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Abstract  This paper presents a theoretical proce-
dure for obtaining the dissipation function for aniso-
tropic rigid-plastic materials, the yielding of which is 
governed by the Barlat and co-workers-like plasticity 
criteria (Int J Plast 21:1009–1039, 2005. https://​doi.​
org/​10.​1016/j.​ijplas.​2004.​06.​004) incorporating sev-
eral linear transformations of the stress in generic 
isotropic plasticity models, extending the proposal of 
Karafillis and Boyce (J Mech Phys Solids 41:1859–
1886, 1993. https://​doi.​org/​10.​1016/​0022-​5096(93)​
90073-o). The underlying isotropic yield criterion 
can be very general including possible Lode angle 
effects in the material behaviour. The seeked dissi-
pation function is needed for the construction of the 
macroscopic behavior of voided materials when it is 
for instance combined to appropriate representative 

volume elements of these materials and associated 
kinematically admissible velocity fields satisfying 
uniform boundary conditions at their boundary in the 
spirit of the Gurson’s approach (J Eng Mater Technol 
99:2–15, 1977. https://​doi.​org/​10.​1115/1.​34434​01) to 
ductile fracture.

Keywords  Porous plasticity · Matrix anisotropy · 
Dissipation · Ductile fracture

1  Introduction

This paper explores the modeling of voided materi-
als with realistic matrix behavior, specifically aimed 
at predicting ductile fracture. It emphasizes the use 
of effective and widely adopted anisotropic plastic 
models for the matrix in the study of plastic porous 
materials.

Anisotropy in engineering materials has been a 
persistent challenge, often arising from their manu-
facturing processes. Rolling, extrusion, and drawing 
typically cause varying degrees of anisotropy in dif-
ferent material properties. Notably, many engineering 
alloys, especially aluminum alloys, exhibit consider-
able anisotropy in terms of strength, ductility, and 
plastic flow.

The microstructural features of these materi-
als are crucial in determining their plastic anisot-
ropy. At moderate temperatures, plastic deforma-
tion mainly occurs through dislocation glide and, 
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occasionally, twinning, both of which are limited 
to specific crystallographic planes and directions. 
The crystallographic texture (i.e., the distribution of 
grain orientations) plays a critical role in contribut-
ing to anisotropy, with grain shape also influencing 
the interactions between adjacent grains.

Among other microstructural features, but now at a 
another scale, the presence of second-phase particles 
[4], or even impurities resulting from the manufacturing 
processes of metals and alloys, is particularly important 
for understanding failure and rupture in these materi-
als. Since these particles tend either to detach from the 
main phase or to crack due to their inferior mechani-
cal properties [5], they are equivalently treated as voids 
present at the microscale [6]. During the deformation 
process in a portion of a ductile material, these voids 
at the microscale become preferential regions for stress 
concentration, leading to intense plastic flow in their 
surroundings. As these regions deform plastically, the 
voids can reach a configuration where adjacent voids 
coalesce, forming a larger void. These mechanisms are 
typically referred to as nucleation, void growth, and 
coalescence, respectively (Gurland [7]). Eventually, 
these processes can continue until unstable void growth 
and coalescence occur, resulting in a visible crack at the 
macroscale.

The anisotropy of the main phase and the pres-
ence of voids are expected to influence each other 
during the ductile rupture process. On one hand, 
an anisotropic material matrix imposes preferen-
tial directions of deformation and influences where 
stresses concentrate around voids. On the other 
hand, the presence of voids not only causes the 
yielding behavior to depend on both stress triaxial-
ity and Lode angle, but may also induce preferential 
directions of deformation in the case of elongated 
or flattened voids. Therefore, a formulation of yield 
criteria that accounts for both the effects of matrix 
anisotropy and the presence of voids is required.

Regarding more realistic yield criteria for ani-
sotropic ductile matrices, Barlat et al. [1] proposed 
the use of two linear transformations to operate on 
the arguments of an isotropic yield function, allow-
ing more material parameters to be adjusted from 
experimental data. These additional material param-
eters arising from the second linear transformation 

enabled them to reproduce experimental results for 
aluminum alloys that were not possible to obtain 
using the approach of Karafillis and Boyce [2] using 
only one linear transformation and the concept 
of"Isotropy Plasticity Equivalent"(IPE). Due to its 
flexibility in adjusting additional material param-
eters, the Barlat et al.’s model [1] is widely used in 
modeling the plastic behavior of aluminum alloys.

In the context of yielding criteria for ductile 
voided materials, the Gurson model Gurson [3] is 
acclaimed for its pioneering nature and simplicity. 
It consists of a macroscopic yield function involv-
ing both hydrostatic and equivalent stresses, as well 
as the material porosity (i.e., the average ratio of the 
volume of voids to the total volume in a given mate-
rial portion). Its derivation uses a limit analysis of 
a representative cell combined to the upper bound 
theorem of limit analysis by identifying a pertinent 
kinematically admissible velocity field v compat-
ible with uniform boundary conditions Ė prescribed 
at the boundary of this cell. By bounding the mac-
roscopic dissipation from above, Gurson was able 
to obtain upper bounds to the macroscopic yield 
stresses of the cell. These stresses for the consid-
ered cell geometry and a for a range of macroscopic 
deformation rates allow to construct an upper bound 
yield locus for the porous material. These stresses 
are defined by

where Π(Ė) is the upper bound (to the exact macro-
scopic dissipation) associated to the trial kinemati-
cally admissible velocity field v ( ̇𝝐(Ė) = 𝝐(v))

and 𝜋(�̇) is the dissipation function of the matrix. The 
main objective of the present paper is the explicit 
derivation of this dissipation function for anisotropic 
plastic behaviour based on two linear transformations 
such as in Barlat et  al. [1] with the aim to simulate 
macroscopic behaviour of voided materials made of 
these materials according to Eqs. (1) and (2).

(1)� =
�Π

�Ė

(2)Π(Ė) =
1

V ∫V

𝜋(𝝐̇(Ė))dV
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2 � Constitutive relations for the matrix

The anisotropic models based on isotropic yield cri-
teria supplementated by linear transformations of the 
stress can be very efficient and are now used currently 
in many fields such as metal forming, impact engi-
neering, etc... They are very flexible to incorporate a 
lot of experimental data whenever available and also 
have been seen to reproduce them at the expense of 
more material parameters.

Anisotropic yield functions f (�) considered here-
after have the form

where �(s1, s2) is an isotropic function of the two aux-
iliary stresses s1 and s2 . This function is also a convex 
function of these two arguments. The linear transfor-
mations �1 or �2 describe the anisotropy of the mate-
rial. The generic fourth order tensor � ( �1 or �2 ) has 
the usual minor and major symmetries

Incompressibility of the plastic behaviout is included 
by imposing the condition

where the summation rule on repeated indices is used. 
As an illustration, the so-called Yld2004-18p model 
proposed in Barlat et al. [1] for orthotropic symmetry 
is given by

where

(3)f (�) = �(�1 ∶ �,�2 ∶ �)

(4)Lijk� = Ljik� = Lij�k = Lijk�

(5)Lijkk = 0 for i, j, k ∈ {1, 2, 3},

(6)
s1 =

(
ℂ

1 ∶ 𝕁
)
∶ � = 𝕃1 ∶ �

s2 =
(
ℂ

2 ∶ 𝕁
)
∶ � = 𝕃2 ∶ �.

(7)C
i =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −ci
12

−ci
13

0 0 0

−ci
21

0 −ci
23

0 0 0

−ci
31

−ci
32

0 0 0 0

0 0 0 ci
44

0 0

0 0 0 0 ci
55

0

0 0 0 0 0 ci
66

⎤⎥⎥⎥⎥⎥⎥⎦

and Ci , L
i
 and J correspond, in the Voigt notation, to 

the matrices associated to the 4 th-order tensors ℂi , �i 
and � , respectively. The projector into the deviatoric 
space � given by

Here and also in the following, we use the Voigt nota-
tion: Second order tensors (mainly the stress and the 
strain rate tensors) are represented by 9 × 1 column 
vectors, while fourth-rank tensors (essentially � ) are 
9 × 9 matrices. When the second order tensors are 
symmetric and the fourth order tensors have the 
minor symmetries, one can use 6 × 1 column vectors 
and 6 × 6 matrices. Fourth and second order tensors 
are represented in the Voigt notation by bold symbol 
underlined twice or once respectively (e.g. � and 𝝐̇ 
become L and 𝝐̇ ) as also done in (7) and (8) for � , ℂ1 , 
ℂ

2 and �.
Tensors �i may exhibit any (or no) internal symme-

tries to represent all possible particular forms of anisot-
ropy. �i may contain up to 15 independent components. 
The linear transformation is written, using the Voigt 
notation in the following form S = L ⋅ � , or in explicit 
form as

(8)L
i

= C
i
J =

1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b
i

2
+ b

i

3
−ci

3
−bi

2
0 0 0

−bi
3

b
i

3
+ b

i

1
−bi

1
0 0 0

−bi
2

−bi
1

b
i

1
+ b

i

2
0 0 0

0 0 0 3bi
4

0 0

0 0 0 0 3bi
5

0

0 0 0 0 0 3bi
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

bi
1
= (4ci

23
+ ci

31
− 2ci

12
)∕3,

bi
2
= (4ci

31
+ ci

12
− 2ci

23
)∕3,

bi
3
= (4ci

12
+ ci

23
− 2ci

31
)∕3,

bi
4
= ci

44
,

bi
5
= ci

55
and

bi
6
= ci

66

(9)
Jijk� =

1

2
(�ik�j� + �i��jk) −

1

3
�ij�k� , for i, j, k ∈ {1, 2, 3}.
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where C is a constant and from the pressure independ-
ence condition �ijkk = 0 , i = 1, 2, 3 and j = 1, 2, 3 , the 
following relations must hold

Regarding the function � , Barlat et  al. [1] used the 
function

which is isotropic (as a function dependent only on 
the principal values of s1 and s2 ) and reduces to the 
Hershey-Hosford yield function (Hershey [8], Hos-
ford [9]) when both linear transformations are taken 
as �i = � , i.e.

The associated anisotropic yield function 
f (�) = �(�1 ∶ �,�2 ∶ �) is convex because s1 and s2 
are linear transformations of the Cauchy stress � (see 
for instance Rockafellar [10]).

The exponent m is here an even integer number 
m = 2k in the range k ≥ 1 . When m = 2 , the yield 
surface corresponds to the von Mises [11] yield sur-
face, whereas when m → ∞ , the Tresca [12] surface 
is recovered.

(10)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

S11
S22
S33√
2S23√
2S31√
2S12

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

= C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

̌11 L12 L13

√
2L14

√
2L15

√
2L16
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√
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√
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√
2L26

L13 L23 L33

√
2L34

√
2L35

√
2L36√

2L14

√
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2L15

√
2L25

√
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2L16

√
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√
2L36 2L46 2L56 2L66

⎤
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⎧
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�11
�22
�33√
2�23√
2�31√
2�12

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

L12 =
L33 − L11 − L22

2
, L13 =

L22 − L33 − L11

2
, L23 =

L11 − L22 − L33

2
,

L34 = −(L14 + L24), L35 = −(L15 + L25) and L36 = −(L16 + L26).

(12)

�(s1, s2) = �(S1
1
, S1

2
, S1

3
, S2

1
, S2

2
, S2

3
) ={

1

4

(|S1
1
− S2

1
|m + |S1

1
− S2

2
|m + |S1

1
− S2

3
|m+

|S1
2
− S2

1
|m + |S1

2
− S2

2
|m + |S1

2
− S2

3
|m+

|S1
3
− S2

1
|m + |S1

3
− S2

2
|m + |S1

3
− S2

3
|m)

}1∕m

(13)�(s, s) = �1(s) =
{
1

2

[(
S1 − S2

)m
+
(
S2 − S3

)m
+
(
S1 − S3

)m]}1∕m

3 � Dissipation functions for plasticity models based 
on linear transformations

The anisotropic yield criterion, considered here, 
is constructed from an isotropic one. Benallal [13] 
considered the general case of isotropy with smooth 
yield domains. Ferreira et al. [14] explored the aniso-
tropic case with one linear transformation still for the 
smooth case. Here, we consider the anisotropic situ-
ation with several linear transformations. We how-
ever present it for two transformations for the sake of 
simplicity.

Both in the case of isotropy [13] and in the ani-
sotropic case with one linear transformation, the 
isotropic underlying yielding of the matrix was 

described by a function Φ , positive and homogeneous 
of degree one in the stress in the form

where �eq is the effective stress and � is the Lode 
angle of the stress tensor. Function g(�) , which 
describes possible effects of the third stress invariant 
on yielding can be normalized in a number of ways 
(for instance by g(0) = 1 in which case �0 is the yield 
limit in uniaxial tension). An important requirement 

(14)Φ(�) − �0 = �eqg(�) − �0 ≤ 0
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for the yield surface is its convexity. For this to hold, 
function g(�) must satisfy the following condition

The yield surface was also considered smooth for 
sake of simplicity. In this case, the gradient of the 
yield function is given by

where the gradient of the Lode angle with respect to 
the stress is given by

with 1 the second order unit tensor. We note that the 
gradient ��

��
 , as given by Eq. (17) is always singular 

at � = n
�

3
 for n = 0,… , 5 (axisymmetric states of 

stress) so that the gradient of the yield function with 
respect to the stress is so unless (see Eq. (16))

relations that have been assumed. With this assump-
tion, the dissipation function obtained in the isotropic 
case for incompressible materials is given by

when Tr�̇ ≠ 0 and

when when Tr�̇ = 0 with

where Z(�) is the inverse function of the relation 
between the stess Lode angle � and the strain rate 
Lode angle � . This relation is bijective due to the con-
vexity of the yield surface and reads

(15)g(�) + g��(�) ≥ 0

(16)
�Φ

��
=

3

2
g(�)

s

�eq
+ �eqg

�(�)
��

��

(17)

��

��
= −

9

2�eq| sin 3�|

[(
s.s

�2
eq

−
2

9
1

)
−

1

3
cos 3�

s

�eq

]

(18)g�(n
�

3
) = 0, n = 0, 1,… , 5

(19)𝜋(�̇) = 𝜎0𝜖̇eqG[Z(𝜁)]

(20)𝜋(�̇) = +∞

(21)
G[Z(�)] =

1√[
g(Z(�))

]2
+
[
g�(Z(�))

]2

(22)� = � + arctan [
g

�

(�)

g(�)
] ⇔ � = Z[�]

In the anisotropic case with one linear transforma-
tion, Ferreira et  al. [14] have extended this formula 
for materials with yield behaviour defined by

In the anisotropic case with several linear transforma-
tions to be devoped afterwards, we will also introduce 
a function g(�1,�2, �) (see (37)) and this function 
is considered smooth. In the general case, its partial 
derivatives with respect to �1 and �2 should satisfy 
similar relations to (18). The g associated to the the 
function �(s1, s2) adopted by Barlat et al. [1] (see(12)) 
satisfies these conditions.

Non-smooth g functions can be considered fol-
lowing two alternatives. By a limit process, when 
m → ∞ , one can consider for instance Tresca crite-
rion as an isotropic underlying yield model but also 
directly but in this case, conditions (18) should be 
amended (see e.g. Piccolroaz and Bigoni [15]) but 
also instead of considering the gradient of g, one is 
led to work with the subdifferential of g and the cone 
of normals to the convex yield domain. This is not 
considered in this paper.

We come now to the determination of the dissipa-
tion function for materials with anisotropic behavior 
governed by two linear transformations. As already 
underlined above, extension to more linear transfor-
mations is possible but is not considered here. We 
denote by D the yield domain of the underlying iso-
tropic material defined in R12 by

and consider the linear transformation A

The yield domain of the anisotropic material consid-
ered is the convex set C defined by

where we emphasize that the notation A−1D stands 
for the inverse image of D and therefore A−1 is not the 
inverse of the linear transformation A which may not 
exist.

(23)f (�) = Φ(� ∶ �)

(24)D = {(s1, s2) ∈ R
12|�(s1, s2) ≤ �0}

(25)
A ∶R6

→ R
12

� → (�1 ∶ �,�2 ∶ �)

(26)
C = {� | f (�) = �(�1 ∶ �,�2 ∶ �) ≤ �0} = A−1D
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The seeked dissipation function 𝜋(�̇) of the aniso-
tropic material is thus the support function of the con-
vex set A−1D , i.e.

The determination of this dissipation function is 
obtained in two steps: the first one consists in obtain-
ing the support function of the convex set D and from 
this result, the second step deduces the support func-
tion of the convex set A−1D through standard results 
in convex analysis. Indeed, denoting by �iso(𝝐̇1, 𝝐̇2) 
the support function of the set D defined by

the support function �(𝝐̇) of the inverse image A−1D 
of D by the linear transformation A is given by

(see Rockafellar [10], Corollary 16.3.1, p. 143).
We need therefore to obtain �iso(𝝐̇1, 𝝐̇2) . As the set 

D is convex, when it is bounded, the supremum in 29) 
is reached at the boundary of D at the point where the 
normal to D is colinear to the strain rate (𝝐̇1, 𝝐̇2) (see 
Salençon [16]). This normal is given by (

��

�s1
,
��

�s2
) . 

Therefore we have the relation

where 𝜆̇ is a positive scalar. With the relations (30), 
we obtain

the two last equalities on the right of (31) following 
from the positive homogeneity of function � and its 
value at the boundary of the set D.

As we can see through this relation, to obtain the 
dissipation function, we need to obtain the plastic mul-
tiplier 𝜆̇ only in terms of the strain rates 𝝐̇1 and 𝝐̇2 . This 
will be carried out in several steps now.

Using relations (30), we get

(27)�(𝝐̇) = sup
�∈A−1D

{𝝈 ∶ 𝝐̇}

(28)�(𝝐̇1, 𝝐̇2) = sup
(s1,s2)∈D

{
s1 ∶ 𝝐̇

1 + s2 ∶ 𝝐̇
2)
}

(29)�(𝝐̇) = min
(𝝐̇1,𝝐̇2)∕𝝐̇=�T

1
∶𝝐̇1+�T

2
∶𝝐̇2

�iso(𝝐̇1, 𝝐̇2)

(30)
𝝐̇
1 = 𝜆̇

𝜕𝜙

𝜕s1

𝝐̇
2 = 𝜆̇

𝜕𝜙

𝜕s2
,

(31)

𝜋iso(𝝐̇1, 𝝐̇2) = 𝜆̇(
𝜕𝜙

𝜕s1
∶ s1 +

𝜕𝜙

𝜕s2
∶ s2) = 𝜆̇𝜙(s1, s2) = 𝜆̇𝜎0

However, this expression of 𝜆̇ is still dependent on the 
stresses as its denominator is a function of the two 
stresses s1 and s2 . The next steps allow to write this 
denominator in terms of the strain rate 𝝐̇1 and 𝝐̇2.

The principal stress components S1
i
 and S2

j
 are 

defined in terms of the von Mises effective stresses si
eq

 
and the Lode angles �i of the stress tensors s1 = �1 ∶ � 
and s2 = �2 ∶ � by

where

for i = 1, 2.
By combining Eq. (12) with Eq. (33) and defining 

an auxiliary angle

the yield criterion �(s1, s2) is now expressed as a 
function of five arguments

where

The derivatives of the yield function � with respect to 
sk , k = 1, 2 read

(32)
𝜆̇ =

√
(𝜖̇1

eq
)2 + (𝜖̇2

eq
)2

√
2

3

(
𝜕𝜙

𝜕s1
∶
𝜕𝜙

𝜕s1
+

𝜕𝜙

𝜕s2
∶
𝜕𝜙

𝜕s2

) ,

(33)

S
i

1
=

2

3
s
i

eq
cos(�i

1
), S

i

2
=

2

3
s
i

eq
cos(�i

2
),

S
i

3
=

2

3
s
i

eq
cos(�i

3
),

(34)

�i
1
= �i, �i

2
= �i −

2�

3
, �i

3
= �i +

2�

3

(35)

�i =
1

3
arccos

(
27

2

det si

(si
eq
)3

)
, si

eq
=

√
3

2
si ∶ si,

(36)� = arctan
(
s2
eq
∕s1

eq

)
, � ∈ (0,�∕2)

(37)
�(s1, s2) = �(s1

eq
, s2

eq
,�1,�2, �) = r(s1

eq
, s2

eq
)g(�1,�2, �)
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r(s1
eq
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2

eq
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√
(s1
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eq
)2
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2
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4
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| cos � cos�1

i
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j
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After some algebraic manipulations, not reported 
here, the plastic dissipation potential �iso is written 
concisely as

where

with

Relation (42) is still dependent on three stress vari-
ables: the stress Lode angles �1 and �2 and the aux-
iliary stress angle � . We provide next links between 
these three stress variables and their counterparts 
associated to the strain rates 𝝐̇1 and 𝝐̇2 . Indeed, defin-
ing the ratio � of the two effective strain rates

the definitions of the Lode angles and the expressions 
(30) lead to

(39)
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where �1 ∈ [0, 2�] , �2 ∈ [0, 2�] and � ∈ (0,�∕2) . A 
full simplification of the Eq. (45) through the expres-
sions of ��∕�s1 and ��∕�s2 given in Eq. (39) lead to 
the relation between the strain rate angles ( �1 , �2 , � ) 
and stress angles ( �1 , �2 , � ) as

Observe at this stage how the two first relations (46) 
compare with (22). To express the plastic multiplier 
(32) only in terms of the strain rates 𝝐̇1 and 𝝐̇2 , one 
needs to inverse the relations (46). This inversion is 
not possible in the general case but can be numeri-
cally accomplished by a 4-dimensional interpola-
tion technique (i.e. interpolation of functions whose 
domain is defined in a three-dimensional euclidian 
space). Various procedure for interpolating a struc-
tured n-dimensional set of points exist, the outcome 
of which are the expressions of the stress angles ( �1 , 
�2 , � ) in terms of the strain rate angles ( �1 , �2 , � ) as 
three functions

With this, the plastic multiplier 𝜆̇ depends only on the 
strain rates 𝝐̇1 and 𝝐̇2 . Substituting relations (47) in the 
expression (32) of 𝜆̇ , the dissipation �iso in (40) takes 
the final form

All what remains to do is to use Eq. (29) to obtain the 
dissipation function of the anisotropic material, but 
only after writing the strain rates 𝝐̇1 and 𝝐̇2 in terms of 
the strain rate 𝝐̇ as the dissipation function of the ani-
sotropic material is only dependent on this last vari-
able. This is done by solving the equation

(46)
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appearing in the minimization contained in Eq. 
(29). To avoid confusions, we use the Voigt notation 
defined earlier and rewrite it in the equivalent form

Here, L is a six by twelve matrix, 𝝐̇ , 𝝐̇1 and 𝝐̇2 are all 
six order vectors. Despite the rectangular nature of L , 
this system can be solved using the Moore–Penrose 
generalized inverse L+ of L (Moore [17], Penrose and 

Todd [18]). The set of solutions 
{

𝝐̇
1

𝝐̇
2

}
 of Eq. (50) in 

terms of the strain rate 𝝐̇ is given by

where w =

{
w1

w2

}
∈ ℝ

12 is an arbitrary vector.

The Moore-Penrose generalized inverse exists for 
any real or complex matrix. For any real matrix 
L ∈ �(m, n) , L+ ∈ �(n,m) is a matrix that is unique 
and satisfies the following properties defined by Pen-
rose and Todd [18]:

The Moore-Penrose inverse L+ can be obtained by the 
Single Value Decomposition (SVD) procedure—
among others (see Ben-Israel and Greville [19] and 
Campbell and Meyer [20])—by decomposing the 
original matrix L as

where U is a m × m unitary matrix, L is a m × n 
matrix, V∗ is a n × n unitary matrix, L

S

 is a matrix 
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(51)
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(52)L L
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(53)L
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(54)(L L
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(55)(L+
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(56)L = U L
S

V
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whose diagonal components are nonnegative, while 
its other components are zero, and

where L+

S

 is obtained by replacing each nonzero diag-
onal component of L

S

 by its correspondent reciprocal 
value.

As L has the form 
[
L
1
L
2

]
 , the above formulae 

imply that L+ will have the form 

[
K

1

K
2

]
 and the solu-

tions in (51) can be written as

This gives the full relations between the two strain 
rates 𝝐̇1 , 𝝐̇2 and the strain rate 𝝐̇ . Plugging these rela-
tions in (29) give the final form of the dissipation 
function for the anisotropic plastic model considered. 
As relation (58) contain the arbitrary vector w , we 
obtain

whenever 𝝐̇ ≠ 0 and

where the function G has already been defined in 
(42), the strain rates 𝝐̇1 and 𝝐̇2 are given by (58), �1 
and �2 are their Lode angles and � the ratio of their 
effective components. To close the determination of 
the dissipation function for anisotropic models based 
on two linear transformations, it remains now to 
obtain the expressions of the matrices K1 and K2 (or 
equivalently the assocaied fourth order tensors �1 and 
�2 ). The generalized inverse of matrices such that 
considered in this paper and more general ones are 
given in details in Cline [21].

4 � Conclusion

We have obtained here the explicit forms of the dissi-
pation functions associated to general anisotropic 
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plastic models with the main objective to use them in 
simulation of the macroscopic behavior of plastic 
porous solids. The expression of the exact dissipation 
contains as shown above an optimization of the vector 
w to obtain the value of the minimum contained in the 
above expression. This might be a difficult task. In the 
absence of a simple procedure to get this minimum, 
one could use an upper bound to the exact dissipation 
function given in (59). Indeed, the solution corre-
sponding to w = 0 is such an upper bound. Among all 

the solutions of (58), this particular solution mini-

mizes the norm of 
{

𝝐̇
1

𝝐̇
2

}
 , see Ben-Israel and Greville 

[19] and reads

Moreover, for any kinematically admissible velocity 
field in the Gurson’s approach, it will give an upper 
bound to the exact macroscopic dissipation and there-
fore maintains the consistency of the approach. This 
procedure in under investigation for modeling the 
macroscopic yielding behavior of voided materials 
with matrix having anisotropic plastic behavior based 
on several linear transformations according to rela-
tions (1) and (2).
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