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Resumo 

Apresentamos um novo modelo para a analise da carga gerada pelo protocolo dos 

lease,, um protocolo que garante a. consistencia de informa~ocs cacheadas em sis­
temas distribuidos. Atraves do modelo, comparamos a carga produzida por este pro­

tocolo com a produzida pelo protocolo adotado pelo sistema de a.rquivos do SPRITE 

- que tambem garante a consistencia das informa~oes cacheadas. Mostramos a supe­

rioridade do protocolo dos leases sob uma larga gama de valores para os para.metros 
do nosso modelo. 

Em seguida, descrevemos o SODA (Sistema para Oper~i.o Distribuida. de Ar­

quivos), que utiliza uma extensao do protocolo NFS com a inclusao de leaaea. Apre­
sentamos detalhes de uma implementa~a.o do SODA sobre o sistcma operacional 

LINUX. Este exemplo mostra que o SODA pode ser implementado sem muito es­

forc;;o em qualquer sistema utilizando o c6digo do NFS como ponto de partida. 

Finalmente, apresentamos rcsultados de testes coletados no SODA e os compara­

mos aos resultados obtidos em um simulador do protocolo do SPRITE. 

Abstract 

We present a new model for the analysis of the load produced by the lease 

protocol, a protocol wich assures the consistency of cached information in distributed 

systems. Using this model, we compare the load produced by this protocol and that 

produced by the protocol adopted by the SPRITE distributed file system - which 

also guarantees the consistency or cached information. \'Ve show the superiority of 

the lease protocol under a large range or our model parameter values. 

We then describe the SODA consisten, distributed file system wich uses an ex­

tension of the NFS protocol by addition orleases. Details are shown or an implemen­

tation of SODA in the LINUX operating system. The example shows that starting 

up with the NFS code it should not be hard to implement SODA in other systems. 

Finally, we present some SODA performance evaluation results and compare 

them with results obtained in a SPRITE protocol simulator. 

"During this research the first author received a Master's scholarship from CNPq. Thia work waa aJao 
supported by FAPESP (proces.,i # 93/0603--1 ). 
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1 Introduction 

Contemporary Distributed File Systems make extensive use 0£ file caching both on client 
and server sides. Caching o( files in the server physical memory avoids a significant number 
of accesses to disk. On the other hand, file caching on clients purports to decrease the 
use of the network. Consequently, the network load is lowered and a £aster file service is 
provided. 

However, the use of client caching introduces the problem of maintaining the consis­
tency among the several copies of a file which is accessed by more than one client. When 
one client updates a block of a file stored in its local cache, it would be interesting that the 
system could guarantee that subsequent accesses to the same block made by other clients 

could perceive the recent modifications. The greater is the network scale, the harder is to 
reach this goal. 

Existent file systems applies different sort of policies regarding the semantics of file 
sharing. SUN's NFS jSUN90J does not offer any type of guarantee that shared files 
will be seen consistently by different clients. When a file is updated by one client. this 
modifications may not be noticed by other clients during a period of up to 6 seconds. 
When a file is created or deleted, this fact can take up to 60 seconds to be perceived by 
other clients. If one needs a coherent sharing of information throughout the distributed 
system, some other mechanism - like message passing - must be used. 

The ANDREW File System [Sat90J, on the other hand, applies what is called the 
session semantics. Under the session semantics the updates made to a file by one client 
can only be perceived by clients that open this file after the moment when the first client 
has closed it. 

The SPRITE Network Operating System (NWOSS) presented a solution to the problem 
of maintaining strict coherency among the copies of a file in several client caches. SPRITE 
disables the client cache when a. file is concurrently shared by more than one client and 
at least one of these clients has the file open for updates. This kind of situation is called 
concurrent write sharing. 

The problem with the SPRITE approach is that it requires that each time a file is 
opened or closed the client must notify the server of this fact, thus increasing the network 
load. Desides, when a file is concurrently shared with updates, every client query must 
be treated directly hy the ~rvcr through the network. 

In many real network.,; that is not a problem since concurrent write sharing rarely 
occurs. However, when file sharing i:. more frequent. a better protocol is required. In this 
paper we will discuss /e<1:,es, a mechanism to assure consistency on a distributed system. 

Section 2 describes the lease protocol. A new analytical mod~I of the behavior of the 
protocol is presented in section 3. Finally, section 4 describes SODA, our implementation 
0£ the protocol in the LINUX operating system. 

2 Leases 

The lease mechanism was first proposed by Gray (GC89J. The designers of the ECHO 
[MBH+93) distributed file system, however, claim to have developed the lease concept 
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simultaneously and independently or Gray. In fact, EC~IO was the first implementation 

or leases used by a large number of users. Due to problems involving the project where 

ECHO was inserted, it ceased to be used in the summer of 1992. 

2.1 The Protocol 

A lease is a contract that assures the right of property to SO(Tle good during a fixed period 

of time. Let us see how this concept is applied to distributed file systems. 

After sending a read request to a server, the client receives not only the data requested 

but also a lease which is a guarantee that the server will not update that data without 

the permission of the client possessing the lease. Every lease is valid for a limited period 

determined by the server. Indeed, what the server sends to the client, besides the file 

data, is the instant when the lease will be expired. 

If a client application requests a read from a file that is locally cached, the client 

operating system must be sure that the lease he has for that file is still valid. If the 

lease is valid, the application can receive the requested data without any contact with the 

server. 
On the other side, ir the lease is not valid anymore, the client must send a message to 

the server to check 1Vhethcr the local version or the data is the most recent one. Should 

the cached data be out of elate, the new data must be fetched from the server. 

When the server receives an update request ror a file, it cannot confirm the update 

immediately. Before committing the update, the server must gain the agreement of all 

clients that possess a valid lease for this file. The server can commit the update and 

return from the client request only after all the clients which have a valid lease for this 
file have agreed with the update or after the expiration of the leases of the clients which 

have not replied. 
When a client receives a request for update agreement from his server, it marks its 

lease as expired. If, after that, this client needs to read the same file again, the new 

version must be fetched from the server. 
Leases may be used not only to maintain the consistency of the file contents but also 

to maintain the consistency of meta-data like file attributes and directory and location 

information. When this sort of information is cached, leases can be used to control its 

coherency. 
We must notice that this mechanism assures the consistency of the cached data only if a 

write-trough police is adopted, i.e., the write requests are not cached, they are sent directly 

to the server and the thread that requested the write is blocked until its completion. 

It is possible to m;iintain the consistency using leases even with write-behind• but, in 

this case, the protocol become:1 more complex. 
In order to use leases and writc-hrhincl, one must use two types of leases. A read lease 

would be similar lo the one just desc:rihed. llmvPver. a delayed-ulTite lease would provide a 

client the possibility of writing to its cached data and updating the server asynchronously. 

Before giving a delayed-write lease for any client, the server must be sure that no other 

client has a lease for the same file. 

1When writ.e-behind is adopted, the write requests made by the client applications are cached. The 

requests to the server are delayed and lhe application thread is nol blocked. 
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On the other hand, before providing a client with a read lease, the server must check if 
any client has a delayed-write lease. If such a client exists, the server must ask the client 
to flush its dirty data and invalidate its lease. Only after receiving all dirty data from the 
client or after the lease expiration time the server may send the requested read lease. 

Sometimes, the management of these leases may produce a significant overhead result­
ing in poor performance. In this cases, the best solution is simply disabling some part of 
the client cache. 

From now on, we will only treat the case where write-through is adopted. In order to 
get a good performance under this policy it is important that most of the temporary files 
be stored locally and not in remote servers. 

2.2 Fault Tolerance 

One o( the main advantages of the lease protocol is its fault tolerance. Differently from 
the ANDREW and SPRITE protocols, the lease protocol is fault tolerant2 on his own. If 
each lease is valid for a period shorter than the time required by the server to reboot, no 
extra mechanism is required to provide fault tolerance. 

When a server crashes in ANDREW or SPRITE systems, a lot of important informa­
tion about the state of the system is lost. Under the lease protocol, the only information 
lost is that about the clients which have valid leases. But if the time required by the 
server reboot process is longer than a lease lifetime, then no relevant information is lost. 

On the other hand, if the server receives a write request while the network is parti­
tioned, all the server must do is to follow the protocol, it delays the write until every lease 
owned by an inaccessible client has expired. 

In the client side, if the communication with a server is lost, no special action must 
be taken. The client just uses its cache data while its leases are valid. When the leases 
expire, it must keep asking for new leases until the server replies. 

In addition, the cache availability in a lease based system is better than in the SPRITE 
system. In the latter, if a client which has a file opened for update crashes, then no other 
client will have permission to access the file until the server becomes aware that the first 
client has crashed. This may take a long time. In the lease case, this problem does not 
exist. 

2.3 Lease Term 

The major factor in the performance of a lease based system is the extent of the period 
while the lease is valid, i.e., its term. 

If the leases are valid for a short period, the necessity to revalidate them is greater. On 
the opposite si<le, if the leases last a long period, the necessity to i,m,lidate them when 
the updates occur is greater. • 

Too long leases tend to be a bad choice in the presence of client crashes and network 
partitions. In these cases, the updates must wait a longer period to be committed. Besides, 
if the lease term is greater than the time required by the server to reboot, then some 
mechanism to make the lease information survive server crashes is needed. 

2We are considering jusL non-DyzanLine raulL& here. 
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3 An Analytical Model 

Gray (GC89) has presented a simple analytical model for measuring the server load and 
the file service delay associated with the lease protocol. We have extended and modified 
his model in order to more accurately represent the extra network load produced by the 
consistency maintenance. 

Our model counts the number of messages used to maintain the consistency of a single 
file provided by a single server. Figure 1 presents our model parameters. 

N number of clients accessing the file 
R per client read rate 
W per client write rate 

lease term 

Table 1: Model parameters 

We suppose that N clients request reads and writes following a Poisson distribution 
with per client rates R and W respectively. 

Let us first measure the portion of time in which a client possesses a valid lease for a 
specific file. The figure l shows some periods where the client has a valid lease - labeled 
L - and periods where it does not have a valid lease - labeled T. 

, ..... ka• 

! 
! 

T L T L iT i 
' ' 

L 
' ' i : 

' ' ' 

Figure l: Leases in one client 

A known result of the Theory of Reliability3 assures that the relative portion of time 
in which the client has a valid lease is, on average, 

E(L) 

£(£) + E(T) 

where E() denotes the expected period extent. 
A T-period starts when the lease expires and ends when the next read is made. Poisson 

processes does not have memory, i.e., the future process behavior does not depend on the 

3See (BP81), section 7.2 

5 



past. So, the expected time until the next time is always the same, the inverse of the read 
rate: 

1 
E(T) = n· 

The L-periods start when the client receives a lease and end in the next write or after 
t units of time. In order to estimate E(L) we may imagine that during the L-periods a 
superposition of two Poisson processes occurs. The first, with rate NW represents that 
the lease may be canceled by a write requested by any of the N clients. The second 
represents normal lease expiration after t units of time, hence has rate f. 

The resulting process rate is the sum of the above rates. Therefore, the expected value 
for the L-period extent is the inverse of this rate: 

1 
E(L)=Nw+1 

I 

So, the portion of time in which a client possesses a valid lease is 

1 
Niv+I Rt 

N~+I + h = 1 +Rt+ NWt 
I 

If we suppose that the N clients access the file independently, then the expected 
number of clients sharing the file at a given moment is 

S= NRt 
1 +Rt+ NWt 

(1) 

3.1 The Cost of Leases in the Reads 

While a lease is valid, a client serves RE(L) read requests through its cache excluding 
the read which produced the lease request. So, the cost (2 messages) of giving a lease 
is amortized within 1 + R E(L) reads. Therefore, the rate of messages related to lease 
concessions to the N clients - or the cost of leases in the reads - is 

CR= 2NR = 2NR =2NR(l+NWt) 
l+RE(L) l+RN~+I l+Rt+NWt 

I 

(2) 

3.2 The Cost of Leases in the Writes 

When the server receives a write request, it must invalidate the leases of the clients which 
still have a valid lease for t.hr rile-. Since it docs not have to invalidate the lease of the 
client which requested the write. it has to invalidate 
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client leases4
• 

If the network where the lease protocol is implemented supports multicast than the 

server must send one invalidation message and wait for S(~-
1> replies each time a write 

is requested. 
Should the network not support multicast, the server must send si~-ll messages and 

wait for the same number of replies. Therefore, the cost of leases in the writes is 

{ 

(l+S¥JNW=NW+S(N-l)W 
Cw= 

2S¥NW = 2S(N - l)W 

(multicast case) 

(no multicast case) 

3.3 The Lease Protocol Total Cost 

From 2 and 3, we see that the total cost of the lease protocol is 

{ 

2NR{1+NW1) NW S(N )'-V ( I . ) 
1+Ri+NWi + + - 1 r mu t1cast case 

Ctot~I = 
2NR(t+NWt) ?S(N l)' -V ( l • ) 
l+Rl+NWI + - - r no mu t1cast case 

3.4 Comparing with the SPRITE Protocol 

(3) 

(4) 

In order to compare the load produced by the SPRITE protocol and that produced by 
the lease protocol, we will consider the case of concurrent write sharing of a file. When a 

file is not concurrent write shared, both protocols tends to present a good performance. 

Under concurrent write sharing the SPRITE clients must contact the server each time 

a read is requested. The client sends a message for the server and the server send it 

one reply. The writes are sent directly to ihe server as in our lease model, so we will 

not consider them here. So, let us consider that the total traffic related to consistency 

maintenance is 2N R. 
Therefore, formula 4 assures that, under concurrent write sharing, the lease protocol 

generates a lower load than SPRITE protocol if and only if 

2NR(l + NWt) +NW+ S(N - l)W •JNR 
l +Rt+ NWt < -

if the network supports multicast and if and only if 

2NR(l + NIVt) 2S(N- l)W < 2NR 
1 +Rt+ NWt + 

if the network does not support multicast. 

(5) 

(6) 

Applying the S value given by ( 1) to (6) we get the following condition for the leases 

superiority in the Ci\Se with no mult.icast: 

R 
w>(N-1) (7) 

•we are subtracting from S the probability of the client which had requested the writ.e having a valid 

lease for the file. 
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So, we can see that when the read rate is sufficiently larger than the write rate - when 
(7) is satisfied - the lease protocol is a good choice. Although,·when the write rate is so 
large that (7) is not fulfilled the best solution is to disable the cache as SPRITE does. 

In the multicast case, it follows from (1) and (5) that the lease protocol is a better 
choice if and only if 

NWt + j N
2
W

2t2 + 8(NW
2
t

2 + Wt) _ NW ( ✓ ! ( _1_)) 
R > 4t - 4 l + 1 + N 1 + NWt 

As long as some regular writing is going on (say, at least one write every two le~ 
periods, so NWt > 1/2), and N is not too small either (take N ~ 6), the condition 
above is satisfied if R/W > 0.8N. Therefore, multicast should improve the odds of leases 
being better than SPRITE. However, due to the lack of an appropriate testbed for this 
version of the protocol, the remaining analysis considers only the case where no multicast 
is available. 

3.5 Model Estimates 

Figure 2 shows how the number of messages produced by the lease protocol depends on 
the lease term under the no multicast case. The graph was made considering 5 clients 
requesting, on average, one write in each 10 seconds and two reads per second. 

20 

18 

16 

14 

12 

10 

8 

0 10 20 30 40 50 60 
t 

N = 5, R = 2 e W = 0, l 

Figure 2: Number of messages produced by the lease protocol 
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We may see that there is no optimal value for the lease term. The longer the lease 
duration is, the lower is the load produced by the protocol. Therefore, long leases are 
better choices. The only limitation to the lease extension are the disadvantages of too 
long leases described in section 2.3. 

On the other hand, we can see from figure 2, that 60 second leases do not provide any 
significant gain compared to 20 second leases. So, in this example, adopting 20 second 
leases would be a good choice. 

Figure 3 presents the ratio between the load produced by the lease protocol and that 
produced by the SPRITE protocol. When the value in the vertical a.xes is below l, the 
load produced by the lease protocol is lower than the load produced by the SPRITE 
protocol. · 

R= 2 e W = 0,05 

Figure 3: Scalability 

We can see that, while N < RtJv (N < 41 in this example), increasing the lease term 
effects a lowering of the load produced by the lease protocol. When N > 41, the lease 
load is greater than the SPRITE load and longer leases produce a higher load. This is 
the point where the cache must be disabled. 

However, our model assumes that a.II the N clients are writing to the file. But, since 
it is not a common situation to have tens of clients writing concurrently to the same file, 
we may consider the scalability of the lease protocol as being good. 
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4 The SODA Distributed File System 

In order to study the behavior of a lease based system on a real network, we developed 

the first version of the SODA consistent distributed file system [Kon9-t] during the first 

semester of 1994. SODA was implemented on the LINUX operating system and its code 

was written using the LINUX NFS 2.0 code. Since the SODA protocol is an extension of 

the NFS protocol, it can be implemented in any other system using the NFS code as a 

starting point. 

4.1 Implementation 

Three main modification to the LINUX NFS were made: 

l. The LINUX NFS does not implement client caching. So we had to create the data 

structures and the functions wich are responsible for the cache maintenance inside 

the client kernel. 

2. NFS servers are stateless but the lease protocol requires that the server store infor­

mation about the clients which have valid leases. Therefore, we had to create data 

structures and functions to manage this information on the server side - which is 

the daemon process nfsd. 

3. Differently from NFS, the lease protocol requires that the server send messages to 

the clients and wait for their replies. In order to carry this, we had to introduce a 

new daemon process called soda,l in the client side. This process receives the lease 

invalidation requests from the servers, makes a local system call to invalidate the 

leases and replies to the appropriate server. 

Figure 4 shows how our system works. In this example, the server attends a read 

request from client I and, while the client 1 lease is still valid, a write request from client 

2. 
In the beginning, the process pl executes a read() system call in order to read some 

bytes of a certain file (1) . Its kernel checks its local tables and finds that this file is 

managed by a remote server. Since it does not have a local copy of the requested bytes in 

its cache, the kernel sends a read request to the appropriate server using a RPC (2). This 

RPC is received by nfsd which forward the request to its local kernel (3) which accesses 

the local disk if necessary. 
After receiving the bytes from the kernel, nfsd returns the R.PC sending the client not 

only the requested bytes hut also a new lease for this file (4). Then, the client 1 kernel 

copies the bytes just received to its local cache, updates its lease table and returns the 

system call with the requested bytes (5). 

If, while this lease is still valid, a process p2 in other machine requests a write to the 

same file (6), then the following ocrnrs. 
After receiving the write request, the client 2 kernel finds that the file is remote located 

and forwards the write request to its server using a RPC (7). The server nfsd receives 

the write request and looks for leases for the same file in its lease table finding that client 
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I Invalidate _lease (arq) 

sodad 
nfsd 

pl , 
11 

I nad(arq) 

kernel kernel kernel 

Clientl Server Client2 

Figure 4: A read and a write request 

1 possesses a valid lease. At this moment, it sends a lease invalidation message to the 

sodad process at client I (8). 

When sodad receives the invalidation request, it executes the invalidate.lease() 

system call (9). This system ca.II marks the lease as expired in the kernel lease table. 

Upon completion of the system call, the client replies to the server corroborating the lease 

invalidation (10). 
Only after receiving client l response, the server can call the local vrite() system 

call to commit client 2 request (11) and then the RPC can return (12) with the result 

of the request. 
Finally, client2 kernel receives the result of its remote write request and returns the 

same result to process p2 (13). 

4.2 Performance Results 

In order to evaluate our system, we made some tests using three 486 and one 386-based 

PCs all of them running LINUX 1.0.9 and our current version of SODA. This machines 

were connected to a I0Mbit Ethernet network shared by a lot of workstations distributed 

across our Institute. The tests were made during low network load periods. 

In this environment, the read requests attended by the client cache could be completed 

at least 13 times faster than a read attended by the server through the network. 

On the other side. a read attended by the server in a SODA system is, on average, 

20% slower than one in a sta.nd1ml LINUX NFS system. This overhead, caused by the 

cache maintenance procedures, is small enough to let the SODA system provide a faster 

service under many different conditions making extensive use of client caching. 

The influence of the lease t<>rm rnn be seen in figure 5. This figure shows the server 

load produced by three clients accessing IO files, each one with rates R = 2 and W = 0.01. 

The graph shape is similar to that predicted by the analytical model. 

In order to compare the protocol adopted by SODA and the protocol used by SPRITE 
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Figure 5: CPU load x lease term 

under concurrent write sharing, we modified our client kernel to check the file version 
number with the server each time a file is read as SPRITE does. We will call this system 
simulated SPRITE, or just, sSPRITE. 

Figure 6 presents the average time to read l Kbyte of data both in SODA and in 
sSPRITE. The test was done with 3 clients and the read rate was fixed on one read per 
second. The write rate varies from O to 0. 7 writes per second. 
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W (write rate) 

Figure 6: Elapsed time to read l Kbyte 

We may see that when W is relatively low, SODA is many times faster than sSPRITE 
and both tend to have the same read delays when W grows. 

In the opposite side, the write times are, by definition, lower in sSPRITE. This happens 
because sSPRITE never needs to invalidate client leases as SODA does. Figure 7 shows 
the overhead associated with the lease invalidations. 
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Figure 7: f:lapsed time to write lKbyte 

4.3 Future Work 

There are two main topics in this work that can be improved. The analytical model 
presented in section 3 emulates SPRITE behavior only under concurrent write sharing. 
In order to model SPRITE protocol in any situation, we would ·need to consider in our 
model the open and close client requests which determine the SPRITE behavior regarding 
client caching. That would enlarge the model complexity but would present a ultimate 
comparison between lease and SPRITE protocols. 

Our current implementation of SODA does not use any mechanism to ensure the 
consistency of cached meta-data like directory and file attribute information. We have 
inherited this problem from LINUX NFS. Extending the lease mechanism already imple­
mented to the meta-data is the main modification needed to make SODA a good consistent 
distributed file system for LINUX. 

After the implementation of the meta-data coherency mechanisms, new extensive tests 
should be made in order to evaluate SODA 's performance more precisely. 

5 Conclusion 

Among the main distrihntrcl filr syst.f'ms, SPRITE - and its descendents [HO93, RO91) -
is one of that wich offer the fastest service providing the same consistency of a centralized 
system. However, SPRITE clocs not do vr.ry well under concurrent write sharing for it 
completely disables client caching in this situation. 

Using a new analytical model, we showed that the lease protocol, first proposed by 
Gray, produces a lighter server load making use of client caching even under concurrent 
write sharing. 

We implemented the lease protocol in the LINUX operating systems and made some 
performance evaluations comparing SODA - our lease based system - with a simulated 
SPRITE. Our tests showed that SODA provides a faster service than a similar system 
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based on SPRITE protocol under a large range of parameter values. 

The SODA binaries and source code can be obtained by anonymous FTP at the site 

ftp.ime.usp.br, directory /pub/linux/soda. 
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