
RT-MAC-9503

Soda: A Lease-Based Consistent
Distributed File System

Fabio Kon
Arnaldo Mandel

~ 95

•

SODA: A Lease-Based Consistent
Distributed File System

Fabio Kon• Arnaldo Mandel

Department of Computer Seience
Institute of Mathematics and Statistics

University of Sao Paulo - Brazil
E-mail: {kon,am}Clime.usp.br

Resumo

Apresentamos um novo modelo para a analise da carga gerada pelo protocolo dos

lease,, um protocolo que garante a. consistencia de informa~ocs cacheadas em sis­
temas distribuidos. Atraves do modelo, comparamos a carga produzida por este pro­

tocolo com a produzida pelo protocolo adotado pelo sistema de a.rquivos do SPRITE

- que tambem garante a consistencia das informa~oes cacheadas. Mostramos a supe­

rioridade do protocolo dos leases sob uma larga gama de valores para os para.metros
do nosso modelo.

Em seguida, descrevemos o SODA (Sistema para Oper~i.o Distribuida. de Ar­

quivos), que utiliza uma extensao do protocolo NFS com a inclusao de leaaea. Apre­
sentamos detalhes de uma implementa~a.o do SODA sobre o sistcma operacional

LINUX. Este exemplo mostra que o SODA pode ser implementado sem muito es­

forc;;o em qualquer sistema utilizando o c6digo do NFS como ponto de partida.

Finalmente, apresentamos rcsultados de testes coletados no SODA e os compara­

mos aos resultados obtidos em um simulador do protocolo do SPRITE.

Abstract

We present a new model for the analysis of the load produced by the lease

protocol, a protocol wich assures the consistency of cached information in distributed

systems. Using this model, we compare the load produced by this protocol and that

produced by the protocol adopted by the SPRITE distributed file system - which

also guarantees the consistency or cached information. \'Ve show the superiority of

the lease protocol under a large range or our model parameter values.

We then describe the SODA consisten, distributed file system wich uses an ex­

tension of the NFS protocol by addition orleases. Details are shown or an implemen­

tation of SODA in the LINUX operating system. The example shows that starting

up with the NFS code it should not be hard to implement SODA in other systems.

Finally, we present some SODA performance evaluation results and compare

them with results obtained in a SPRITE protocol simulator.

"During this research the first author received a Master's scholarship from CNPq. Thia work waa aJao
supported by FAPESP (proces.,i # 93/0603--1).

•
1 Introduction

Contemporary Distributed File Systems make extensive use 0£ file caching both on client
and server sides. Caching o(files in the server physical memory avoids a significant number
of accesses to disk. On the other hand, file caching on clients purports to decrease the
use of the network. Consequently, the network load is lowered and a £aster file service is
provided.

However, the use of client caching introduces the problem of maintaining the consis­
tency among the several copies of a file which is accessed by more than one client. When
one client updates a block of a file stored in its local cache, it would be interesting that the
system could guarantee that subsequent accesses to the same block made by other clients

could perceive the recent modifications. The greater is the network scale, the harder is to
reach this goal.

Existent file systems applies different sort of policies regarding the semantics of file
sharing. SUN's NFS jSUN90J does not offer any type of guarantee that shared files
will be seen consistently by different clients. When a file is updated by one client. this
modifications may not be noticed by other clients during a period of up to 6 seconds.
When a file is created or deleted, this fact can take up to 60 seconds to be perceived by
other clients. If one needs a coherent sharing of information throughout the distributed
system, some other mechanism - like message passing - must be used.

The ANDREW File System [Sat90J, on the other hand, applies what is called the
session semantics. Under the session semantics the updates made to a file by one client
can only be perceived by clients that open this file after the moment when the first client
has closed it.

The SPRITE Network Operating System (NWOSS) presented a solution to the problem
of maintaining strict coherency among the copies of a file in several client caches. SPRITE
disables the client cache when a. file is concurrently shared by more than one client and
at least one of these clients has the file open for updates. This kind of situation is called
concurrent write sharing.

The problem with the SPRITE approach is that it requires that each time a file is
opened or closed the client must notify the server of this fact, thus increasing the network
load. Desides, when a file is concurrently shared with updates, every client query must
be treated directly hy the ~rvcr through the network.

In many real network.,; that is not a problem since concurrent write sharing rarely
occurs. However, when file sharing i:. more frequent. a better protocol is required. In this
paper we will discuss /e<1:,es, a mechanism to assure consistency on a distributed system.

Section 2 describes the lease protocol. A new analytical mod~I of the behavior of the
protocol is presented in section 3. Finally, section 4 describes SODA, our implementation
0£ the protocol in the LINUX operating system.

2 Leases

The lease mechanism was first proposed by Gray (GC89J. The designers of the ECHO
[MBH+93) distributed file system, however, claim to have developed the lease concept

2

simultaneously and independently or Gray. In fact, EC~IO was the first implementation

or leases used by a large number of users. Due to problems involving the project where

ECHO was inserted, it ceased to be used in the summer of 1992.

2.1 The Protocol

A lease is a contract that assures the right of property to SO(Tle good during a fixed period

of time. Let us see how this concept is applied to distributed file systems.

After sending a read request to a server, the client receives not only the data requested

but also a lease which is a guarantee that the server will not update that data without

the permission of the client possessing the lease. Every lease is valid for a limited period

determined by the server. Indeed, what the server sends to the client, besides the file

data, is the instant when the lease will be expired.

If a client application requests a read from a file that is locally cached, the client

operating system must be sure that the lease he has for that file is still valid. If the

lease is valid, the application can receive the requested data without any contact with the

server.
On the other side, ir the lease is not valid anymore, the client must send a message to

the server to check 1Vhethcr the local version or the data is the most recent one. Should

the cached data be out of elate, the new data must be fetched from the server.

When the server receives an update request ror a file, it cannot confirm the update

immediately. Before committing the update, the server must gain the agreement of all

clients that possess a valid lease for this file. The server can commit the update and

return from the client request only after all the clients which have a valid lease for this
file have agreed with the update or after the expiration of the leases of the clients which

have not replied.
When a client receives a request for update agreement from his server, it marks its

lease as expired. If, after that, this client needs to read the same file again, the new

version must be fetched from the server.
Leases may be used not only to maintain the consistency of the file contents but also

to maintain the consistency of meta-data like file attributes and directory and location

information. When this sort of information is cached, leases can be used to control its

coherency.
We must notice that this mechanism assures the consistency of the cached data only if a

write-trough police is adopted, i.e., the write requests are not cached, they are sent directly

to the server and the thread that requested the write is blocked until its completion.

It is possible to m;iintain the consistency using leases even with write-behind• but, in

this case, the protocol become:1 more complex.
In order to use leases and writc-hrhincl, one must use two types of leases. A read lease

would be similar lo the one just desc:rihed. llmvPver. a delayed-ulTite lease would provide a

client the possibility of writing to its cached data and updating the server asynchronously.

Before giving a delayed-write lease for any client, the server must be sure that no other

client has a lease for the same file.

1When writ.e-behind is adopted, the write requests made by the client applications are cached. The

requests to the server are delayed and lhe application thread is nol blocked.

3

On the other hand, before providing a client with a read lease, the server must check if
any client has a delayed-write lease. If such a client exists, the server must ask the client
to flush its dirty data and invalidate its lease. Only after receiving all dirty data from the
client or after the lease expiration time the server may send the requested read lease.

Sometimes, the management of these leases may produce a significant overhead result­
ing in poor performance. In this cases, the best solution is simply disabling some part of
the client cache.

From now on, we will only treat the case where write-through is adopted. In order to
get a good performance under this policy it is important that most of the temporary files
be stored locally and not in remote servers.

2.2 Fault Tolerance

One o(the main advantages of the lease protocol is its fault tolerance. Differently from
the ANDREW and SPRITE protocols, the lease protocol is fault tolerant2 on his own. If
each lease is valid for a period shorter than the time required by the server to reboot, no
extra mechanism is required to provide fault tolerance.

When a server crashes in ANDREW or SPRITE systems, a lot of important informa­
tion about the state of the system is lost. Under the lease protocol, the only information
lost is that about the clients which have valid leases. But if the time required by the
server reboot process is longer than a lease lifetime, then no relevant information is lost.

On the other hand, if the server receives a write request while the network is parti­
tioned, all the server must do is to follow the protocol, it delays the write until every lease
owned by an inaccessible client has expired.

In the client side, if the communication with a server is lost, no special action must
be taken. The client just uses its cache data while its leases are valid. When the leases
expire, it must keep asking for new leases until the server replies.

In addition, the cache availability in a lease based system is better than in the SPRITE
system. In the latter, if a client which has a file opened for update crashes, then no other
client will have permission to access the file until the server becomes aware that the first
client has crashed. This may take a long time. In the lease case, this problem does not
exist.

2.3 Lease Term

The major factor in the performance of a lease based system is the extent of the period
while the lease is valid, i.e., its term.

If the leases are valid for a short period, the necessity to revalidate them is greater. On
the opposite si<le, if the leases last a long period, the necessity to i,m,lidate them when
the updates occur is greater. •

Too long leases tend to be a bad choice in the presence of client crashes and network
partitions. In these cases, the updates must wait a longer period to be committed. Besides,
if the lease term is greater than the time required by the server to reboot, then some
mechanism to make the lease information survive server crashes is needed.

2We are considering jusL non-DyzanLine raulL& here.

4

3 An Analytical Model

Gray (GC89) has presented a simple analytical model for measuring the server load and
the file service delay associated with the lease protocol. We have extended and modified
his model in order to more accurately represent the extra network load produced by the
consistency maintenance.

Our model counts the number of messages used to maintain the consistency of a single
file provided by a single server. Figure 1 presents our model parameters.

N number of clients accessing the file
R per client read rate
W per client write rate

lease term

Table 1: Model parameters

We suppose that N clients request reads and writes following a Poisson distribution
with per client rates R and W respectively.

Let us first measure the portion of time in which a client possesses a valid lease for a
specific file. The figure l shows some periods where the client has a valid lease - labeled
L - and periods where it does not have a valid lease - labeled T.

, ka•

!
!

T L T L iT i
' '

L
' ' i :

' ' '

Figure l: Leases in one client

A known result of the Theory of Reliability3 assures that the relative portion of time
in which the client has a valid lease is, on average,

E(L)

£(£) + E(T)

where E() denotes the expected period extent.
A T-period starts when the lease expires and ends when the next read is made. Poisson

processes does not have memory, i.e., the future process behavior does not depend on the

3See (BP81), section 7.2

5

past. So, the expected time until the next time is always the same, the inverse of the read
rate:

1
E(T) = n·

The L-periods start when the client receives a lease and end in the next write or after
t units of time. In order to estimate E(L) we may imagine that during the L-periods a
superposition of two Poisson processes occurs. The first, with rate NW represents that
the lease may be canceled by a write requested by any of the N clients. The second
represents normal lease expiration after t units of time, hence has rate f.

The resulting process rate is the sum of the above rates. Therefore, the expected value
for the L-period extent is the inverse of this rate:

1
E(L)=Nw+1

I

So, the portion of time in which a client possesses a valid lease is

1
Niv+I Rt

N~+I + h = 1 +Rt+ NWt
I

If we suppose that the N clients access the file independently, then the expected
number of clients sharing the file at a given moment is

S= NRt
1 +Rt+ NWt

(1)

3.1 The Cost of Leases in the Reads

While a lease is valid, a client serves RE(L) read requests through its cache excluding
the read which produced the lease request. So, the cost (2 messages) of giving a lease
is amortized within 1 + R E(L) reads. Therefore, the rate of messages related to lease
concessions to the N clients - or the cost of leases in the reads - is

CR= 2NR = 2NR =2NR(l+NWt)
l+RE(L) l+RN~+I l+Rt+NWt

I

(2)

3.2 The Cost of Leases in the Writes

When the server receives a write request, it must invalidate the leases of the clients which
still have a valid lease for t.hr rile-. Since it docs not have to invalidate the lease of the
client which requested the write. it has to invalidate

6

S(N - 1)

N

client leases4
•

If the network where the lease protocol is implemented supports multicast than the

server must send one invalidation message and wait for S(~-
1> replies each time a write

is requested.
Should the network not support multicast, the server must send si~-ll messages and

wait for the same number of replies. Therefore, the cost of leases in the writes is

{

(l+S¥JNW=NW+S(N-l)W
Cw=

2S¥NW = 2S(N - l)W

(multicast case)

(no multicast case)

3.3 The Lease Protocol Total Cost

From 2 and 3, we see that the total cost of the lease protocol is

{

2NR{1+NW1) NW S(N)'-V (I .)
1+Ri+NWi + + - 1 r mu t1cast case

Ctot~I =
2NR(t+NWt) ?S(N l)' -V (l •)
l+Rl+NWI + - - r no mu t1cast case

3.4 Comparing with the SPRITE Protocol

(3)

(4)

In order to compare the load produced by the SPRITE protocol and that produced by
the lease protocol, we will consider the case of concurrent write sharing of a file. When a

file is not concurrent write shared, both protocols tends to present a good performance.

Under concurrent write sharing the SPRITE clients must contact the server each time

a read is requested. The client sends a message for the server and the server send it

one reply. The writes are sent directly to ihe server as in our lease model, so we will

not consider them here. So, let us consider that the total traffic related to consistency

maintenance is 2N R.
Therefore, formula 4 assures that, under concurrent write sharing, the lease protocol

generates a lower load than SPRITE protocol if and only if

2NR(l + NWt) +NW+ S(N - l)W •JNR
l +Rt+ NWt < -

if the network supports multicast and if and only if

2NR(l + NIVt) 2S(N- l)W < 2NR
1 +Rt+ NWt +

if the network does not support multicast.

(5)

(6)

Applying the S value given by (1) to (6) we get the following condition for the leases

superiority in the Ci\Se with no mult.icast:

R
w>(N-1) (7)

•we are subtracting from S the probability of the client which had requested the writ.e having a valid

lease for the file.

7

•

So, we can see that when the read rate is sufficiently larger than the write rate - when
(7) is satisfied - the lease protocol is a good choice. Although,·when the write rate is so
large that (7) is not fulfilled the best solution is to disable the cache as SPRITE does.

In the multicast case, it follows from (1) and (5) that the lease protocol is a better
choice if and only if

NWt + j N
2
W

2t2 + 8(NW
2
t

2 + Wt) _ NW (✓ ! (_1_))
R > 4t - 4 l + 1 + N 1 + NWt

As long as some regular writing is going on (say, at least one write every two le~
periods, so NWt > 1/2), and N is not too small either (take N ~ 6), the condition
above is satisfied if R/W > 0.8N. Therefore, multicast should improve the odds of leases
being better than SPRITE. However, due to the lack of an appropriate testbed for this
version of the protocol, the remaining analysis considers only the case where no multicast
is available.

3.5 Model Estimates

Figure 2 shows how the number of messages produced by the lease protocol depends on
the lease term under the no multicast case. The graph was made considering 5 clients
requesting, on average, one write in each 10 seconds and two reads per second.

20

18

16

14

12

10

8

0 10 20 30 40 50 60
t

N = 5, R = 2 e W = 0, l

Figure 2: Number of messages produced by the lease protocol

8

•

We may see that there is no optimal value for the lease term. The longer the lease
duration is, the lower is the load produced by the protocol. Therefore, long leases are
better choices. The only limitation to the lease extension are the disadvantages of too
long leases described in section 2.3.

On the other hand, we can see from figure 2, that 60 second leases do not provide any
significant gain compared to 20 second leases. So, in this example, adopting 20 second
leases would be a good choice.

Figure 3 presents the ratio between the load produced by the lease protocol and that
produced by the SPRITE protocol. When the value in the vertical a.xes is below l, the
load produced by the lease protocol is lower than the load produced by the SPRITE
protocol. ·

R= 2 e W = 0,05

Figure 3: Scalability

We can see that, while N < RtJv (N < 41 in this example), increasing the lease term
effects a lowering of the load produced by the lease protocol. When N > 41, the lease
load is greater than the SPRITE load and longer leases produce a higher load. This is
the point where the cache must be disabled.

However, our model assumes that a.II the N clients are writing to the file. But, since
it is not a common situation to have tens of clients writing concurrently to the same file,
we may consider the scalability of the lease protocol as being good.

9

4 The SODA Distributed File System

In order to study the behavior of a lease based system on a real network, we developed

the first version of the SODA consistent distributed file system [Kon9-t] during the first

semester of 1994. SODA was implemented on the LINUX operating system and its code

was written using the LINUX NFS 2.0 code. Since the SODA protocol is an extension of

the NFS protocol, it can be implemented in any other system using the NFS code as a

starting point.

4.1 Implementation

Three main modification to the LINUX NFS were made:

l. The LINUX NFS does not implement client caching. So we had to create the data

structures and the functions wich are responsible for the cache maintenance inside

the client kernel.

2. NFS servers are stateless but the lease protocol requires that the server store infor­

mation about the clients which have valid leases. Therefore, we had to create data

structures and functions to manage this information on the server side - which is

the daemon process nfsd.

3. Differently from NFS, the lease protocol requires that the server send messages to

the clients and wait for their replies. In order to carry this, we had to introduce a

new daemon process called soda,l in the client side. This process receives the lease

invalidation requests from the servers, makes a local system call to invalidate the

leases and replies to the appropriate server.

Figure 4 shows how our system works. In this example, the server attends a read

request from client I and, while the client 1 lease is still valid, a write request from client

2.
In the beginning, the process pl executes a read() system call in order to read some

bytes of a certain file (1) . Its kernel checks its local tables and finds that this file is

managed by a remote server. Since it does not have a local copy of the requested bytes in

its cache, the kernel sends a read request to the appropriate server using a RPC (2). This

RPC is received by nfsd which forward the request to its local kernel (3) which accesses

the local disk if necessary.
After receiving the bytes from the kernel, nfsd returns the R.PC sending the client not

only the requested bytes hut also a new lease for this file (4). Then, the client 1 kernel

copies the bytes just received to its local cache, updates its lease table and returns the

system call with the requested bytes (5).

If, while this lease is still valid, a process p2 in other machine requests a write to the

same file (6), then the following ocrnrs.
After receiving the write request, the client 2 kernel finds that the file is remote located

and forwards the write request to its server using a RPC (7). The server nfsd receives

the write request and looks for leases for the same file in its lease table finding that client

10

•

I Invalidate _lease (arq)

sodad
nfsd

pl ,
11

I nad(arq)

kernel kernel kernel

Clientl Server Client2

Figure 4: A read and a write request

1 possesses a valid lease. At this moment, it sends a lease invalidation message to the

sodad process at client I (8).

When sodad receives the invalidation request, it executes the invalidate.lease()

system call (9). This system ca.II marks the lease as expired in the kernel lease table.

Upon completion of the system call, the client replies to the server corroborating the lease

invalidation (10).
Only after receiving client l response, the server can call the local vrite() system

call to commit client 2 request (11) and then the RPC can return (12) with the result

of the request.
Finally, client2 kernel receives the result of its remote write request and returns the

same result to process p2 (13).

4.2 Performance Results

In order to evaluate our system, we made some tests using three 486 and one 386-based

PCs all of them running LINUX 1.0.9 and our current version of SODA. This machines

were connected to a I0Mbit Ethernet network shared by a lot of workstations distributed

across our Institute. The tests were made during low network load periods.

In this environment, the read requests attended by the client cache could be completed

at least 13 times faster than a read attended by the server through the network.

On the other side. a read attended by the server in a SODA system is, on average,

20% slower than one in a sta.nd1ml LINUX NFS system. This overhead, caused by the

cache maintenance procedures, is small enough to let the SODA system provide a faster

service under many different conditions making extensive use of client caching.

The influence of the lease t<>rm rnn be seen in figure 5. This figure shows the server

load produced by three clients accessing IO files, each one with rates R = 2 and W = 0.01.

The graph shape is similar to that predicted by the analytical model.

In order to compare the protocol adopted by SODA and the protocol used by SPRITE

II

• DI
0
• 6
:::I

... 5
::, II,~.
u

lease term (s)

Figure 5: CPU load x lease term

under concurrent write sharing, we modified our client kernel to check the file version
number with the server each time a file is read as SPRITE does. We will call this system
simulated SPRITE, or just, sSPRITE.

Figure 6 presents the average time to read l Kbyte of data both in SODA and in
sSPRITE. The test was done with 3 clients and the read rate was fixed on one read per
second. The write rate varies from O to 0. 7 writes per second.

0
10

•i E C • •
- 0
- u
,:, J 6
a=
• E .. ; ..
C ><
a-
•
2

,, ,,

···· •··-· ··-·····

SOD~---------------
..-

/ ,, ,,

..._-----------~---+------~----,
0 0.1 oa 0,1 OA 0.5 0.0 .. ,

W (write rate)

Figure 6: Elapsed time to read l Kbyte

We may see that when W is relatively low, SODA is many times faster than sSPRITE
and both tend to have the same read delays when W grows.

In the opposite side, the write times are, by definition, lower in sSPRITE. This happens
because sSPRITE never needs to invalidate client leases as SODA does. Figure 7 shows
the overhead associated with the lease invalidations.

12

ID - ...
0

15 ' ' ' ' ____ S00A

..... . . ················• ····· ;..· ········ · · ·

llm1E

0 ---------- - ---+-- - --+------,
0.1 cu CIA o.s o,

W (writ• rate)

Figure 7: f:lapsed time to write lKbyte

4.3 Future Work

There are two main topics in this work that can be improved. The analytical model
presented in section 3 emulates SPRITE behavior only under concurrent write sharing.
In order to model SPRITE protocol in any situation, we would ·need to consider in our
model the open and close client requests which determine the SPRITE behavior regarding
client caching. That would enlarge the model complexity but would present a ultimate
comparison between lease and SPRITE protocols.

Our current implementation of SODA does not use any mechanism to ensure the
consistency of cached meta-data like directory and file attribute information. We have
inherited this problem from LINUX NFS. Extending the lease mechanism already imple­
mented to the meta-data is the main modification needed to make SODA a good consistent
distributed file system for LINUX.

After the implementation of the meta-data coherency mechanisms, new extensive tests
should be made in order to evaluate SODA 's performance more precisely.

5 Conclusion

Among the main distrihntrcl filr syst.f'ms, SPRITE - and its descendents [HO93, RO91) -
is one of that wich offer the fastest service providing the same consistency of a centralized
system. However, SPRITE clocs not do vr.ry well under concurrent write sharing for it
completely disables client caching in this situation.

Using a new analytical model, we showed that the lease protocol, first proposed by
Gray, produces a lighter server load making use of client caching even under concurrent
write sharing.

We implemented the lease protocol in the LINUX operating systems and made some
performance evaluations comparing SODA - our lease based system - with a simulated
SPRITE. Our tests showed that SODA provides a faster service than a similar system

13

based on SPRITE protocol under a large range of parameter values.

The SODA binaries and source code can be obtained by anonymous FTP at the site

ftp.ime.usp.br, directory /pub/linux/soda.

Acknowledgment

The authors gratefully acknowledge the help provided by Dilma Menezes da Silva through­

out the development of this research. We are also grateful to Vanderlei da Costa Bueno,

Antonio Galves, and Isaac Meilijson for their ideas on the design of the analytical model.

References

[BP81J Richard E. Barlow and Frank Proschan. Statistical Theory of Reliability and

Life Test - Probabilistic Models. TO DEGIN WITH, Silver Spring, MD, 1981.

[GC89) Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant

Mechanism for Distributed File Cache Consistency. In Proceedings of the lfth

ACM Sym7,ositlm on Opemting System Principles, pages 202-210, December

1989.

[HO93) John II. Hartman and John K. Ousterhout. The zebra striped network file

system. In Proceedings of the 11th Symposium on Operating System Principles,

pages 29-43, Asheville, NC, December 19!>3. ACM.

(Kon94) Fabio Kon. Sistemas de Arquivos Distribuidos. ~faster's thesis, Universi­

dade de Sao Paulo, lnstituto de Matematica e Estatistica, Departamento de

Ciencia da Comput~ao, November 1994. Available by anonymous FTP at

ftp.ime.usp.br, file pub/articles/kon-master.ps.gz.

[MBH+93J Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian. and Garret

Swart. A coherent distributed file cache with directory write-behind. Technical

Report #103, DIGITAL Equipm~nt Corporation Systems Research Center,

Palo Alto, CA, June 1993.

[NWO88) Michael N. Nelson, Drent D. Welch, and John Ousterhout. Caching in the

Sprite Network Operating System. ACAi Transactions on Computer Systems,

6(1):135-54, February 1988.

[RO91) M. Rosenblum and J. O11sterho11t. The clcsign and implementation of a log­

structured file.system. In Proceedings of the 13th Sym7,ositim on Operating

System Pri11ci7,les, pages 1-15, Pacific Grove, CA, October 1991. ACM.

[Sat90) Mahadev Satyanarayanan. Scalable. Secure, and Highly Available Distributed

File Access. IEEE Computer, pages 9-21, May 1990.

(SUN90) SUN Microsystems, Inc. SunOS System & Net,uork Administration. 1990.

14

RELA T6RIOS TECNICOS

DEPART AMENTO DE CitNCIA DA COMPl!I' Af;AO
lmlituto de Malenlica • Eolalulica da USP

A lulapm coaiendo.,. relo&6rioe *nic:• .-..... a 1991 poded - camukada °" oolicilada • Sacmaria do DepartamonlG,
.,..-law1U, por carta °" e-mail(macOime.111p.br).

J.Z. Gonr;alves, Arnaldo Mandel
COMMUTA77V171' 11lEOREMS FOR DIVISION RINGS AND DOMAINS
RT-MAC-9201, Janeiro 1992, 12 pp.

J. Sakarovitch
11/E ·usr DECISION PROBLEM FOR RA110NAL 11«CE LANGUAGES
RT-MAC 9202, Abril 1992, 20 pp.

Valdemar W. Setzer, Fibio Henrique Carvalheiro
ALGOTRl1MOS E SUA ANALISE (UMA INTRODU<;AO DIDA11CA)
RT-MAC 9203, Agosto 1992, 19 pp.

Claudio Santos Pinbanez
UM SIMULADOR DE SUBSUMP170N ARCHllECWRES
RT-MAC-9204, Outubro 1992, 18 pp.

Julio M. Stem
REGIONALIZACAO DA MATRIZ PARA O ESTADO DE SAO PAULO
RT-MAC-9205, Julho 1992, 14 pp.

bnn,Simou
11/E PRODUCT OF RA110NAL LANGUAGES
RT-MAC-9301, Maio 1993, 18 pp.

F1'vio Soares C. da Silva
AUTOMA'lW REASONING W111I UNCERTAIN11ES
RT-MAC-9302, Maio 1993, 25 pp.

Ft,vio Soares C. da Silva
ON PROOF-AND MODEL-BASED 11:CHNIQUES FOR REASONING W111I UNCERTAINTY
RT-MAC-9303, Maio 1993, II pp.

Carlos HuSMS Jr., Leonidas de O.Brandio, Manuel Pera Gan:ia
A MIXED DYNAMICS APPROACH FOR LINE.AR CORRIDOR POLICIES
(A REVISITA110N OF DYNAMIC SETUP SCHEDULING AND FLOW CONTROL IN
MANUFACWRING SYSIEMS)
RT-MAC-9304, Junho 1993. 25 pp.

Ana Flora P.C.Humes e Carlos Humes Jr.

STABlUTY OF CLEARING OPEN LOOP POLICIES IN MANUFACTURJNG SYSTEMS (Revised

Venion)
RT-MAC-9305, Julbo 1993, 31 pp.

Maria Angela M.C. Gurgel e Yoshiko Wakabayashi

nlE COMPLETE PRE-ORDER POLYI'OPE: FACETS AND SEPARA.110N PROBLEM

RT-MAC-9306, Julbo 1993, 29 pp.

Tito Homem de Mello e Carlos Humes Jr.

SOME STABILl1T CONDffiONS FOR FLEXIBLE MANUFACTURING SYS1EMS Wl111 NO

SET-UP 11MES
RT-MAC-9307, Julho de 1993, 26 pp.

Carlos Humes Jr. e Tito Homem de Mello

A NECESSARY AND SUFFICIENT CONDIDON FOR 11lE EXISTENCE OF ANALmc

CEN1ERS IN PA111 FOUOWING ME11IODS FOR LINEAR PROGRAMMING

RT-MAC-9308, Agosto de 1993

Flavio S. Correa da Silva
AN ALGEBRAIC VIEW OF COMBJNA110N RULES
RT-MAC-9401, Janeiro de 1994, JO pp.

Flavio S. Corr& da Silva e Junior Barrera
AUTOMA11NG 11IE GENERA110N OF PROCEDURES TO ANALYSE BINARY IMAGES

RT-MAC-9402, Janeiro de 1994, 13 pp.

Junior Barrera, Gerald Jean Francis Banon e Roberto de Aleocar .lotufo

A MA11IEMA11CAL MORPHOLOGY TOOLBOX FOR THE KHOROS SYSTEM

RT-MAC-9403, Janeiro de 1994, 28 pp.

Flavio S. Correa da Silva

ON 111£ RELA110NS BE1WEEN INCIDENCE CALCULUS AND FAGIN-HALPERN

SfflUCTURES
RT-MAC-9404, abril de 1994, II pp.

Junior Barrera; Fllivio Soares Corr& da Silva e Gerald lean Francis Banon

AUTOMA11C PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES

RT-MAC-940S, abril de 1994, IS pp.

Valdemar W. Setzer: Cristina G. Fernandes; Wania Gomes Pedrosa e Flavio Hirata

UM GERADOR DE ANALISADORES SINTA11COS PARA GRAFOS SINTA11COS SIMPLES

RT-MAC-9406, abril de 1994, 16 pp.

Siang W. Song

1VWARDS A SIMPLE CONSTR.UC110N ME11IOD FOR HAMILTONIAN

DECOMPOSmON OF mE HYPERCUBE
RT-MAC-9407, maio de 1994, 13 pp.

Julio M. Stem
MODELOS MA1EMA11COS PARA FORMA9AO DE PORTFOLIOS

RT-MAC-9408, maio de 1994, SO pp.

!J-MAC-IME•IJSP

lmreSimoo
S'IRJNG MATCHING ALGOR/11IJIS AND Al/roMATA
RT·MAC-9409, maio de 1994, 14 pp.

Valdemar W. Semr e Andrea Zismaa
CONCURRENCY CONTROL FOR ACCESSING AND COMPAC11NG B-~
RT·MAC-9410,junho de 1994, 21 pp.

Renata Wasset'Dlllllll e ft,vio S. Correa da Silva
1UWARDS EFFICIENT MODEUING OF DlmIBcm:D KNOWLFDGE USING EO.UA110NAL
AND ORDER-SORTED LOGIC
RT·MAC-9411, junho de 1994, IS pp.

Jair M. Abe, F"vio S. Corra da Silva e Marcio Rillo
PARACONSIS'IENT LOGICS IN AR11FICIAL INTEUIGENCE A.ND ROB011CS.
RT-MAC--9412, junho de 1994, 14 pp.

Flalvio S. Coma da Silva, Daniela V. Carbogim
A SYSTEM FOR REASONING Wl11I FUZZY PREDICATES
RT-MAC-9413, junbo de 1994, 22 pp.

Flalvio S. Coma da Silva, Jair M. Abe, Marc.io RiUo
MODELING PARACONSIS'IENT KNOWLEDGE IN DISTRIBUTED SYSTEMS
RT·MAC-9414,julho de 1994, 12 pp.

Nami Kobayashi
THE CLOSURE UNDER DMS/ON AND A CHARAC1ERU.A110N OF 11lE RECOGNIZABLE
Z-SUBSEI'S
RT-MAC-9415,julho do 1994, 29pp.

Flalvio K. Miyuawa e Yoshiko Wakahayubi
AN ALGORITHM FOR 11lE 111REE·DIMENSIONAL PACKING PROBLEM WITH ASfMPT011C
PERFORMANCE ANALYSIS
RT-MAC-9416, oovembro de 1994, 30 pp.

Thomu I. Seidman e Carlos Humes Jr.
SOME KANBAN-CONTROLLED MANUFAC1VRING SYS'IDIS: A FIRSI' STA.B/LllY
ANALYSIS
RT-MAC-9501,jaueiro de 1995, 19 pp.

C.HumesJr. and A.F.P.C. Hume1
STAB1LIZA110N IN FMS BY QUASI• PERIODIC POLICIES
RT-MAC-9S02, ~ de 1995, JI pp.

Fabio Kon e Arnaldo Mandel
SODA: A LEASE-BASED CONSIS1ENT DlSTRIBUim FILE STSTEM
RT-MAC-9S03, ~ de 199S, 18 pp.

