2 = (x^2)^2$ which implies $e = (x^2)^2$.

(b) Let $x = \omega(x)e + y$, $y \in ker\omega$ then easily we conclude that $x^4 =$ $\omega(x)^4 e$ since $y^4 = 0$.

On the other hand, in these conditions we can prove that the idempotent element e is unique. Since, suppose that e' is another idempotent, that is, $e'^2 = e'$ then $\omega(e') = 1$ and $e' = e'^2 = (e'^2)^2 = e'^4 =$ $\omega(e')^4 e = e$ so e = e'.

Proposition 11 Let A be a train algebra satisfying (3'). Then we have the following results:

(a) B is a nil Jordan algebra.

(b) A is a special train algebra and hence genetic.

Proof: (a) Use (9) to obtain $x(x^2y) + x^3y = \omega(x)^3y + \omega(x)^2\omega(y)x$. Now, replace x by x^2 in this equation and $y \in \mathbf{B}$ we get $x(yx^2) =$ $x^{2}(xy)$. Also for $x \in \mathbf{B}$ from (3) we find $x^{4} = 0$. So **B** is a nil Jordan algebra and consequently a nilpotent algebra. Besides clearly B is a power-associative algebra.

(b) We will prove that ${f B}^k$ is an ideal of ${f A}$ and this is easily established by induction on k. Suppose that \mathbf{B}^k is an ideal of \mathbf{A} . From (10) we have that $z(x^2y) + y(zx^2) = \omega(x)^2\omega(y)z + \omega(x)^2\omega(z)y$. Now taking $x \in \mathbf{B}, \ z \in \mathbf{B}^{k-1}, \ y = e \text{ we get } e(zx^2) = -z(ex^2) \in \mathbf{B}^{k+1}.$ Therefore $e \cdot \mathbf{B}^{k+1} \subset \mathbf{B}^{k+1}$ and so \mathbf{B}^k is an ideal of \mathbf{A} as required.

References

- R. Costa. Principal train algebras of rank 3 and dimension ≤ 5.
 Proc. Edinb. Math. Soc. 33, 61-70 (1990).
- [2] R. Costa. On train algebras of rank 3. Linear Algebra and its Applications 148, 1-12 (1991).
- [3] I. M. H. Etherington. Genetics Algebras. Proc. Roy. Soc. Edinburgh. 59 (1939), 242-258.
- [4] H. Guzzo Junior. The Peirce decomposition for commutative train algebras. Communications in algebra, 22(14), 5745-5757(1994).
- [5] C. Mallol and R. Varro. A propos des Algebres verifiant $x^{[3]} = \omega(x)^3 x$. Linear Algebra and its Applications 225: 187-194(1995).