





that BB-algebras of simply connected hereditary algebras are simply connected
and give a class of algebras whose iterated tilted algebras are Koszul.

We recollect now some definitions and basic facts on the theory of Koszul
algebras. The reader can see these definitions and more details in [GM].

A graded algebra T is called a Koszul algebra when the Yoneda algebra
E(T) = IlI,.,Extp(T/r,T'/r) is l-generated, that is, the elements in
Ext}(T/r,T'/r) generate all higher extension groups under the Yoneda’s prod-
uct. In the same work, the authors present a result which gives us a suitable
condition to identify Koszul algebras, which we describe now.

A graded I'-module M, generated in degree zero is called Koszul module
when it has a linear resolution, that is, there exist a graded projective resolution

...P(n) - P(,.__l) e T 4 P(g) - P(l) - P(o) M0

such that P is generated in degree j, Vj > 0.

In the mentioned work, [GM] it is shown that a graded k-algebra, is a Koszul
algebra if and only if every simple module is a Koszul module.

As examples of Koszul algebras we have hereditary algebras, quadratic al-
gebras with global dimension 2 , monomials quadratics algebras (cf. [GZ]) and
the Brenner-Butler tilted algebras (see the last paragraph).

Graded algebras of global dimension two are Koszul if and only if they are
quadratic. Since tilted algebras have global dimension two, they are Koszul if
and only if they are quadratic and graded.

We define now the fundamental notion of tilting module.

Definition 1.1 Let A be an algebra, a A-module T is called a tilting module
when the following conditions are satisfied:

(i) pd, T < 1

(i) Ext\ (T, T) = 0

(i51) There is a short exact sequence 0 - A = T = T" 5 0, tmth T’ and
T € add(T).

We continue this introductory section by recalling some definitions and fixing
some notations.

1. Given a tilting A-module T we may consider two full subcategories of the
category of finitely generated modules, namely the category 7(7) of all
modules generated by T' and the category F(7) of modules M satisfying
H omA(T M) = 0. The modules on 7(7) are called torsion modules and
the ones in F(7) torsion free modules.

2. The endc;morph.ism ring T' = End7 (T) of a tilting module T is called a
tilted algebra from A.

If A is hereditary, we just say that I is a tilted algebra.



3. Given a A module homomorphism f : M — N we denote by £, the induced
I'-module homomorphism Hom(T, f) : Hom (T, M) — Hom(T, N).

4. Giver T; an indecomposable direct summand of T, we denote by B the
indecomposable projective I-module Hom, (T, T}).

There is a close connection between the representation theory of the algebra
A and the endomorphism ring T', as it is shown in [BB] and [HR]. In particular
when A is hereditary, the torsion theory defined by T over the category of finite
generated modules I'-mod, splits.

We refer to [BB], [HR] and [AS] for the most results on tilting theory. We will
use freely the results and the nomenclature which are defined in the mentioned
works.

2 Tilted Algebras

In this section A denotes a hereditary algebra, T a tilting A-module and T
the tilted algebra Endy (T)).
Our first proposition is the following:

Proposition 2.1 Let f : TV — T; be a A-module homomorphism, between mod-
ules in Add(T), such that Homa{(T,T') ELY P, = 5 — 0 is a minimal projec-

tive presentation of the simple non-projective I'-module S;. Then f is either a
monomorphism or an epimorphism.

Proof: Assume that f is not an epimorphism. Consider the short exact se-
quence of A-modules given by 0 — Im f — T; — coker f — 0, where 7 is
the canonical inclusion. Since Im f € 7(T") we have that Ext)(T,Im f) = 0
therefore applying the functor Homy (T, ), we obtain the following short exact
sequence

0 — Hom, (7, Im f) LN Py — Homy (T, coker f) — 0

Considering the fact that f = io f', where f’ is given by 7* L Im §, it follows
that f. = 4. o f] and we also have that rp P, = Im f, = Im(i, o f.). Since i, is
a monomorphism, we conclude that Im f'+ = Im f, = rpP.

We use the Brenner-Butler equivalence and get that (T,Im f) = rrB.
Hence, 5 = (T,coker f), with coker f € T(T), therefore pdpS; = 1. So,
rr B is a projective I-module and Im f =2 Im f/ = T". It follows that f =io f’
is a monomorphism. n

Corollary 2.2 Using the same notations and conditions, as in the former propo-
sition, we have the following:



(s) S € Y(T) if and only if f is a monomorphism. In this case,
Si = Homy (T, coker f).

() S € X(T) if and only if [ is an epimorphism. In this case,
S; = Ext} (T, kerf).

(c) pdrSi =1 if and only if kerf € F(T).

Proof: (a) If S; € Y(T) then pd rS; =1 and hence f, isa monomorphxsm Ap-

plying the functor 7' ®r — to the exact short sequence 0 —+ (T, T") ELY (T,7) -
(T,N) — 0, with (T, N) = S for some N € T(T), we conclude that the se-

quence 0 = T” l)Tg — N — 0 is exact, since Torf(T,N) = 0. Hence, fisa
monomorphism. Conversely, if f is a monomorphism, so is f,. It is clear that
(T, cokerf) = 5; € Y(T).

By the former proposition and by (a) the statement (b} follows.

Applying the functor Homy (T, —) to the exact short sequence 0 < kerf —
T' = T; = 0, we see that the statement (c) is also valid. u

3 Owur Main Result

In this section we drop the requirement of A being hereditary. Here A will
be any finite dimensional algebra over the algebraically closed field k. We fix,
as before, a tilting A-module T and a decomposition of T in indecomposable

direct summands given by T = @ T; and assume, without lost of generality,

=t
that T is multiplicity free, that is: the indecomposable directs summands of T
are pairwise non-isomorphic. Some authors call it a basic module.

Definition 3.1 Let M and N € T(T) with M indecomposable. We say that
the non-zero A-morphism « : N = M is a sink-torsion map if it is a sink map
on the category T(T), in other words: a is a minimal non-split homomorphism
and every non-zero non-split homomorphism §: L - M with L € T(T) factors
through a.

We observe that if f : E — M is sink map then the restriction of f in trr(E)
given by f/ : trz(E) =+ M is a sink-torsion map, where trr(E) is the trace of T
in E.

Proposition 3.2 Let A be a finite dimensional k-algebra and T a tilting A-
module. Let T} be an indecomposable direct summand of T and B, = Homa (T, T}).

Then, there exist only one sink-torsion map a : E — T}, up to isomorphism.
Moreover E 2 T@ rP, and a = T®a. witha, : rP; = P, the natural inclusion.
F

Proof: Let E € T(T) and a : E — Tj be a A-module homomorphism which
induces the inclusion a, : rP; = F. Then using the BB-equivalence we get that



E and o have the form we want. We claim that o is a sink torsion map. It is
clear that o is not a split epimorphism since a. does not splits. Considering a
non-zero non-split epimorphism g : N — T, with N € 7(T), we have that
B. : (T, N) = (T, T;) is a non-split epimorphism, therefore it factors through «,
and so do B through @. The minimality of . implies the minimality of & and
vice-versa, by the BB-equivalence.

To show the uniqueness, we observe that the following general result is valid.
If a subcategory of an abelian category has sink maps then the sink maps are
unique, up to isomorphism. |

Definition 3.3

1. We say that a A-module E € T(T) is the torsion-predecessor of an in-
decomposable direct summand T; of T if rP, 2 Homy(T, E) with P, =
Homy (T, Ti). We denote E by E;.

n
2 Let M = @ M; be a module in add(T), with M; indecomposable. Then a

1=1
module E € T(T) will be called the torsion-predecessor of M if E is the
direct sum of the torsion-predecessors of all the Ms.

Corollary 3.4 A sink-torsion map is either a monomorphism or an epimor-
phism.

Proof: Assume that a sink torsion map « is not an epimorphism. Hence,
Im a &T;. By hypothesis, the inclusion j : Ima — 7} must factors through o, it
follows that E = ker « @ Im a, hence ker a € 7T(T). If ker a # 0 we conclude
that rP} = (T, ker a) @ (T, Im «), with (T, ker a) # 0. Since « is minimal, so
is a,, but this contradicts the fact that @, (T, ker o) = 0. ]

Corollary 3.5 Using the notation above, let S; be the top of the T-module Py.
1. If @ is a monomorphism then S; = Homx (7T, %)
2. If a is an epimorphism then S; = Ezt} (T, ker a).

Proof: If a is a monomorphism then the short exact sequence of A-modules,
0 = E 3 T; - coker @ —+ 0, induces the following short exact sequence of
T-modules, 0 — (T, E) =3 P, = (T, coker a) — 0. It follows from the proposi-
tion 3.2 that rP = (T, E), therefore S; = Homy (T, Ti /E).

If @ is an epimorphism, we have the short exact sequence of A-modules,
0 — ker a ~ E 3 T; — 0, which give us the following long exact sequence of
I-modules:

0= (T,ker @) =+ (T, E) 3 B = Ext} (T, ker a) = 0,

where (T, E) & r F;. But, a, is 3 monomorphism hence (T, ker a} = 0. It follows
that kera € F(T) and 5 = Ext} (T’ ker a). =



Definition 3.6 Let M be a non-zero A-module in T(T'), and x : Ty —> M an
homomorphism. The pair (Tan,7) will be called a T-generator if it is a minimal
left add(T)-approzimation of M. We recall here that this means that it satisfies
the following conditions:

(1) T is in addT, x is minimal.

(i) Bvery morphism v : T! — M, with T' € addT, factors through x.

Since add(T) is functorially finite we have every module has a minimal
add(T) approximation, which is unique, up to isomorphism, and for modules in
T(T) it is clear that the map = on the definition is an epimorphism. Moreover,
we have that Homy (T, Tar) is the projective cover of Homa (T, M).

We show now a result which is valid for a graded algebra T' which is tilted
from a A-algebra .

We would like to observe that there are examples of tilted algebras which
are not graded, that is, the ideal of presentation of a tilted algebra is not always
a homogeneous ideal, the reader can see examples in [R].

Proposition 3.7 Let T be a tilting A-module. Suppose that T = kQ/I =
End(T)°? and that I an homogeneous ideal. Let

«.= Pgy = Pgy—+ Py 2T T/r=0

be the minimal projective resolution of the top(T) where Pj) = Homa(T,T})
with T{ € addT. Let E; be the torsion-predecessor T]. Then, T is a Koszul
algebm if and only if, for each j, the canonical morph:sm from T}, to the
T-generator of E; is a split monomorphism.

Proof: I T is a Koszul algebra then we have that Py;) is generated in degree
j, for each j > 0. Since I is a homogeneous ideal it follows that F(; is a
direct summand of the projective cover of rP;.y), for j > 0. Let’s consider
Ej_y € T(T) such that Homa(T, Ej.1) = rP;_1) and Tg,_, the T-generator
of Ej_3. Hence, Hom, (T, Tg;_,) is the projective cover of rP(;_;). Therefore,
f[} ia a direct summand of Tg;_, .

Reciprocally, if the canonical map is a split monomorphism then P(;;1) is
graded direct summand of the projective cover of rP; for j > 0. Since I is
homogeneous, it follows that I is Koszul. ]

We need now to fix some more notations.

Let Py = Hom, (T, T;) denote an indecomposable projective I'-module, a; :
E; = T} denotes its sink-torsion map and (Tg,, ;) the T-generator of Ej.

We also fix a decomposition Tk, = GB','=1T}':'" where T3,, ..., T}, are pairwise
non-isomorphic, indecomposable. (In this case, my, is the number of times that
the simple I'-module S;, appears in the top of rP = (T, E;).)

We have a decomposition of the map m such that m = ((m)1,---,(m):)
with (m), :’I;""" —y Ejfors=1,.--,r



We fix the notation (m), = ((m)},---,(m);") with (m)¥* : T}, — E
for 1 < u, < my,. It follows that each component of oym; is a map given by
ay(m)y* :7j, — Ty where s=1,---,rand 1< u, <my,.

The map a;m will be called T-sink map of T;.

Definition 3.8 Let f : T, = T; be a non-zero A-morphism between indecom-
posable modules in add(T). We say that f is T-irreducible if f is not an isomor-
phism and for any factorization f = gh through addl" implies that h is a split
monomorphism or g is a split epimorphism.

Lemma 3.9 Let f : T, & T; be a non-zero A-morphism for v #U Iffis
T-irreducible then f is a component of the map aym, defined by the notation
fized above. Moreover, (T,T,) is a direct summand of the projective cover of
rh.

Proof: Since v # | we have that f is not an epimorphism, since oy is a sink-
torsion map, f must factors through oy, but , is the projective cover of (T, E}),
hence f factors through a;x. It follows that there exists 3 : T, — T, such
that f = aymB. Since ;7 is not a split epimorphism it follows that 3 is a split
monomorphism. Hence Ty, is a direct summand of T,. We conclude that f is
a component of the map a;m, as we wished to prove. |

Now, we consider a presentation for T given by T' = kQ/I. For each arrow
a € @, from ! to v, one can associate a map (fa)s : Py — B, called multipli-
cation by the arrow a, which is defined by (fo)u(p) = fa o ¢ for each ¢ € P,,
where fo : T, —+ T} is the A-map that induces (fa)e.

Lemma 3.10 Let (fa). : P, = P; be a I'-morphism given by multiplication by
an arrow of Q, as above. Then, f, is T-irreducible.

Proof: Suppose that f = gh for some g : TV — T} and h : T, = T with
T € addT . It follows that f. = g. o h,. Moreover, if we consider P, =
T€, such that £, is the idempotent of I' defined by & = (0,---,Ir,,---,0) :
T — T,, where I, : T, - T, is the identity, we have that f.(&) = (gh) o
& =(0,--.,9h,0,---,0). Since gh factors through 7¥ we have that (gh).(&)
determines a path from the vertice [ to the vertice v passing through the vertices
associated to the projective (T, 7). Since we have that (gh). is a map defined
by multiplication by arrow, and I is admissible, we get that either 4 is a split
monomorphism or g is a split epimorphism. [ |

Lemma 3.11 Let P, = Hom (T, T;) be a projective T'-module. Then P; is a
direct summand of the projective cover of rP; if only if there is a T-irreducible
morphism f : Tj — T;.



Proof: Assume that P; = (T, Tj) is a direct summand of the projective cover of
radical of P,. Hence, there exist a non-zero morphism f, : P; — Fj such that
Imf. C rP and Imf, ¢ r?P. Let f: T; — T; be the map that induce f..
We claim that f is T-irreducible. Suppose not, that is, there exists ¢ : T — T}
and h : Tj — 7" non-zero maps, with T € addT, such that f = gh, where g is
not a split epimorphism and A is not a split monomorphism. By BB-equivalence
we have that f. = g.h. where g, is not a split epimorphism and A, is not a
split monomorphism, Hence Img, C rP and Imh, C r(T,T'). It follows that
Imf, C r*P, a contradiction from the hypothesis on f.. The reciprocal was
proved in lemma 3.9. |

Remarks:
(1) The maps (). : :___IP,':"' —+ Py, are such that:

(i) my, is the multiplicity of the simple I'-module S;, in the top of rR,

(ii) the maps a;(m)¥* : T}, — T; where s =1,---,r and 1 < u, < my, are
the components of the map aym for u, =1,...,my,, s=1,..,r.
(2) We have that ((T, 7z, ), (m1).) is the projective cover of rP; and since
(ai)s : B = P is a sink map, one can concludes that S; has a minimal
presentation given by

Homy (T, Tg,) =" B — § — 0.

As a consequence of the first remark and lemmas 3.9 and 3.10, we have that
each non-zero map f. : P, = B, with |, # I, defined as a maultiplication by
an arrow is also a component of the map aqm. Actually, one can assume that
f = a;x}* : Ty, = T; for some u,.

Using the second remark given above, it is easy to see that
{fa:T, 2 Tifa:l — 1, € (Qr)1) & {a(m)y : T, — Tifu, = 1,...,m,}
for each 8 = 1,---,r fixed, with I, # L.

For our main theorem we fix, as usual, A a finite dimensional k-algebra
with k an algebraically closed field and T be a tilting A-module. We also take
F= kQ/I = End°(A) with Q finite quiver and I is an admissible ideal.

Main Theorem. Suppose that T' = End}¥ (T) has global dimension £. Consider
the minimal projective resolution of I‘/ , given by:

0 @[, Pp* Ly @) P LT T/ 0.

Then, T is a Koszul algebra if and only if each component of p, say ps, 4, : Tj, =
Ty, is given by ay, (7, )} for some vy = 1,...,m;, defined as above.

Proof: We denote I, simply by I, and keep the same notation from our consid-
erations and lemmas above.



Assume now that I' is a Koszul algebra. Then I is quadratic ideal and by a
result in [B}, &]., P}T’" > [/I? . So we get that each component of the map p
with domain and codomain indecomposable is defined, up to isomorphism, by a
multiplication by an arrow. Since T" has finite projective dimension, its ordinary
quiver has no loops and we have that j, # I foreachz =1, - -, r. By lemmas 3.9
and 3.10 above we have that each component of p, say pj,; : Tj, = 71, is given
by eq(m);* for some ug = 1,--,my,.

Reciprocally, suppose that each component of p, say Pit T3 = This
given by ay(m);"* for some u; = 1, ..., m;,. Since J‘(_m).), is a component of the
projective cover of (T, E;) = rB, we have that P, 7t js a direct summand of the
projective cover of r P, for each ¢ = 1, -, 5. By hypothesis, we have that (o)«
is a sink map and hence by remark (2) above, we have that each component of
p+ with domain and codomain indecomposable is defined by multiplication by
arrows. Therefore, T' is quadratic. Since I' has global dimension 2, it follows
that T' is Koszul. [

We would like to observe that as consequence of lemma 3.11 one can draw
a full subquiver @’ of @ and by lemmas 3.9 and 3.10 complete @' to Q. The
following examples will ilustrates our results.
Examples

1. A finite type Brenner-Butler algebra.

Let A be a quiver algebra whose quiver is the following:
3
7

N
4

Let T = =526 P, @ P3® Py be a tilting A-module. The Auslander-Reiten
quiver of A is given by

(Ps) TP I
/ s h
Ppb — () — T™Ph — S5 — L, — (h)
N
(Ps) TP I,

The morphism (P, — Py), in the graph above, is a sink map; moreover,
we have that P3 & P, is the T-generator of trrP;. Also, we have that
P, is the T-generator of I3 and the morphism I; — 7783 = I, given
by the graph above, is the map that induces the sink map #(T, 7~ S2) —



(T, 7~S2). We have that I' is an algebra with radical squared zero and
ordinary quiver Q(T') given by:

. An example of a concealed algebra. Let A be a quiver algebra whose
quiver is the following:

1 5
N 4

3 — 4

4 N
2 6

A local sketch of the preprojective component of the Auslander-Reiten of
A is given by

Py P T-2P1
A Ve " 7 N 7
P, = P3 = 7P - P - f"P, - T"Ps -
h" Ve A" 7 p™
Py - Py = 7= Py - 7P >
p" 7 h" s
Py TP

Consider the tilting A-module T = = Ps@71~ Py®7~ P31~ P,®1™ Pi®Ps.
We have that the full subquiver of the Auslander-Reiten quiver of A, with
vertex de indecomposable direct summands of T' form a slice and it is the
following quiver:

TP — TP — TP — 1TF

7 7
TPy Pg

where the arrows represent irreducible maps. It follows that I’ has projec-
tive radical and its quiver is the same as the quiver of A, moreover T' is
hereditary.
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4 Some applications

4.1 Brenner-Butler tilted algebras

As usual, on this work, A = kQ is a finite dimensional path algebra over a field
k, with Q a finite connected quiver (so, it contains non-oriented cycles). Let
P, P, -+, P, be a complete list of indecomposable projective non-isomorphic
A-modules. Let’s fix § = S; the simple A-module associated to the vertex i
of Q. Assume that 7~5; # 0. We have that T = +-S; @ @D, F; is a tilting
A-module. The endomorphism ring I' = End,(T) is called Brenner-Butler
tilted algebra or, for convenience, BB-tilted, (cf. [AS], for instance). It is a
known fact that the class of torsion-free modules is given by F (T) = Cogen (S).
We shall prove the following result:

Theorem (BB):Every BB-tilted algebra is a Koszul algebra.

Proof: We prove this theorem by showing that each simple I-module has a
minimal projective resolution which satisfies the conditions of our main theorem.

We have that S = Ezti(T,S) is a simple Enda(T)°P-module, since
Ezt}(T,S) = DHom,(S,7T) = DHoma(S,S) & k. Because we have that
indF(T) = {S}, we conclude that O%(T'/r) = Q3(5). I pdr§ = 1 then T is
hereditary, therefore it is a Koszul algebra. So we assume pdpS' =2.

Let 0 — § — I; — I; — 0 be a minimal injective coresolution of
the simple A-module § = S;, where I; = Il’;h @-“@IL"' is such that {, is an
immediate predecessor of i for s = 1,-- -, and m, is the number of arrows from
i, to 1.

We have that the top of 7=S = soc I1, (cf. [ARS]). Since A is hereditary
we have that (DS)* = 0, hence the exact short sequence 0 — (DL)* —
(Ph)* — 7§ — 0 is a A-projective minimal resolution of =S, where
(DI;)* = (P4)*, for each vertex j of the quiver Q@ of A. Moreover, it is given

¢
by 0 — P s @ P™ =5 7S — 0, where f is the map induced by

=1

multiplication by tl'le arrows that join the vertices I,...,J; to i in Q4.

More precisely, let’s consider a complete list of arrows joining I, to the vertice
i given by {a}* :l, — i}, ,,, where s =1,...,tand 1 < u, < my,, with my, =
the number of arrows from I, to i. Then f = (f2*),y,, where f* : P, > B, is
defined by multiplication by the arrow a¥%-, for s and u, as above.

Applying the functor Homa (T, —) to the projective resolution of 7§ given
above, we obtain the following exact long sequence of I'-modules

0—(T,P) L5 (T,P) = é}(r, B,)™: I (T, 7 8) — Exti(T,P;) — 0

=1

where 7, = Homy (T, x). We observe that . is not an epimorphism and hence

11



Im x, C rp(T, 7 S).

Moreover, we claim that coker v, & S.

Indeed, for any @ = (1,2, -+, Pa) € rr(T, 7~ S), one can assume, without
lost of generality, that ¢, € (t~S,7~5) and hence ¢, = 0. Since each com-
ponent @; : Pj — 7~ 8 of ¢ factors through , we can conclude that ¢ itself
factors through x. It follows that ¢ € Im x,, therefore Im 7, = rr(T,7"5),
and this finish the proof of the claim.

Applying the functor Homy (T, —) to the exact sequence 0 — rF; 2,
P — ,,—J;é; — 0, for 8 a sink map, we can conclude that (T, P;) = (T,raP;)
and it follows that S, is an isomorphism.

From the considerations above we have that the minimal projective resolu-
tion of S is given by

¢
0 — (T,rP;) L5 (T, P) = (T, F™*) 2 (T, 75) — § — 0
s=1
where f. is the I'-map defined by the composition with f5.

Finally, we claim that f3 is a component of a sink-torsion map.

Indeed, we have that P; is a direct summand of the radical of P and the
map f : P; — P as described above, is a component of the map rP — P,
defined by the minimal sink maps (o, ). : P, — B,. Moreover, we have that
trp(P;) = rP;. Hence, the composition f8 is a component of a sink torsion
map. By our main result, we conclude that I' is Koszul. B

As an application of the result above, we describe a presentation of BB-tilted
algebras. First we consider the I-map (T, ra F;) LN (T, P;), defined by B.(p) =
B -, for each o € (T ,raR). We fix a decomposition
B = ((B")1gvigvjy s 5 (BE")1<v,<v;, ) such that Gy is the map defined by
multiplication by the arrow joining the vertice i to the vertice jn, denoted by
Bi» i i — jm. In this notation vj,, is the number of arrows between these
vertices, and m=1,..-,r.

Of course, # is a monomorphism. Using the same arguments as in the
theorem above, we have that (T, P;) = (T, raP;), hence §, is an isomorphism.
Moreover, we have that f, has each component with domain and codomain
indecomposable defined by (B a¥~)., for some fixed pair (m, s).

Definition 4.1 Giving a vertice § in a quiver Q the neighborhood of § is the full
subguiver whose vertices are i and its immediate predecessors and successors.

The quiver and relations of the BB-algebra can be described as follows:

1. Description of the Quiver

(1) The vertex associated to the simple I'-module S, denoted by i becomes
a source.
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(2) The immediate successors of i are the vertex associated to the simple
F-module 5; for s = 1,---,t, whose projective cover is given by the I'-
module P;, = Homa(T, B, ), where l, . . .,I; are the immediate successors
of i in the quiver of A.

(3) One of the immediate successors of each I, is the vertice denoted by
Jm, associated to the simple I~module Sj,, whose projective cover is the I'-
module P; = Homy (T, P;, ), such that P;_ is an indecomposable direct
summand of rP;.

(4) X {u,v} & {i,44,...,l;, j1,...,5,} then the number of arrows between
i and o is the same as the number of arrows between u and v.

We sketch an argument for the description above.

Since we have that Homy (7~ S, P;) = 0 for j # ¢ and the projective cover
of § is @), (T, ™) it follows that both (1) and (2) are valid. One can
prove (3) by checking the projective resolution of S, since we have that
I is Koszul. Finally, easy computation gives us (4) and also give us the
number of arrows between the vertices in the quiver of I'.

2. Description of the relations

We recall that, using argument presented to prove the theorem(BB) above,
we see that the arrows with origin the vertice i are defined by the compo-
nents of the map ., induced by the projective cover = : @_, P, "* = r~S.
We observe that considering the element ¢ € (T, rp F;), such that v is the
map defined by a multiplication of the sum of paths in the quiver of T that
ends in the vertices j,, form = 1,-- -, r, one can conclude that (x, o f,)(¥)
is a relation in T'.

Indeed, examining the projective resolution of 5, we can see that the set
of entries of the matrix of the map r,(f8)., defines the ideal of relations
of I

More explicitly, all relations begin in i and end in j, and are defined by
t my,
Y Y (Bra¥r)nte =0,foreach v =1,---,v;  andm=1,---,r.

=1 u,=1

As we said above the quivers Q(A) and Q(T), of the hereditary algebra
A and the associated BB-tilted algebra I, have the same shape outside the
neighborhood from the vertice which we denoted by i. In order to exemplify the
description above, we restrict ourselves to the case where Q{A) has no double
arrows, and give a pictures showing the connection between both quivers.

Assume that the neighborhood of the vertice { in Q(A) has the following
description:

13



h 7
\?1 ﬁl/l
i
W

b Je

As we have shown, the vertice i is a source in the quiver Q(T') and has imme-
diate successors given by the vertices fi,..., I corresponding to the projectives
Homp(T,B,),8 =1,...,t. Let # = (my,...,m) be a decomposition of =, and
the arrow %, correspondmg to the homomorphlsm (7s)» = Hom(T,=,). Each
vertice I, is an immediate predecessor of each 7., The arrows between i, and
Jm correspond to the s-th component of the homomorphism induced by f o fm
which is defined by the product fpa,.

For each m=1,...,r we have the following local picture.

h
&, (Pmoy)
Ve v

i : Im
& (Bm )
Ve

I

The following examples will make clear such description.
Example 1: If A is the quiver algebra whose quiver is :

2
1’4 N
Q: 1 £ 3
and T = 751 @ € P;. Then we get that T' will have the following ordinary
J#1

quiver :

-

(%3
all®

(-

and relation (Ba) 7 = 0.
Example 2: Let A be the quiver algebra whose quiver is the following :

1 & 2 3

Sr1e

14



and T the tilting module associated to the vertice 2, that is, T = r~ S, &P, ® P;.
In this case T has a presentation whose ordinary quiver is given by:
, P
=1
Bas

3

alla

and only one relation 71 (Bay) + Ta(fBas) = 0.

The next lemma is an easy consequence of the exact sequence which appear
in [AP] section 2.3, and it is a handy result in our next proposition. We review
some of the notations and definitions.

Let (Q, I) be a presentation of a connected algebra I', we denote by II; (@, 1)
its homotopy group, vo the number of vertices in @ and n, the number of arrows
in Q.

Given any abelian group G, we denote by Z*(T', I, G) the set of all G-valued

U
function f : @, — G such that Y f(og) = f: f(B;) whenever there exists a
i=1 i=1

q

minimal relation p = Y Ajw; such that wy; = @y.--.ay and wy = B;.+++.Gp.
i=1

There is an exact sequence of abelian groups

0-+G—G"™ — Z'(T',1,G) » Hom(II;(Q, I),G) = 0
Lemma 4.2 Let (Q, ) be a presentation of connected algebra, where I is gen-
Um
erated by a set {pm = 3 Mwi,m = 1,...,r}U{v;} where the v's are the

=1
monomial relations in I 'and each p,, is a minimal relations with u, terms.
Then dimg(Hom(IL(Q,N,Q)) > na—vo+1— 3 upm+r.
m=1

Proof: It is a straightforward consequence of the sequence above with G be-

ing the additive group of the rational numbers. We only need to observe that
*

ZY(T, 1,@) is a subspace of @"« which is determined by }_ u,, — r linear equa-

N m=1
tions. [ |

Proposition 4.3 Let T be a BB-tilted algebra from an hereditary algebra A.
Then A is simply connected if and only if T' is also simply connected.

Proof: Assume first that A is simply connected. Since A is hereditary the
quiver Q(A) is a tree. Let (Q(T),I) be the presentation of I given above. Then
it easy to see that the fundamental group x,(Q(T'), I) is trivial. Since for any
arrow ¥ € Q(T) we have that dim o(4)I't(y) = 1 it follows by theorem 3.5 of
[BM], that the fundamental group of any presentation is trivial. Since it also
known that I' is directed, it follows that I' is simply connected.

15



We assume now that the BB-tilted algebra T is simply connected and we
shall prove that A is simply connected. We know that H(T') = H(A) by
Theorem 4.2 in [H], hence it is enough to prove that H(T) = 0.

We recall that outside the neighborhood of the vertice § € Q(A) the quivers
Q(A) and Q(T') have the same shape, since I' is simply connected we conclude
that Q(A) does not contains simple closed walks not involving arrows on the
neighborhood of §. This is clear if the closed walk does not involve vertices in
the neighborhood of i. We also have that there is no path in Q(A) which stars at
some I; and ends at some [;. Otherwise, we would have the followmg description
of @(A) in the nelghborhood of i.

L

PN 7
: a

I 2 =

: N

A Jr

Then Q(T') has the following description in the neighborhood of i.

-y
$
e
1
e
3

for each m = 1,.. ., r. In this case, I is not simply connected, because according
to our descrlptlon if we compute the homotopy group of our presentation the
closed walk starting at i and passing trough §; and I3 is not trivial on the
homotopy group.

The same kind of argument shows that there is no path in Q(A) starting
and ending in the vertices jy, ..., j,.

It follows from our presentation and the fact that I' is simply connected all
simpleclosed walks in Q(I') have vertices belongs to the set {1, 11, ol 3 Jure e i}

Let I" be full subcategory of I" whose vertices are, {y,..., 5, 1y .., 3r- Henoe
we have that I' is a full convex subcategory of I'.

If we identify all the vertices {i,Iy,...,1,j1,...,7-}, We get a quiver which
is a tree. Using one point extensions and coextensions, and Happel’s long exact
sequence we get that H(T') = HY(IV).

16



We claim that I” is the BB-tilted algebra from the hereditary algebra A’
whose quiver is such that all the arrows start or end at i, that is it has the
following description:

h 1
AV
i
7N
I Jr
The result follows from the claim. Indeed A’ is hereditary and Q(A’) is a tree
therefore H(A’) =0 . We also know that H'(I") = H'(A’), hence H!(A) =0,
as we wished to prove.

We prove now the claim. We have shown that, in the quiver Q,, there is no
path between vertices I's or between j's and no paths from some ! to some j.
Hence, in the quiver of A’ there is no closed simple walks with origin in some I,
passing through some j,, or between themselves. Next we prove that there is no

multiply arrows starting in some I, or ending in some j,, for every s = 1,...,¢
andm=1,...,r.
We recall that I' is a connected algebra such that the relations are given
. my,
by py,, = Y. 3 (Bira¥)x¥s, for each pair (m,v,,). We shall prove that if
=1 u,=1

my, > 1 or v, > 1 for some s or some m then IV is not simply connected.

We denote I = my, +...+ m;, and v = v;, +...+ v;,. We observe that
the number of vertices of IV is ¢ + r + 1, by the description for the quiver
of the BB-tilted algebras. If I > 1 then by the description of the minimal
relations of I' and the lemma above we have that dimq(Hom(I1;(Q, ),Q)) >
(I + v} — (¢t +r). If Q(A’) has multiple arrows then I > ¢ or v > r, in this case
dimq(Hom(I11(Q, I),Q)) > 0 therefore I' is not simply connected.

Finally, if ! = 1 then all relations are monomial. In this case if v;,, > 1 for
some m, I is not simply connected. [ |

4.2 A class of Koszul iterated tilted algebras

A complete classification of the iterated tilted algebra of type A, is given in
[AH]. In that work they show the following lemma on the section 2.

Lemma:[AH] Let A be a finite dimensional algebra of finite representation
type satisfying the following properties:

1. There are at most two irreducible maps with prescribed domain or codomain,

2. If P, i3 projective with indecomposable radical R then there is at most one
irreducible map of codomain R. Dually if 43 is injective with I/(soel) in-
decomposable then there is at most one trreducible mep of domain I/(socl).

17



Then, for every indecomposable M4, the set of all (isomorphism classes) of
indecomposable modules M such that Hom(N, M) # 0 and Hom(N,vM) =0
is the union of two full linear subquivers of the AR-guiver intersecting at the
vertez [M]. The dual conclusion also hoids.

Using this lemma, proposition 3.2 and the same kind or arguments presented
in that paper we show the following:

Proposition 4.4 Let A be a finite dimension algebra of finite representation
type satisfying the hypothesis of the lemma above and T a tilted algebra from A.
Then all presentations of T' are monomial quadratic, in particular it is Koszul.

Proof: Using the lemma above, the correspondence between indecomposable
summands of the tilting module T and the vertices of the quiver Q(T') can be
described, in the following sense.

Consider 7; an indecomposable direct summand of T corresponding under
Homy(T,-) to the projective I'-module associated to the vertice I € Q(T).
Then, in the AR quiver of A, there is at most two irreducible maps f and g of
codomain 7; and at most two irreducible maps u, v of domain 7} and these deter-
mines at most four linear subquivers intersecting at 73, namely L(f), L(g), R(v)
and R(v).

Let T, be an indecomposable direct summand of T' corresponding to the
vertice v € Q(I'). Then if Homa(T1,Ty) # 0,7, € R(u) or T, € R(v) and if
Homp(T,,T}) # 0, T, € L(f) or T, € L(g).

Assume that v and j are two neighbors vertices from l. If T,,, T} and T} are
collinear then the composition T, — T} — T; is non-zero since both T, T}
belongs to a linear subquiver determined by an irreducible map of codomain Tj.
Otherwise the composition T, —+ T} — Tj; is zero, since T, is not in the linear
subquiver determined by an irreducible map of codomain T; on which T; lies.

Consider now T; an indecomposable direct summand of T, a : E; =+ T}
the sink torsion map and (Tg,,m) the T-generator of E;. Since T, belongs
to add(T) and Hom(Tg,,T1) # 0, it follows that Tz, has, at most, two inde-
composable direct summands, by the considerations above. Let T,y and T2 be
these summands. Applying the same argument to these summands we have the
following picture:

T
N
Tia
Ve N
T T
Ti2,1
N e
Tia2
}
Ti22
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We discuss now the possible relations starting at { € Q(T'). Since the compo-
sition of any maps with codomain 7} and domain any indecomposable module
whose class is not on the full linear subquivers intersecting at 7} are zero, it
follows that the presentation of I' which we gave is monomial quadratic. Since
we also have dim o(y)T'¢(y) = 1 for all arrows +, it follows by proposition 2.5 in
[BM] that all presentations are monomial quadratic. [ ]

Acknowledgments: We would like to thank M.I.R. Martins from IME-USP
and E.L. Green from Virginia Tech for various suggestions and contributions.
Ed Green was a very nice coadvisor.

References
[AP] Assem, I ; de la Pefia, J. A. The fundamental groups of a triangular
algebra. Comm. in Algebra, 24(1), 187-208 (1996).

[ARS} Auslander, M.; Reiten, I.; Smalo, S.@. Representation theory of Artin
algebras. Cambridge Studies in Advanced Mathematics, 36.

[AS] Assem, I. Tilting Theory. Published from Unversité de Sherbrooke, Sher-
broke, Québec, Canada; (1988).

[AH] Assem, I.; Happel D. Generalized tilted algebras of type A,. Comm. in
Alg., 9 (20), 2101-2125 (1981).

[B] Bongartz, K. Algebras and guadratics forms. J. London Math. Soc. (2), 28
(1983), 461-469.

[BB] Brenner, S.; Butler, M. Generalizations of Bernstein-Gelfand-Ponomarey
reflection functors. Proc. ICRA II (Ottawa, 1979), LNM, 832 Springer-
Verlag, Berlin (1980), 103-169.

[BM] Bardzell, M.J.; Marcos, ENN. H(A) and presentations of finite dimen-
sional algebras. Pre-print from the Dept. of Mathematics, IME/USP.

[GM] Green, E.L.; Martinez-Villa, R. Koszul and Yoneda algebras. Canadian
Math. Soc., 18, (1994), 247-298.

[GZ] Green, E.L.; Zacharias, D. The Cohomology Ring of a Monomial Algebra.
Manuscripta Math. 85, 11-23 (1994).

[(H] Happel, D. Hochschild cohomology of finite-dimensional algebras. LNM,
1404, 108-126, Springer-Verlag, Berlin, (1984).

[HR] Happel, D.; Ringel, C.M. Tilted algebras. Amer. Math. Soc., 399-443,
(1982).

[R] Ringel, C.M. Tame algebra. LNM, 1099, Springer- Verlag, Berlin.

19



98-01]
98-02

98-03
98-04

98-05
98-06
98-07
98-08
98-09
98-10
98-11
98-12
98-13
98-14

98-15

98-16

98-17
98-18

98-19

TRABALHOS DO DEPARTAMENTO DE MATEMATICA
TiTULOS PUBLICADOS

ASSEM. 1. and COELHO, F.U. On postprojective partitions for torsion
pairs induced by tilting modules. 16p.

HUGEL. L.A. and COELHO, F.U. On the Auslander-Reiten-quiver of a
73-hereditary artin algebra. 27p.

BENAVIDES, R. and COSTA, R. Some remarks on genetic algebras. 11p.

COSTA, R., IKEMOTO, L.S. and SUAZO, A. On the multiplication
algebra of a Bernstein algebra, 11p.

GONCALVES, D. L. Fixed point free homotopies and Wecken
homotopies. 4p.

POLCINO MILIES, C. and SEHGAL, S. K. Central Units of Integral
Group Rings. 9p.

BOVDL V. and DOKUCHAEV, M., Group algebras whose involuntary
units commute. 15p.

FALBEL, E. and GORODSK], C. Some Remarks on the Spectrum of
Sub-Riemannian Symmetric Spaces. 16p.

FUTORNY, V.M., GRISHKOV, AN. and MELVILLE, D.J. Imaginary
Verma Modules for Quantum Affine Lie Algebras. 24p.

BARBANT)L, L. Simply regulated functions and semivariation In
uniformly convex spaces. 5p.

BARBANTI, L. Exponential Solution for Infinite Dimensional Volterra-
Stieltjes Linear Integral Equation of Type (K). 10p.

BARBANTI, L. Linear Sticltjes Equation with Generalized Riemann
Integral and Existence of Regulated Solutions. 10p.

GIULIANIL, M.L.M. and POLCINO MILIES, C. Linear Moufang Loops.
15p.

COSTA, E. A. A note on a theorem of Lawson and Simons on compact
submanifolds of spheres. 8p.

GIANNONI, F., MASIELLO, A. and PICCIONE, P. Convexity and the
Finiteness of the Number of Geodesics. Applications to the
Gravitational Lensing Effect. 26p.

PICCIONE, P. A Variational Characterization of Geodesics in Static
Lorentzian Manifolds. Existence of Geodesics in Manifolds
with Convex Boundary. 39p.

POLCINO MILIES, C. The Torsion Product Property in Alternative

Algebras I1. 7p.

BASSO, 1, COSTA, R. Invariance of p-Subspaces in Algebras Satisfying
the Identity x*=A(x)x". 12p.

GORODSKI, C. Delaunay-type surfaces in the 2x2 real unimodular group.
12p.



98-20

98-21
98-22

98-23
98-24
98-25
98-26

98-27

98-28
98-29
98-30

98-31
98-32

98-33
99-01
99-02

99-03

JURIAANS, S.0. and PERESI, L.A. Polynomial Identities of RA2 Loop
Algebras. 12p,

GREEN, E.L. and MARCOS, E.N. Self-Dual Hopf Algebras. 10p.

COSTA, R. and PICANCO, J. Invariance of Dimension of p-Subspaces in
Bemstein Algebras. 18p.

COELHO, F.U. and L1U, S.X. Generalized path algebras. 14p.

CATALAN, A. and COSTA, R. E-ideals in train algebras. 13p.

COELHO, FU. and LANZILOTTA, MA. Algebras with small
homological dimensions. 15p.

COSTA, R. and LELIS, M.L. Recurrent linear forms in Bernstein
algebras. 29p.

GIANNON]J, F., PERLICK, V., PICCIONE, P. and VERDERES], J.A.
Time minimizing trajectories in lorentzian geometry. The
general-relativistic brachistochrone problem. 28p.

BARDZELL, M.).,, LOCATELI, AC. and MARCOS, EN. On the
hochschild cohomelogy of truncated cycle algebras. 24p.

ALMEIDA, D. M. Sub-Riemannian Symmetric Spaces in Dimension 4.
16p.

COELHO, F. U, MARTINS, M. L. R, DE LA PENA, J. A. Projective
dimensions for one point extension algebras. 7p.

BOVDI, V. On a filtered multiplicative basis of group algebras. 10p.

BOVDL V., ROSA, A. L. On the order of the unitary subgroup of modular
group algebra. 8p.

JURIAANS, O. S. and POLCINO MILIES, C. Units of integral group
rings of Frobenius groups. 9p.

FERNANDES, J.D., GROISMAN, l. and MELOQ, S.T. Hamack inequality
fora class of degenerate elliptc operators. 19p.

GIULIANI, O. F. and PERESI, A.L.,, Minimal identities of algebras of
rank 3. 9p.

FARKAS, D. R., GEISS, C., GREEN, EL., MARCOS, EN.
Dizgonalizable Derivations of Finite-Dimensional Algebras
1. 25p.

FARKAS, D. R, GEISS, EL., MARCOS, EN. Diagonalizable
Derivations of mete-Dunensxonal Algebras I1. 13p.

LOBAQ, T. P. and MILIES, C. P. The normalizer property for integral
group rings of Frobenius groups. 7p.

PICCIONE, P. and TAUSK, D.V. A note on the Morse index theorem for
geodesics between submanifolds in semi-Riemammian
geometry. 15p.

DOKUCHAEV, M., EXEL, R. and PICCIONE, P. Partial representations
and partial group algebras. 32p.



99-08

99-09

99-10

99-11

99-12

99-13
99-14

99-15

99-16
99-17

99-18
99-19

99-20

99-21
99-22

99-23

99-24
99-25
99-26

99-27

MERCURIL. F., PICCIONE, P. and TAUSK, D.V. Stability of the focal
and geometric index in semi-Riemannian geometry via the
Maslov index. 72.

BARBANTI, L. Periodic solution for Volterra-Stiltjes integral linear
equations of type (K). 9p.

GALINDO, P.. LOURENCO, M.L. and MORAES, L.A. Compact and
weakly compact homomorphisms on Fréchet algebras of
holomorphic functions. 10p.

MARCOS, EN, MERKLEN, HA. and PLATZECK, M.l The
Grothendiek group of the category of modules of finite
projective dimension over certain weakly triangular
algebras. 18p.

CHALOM, G. Vectorspace Categories Immersed in Directed
Components. 32p.

COELHO, F.U. Directing components for quasitilted algebras. 5p.

GOODAIRE, E.G. and POLCINO MILIES, C. Alternative Loop Rings
with Solvable Unit Loops. 13p.

GOODAIRE, E.G. and POLCINO MILIES, C. A Normal Complement for
an Ra Loop in its Integral Loop Ring. 9p.

LOURENCO, M. L. and MORAES, L.A. A class of polynomials. 9p.

GRISHKOV, A. N. The automorphisms group of the multiplicative Cartan
decomposition of Lie algebra Es. 18p.

GRISHKOV, A. N. Representations of Lie Algebras over rings. 14p.

FUTORNY, V., KONIG, S. and MAZORCHUK, V. Ssubcategories in &

16p.

BASSO, 1, COSTA, R., GUTIERREZ, J. C. and GUZZO JR., H. Cubic
algebras of exponent 2: basic properties. 14p.

GORODSKI, C. Constant curvature 2-spheres in CP~. 5p.

CARDONA, F.S.P and WONG, P.N.S, On the computation of the relative
Nielsen number. 15p

GARCIA, D., LOURENCO, M.L., MAESTRE, M. and MORAES, L.A.
de, The spectrum of analytic mappings of bounded type.
1

ARAGONA, J. and JURIAANS, S.0. Some structural properties of the
topological ring of Colombeau's gencralized numbers. 35p.

GIULIANI, M.LM. and POLCINO MILIES, C. The smallest simple
Moufang loop. 27p.

ASPERTI A. C. and COSTA, E. A. Vanishing of homology groups, Ricci
estimate for submanifolds and applications. 21p.

COELHO, F.U., MARTINS, M.LR. and DE LA PENA, J.A. Quasitilted
Extensions of Algebras 1. 11p.



9928 COELHO, F.U.. MARTINS, M.L.R. and DE LA PENA, J.A. Quasitilted
Extensions of Algebras 11. 17p.

99-29 FARKAS, D. R.. GEISS, C. and MARCOS, E.N. Smooth Automorphism
Group Schemes. 23p.

99-30 BOVDI, A. A. and POLCINO MILIES, C. Units in Group Rings of
Torsion Groups. 15p.

99-31 BARDZELL. M.J. and MARCOS, E.N. H'(A) and presentations of finite
dimensional algebras. 8p.

99-32 GRISHKOV, A. N. and SHESTAKOV, 1. P. Speciality of Lie-Jordan
algrbras. 17p.

99-33 ANGELERI-HUGEL, L. and COELHO, F. U. Infinitely generated tilting
modules of finite projective dimension. 14p.

99-34 AQUINO, R. M. and MARCOS, E. N. Koszul Tilted Algebras. 19p.

Nota: Os titulos publicados nos Relatorios Técnicos dos anos de 1980 a 1997
estiio & disposiglio no Departamento de Matematica do IME-USP.

Cidade Universitaria “Armando de Salles Oliveira”

Rua do Matio, 1010 - Cidade Universitiria

Caixa Postat 66281 - CEP 05315-970





