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Abstract This paper presents a theoretical proce-
dure for obtaining the dissipation function for aniso-
tropic rigid-plastic materials, the yielding of which is
governed by the Barlat and co-workers-like plasticity
criteria (Int J Plast 21:1009-1039, 2005. https://doi.
org/10.1016/j.ijplas.2004.06.004) incorporating sev-
eral linear transformations of the stress in generic
isotropic plasticity models, extending the proposal of
Karafillis and Boyce (J Mech Phys Solids 41:1859—
1886, 1993. https://doi.org/10.1016/0022-5096(93)
90073-0). The underlying isotropic yield criterion
can be very general including possible Lode angle
effects in the material behaviour. The seeked dissi-
pation function is needed for the construction of the
macroscopic behavior of voided materials when it is
for instance combined to appropriate representative
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volume elements of these materials and associated
kinematically admissible velocity fields satisfying
uniform boundary conditions at their boundary in the
spirit of the Gurson’s approach (J Eng Mater Technol
99:2-15, 1977. https://doi.org/10.1115/1.3443401) to
ductile fracture.
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1 Introduction

This paper explores the modeling of voided materi-
als with realistic matrix behavior, specifically aimed
at predicting ductile fracture. It emphasizes the use
of effective and widely adopted anisotropic plastic
models for the matrix in the study of plastic porous
materials.

Anisotropy in engineering materials has been a
persistent challenge, often arising from their manu-
facturing processes. Rolling, extrusion, and drawing
typically cause varying degrees of anisotropy in dif-
ferent material properties. Notably, many engineering
alloys, especially aluminum alloys, exhibit consider-
able anisotropy in terms of strength, ductility, and
plastic flow.

The microstructural features of these materi-
als are crucial in determining their plastic anisot-
ropy. At moderate temperatures, plastic deforma-
tion mainly occurs through dislocation glide and,
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occasionally, twinning, both of which are limited
to specific crystallographic planes and directions.
The crystallographic texture (i.e., the distribution of
grain orientations) plays a critical role in contribut-
ing to anisotropy, with grain shape also influencing
the interactions between adjacent grains.

Among other microstructural features, but now at a
another scale, the presence of second-phase particles
[4], or even impurities resulting from the manufacturing
processes of metals and alloys, is particularly important
for understanding failure and rupture in these materi-
als. Since these particles tend either to detach from the
main phase or to crack due to their inferior mechani-
cal properties [5], they are equivalently treated as voids
present at the microscale [6]. During the deformation
process in a portion of a ductile material, these voids
at the microscale become preferential regions for stress
concentration, leading to intense plastic flow in their
surroundings. As these regions deform plastically, the
voids can reach a configuration where adjacent voids
coalesce, forming a larger void. These mechanisms are
typically referred to as nucleation, void growth, and
coalescence, respectively (Gurland [7]). Eventually,
these processes can continue until unstable void growth
and coalescence occur, resulting in a visible crack at the
macroscale.

The anisotropy of the main phase and the pres-
ence of voids are expected to influence each other
during the ductile rupture process. On one hand,
an anisotropic material matrix imposes preferen-
tial directions of deformation and influences where
stresses concentrate around voids. On the other
hand, the presence of voids not only causes the
yielding behavior to depend on both stress triaxial-
ity and Lode angle, but may also induce preferential
directions of deformation in the case of elongated
or flattened voids. Therefore, a formulation of yield
criteria that accounts for both the effects of matrix
anisotropy and the presence of voids is required.

Regarding more realistic yield criteria for ani-
sotropic ductile matrices, Barlat et al. [1] proposed
the use of two linear transformations to operate on
the arguments of an isotropic yield function, allow-
ing more material parameters to be adjusted from
experimental data. These additional material param-
eters arising from the second linear transformation
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enabled them to reproduce experimental results for
aluminum alloys that were not possible to obtain
using the approach of Karafillis and Boyce [2] using
only one linear transformation and the concept
of"Isotropy Plasticity Equivalent"(IPE). Due to its
flexibility in adjusting additional material param-
eters, the Barlat et al.’s model [1] is widely used in
modeling the plastic behavior of aluminum alloys.

In the context of yielding criteria for ductile
voided materials, the Gurson model Gurson [3] is
acclaimed for its pioneering nature and simplicity.
It consists of a macroscopic yield function involv-
ing both hydrostatic and equivalent stresses, as well
as the material porosity (i.e., the average ratio of the
volume of voids to the total volume in a given mate-
rial portion). Its derivation uses a limit analysis of
a representative cell combined to the upper bound
theorem of limit analysis by identifying a pertinent
kinematically admissible velocity field v compat-
ible with uniform boundary conditions E prescribed
at the boundary of this cell. By bounding the mac-
roscopic dissipation from above, Gurson was able
to obtain upper bounds to the macroscopic yield
stresses of the cell. These stresses for the consid-
ered cell geometry and a for a range of macroscopic
deformation rates allow to construct an upper bound
yield locus for the porous material. These stresses
are defined by

_oJi
oE

z M)
where II(E) is the upper bound (to the exact macro-
scopic dissipation) associated to the trial kinemati-
cally admissible velocity field v (é(E) = e(v))

) = - /V r(eE)dV @

and z(¢é) is the dissipation function of the matrix. The
main objective of the present paper is the explicit
derivation of this dissipation function for anisotropic
plastic behaviour based on two linear transformations
such as in Barlat et al. [1] with the aim to simulate
macroscopic behaviour of voided materials made of
these materials according to Egs. (1) and (2).
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2 Constitutive relations for the matrix

The anisotropic models based on isotropic yield cri-
teria supplementated by linear transformations of the
stress can be very efficient and are now used currently
in many fields such as metal forming, impact engi-
neering, etc... They are very flexible to incorporate a
lot of experimental data whenever available and also
have been seen to reproduce them at the expense of
more material parameters.

Anisotropic yield functions f(o) considered here-
after have the form

fle)=¢l, : 0., : 0) 3

where ¢(s |, §,) is an isotropic function of the two aux-
iliary stresses s, and s,. This function is also a convex
function of these two arguments. The linear transfor-
mations L, or L, describe the anisotropy of the mate-
rial. The generic fourth order tensor L (L, or L,) has
the usual minor and major symmetries

Lijkf = Ljikf = Lijfk = Lijkf @

Incompressibility of the plastic behaviout is included
by imposing the condition

Ly =0 forij ke {1,2,3]}, &)

where the summation rule on repeated indices is used.
As an illustration, the so-called Y1d2004-18p model
proposed in Barlat et al. [1] for orthotropic symmetry
is given by

s;i=(C':J):0=L,:0

6
s;=(C*:J):0=L,:0 ©)
where

[ Oi iy 0513 0 0 0]
Lk TEE
i =5 —C5y ,
=10 o 0,0 0 )
0 0 0 00
0 0 0 0 0]

By+bi —ci  =b, 0 0 0
—bg bg + b’; —b‘i 0 0 O
; 1| -b b b+b 0 0 O
L=CJ=- 2 1 1 2 ) ,
- == 3 0 0 0 3, 0 0 ®)
0 0 0 0 3bg 0
0 0 0 0 O 3bg

b’i = (40;3 + cgl - 2c’i2)/3,
by = (4cy, + ¢, —2¢5,)/3,
by = (4c, + cpy — 2¢5))/3,

P
by = cyy»
P
bs_cssand
P
bg = cg6

and Qi, L and J correspond, in the Voigt notation, to
EE——) =

the matrices associated to the 4 th-order tensors C/, L,
and J, respectively. The projector into the deviatoric
space J given by

fori,j,k € (1,2,3}.
)

Here and also in the following, we use the Voigt nota-
tion: Second order tensors (mainly the stress and the
strain rate tensors) are represented by 9 X 1 column
vectors, while fourth-rank tensors (essentially L) are
9 X 9 matrices. When the second order tensors are
symmetric and the fourth order tensors have the
minor symmetries, one can use 6 X 1 column vectors
and 6 X 6 matrices. Fourth and second order tensors
are represented in the Voigt notation by bold symbol
underlined twice or once respectively (e.g. L and €
become L and ¢€) as also done in (7) and (8) for L, cl

C?and J.

Tensors L; may exhibit any (or no) internal symme-
tries to represent all possible particular forms of anisot-
ropy. L, may contain up to 15 independent components.
The linear transformation is written, using the Voigt
notation in the following form § = L - ¢, or in explicit

1 1
Jije = §(5ik5jf + 6;765) — §5ijékfv

form as
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St ETRE STR ST

Sn Ly Ly Ly

) \/5;33 (| L Ly Lsx
252 \/5L14 \/§L24 \/§L34 2Ly 2ys
\/§S3‘ \/ELIS \/ELzs \/§L35 2Lys  2Lss

| V2L V2Log V2Lyg 2Ly 2Lsg

V2L V2Lis V2L o1
V2L, V2Ly5 V2Ls 0
V2L, V2Las V2Ls 733

(10)

) \/5‘723 (
\/50'31

L \/5012

2Lys

where C is a constant and from the pressure independ-
ence condition I]_ijkk =0,i=1,2,3and j=1,2,3, the
following relations must hold

Ly - Ly —Ly
2 9’
Ly ==Ly +Lyy), Lys=—(Lys+ Lys)

Ly — L33 — Ly,
Ly=——F—

2 > 23 —

Lll B L22 - L33
2 9

and  Lys = —(Lys + Log).

Regarding the function ¢, Barlat et al. [1] used the
function
¢(SI,S2) = ¢(Sl7 Sé, S;» S%a S%s S%) =
1 m m m
{Z(|s{ — SH™+ 18] = S3I" +|S) — S5+

" " " 12
ISL— 27+ 183 - 2 g8y —s2me U2

I
1S3 = 71" + 1S3 = S31™ + 1Sy — $31™) }

which is isotropic (as a function dependent only on
the principal values of s, and s,) and reduces to the
Hershey-Hosford yield function (Hershey [8], Hos-
ford [9]) when both linear transformations are taken
asl;, =J,ie.

1 m m m l/m
P(s,8) = P (s) = {5[(51 —8))" + (S, —83)" + (S, - S3) ]}

3 Dissipation functions for plasticity models based
on linear transformations

The anisotropic yield criterion, considered here,
is constructed from an isotropic one. Benallal [13]
considered the general case of isotropy with smooth
yield domains. Ferreira et al. [14] explored the aniso-
tropic case with one linear transformation still for the
smooth case. Here, we consider the anisotropic situ-
ation with several linear transformations. We how-
ever present it for two transformations for the sake of
simplicity.

Both in the case of isotropy [13] and in the ani-
sotropic case with one linear transformation, the
isotropic underlying yielding of the matrix was

13)

The associated anisotropic  yield function
fle)=¢(, : o,L, : o)is convex because s, and s,
are linear transformations of the Cauchy stress o (see
for instance Rockafellar [10]).

The exponent m is here an even integer number
m = 2k in the range k > 1. When m = 2, the yield
surface corresponds to the von Mises [11] yield sur-
face, whereas when m — oo, the Tresca [12] surface
is recovered.
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described by a function @, positive and homogeneous
of degree one in the stress in the form

®(o) — o0y = o-qu(a)) —-07 <0 (14)
where o, is the effective stress and w is the Lode
angle of the stress tensor. Function g(w), which
describes possible effects of the third stress invariant
on yielding can be normalized in a number of ways
(for instance by g(0) = 11in which case o, is the yield
limit in uniaxial tension). An important requirement
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for the yield surface is its convexity. For this to hold,
function g(w) must satisfy the following condition

g) +¢"(w) >0 (15)

The yield surface was also considered smooth for
sake of simplicity. In this case, the gradient of the
yield function is given by

900 _ % (w)i +0 ,(w)()_a)
a6~ 285, T a8 5 (16)

where the gradient of the Lode angle with respect to
the stress is given by

0w 9 ss 2 1 s
—=———| = -%1) - >cos30—
Jc 20,,| sin3w| aezq 9 3 Ooq

a7
with 1 the second order unit tensor. We note that the
gradient 3—:, as given by Eq. (17) is always singular
at o = n% for n=0,...,5 (axisymmetric states of
stress) so that the gradient of the yield function with
respect to the stress is so unless (see Eq. (16))

g/(n%)=0, n=0,1,..,5 (18)

relations that have been assumed. With this assump-
tion, the dissipation function obtained in the isotropic
case for incompressible materials is given by

7(€) = 64¢,,GIZ(O)] (19)
when Tré # 0 and
7(€) = +o0 (20)
when when 7Tré = 0 with
1
lsz©)]’ + [¢'@@))

GlZ(O)] =

@D

where Z({) is the inverse function of the relation
between the stess Lode angle w and the strain rate
Lode angle {. This relation is bijective due to the con-
vexity of the yield surface and reads

{=w+ arctan[g (@)
g(w)

lewo=2[{] (22)

In the anisotropic case with one linear transforma-
tion, Ferreira et al. [14] have extended this formula
for materials with yield behaviour defined by

flo)=@(L : o) 23)

In the anisotropic case with several linear transforma-
tions to be devoped afterwards, we will also introduce
a function g(w,,®,,a) (see (37)) and this function
is considered smooth. In the general case, its partial
derivatives with respect to w; and w, should satisfy
similar relations to (18). The g associated to the the
function ¢(s,, s,) adopted by Barlat et al. [1] (see(12))
satisfies these conditions.

Non-smooth g functions can be considered fol-
lowing two alternatives. By a limit process, when
m — oo, one can consider for instance Tresca crite-
rion as an isotropic underlying yield model but also
directly but in this case, conditions (18) should be
amended (see e.g. Piccolroaz and Bigoni [15]) but
also instead of considering the gradient of g, one is
led to work with the subdifferential of g and the cone
of normals to the convex yield domain. This is not
considered in this paper.

We come now to the determination of the dissipa-
tion function for materials with anisotropic behavior
governed by two linear transformations. As already
underlined above, extension to more linear transfor-
mations is possible but is not considered here. We
denote by D the yield domain of the underlying iso-
tropic material defined in R'? by

D = {(s).5,) € R| §(s,.5,) < 0} (24)
and consider the linear transformation A

A :R® - R"?

c— (L :0,L,:0) ()

The yield domain of the anisotropic material consid-
ered is the convex set C defined by

C={o|f(e)=9¢(l, :0,L,:0)<5,} =A"'D
(26)
where we emphasize that the notation A~!D stands
for the inverse image of D and therefore A~!is not the
inverse of the linear transformation A which may not

exist.

@ Springer
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The seeked dissipation function z(¢é) of the aniso-
tropic material is thus the support function of the con-
vex set A71D, i.e.
7(€) JESEBD{G D€} 27)
The determination of this dissipation function is
obtained in two steps: the first one consists in obtain-
ing the support function of the convex set D and from
this result, the second step deduces the support func-
tion of the convex set A~'D through standard results
in convex analysis. Indeed, denoting by xiso(e!, %)
the support function of the set D defined by

ﬂ(él,é2)= sup {s,
(s,.5,)€D

té syt éD)) 28)

the support function z(€) of the inverse image A~'D
of D by the linear transformation A is given by

. . isocpsl 22
n(€) = min 7€, €
© (€' e=LT:e" +11:¢? ) 29
(see Rockafellar [10], Corollary 16.3.1, p. 143).

We need therefore to obtain zriso(él, éz). As the set
D is convex, when it is bounded, the supremum in 29)
is reached at the boundary of D at the point where the
normal to D is colinear to the strain rate (él, éz) (see

dp 0
Salencon [16]). This normal is given by (—(’b, —d)).
0s, 0s,
Therefore we have the relation
el = ,'1%
0s, 30)
& = j%’
0s,

where 4 is a positive scalar. With the relations (30),
we obtain

ﬂ,im(g-l’g-Z) — l(

% DS+ %% 1 8,) = AP(sy, ;) = Aoy
1

0s,
€2))

the two last equalities on the right of (31) following
from the positive homogeneity of function ¢ and its
value at the boundary of the set D.

As we can see through this relation, to obtain the
dissipation function, we need to obtain the plastic mul-
tiplier A only in terms of the strain rates ¢' and é2. This
will be carried out in several steps now.

Using relations (30), we get
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e+ @)

A= ,
2(0p  0b b 0p G2
3\ 0s, ~O0s,

ds,  0s,
However, this expression of A is still dependent on the
stresses as its denominator is a function of the two
stresses §, and s,. The next steps allow to write this
denominator in terms of the strain rate ¢' and é.
The principal stress components Sl.1 and sz are

defined in terms of the von Mises effective stresses si ”
and the Lode angles o' of the stress tensors s, =L, : &
ands, =L, : oby

Si = 2si cos(a)"l), St = zsi cos(@)),

1 3 eq 2 37eq
§i = 2 cos(®’)
337w 37 (33)
where
i i i 27[ i 27[
w, =w, wz—w—?, 603—a)+?
(34)
i1 27 dets, i 3.
' = 3 arccos > (Séq)3 ) Seq = 2si 1S,
(35)
fori=1,2.

By combining Eq. (12) with Eq. (33) and defining
an auxiliary angle
a = arctan (siq/sel,q), a € (0,7/2) (36)

the yield criterion ¢(s,,s,) is now expressed as a
function of five arguments

— 2 2 — 1 2 2
B(51,82) = P(s,,: 8, @ @0, @) = 7(s,,, 5, )8(@, 0, @)

(37)
where
r(siq, qu) =4 /(séq)2 + (sgq)2
303 m
2[,1 _ \
2", a) = 3 [(Z Z} ; | cos @ cos ] — smacoswfl )
(38)

The derivatives of the yield function ¢ with respect to
§p. k=1,2read
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1 2
0P or aseq or aseq 1 2
- = = 1 + = 5 ) b +
eq eq
98 da >

Oa 0s X

(39)
After some algebraic manipulations, not reported
here, the plastic dissipation potential z*° is written
concisely as

98 dw?

0g 0w’
12

: =+
7(5eq Seq)< 0w? 0s;

ow' Os;

iso _ ~¢ea1 0 22 1 2

" = ﬂ'(é‘eq,é‘eq)G(CO LW, ), (40)

where

(el €0) = 01/ (€L )2 + (€22 (41)

G(a)1 s a)z, a) = 1

\/g2 + 82 + (g seca)? + (g, csc a)?

(42)

with

Jg ag a8
= —, = —, o = —, 43
gl 60)1 g2 aa)z 8 aa ( )

Relation (42) is still dependent on three stress vari-
ables: the stress Lode angles w! and w? and the aux-
iliary stress angle a. We provide next links between
these three stress variables and their counterparts
associated to the strain rates €' and é°. Indeed, defin-
ing the ratio f of the two effective strain rates

é2
eq

p = arctan <€—1> (44)
eq

the definitions of the Lode angles and the expressions
(30) lead to

9
| 4det 22

1 < 4deté ) 1 as,
¢ = 3 arccos = 7 arccos| ————————~

(é!q)3 <Z% ) %>3/2

30s,  0s;
B 4det%
&= L arccos<4det€ )— L arccos 95
== - == -2
: €r ) 200, 09\
30s,  0s,
9¢ . 9$
ds, 0
p = arctan Y B H
)
ds; = 0s, 45)

where ¢, € [0,27], {, € [0,2z] and g € (0,7/2). A
full simplification of the Eq. (45) through the expres-
sions of d¢/ds, and d¢/ds, given in Eq. (39) lead to
the relation between the strain rate angles ({;, {5, f)
and stress angles (o', ®?, a) as

51 = w' + arctan 81 -
cosa(gcosa — g, sina)

& = @ + arctan | — - £
sina(gsina + g, cos a)

P . (gycsca)? + (gsina + g, cos a)?
= arctan
(g, sin@)? + (gcosa — g, sina)?

(46)
Observe at this stage how the two first relations (46)
compare with (22). To express the plastic multiplier
(32) only in terms of the strain rates é' and 6'2, one
needs to inverse the relations (46). This inversion is
not possible in the general case but can be numeri-
cally accomplished by a 4-dimensional interpola-
tion technique (i.e. interpolation of functions whose
domain is defined in a three-dimensional euclidian
space). Various procedure for interpolating a struc-
tured n-dimensional set of points exist, the outcome
of which are the expressions of the stress angles (@',
®?, a) in terms of the strain rate angles (§;, §,, p) as
three functions

o' = Zl(Cl,Cz’ﬁ)
@* = Z,((1.65. B) 7
a = Za(gl’ Cz, ﬁ)~

With this, the plastic multiplier A depends only on the
strain rates ¢' and 2. Substituting relations (47) in the
expression (32) of A, the dissipation 7 in (40) takes
the final form

(¢!, &%) = A€l €)G(Z, (&1, & B,
AN ) WA(RN)) 48)

All what remains to do is to use Eq. (29) to obtain the
dissipation function of the anisotropic material, but
only after writing the strain rates ¢' and € in terms of
the strain rate € as the dissipation function of the ani-
sotropic material is only dependent on this last vari-
able. This is done by solving the equation

@ Springer
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e=L]:é'+1): &=L, :e' +1,: 6 (4

appearing in the minimization contained in Eq.
(29). To avoid confusions, we use the Voigt notation
defined earlier and rewrite it in the equivalent form

.1 .1
clefg)dg)

Here, L is a six by twelve matrix, ¢, ¢' and & are all
six order vectors. Despite the rectangular nature of L,

this system can be solved using the Moore—Penrose
generalized inverse I_f of L (Moore [17], Penrose and

- - 1

Todd [18]). The set of solutions { gz } of Eq. (50) in

terms of the strain rate € is given by

-1
(E)-rsine o

where w = { z' } € R!?is an arbitrary vector.
2
The Moore-Penrose generalized inverse exists for
any real or complex matrix. For any real matrix
L € M(m,n), L™ € M(n, m) is a matrix that is unique
and satisfies the following properties defined by Pen-
rose and Todd [18]:

LL'L=L (52)
L'LL" =L, (53)
@LLY =LL", (54
L' =L"L (55)

The Moore-Penrose inverse £+ can be obtained by the
Single Value Decompositi_on (SVD) procedure—
among others (see Ben-Israel and Greville [19] and
Campbell and Meyer [20])—by decomposing the
original matrix L as

L=tL v, (56)
where U is a m X m unitary matrix, L is a mXn

matrix, V*is a n X n unitary matrix, L is a matrix
Y =

@ Springer

whose diagonal components are nonnegative, while
its other components are zero, and

L"=UL"V",
= ==s= 57

where 1:4; is obtained by replacing each nonzero diag-
onal component of Ifs by its correspondent reciprocal

value.
As L has the form [1_41 1_42 ], the above formulae
= K

imply that L* will have the form l ] and the solu-

X2

tions in (51) can be written as

(- [a 8] o) 2)

This gives the full relations between the two strain
rates €', €* and the strain rate é. Plugging these rela-
tions in (29) give the final form of the dissipation
function for the anisotropic plastic model considered.
As relation (58) contain the arbitrary vector w, we
obtain

#(€) = min #(é,,. €, )G(Z (1. 6. P,

23615 Eas B 2581, 600 ) (59)
whenever € # 0 and
7(€) = 400 (60)

where the function G has already been defined in
(42), the strain rates g‘l and g‘z are given by (58), {;
and ¢, are their Lode angles and f the ratio of their
effective components. To close the determination of
the dissipation function for anisotropic models based
on two linear transformations, it remains now to
obtain the expressions of the matrices K' and K* (or
equivalently the assocaied fourth order tensors [Kl and
[K,). The generalized inverse of matrices such that
considered in this paper and more general ones are
given in details in Cline [21].

4 Conclusion

We have obtained here the explicit forms of the dissi-
pation functions associated to general anisotropic
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plastic models with the main objective to use them in
simulation of the macroscopic behavior of plastic
porous solids. The expression of the exact dissipation
contains as shown above an optimization of the vector
W to obtain the value of the minimum contained in the
above expression. This might be a difficult task. In the
absence of a simple procedure to get this minimum,
one could use an upper bound to the exact dissipation
function given in (59). Indeed, the solution corre-
sponding to w = 0 is such an upper bound. Among all

the solutions of (58), this particular solution mini-
.1
. é .
mizes the norm of{ - } see Ben-Israel and Greville
¢

[19] and reads

-1
{gz}=g-g‘ (61)

Moreover, for any kinematically admissible velocity
field in the Gurson’s approach, it will give an upper
bound to the exact macroscopic dissipation and there-
fore maintains the consistency of the approach. This
procedure in under investigation for modeling the
macroscopic yielding behavior of voided materials
with matrix having anisotropic plastic behavior based
on several linear transformations according to rela-
tions (1) and (2).
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