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Abstract 

We present some conditioDS which permit to decide when a tilted algebra is a 
Koszul algebra, identifying maps between the direct summands of the tilting 
module. We also obtain some applicatioDS of our result. We show that a BB 
tilted algebra is simply connected if and only if the original algebra is simply 

connected 

1 Introduction 

Koszul algebras have played important role in several areas of Mathematics. 
The concept of tilting is also becoming more and more an important one. Both 
concepts are fundamental in the theory of representations of Artin algebras. 

In this work all the algebras are quotients of finite quiver algebras by ideals 
/ contained in the square of the ideal generated by the arrows. The radical 
of an algebra A is denoted by r(A) or simply by r. We say that an algebra is 
graded when the ideal / is homogeneous with respect to the length grading on 
paths. All modules are left modules and finitely generated. Each indecompos­
able modules is identified with its isomorphism class. We also are denoting the 
group HomA(A,B) by (A,B). Given A a quotient of a quiver algebra we use 
the same notation for an arrow in the quiver and its class on the algebra. 

Our main theorem is the following: 

Main Theorem. Let A be a finite-dimensional algebra over an alge-
bmically dosed field Ir, and T a A-module. Assume that r = End? (T) = kQ / I 
has global dimension 2. Let : 

O-+P(2J ~ Pt1) ~r ➔ r/r ➔ O 

be the minimal projective resolution of r / r. Then, r is a K osrul algebra if and 
only if each component of P• is defined by a component of T-sink maps. 

We describe the ordinary quiver of r in the proof of the main theorem. In 
the final paragraph we prove that the Brenner-Butler tilted algebras are Koszul, 
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that BB-algebras of simply connected hereditary algebras are simply connected 
and give a class of algebras whose iterated tilted algebras are Koszul. 

We recollect now some definitions and basic facts on the theory of Koszul 
algebras. The reader can see these definitions and more details in [GM). 

A graded algebra r is called a Koszul algebra when the Yoneda algebra 
E(f) = IIn>O Extr(f /r, r /r) is I-generated, that is, the elements in 
Ext}(r/r,r/r) generate all higher extension groups under the Yoneda's prod­
uct. In the same work, the authors present a result which gives us a suitable 
condition to identify Koszul algebras, which we describe now. 

A graded f-module M, generated in degree zero is called Koszul module 
when it has a linear resolution, that is, there exist a graded projective resolution 

... P(n) ➔ Pcn-1) ➔ ... ➔ Pc2) ➔ Pc1J ➔ Pco) ➔ M ➔ 0 

such that P(j) is generated in degree j, Vj ~ O. 
In the mentioned work, [GM] it is shown that a graded k-algebra, is a Koszul 

algebra if and only if every simple module is a Koszul module. 
As examples of Koszul algebras we have hereditary algebras, quadratic al­

gebras with global dimension 2, monomials quadratics algebras (cf. [GZ)) and 
the Brenner-Butler tilted algebru (see the last paragraph). 

Graded algebras of global dimension two are Koszul if and only if they are 
quadratic. Since tilted algebras have global dimension two, they are Koszul if 
and only if they are quadratic and graded. 

We define now the fundamental notion of tilting module. 

Definition 1.1 Let A be an algebro, a A-module T i6 called a tilting module 
when the following condition, ore ,ati,fied: 
{i) pdAT $ 1 
(ii) Ext}._ (T, T) = 0 
{iii) There i, o short exact sequence O ➔ A ➔ T' ➔ T'' ➔ 0, with T and 
T' E add(T). 

We continue this introductory section by recalling some definitions and fixing 
some notations. 

1. Given a tilting A-module T we may consider two full subcategories of the 
category of finitely generated modules, naurely the category 7(7) of all 
modules generated by T and the category :F(T) of modules M satisfying 
H omA (T, M) = 0. The modules on T(T) are called torsion modules and 
the ones in :F(T) torsion free modules. 

2. The end~morphism ring r = Endl (T) of a tilting module T is called a 
tilted algebra from A. 

If A is hereditary, we just say that r is a tilted algebra. 
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3. Given a A module homomorphism/ : M ➔ N we denote by /. the induced 
r-module homomorphism Hom(T,f): HomA(T, M) ➔ HomA(T,N). 

4. Given T, an indecomposable direct summand of T, we denote by P, the 
indecomposable projective r-module HomA(T,T,). 

There is a close connection between the representation theory of the algebra 
A and the endomorphism ring r, as it is shown in [BB) and [HR]. In particular 
when A is hereditary, the torsion theory defined by T over the category of finite 
generated modules r-mod, splits. 

We refer to [BBJ, [HR] and [AS] for the most results on tilting theory. We will 
use freely the results and the nomenclature which are defined in the mentioned 
works. 

2 Tilted Algebras 
In this section A denotes a hereditary algebra, T a tilting A-module and r 

the tilted algebra End'f (T). 
Our first propoeition is the following: 

Proposition 2.1 Let / : T ➔ T, be a A-module homomorphism, between mod­

ule, in Add(T), auch that HomA(T, T') 4 P, ➔ S1 ➔ 0 ia a minimal projec­
tive preaentation of the aimple non-projective r -module S1 . Then / i., either a 
monomorphiam or an epimorphiam. 

Proof: Assume that / is not an epimorphism. Cowder the short exact se­

quence of A-modules given by O ➔ Im / .; T, ➔ coker / ➔ 0, where i is 
the canonical inclusion. Since Im/ E T(T) we have that Extl(T,Im /) = 0 
therefore applying the functor HomA (T, - ) , we obtain the following short exact 
sequence 

0 -+ HomA (T, Im /) ..!!+ P, -➔ HomA (T, coker /) -➔ 0 

Considering the fact that / = i or, where /' is given by T ..!..+. Im /, it follows 
that/. = i. of! and we also have that rrP, =Im/. = Im(i. of!). Since i. is 
a monomorphism, we conclude that Im/'•!:!! Im/.= rrP,. 

We use the Brenner-Butler equivalence and get that (T,lm /) !:!! rrP,. 
Hence, S1 ~ (T,coker /), with coker / E T(T), therefore pdrS1 = 1. So, 
rr.fl is a projective r-module and Im/~ Im r = T. Itfollows that/= i or 
is a monomorphism. ■ 

Corollary 2.2 Uaing the same notation, and conditiom, ~ in the former propo­
aition, u,e have the foll011Jing: 

3 



(a) S1 E Y(T) if and only if f i., a monomo,phinn. In thi, ca&e, 
S1 :!! HomA (T, colter/). 
(b) S1 E X(T) if and only if f i., an epimorphi,m. In thi, caae, 

S1 :!! Exti(T,ker/). 
(c) pdrS1 = 1 i/ and only if kerf E .r(T). 

Proof: (a) H S1 E Y(T) then pd rS1 = 1 and hence/. is a monomorphism. Ap­

plying the functor T ®r - to the exact short sequence O ➔ (T, T') 4 (T, 71) ➔ 
(T, N) -➔ 0, with (T, N) !:!! S1 for some N E T(T), we conclude that the se-

quence O ➔ T' .4 T, ➔ N ➔ 0 is exact, since Torf (T, N) = 0. Hence, f is a 
monomorphism. Conversely, if f is a monomorphism, so is /.. It is clear that 
(T,coker/) 2! S1 E Y(T). 

By the former proposition and by (a) the statement (b) follows. 
Applying the functor HomA(T, -) to the exact short sequence O ➔ lter J ➔ 

T' ➔ 1j ➔ O, we see that the statement (c) is also valid. ■ 

3 Our Main Result 

In this section we drop the requirement of A being hereditary. Here A will 
be any finite dimensional algebra over the algebraically cl06ed field le. We fix, 
as before, a tilting A-module T and a decomposition of T in indecomposable 

n 
direct summands given by T = EB T; and assume, without lost of generality, 

J=l 
that T is multiplicity free, that is: the indecomposable directs summands of T 
are pairwise non-isomorphic. Some authors call it a basic module. 

Definition 3.1 Let M and N E T(T) with M indecompo,able. We ,ay that 
the non-zero A-morphi,m a: N ➔ M i, a ,ink-tor,ion map if it i., a ,ink map 
on the category T(T), in other word.,: a is a minimal non-split homomorphiam 
and every non-zero non-,plit homomorphi,m fJ : L ➔ M with L E T(T) facton 
through a. 

We observe that if/ : E ➔ M is sink map then the restriction of/ in tl'T(E) 
given by /' : trT(E) ➔ M is a sink-torsion map, where trT(E) is the trace of T 
in E. 

Proposition 3.2 Let A be a finite dimenaional le-algebra and T a tilting A­
module. Let 11 be an indecomposable direct ,ummand of T and P, = Hom A (T, T,). 
Then, there mat onl11 one ,ink-torlion map a : E ➔ T,, up to isomorphiam. 
Moreover E !:!! T® rP, and a= T©a. with a. : rP, ➔ P, the naturol inclu,ion. 

I' 

Proof: Let E E T(T) and a : E ➔ 1j be a A-module homomorphism which 
induces the inclusion a. : r~ ➔ ~- Then using the BB-equivalence we get that 
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E and a have the form we want. We claim that a is a sink torsion map. It is 
clear that a is not a split epimorphism since a. does not splits. Considering a 
non-zero non-split epimorphism /3 : N --+ T,, with N E T(T), we have that 
P. : (T, N) ➔ (T, Ti) is a non-split epimorphism, therefore it factors through a. 
and so do /J through a. The minimality of a. implies the minimality of a and 
vice-versa, by the BIHquival.ence. 

To show the uniqueness, we observe that the following genera.I result is valid. 
If a subcategory of an abelian category has sink mape then the sink maps are 
unique, up to isomorphism. ■ 

Definition 3.3 

1. We sa11 that a A-module E E T(T) is the torsion-predecessor of an in­
decomposable direct summand Ti of T if r P, =!!! HomA (T, E) with P, = 
HomA(T, T,). We denote Eby E1• 

n 
£. Let M = ffi M; be a module in add{T}, with M, indecomposable. Then a 

i=l 
module E E T(T) will be called the torsion-predeceswr of M if E is the 
direct sum of the torsion-predeceSBors of all the Ml s. 

Corollary 3.4 A sink-torsion map is either a monomorphism or an epimor­
phum. 

Proof: Assume that a sink torsion map a is not an epimorphiam. Hence, 
Im a W,. By hypothesis, the inclusion j : Ima ➔ Ti must factors th.rough a, it 
follows that E !:!! ker o $Ima, hence ker o E T(T). H ker a-:/; 0 we conclude 
that rP, !:!!! (T, leer a) EB (T, Im a), with (T,ker a)#= O. Since a is minimal, so 
is a., but this contradicts the fact that a.(T,ker a)= 0. ■ 

Corollary 3.5 Using the notation above, let S1 be the top of the r-module P,. 

1. If a i, a monomorphism then S1 ~ HomA(T, ~). 

£. If a is an epimorphism then S1 !:!! Eztl(T, ker a). 

Proof: H a is a monomorphism then the short exact sequence of A-modules, 
0 ➔ E ~ Ti ➔ coker a ➔ 0, induces the following short exact sequence of 
f-modules, 0 ➔ (T,E) ~ P, ➔ (T,coker a) ➔ 0. It follows from the proposi­
tion 3.2 that rP, ~ (T,E), therefore S1 !:!! HomA(T,'.li/s). 

If a is an epimorphism, we have the short exact sequence of A-modules, 
O ➔ ker a ➔ E ~ Ti ➔ 0, which give us the following long exact sequence of 
f-modules: 

O ➔ (T,ker a) ➔ (T,E) ~ P, ➔ Exti(T,ker a) ➔ 0, 

where (T, E) ~ r P,. But, a. is a monomorphism hence (T, ker a) = 0. It follows 
that kera E .r(T) and S1 ~ Exti(T,ker a). ■ 
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Definition 3.6 Let M be a non-zero A-module in T(T), and ff': TM -+ M an 
homomorphism. The pair (TM, ir) will be called a T-generotor if it ia a minimal 
left add{T)-approz:imation of M. We recall here that thi11 mean11 that it 11atisfiea 
the follov,ing oondition11: 
(i) TM i., in ad<ll', ir ill minimal. 
{ii) Every morphism ,p: T' -+ M, with T' E ad<ll', facton through ir. 

Since add(T) is functorially finite we have every module has a minimal 
add(T) approximation, which is unique, up to isomorphism, and for modules in 
T(T) it is clear that the map ll' on the definition is an epimorphism. Moreover, 
we have that HomA(T,TM) is the projective cover ofHomA(T,M). 

We show now a result which is valid for a graded algebra r which is tilted 
from a A-algebra . 

We would like to observe that there are examples of tilted algebras which 
are not graded, that is, the ideal of presentation of a tilted algebra is not always 
a homogeneous ideal, the reader can see examples in [R]. 

Proposition 3. 7 Let T be a tilting A-module. Suppo11e that r = lcQ / I = 
End(T)"' and that I an homogeneou11 ideal. Let 

... ➔ Pcs) ➔ Pc2) ➔ Pcil ➔ r ➔ r /r ➔ 0 

be the minimal projective resolution of the top(I') where P(j) = HomA(T, 71) 
with 71 E adc/I'. Let E; be the tor/lion-predecessor 71. Then, r is a Koszul 
algebra if and only if, for each j, the. canonical morphism from 71+1 to the 
T-generator of E; is a split monomorphism. 

Proof: If r is a Koszul algebra then we have that Pu> is generated in degree 
;, for each j :=:: O. Since I is a homogeneous ideal it follows that Pui is a 
direct summand of the projective cover of rPu-i), for j :=:: 0. Let's consider 
E;-1 E T(T) such that HomA(T, E;-1) !:! rPu-i) and Ts,_, the T-generator 
of EJ-l· Hence, HomA(T, TE,-•) is the projective cover of rPu-i)• Therefore, 
71 is a direct summand of TEj-•. 

Reciprocally, if the canonical map is a split monomorphism then Pu+i) is 
graded direct summand of the projective cover of rPu> for j ~ 0. Since I is 
homogeneous, it follows that r is Koszul. ■ 

We need now to fix some more notations. 
Let~= HomA(T,T,) denote an indecomposable projective r-module, a 1 : 

E, ➔ Ti denotes its sink-torsion map and (TE,, ir1) the T-generator of E,. 
We also fix a decomposition TE, = EB~=11f.''• where 11,, ... , 11. are pairwise 

non-isomorphic, indecomposable. (In this case, m,. is the number of times that 
the simpler-module S1, appears in the top of r~ = (T, E1).) 

We have a decomposition of the map 1r1 such that ir, = ((1r,)t,· ••,(ir,),.) 
with (ir1), : rr,:''• -. E1 for 11 = 1, • • •, r. 
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We fix the notation (,r1), = ((1r1)!, • • •, (1ri):'1•) with (ll'I):• : Ti. ~ E1 
for l $ u, ~ m1,. It follows that each component of 0t1,r1 is a map given by 
0tz(,r1):•: T,, ~ T, wheres= l , •••,rand 1 $ u. $ m1,. 

The map 0tz,rz will be called T-sink map ofT,. 

Definition 3,8 Let/ : T. ➔ T, be a non-zero A-morphiam between indecom­
posable module, in add{T). We ,ay that f is T-irreducible if f ia not an uomor­
phiam and for any factorization f = gh through ad,![' implies that h is a split 
monomorphism or g is a aplit epimorphism. 

Lemma 3.9 Let I : T., ➔ T, be a non-zero A-morphism for v ;/= l. If f i., 
T-irreducible then f ia a component of the map 0t11r1, defined by the notation 
fi:red above. Moreover, (T, T.,) ia a direct aummand of the projective cover of 
r.P,. 

Proof: Since v # I we have that / is not an epimorphism, since a, is a sink­
torsion map, f must factors through 01, but"'• is the projective cover of (T, E1), 
hence f factors through o,,r,. It follows that there exists /3: T., ~ TE, such 
that / = a,1r,/J. Since a11r1 is not a split epimorphism it follows that /3 is a split 
monomorphism. Hence T., is a direct summand of TE, . We conclude that / is 
a component of the map a11r1, as we wished to prove. ■ 

Now, we consider a presentation for r given by r = kQ/I. For each arrow 
a E Q1 from l to v, one can 8880Ciate a map (/a)• ; P., ➔ ~.called multipli­
cation by the arrow a, which is defined by Ua).(cp) = /a ocp for each <p E P.,, 
where fa: T., ➔ T, is the A-map that induces (Ja) •. 

Lemma 3.10 Let (fa)• : P., ➔ Pi bear-morphism given by multiplication by 
an an-ow of Q, aa above. Then, fa ia T-irreducible. 

Proof: Suppose that f = gh for some g : T' ➔ T, and h : T., ➔ T with 
T' E addT . It follows that /. = g. o h.. Moreover, if we consider P., = 
re., such that E,, is the idempotent of r defined by E,, = (O,···,IT., · ··,O) : 
T ➔ T.,, where IT. : T., ➔ Tv is the identity, we have that /.(£,,) = (gh) o 
E., = (0, .. •,gh,0, •··,O). Since gh factors through T' we have that (gh).(E,,) 
determines a path from the vertice l to the vertice " passing through the vertices 
associated to the projective (T, T). Since we have that (gh). is a map defined 
by multiplication by arrow, and / is admissible, we get that either h is a split 
monomorphism or g is a split epimorphism. ■ 

Lemma 3.11 Let~ = HomA(T, T,) be a projective r-module. Then P; ia a 
direct summand of the projective cover of r ~ if only if there is a T-irreducible 
morphiam f : 1'j ➔ T,. 
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Proof: Assume that PJ = (T, 1j) is a direct summand of the projective cover of 
radical of Pi. Hence, there exist a non-zero morphism /. : P; -➔ P, such that 
Im/. C rPi and Imf. <t. r2P, . Let /: T; -➔ T, be the map that induce / •. 
We claim that/ is T-irreducible. Suppose not, that is, there exists g : T -➔ T, 
and h: T;-➔ T non-zero maps, with T' E addT, such that/= gh, where g is 
not a split epimorpbism a.nd h is not a split monomorphism. By BB-equivalence 
we have that /. = g.h. where g. is not a split epimorphism and h. is not a 
split monomorpbism. Hence 1mg. C rP, and Imh. C r(T,T'). It follows that 
Jmf. C r 2.Pr, a contradiction from the hypothesis on/ •. The reciprocal was 
proved in lemma 3.9. ■ 

Remarks: 
(1) The maps (apr1). : e:=1P,~'• ➔ Pi, are such that: 

(i) m1, is the multiplicity of the simpler-module S1, in the top of rP,, 
(ii) the maps a1(ir1):•: T,,-➔ T, wheres= 1,·· •,rand 1 :5 u, $fill.are 

the components of the map a11r1 for u, = 1, ... , m1, 1 • = 1, ... , r. 
(2) We have that ((T,TB, ), (ir,).) is the projective cover of rP, and since 
(a,). : rPi ➔ Pi is a sink map, one can concludes that 81 has a minimal 
presentation given by 

HomA(T, TE,) (~• P, -➔ 81 -➔ 0. 

As a coru,equence of the first remark and lemmas 3.9 and 3.10, we have that 
each non-zero map/. : Pi, ➔ Pi, with l, /. l, defined as a multiplication by 
an arrow is also a component of the map apr1. Actually, one can assume that 
f = a,1r:• : 11. ➔ 11 for some u,. 

Using the second remark given above, it is easy to see that 
{/a : 11, ➔ 11/a: l-➔ l, E (Qrh} !:!! {a1(ir1):• : T,, -➔ T,/u, = 1, ... , m,.} 
for each • = 1, • • •, r fixed, with l, / l. 

For our main theorem we fix, as usual, A a finite dimensional k-algebra 
with k an algebraically closed field and T be a tilting A-module. We also take 
r = kQ/1 = EncJ"P(A) with Q finite quiver and J is an admissible ideal. 

Main Theorem. Suppose that r = End~(T) has global dimension!. Comider 
the minimal projective resolution of r / r given by: 

0 a:,.r pm;, ,. • om,. ,. r r/ 0 
➔ <l>t=l J, ...;....+ EB.,=1 'I, ~ ➔ r ➔ • 

Then, r ill a Koszul algebra if and only if each component of p, .say PJ,,1. : T;, ➔ 
Ti. is given by a1.(ir1,):• for some u, = 1, ... , m;, defined aB above. 

Proof: We denote l., simply by l, and keep the same notation from our consid­
erations and lemmas above. 
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Assume now that r is a Koszul algebra. Then J is quadratic ideal and by a 
result in [BJ, EBf=t P;7;, ~ 1 / 12 • So we get that each component of the map p 
with domain and codomain indecomposable is defined, up to isomorphism, by a 
multiplication by an arrow. Since r has finite projective dimension, its ordinary 
quiver has no loops and we have that it # l for each t = 1, • • •, r. By lemmas 3.9 
and 3.10 above we have that each component of p, say PJ,,I : TJ, ➔ T,, is given 
by 01(ir1):• for eome u1 = l, · · ·, m,,. 

Reciprocally, suppose that each component of p, say P;,,1 : T;, ➔ T, is 
given by 01(ir1):• for eome u1 = 1, ... , m;,. Since J(w-1)1). is a component of the 
projective cover of (T, E1) = r~, we have that P1, '' is a direct summand of the 
projective cover of r~, for each t = 1, • • •, s. By hypothesis, we have that (01). 
is a sink map and hence by remark (2) above, we have that each component of 
P• with domain and codomain indecomposable is defined by multiplication by 
arrows. Therefore, r is quadratic. Since r has global dimension 2, it follows 
th~fisK~~- ■ 

We would like to observe that as consequence of lemma 3.11 one can draw 
a full subquiver Q' of Q and by lemmas 3.9 and 3.10 complete Q' to Q. The 
following examples will ilustrates our results. 
Examples 

1. A finite type Brenner-Butler algebra. 
Let. A be a quiver algebra whose quiver is the following: 

3 

1 ---+ 2 

4 

Let T = r- S2 $ P1 EB Pa EB P4 be a tilting A-module. The Auslander-Reiten 
quiver of A is given by 

(P3) r-Ps ls 
'\, /' '\, /' '\, 

P2 ---+ (Pi) ---+ r-P2 ---+ S2 ---+ 12 ---+ (Ii) 
/" '\, /' '\, /' 

(P4) r-P4 14 

The morphism (P2 ---+ P1), in the graph above, is a sink map; moreover, 
we have that P3 EB P4 is Uie T-generator of trTP2. Also, we have that 
P1 is the T-generator of 12 and the morphism 12 ---+ r- S2 = Ii, given 
by the graph above, is the map that induces the sink map r(T, r-S2) '-+ 
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(T, T- S2). We have that r is an algebra with radical squared zero and 
ordinary quiver Q(r) given by: 

3 
/J,1' 

2 ~ i 
.., \,, 

4 

2. An example of a concealed algebra. Let A be a quiver algebra whose 
quiver is the following: 

1 5 

3 +- 4 

2 6 

A local sketch of the preprojective component of the Auslander-Reiten of 
A is given by 

P1 r-P1 r-2P1 

\,, /' \,, ,I' \,, /' 
P2 ➔ Ps ➔ r-P2 ➔ r-Ps ➔ r-2P2 ➔ r-2 Ps ➔ 

\,, /' \,, /' \,, 
P4. ➔ Pe ➔ r-p4 ➔ r-Ps ➔ 

\,, ,I' \,, ,I' 
I\ r-P11 

Consider the tilting A-module T = r- P5er- P4er- P3er- P2er-P1 $P6 • 

We have that the full subquiver of the Auslander-Reiten quiver of A, with 
vertex de indecomposable direct summands of T form a slice and it is the 
following quiver: 

where the arrows represent irreducible maps. It follows that r has projec­
tive radical and its quiver is the same as the quiver of A, moreover r is 
hereditary. 



4 Some applications 

4.1 Brenner-Butler tilted algebras 

As usual, on this work, A = kQ is a finite dimensional path algebra over a field 
k, with Q a finite connected quiver (so, it contains non-oriented cycles). Let 
P1, P2, · · ·, Pn be a complete list of indecomposable projective non-isomorphic 
A-modules. Let's fix S = S; the simple A-module associated to the vertex i 
of Q. Assume that .,.-S; ::/= 0. We have that T = .,.- S, EB EB#i P; is a tilting 
A-module. The endomorphism ring r = EndA(T)"' is called Brenner-Butler 
tilted algebra or, for convenience, BB-tilted, (cf. [AS], for instance). It is a 
known fact that the class of torsion-free modules is given by .1-"(T) = Cogen (S). 
We shall prove the following result: 

Theorem (BB):E11ery BB-tilted algebro ia a Koszul algebra. 

Proof: We prove this theorem by showing that each simple r-module has a 
minimal projective resolution which satisfies the conditions of our main theorem. 

We have that S = Eztl(T, S) is a simple EndA(T)°'-module, since 
E:ni_(T,S) :!!! DHomA(S,rT) = DHomA(S,S) !=! k. Because we have that 
ind.1-"(T) = {S}, we conclude that 0 2(r /r) = 0 2(S). If pdrS' = 1 then r is 
hereditary, therefore it is a Koszul algebra. So we assume pdrS' = 2. 

Let O --+ S --+ I; --+ I1 --+ 0 be a minimal injective coresolution of 
the simple A-module S = S;, where Ji = li;'' © · • • © r,;• is such that l, is an 
immediate predecessor of i for s = 1, • • • , t and m, is the number of arrows from 
l, to i. 

We have that the top of r- S = soc I1, (cf. [ARS]). Since A is hereditary 
we have that (DS)• = 0, hence the exact short sequence O -+ (DI;)* --+ 
(DI1)" -+ .,.-S --+ 0 is a A-projective minimal resolution of .,.-S, where 
(DI;)• = (P; t, for each vertex j of the quiver QA of A. Moreover, it is given 

' by O -+ P; .!..-t- EB Pt:• ~ r- S -+ 0, where / is the map induced by 
•=1 

multiplication by the arrows that join the vertices 11 , •.. , 1, to i in QA• 
More precisely, let's consider a oomplete list of arrows joining I, to the vertice 

i given by {a~•: I,--+ i},,u,, where•= 1, • · •,t and 1 Su, S mi., with m1. = 
the number of arrows from 1, to i. Then/= (f:•),,u,, where I':• : P;-+ ~. is 
defined by multiplication by the arrow a~•, for s and u, as above. 

Applying the functor HomA(T,-) to the projective resolution of .,.-5 given 
above, we obtain the following exact long sequence of r -modules 

t 

0--+ (T, ~) i:..+ (T, P) = 6,(T, ~.r• .!!+ (T, T- S) -+ Ezti(T, Pa) --+ 0 
•=l 

where ,r. = HomA(T, ,r). We observe that ,r. ia not an epimorphism and hence 
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Im "'• ~ rr(T, r-S). • 
Moreover, we claim that coker "'• !:!! S. 
Indeed, for any f{) = (<p1 , f{)2 , • • •, 'Pn) E rr(T, r- S), one can 888ume, without 

lost of generality, that 'Pn E ( r- S, r-S) and hence 'Pn = 0. Since each com­
ponent 'P; : P; --+ r-S of 'P factors through 'II', we can conclude that v, itself 
factors through ,r. It follows that rp E Im "'•• therefore Im "'• = rr(T, r- S), 
and this finish the proof of the claim. 

Applying the functor HomA (T, -) to the exact sequence O --+ r P; -4 
P; -+ ft;; -+ 0, for /J a sink map, we can conclude that (T, P;) !:!! (T, rAP;) 
and it follolVB that /J. is an isomorphism. 

From the considerations above we have that the minimal projective resolu­
tion of S ia given by 

t 

0 -+ (T, rP;) 4 (T, P) = $(T, P,7'•) ~ (T, r- S) -+ S--+ 0 
•=1 

where/. is the f-map defined by the composition with //3. 
Finally, we claim that/ fJ is a component of a sink-torsion map. 
Indeed, we have that P, is a direct summand of the radical of P and the 

map/ : P; -+Pas described above, is a component of the map rP --+ P, 
defined by the minimal sink maps (01,). : r.Pi, ➔ Pi,. Moreover, we have that 
trT(P,) = rP;. Hence, the composition //3 is a component of a sink torsion 
map. By our main result, we conclude that r is Koezul. ■ 

As an application of the result above, we describe a presentation of BB-tilted 

algebras. First we consider the f-map (T, rAP;) !.:.+ (T, P;), defined by /3.(cp) = 
f3 • v,, for each v, e (T, rAP;). We fix a decomposition 
fJ = ((/Ji' hsv,Sv; I •• • , (~•hsv,Sv;,.) such that {J';,.- is the map defined by 
multiplication by the arrow joining the vertice i to the vertice im, denoted by 
/3",,r- : i -+ im• In this notation v; .. is the number of arrows between these 
vertices, and m = 1, • • •, r. 

Of course, fJ is a monomorphism. Using the same arguments as in the 
theorem above, we have that (T, P;) ::::1 (T, rAP;), hence /J. is an isomorphism. 
Moreover, we have that /. has each component with domain and codomain 
indecomposable defined by ({J';,.-o:• ). , for some fixed pair ( m, • ). 

Definition 4.1 Giving a vertice i in a quiver Q the neighborhood of i u the full 
aubquiver whose verticea are i and ita immediate predeceasora and auccesaora. 

The quiver and relations of the BB-algebra can be described as follows: 

1. Description of the Quiver 

(1) The vertex associated to the simpler-module S, denoted by i becomes 
a10urce. 
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(2) The immediate successors of i are the vertex associated to the simple 
f-module S;. for a = 1, • • •, t, whose projective cover is given by the r­
module Pi. = HomA(T, I',,), where l1, . . . , lt are the immediate successors 
of i in the quiver of A. 

(3) One of the immediate successors of each i, is the vertice denoted by 
Jm, a.ssocia.ted to the simple f-module SJ. whose projective cover is the r­
module P; .. = HomA(T, P;,.), such that P;,. is an indecomposable direct 
summand of rPi. 

(4) If {u, ti} </.. {i, li, ... , lt,ii, ... , j,} then the number of arrows between 
u and ti is the same as the number of arrows between u and ti. 
We sketch an argument for the description above. 

Since we have that HomA ( r-S, P;) = 0 for j =J:. i and the projective cover 
of S' is EB!:i (T, Pi":'•) it follows that both (1) and (2) are valid. One can 
prove (3) by checking the projective resolution of S, since we have that 
r is Koszul. Finally, easy computation gives us (4) and also give us the 
number of arrows between the vertices in the quiver of r. 

2. Description of the relations 

We recall that, using argument presented to prove the theorem(BB) above, 
we see that the arrows with origin the vertice i are defined by the compo­
nents of the map ,r., induced by the projective cover ,r : EB:=1 Pr':'• ➔ r- S. 
We observe that coneidering the element t/J E (T, rAPi), such that t/J is the 
map defined by a multiplication of the sum of paths in the quiver of r that 
ends in the vertices Jm form= 1, • • •, r, .one can conclude that (,r.o/.)(~) 
is a relation in r. 
Indeed, examining the projective resolution of S, we can see that the set 
of entries of the matrix of the map ,r • (/{J)., defines the ideal of relations 
of r. 
More explicitly, all relations begin in i and end in Jm and are defined by 

t m,. 
E E (Pm•o:•),r:• = 0, for each tlm = 1, · · ·, v; .. and m :a: 1, · · ·, r. •=l "•=1 

As we said above the quivers Q(A) and Q(r), of the hereditary algebra 
A and the associated BB-tilted algebra r, have the same shape outside the 
neighborhood from the vertice which we denoted by i. In order to exemplify the 
description above, we restrict ourselves to the case where Q(A) has no double 
arrows, and give a pictures showing the connection between both quivers. 

Assume that the neighborhood of the vertice i in Q(A) has the following 
description: 
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11 ji 

'-:' i'yi 

i 
".Y' '{r 

l, ir 

As we have shown, the vertice i is a source in the quiver Q(f) and has imme-
diate successors given by the vertices 11, ... , i, corresponding to the projectives 

HomA(T, Pi.), B = 1, ... , t. Let ,r = (,r1, ... , ,re) be a decomposition of ,r, and 
the arrow ii', conesponding to the homomorphism (,r,). = Hom(T,,r.). Each 

vertice i, is an immediate predeceasor of each),,., The arrows between f. and 

],,, correspond to the &-th component of the homomorphism induced by / o fJ,,. 
which is defined by the product fJmo,. 

For each m = 1, ... , r we have the following local picture. 

11 ,, (IJ,.r:r1) 
? ~ 

i 1m ,. (ti,.r:r,) 

~ )" 

The foJiowing examples will make clear such description. 
Example 1: If A is the quiver algebra wh011e quiver is : 

Q: 3 

and T = T- S1 EB EB P;. Then we get that r will have the following ordinary 
J~l 

quiver: 

and relation (Po) Y = 0. 

Example 2: Let A be the quiver algebra whose quiver is the following : 

1 t- 2 t: 3 
Gr2 
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and T the tilting module associated to the vertice 2, that is, T = r- S,EBP1 EBP3. 

In this case r has a presentation whose ordinary quiver is given by: 

1r"i {Ja, 

2 ::: 3 ::: i 
1!'2 /JC1.2 

and only one relation 1f1 (,8oi) + i'2(Po2) = O. 

The next lemma is an easy consequence of the exact sequence which appear 
in [AP] section 2.3, and it is a handy result in our next propo8ition. We review 
some of the notations and definitions. 

Let ( Q, I) be a presentation of a connected algebra r, we denote by II1 ( Q, I) 
its homotopy group, vo the number of vertices in Q0 and na the number of arrows 
in Q1. 

Given any abelian group G, we denote by Z1(f, /, G) the set of all G-valued 

function / : Qi -+ G such that E /(cx1) = f, J(/3;) whenever there exists a 
l=l j=l 

minimal relation p = t A;W, such that w1 = 01. ···.ex,. and w2 = /31- · · · ./3p­
•=l 

There is an exact sequence of abelian groupa 

0 ➔ G ➔ G"• ➔ Z1(f, I,G) ➔ Hom(II1(Q,J),G) ➔ 0 

Leuuna 4.2 Let ( Q, I) be a pre6entation of connected algebro, where I i6 gen­

emted b11 a ,et {Pm = }'.: ~1W1, m = 1, ... , r} LJ{;;} where the -,', are the 
i=l 

monomial relation• in I and each Pm ia a minimal relation, with u,,, terma. 
r 

Then di~(Hom(II1 (Q, /),am ~ no - Vo+ 1 - E Um+ r. 
m=l 

Proof: It is a straightforward consequence of the sequence above with G b&­
ing the additive group of the rational numbers. We only need to observe that 

r 
Z1(f,I,~) is a subspace of~"• which is determined by E u,,, -r linear cqu&-

m=l 
t.ions. ■ 

Proposition 4.3 Let r be a BB-tilted algebm from an hereditaf'J/ algebm A. 
Then A ia ,imply connected if and only if r ia al&o aimply connected. 

Proof: Assume first that A is simply connected. Since A is hereditary the 
quiver Q(A) is a tree. Let (Q(r), I) be the presentation of r given above. Then 
it easy to see that the fundamental group ,r1(Q(f),I) is trivial. Since for any 
arrow-, E Q(f) we have that dim o(-,)rt(-,) = 1 it follows by theorem 3.5 of 
[BM], that the fundamental group of any presentation is trivial. Since it also 
known that r is directed, it follows that r is simply connected. 
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We assume now that the BB-tilted algebra r is simply connected and we 
shall prove that A is simply connected. We know that H 1 (r) = H 1 (A) by 
Theorem 4.2 in [H], hence it is enough to prove that H 1(r) = 0. 

We recall that outside the neighborhood of the vertice i E Q(A) the quivers 
Q(A) and Q(r) have the same shape, since r is simply connected we conclude 
that Q(A) does not contains simple closed walks not involving arrows on the 
neighborhood of i. This is clear if the closed walk does not involve vertices in 
the neighborhood of i. We also have that there is no path in Q(A) which stars at 
some l; and ends at some l;. Otherwise, w~ would have the following description 
of Q(A) in the neighborhood of i. 

'1 
+ \, ii 

.l" 
l2 ➔ 

.l" '\, 
.li ir 

Then Q(r) has the following description in the neighborhood of i. 

i1 
.l" + \, 

i ➔ i2 ➔ ;,,. 

'\, .l" 
ii 

for each m = 1, ... , r. In this case, r is not simply connected, because according 
to our description if we compute the homotopy group of our presentation the 
closed walk starting at i and passing trough f1 and f 2 is not trivial on the 
homotopy group. 

The same kind of argument shows that there is no pa.th in Q(A) starting 
and ending in the vertices ii, ... ,ir• 

It follows from our presentation and the fact that r is simply connected all 
simple closed walks in Q(r) have vertices belongs to the set {i, f1, ... 1 i,, J1, ... , Jr}. 

Let I" be full subcategory of r whose vertices are i, f 1, ... , ii, ]1, ... , Jr. Hence 
we have that I" is a full convex sub<:_atego:q, of r. A 

If we identify all the vertices {i, l 1, •.• , Ii, ii, ... , ir}, we get a quiver which 
is a tree. Using one point extensions and coextensions, and Happel's long exact 
sequence we get that H 1(r) = H 1(I"). 
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We claim that f' is the BB-tilted algebra from the hereditary algebra A' 
whose quiver is such that all the arrows start or end at i, that is it has the 
following description: 

l1 ii 
~ .l' 

i 
.l' ~ 

li ir 
The result follows from the claim. Indeed A.1 is hereditary and Q(A') is a tree 
therefore H1(A') = 0 . We also know that H 1(f') = H1(A'), hence H1(A) = O, 
as we wished to prove. 

We prove now the claim. We have shown that, in the quiver QA, there is no 
path between vertices l's or between j's and no paths from some l to some j. 
Hence, in the quiver of A' there is no closed simple walks with origin in some l, 
passing through some im or between themselves. Next we prove that there is no 
multiply arrows starting in some l, or ending in some im, for every s = 1, ... , t 
and m = 1, ... ,r. 

We recall that r1 is a connected algebra such that the relations are given 
t m,. 

by P,,,.. = L L (/r,,."'o~•),r~•, for each pair (m,vm)- We shall prove that if 
•=1 u,=1 

mi. > 1 or v;,. > 1 for some s or some m then f' is not simply connected. 
We denote l = m11 + ... + m1, and v = v;, + ... + v;,. We observe that 

the number of vertices of r' ill t + r + 1, by the description for the quiver 
of the BB-tilted algebras. If l > 1 then by the description of the minimal 
relations off' and the lemma above we have that di~(Hom(II1(Q, /),(Q)) ~ 
(l + v) - (t + r). If Q(A') has multiple arrows then l > t or v > r, in this case 
di~(H om(II1 (Q, J),G:n) > 0 therefore f' is not simply connected. 

Finally, if l = 1 then all relations are monomial. In this case if v;,. > 1 for 
some m, r' is not simply connected. ■ 

4.2 A class of Koszul iterated tilted algebras 

A complete classification of the iterated tilted algebra of type A,. is given in 
(AH). In that work they show the following lemma on the section 2. 

Lemma:(AH] Let A be a finite dimemional algebro of finite repreaentation 
type satiafying the following propertie&: 

1. There are at mo&t two irreducible map& with pre&cribed domain or codomain, 

£. If PA is projective with indecompoaable rodical R then there ill at most one 
irreducible map of codomain R. Dually if ]Ai ia injective with 1/(aocl) in­
decomposable then there ia at mo&t one irreducible map of domain I/ ( aocJ). 
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Then, for etJef'JI indecomposable MA, the set of all (isomorphiam claases) of 
indecomposable modules MA such that Hom(N,M) :/: 0 and Hom(N, rM) = 0 
is the union of two fell linear ,ubquivers of the AR-quiver intersecting at the 
1/erlez {M]. The dual conclusion a/$0 holds. 

Using this lemma, proposition 3.2 and the same .kind or arguments presented 
in that paper we show the following: 

Proposition 4.4 Let A be a finite dimension algebra of finite repruentation 
type satisfying the hypothesis of the lemma above and r a tilted algebra from A. 
Then all Jlf'Uentations of r are monomial quadrotic, in particular it is Koszul. 

Proof: Using the lemma above, the correspondence between indecomposable 
summands of the tilting module T and the vertices of the quiver Q(r) can be 
de!ICribed, in the following sense. 

Consider 21 an indecomposable direct summand of T corresponding under 
HomA(T,-) to the projective r-module associated to the vertice l E Q(r). 
Then, in the AR quiver of A, there is at most two irreducible maps / and g of 
codomain 21 and at most two irreducible maps u, ti of domain T, and these deter­
mines at most four linear subquivers intersecting at 21, namely L(f), L(g), R(u) 
and R(v). 

Let T., be an indecomposable direct summand of T corresponding to the 
vertice t1 E Q(r) . Then if HomA(21,T.,) ,f; O,T,, E R(u) or T., E R(t1) and if 
HomA(T,,,21} =/:- 0, T,, E L(J) or T., € L(g). 

Assume that v and j are two neighbors vertices from 1. If T.,, 21 and 7j are 
collinear then the composition T,, --+ T, --+ T; is non-zero since both T.,, T, 
belongs to a linear subquiver determined by an irreducible map of codomain 7j. 
Otherwise the composition T,, --+ T, --+ T; is zero, since T,, is not in the linear 
subquiver determined by an irreducible map of codomain 1j on which T, lies. 

Consider now 21 an indecomposable direct summand of T, a : E1 ➔ T, 
the sink torsion map and (TE., 71'1) the T-generator of E1. Since TE, belongs 
to add(T) and Hom(TE.,T,) :j; 0, it follows that Ts, has, at most, two inde­
composable direct summands, by the considerations above. Let T,,1 and T,,2 be 
these summands. Applying the same argument to these lllllilma.nds we have the 
following picture: 

Ti,1,1 
~ 

21,1 
/' "'.w 

1i,1,2 T, 
Ti,2,1 

"'.w /' 
21,2 

/' 
Ti,2,2 
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We diacl18S now the possible relations starting at l E Q(r). Since the compo­
sition of any maps with codomain T, and domain any indecomposable module 
whose class is not on the full linear subquivers intersecting at T, are zero, it 
follows that the presentation of r which we gave is monomial quadratic. Since 
we also have dim o('y)I't('y) = 1 for all arrows "Y, it folloW8 by proposition 2.5 in 
[BM] that all presentations are monomial quadratic. ■ 
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