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ABSTRACT ARTICLE HISTORY
We present a literature review on the current state of Generalized Received 19 April 2018
Lambda Distribution (G/D) research and propose a highly flexible Accepted 11 November 2018
G/D hurdle model for heavy tailed data with excessive zeros. We
apply the developed models to a dataset consisting of yearly health-
care expenses, a typical example of heavy-tailed data with excessive Distribution: .

! , . istribution; Generalized
Zeros. The fitted G/J?S are .compare.d .Wlth quels based on the Pareto Distribution; hurdle
Generalised Pareto Distribution and it is established that the G/AD models; two-way models
performs the best.
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1. Introduction

A motivation for the development of models for heavy-tailed data with excessive zeros
arises from data on healthcare expenses, that is characterized by its heavy tails, great
number of zeros and high skewness, which make fitting models to it a complex task
(Jones, Lomas, and Rice 2014; Mihaylova et al. 2011). Indeed, a suitable choice of model
for healthcare expenses are clumped-at-zero models, which are divided into two classes.
The first class are the zero-inflated models, which are based on distributions that
already have a probability mass at zero, that is then inflated. The zero-inflated Poisson
is an element of this class (Lambert 1992). The second class are the two-part or hurdle
models, that are those whose underlying distribution does not have a probability mass
at zero, that is then added to it. They are called hurdle for the probability mass at zero
may be seem as a hurdle, and they are also known as two-part models because the
probability mass at zero and the non-zero values may be modeled independently, so the
model has two parts. An example of hurdle model, for the demand of medical care, is
presented in Duan et al. (1983). In the class of two-part models there are also those
whose underlying distribution has a probability mass at zero, but are nonetheless two-
part models, as the one in Mullahy (1986), since the inflation of the probability mass at
zero is made by truncation, independently of the non-zero data.

The underlying distribution of the hurdle model treated in this paper is the
Generalized Lambda Distribution (GAD), that is a highly flexible four-parameter con-
tinuous probability distribution. The GAD was first proposed by Ramberg and
Schmeiser (1974), and then extended by Freimer et al. (1988), as a generalization of
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Tukey’s Lambda Distribution (Hastings et al. 1947; Tukey 1990). Even though the G/D
is a wild card distribution, that well approximate others (Karian and Dudewicz 2000,
Chapter 3), its use has been limited as there is no explicit expression for its probability
density function, which makes the estimation of its parameters a complex task.

Nevertheless, there is a considerable amount of applications of it in the literature. As
examples, we cite the evaluation of non-normal process capability indices (Pal 2004),
option pricing (Corrado 2001), the fitting of solar radiation data (Oztirk and Dale
1982) and income data (Tarsitano 2004), and statistical process control (Fournier et al.
2006). Regarding the modeling of healthcare expenses, the GAD was studied by
Balasooriya and Low (2008), where it was compared with the transformed kernel dens-
ity and models of the exponential family, and it was established that the GAD fitted the
data the best.

A limitation on the use of the GAD used to be the estimation of its parameters, which
had been carried out by the methods of moments and a percentile method until Su
(2007b) proposed a numerical maximum likelihood method. Another limitation used to
be the lack of a regression model, that was just recently proposed by Su (2015), which
extended the range of applications for the GAD. Therefore, due to recent advances in
GAD theory, it is now possible to further apply this powerful distribution and compare
it to other established models in order to assess its advantages.

In this paper, we develop hurdle GAD models and assess their goodness-of-fit on a
yearly healthcare expenses dataset. The models developed seek to fit the data taking into
account covariates (regression model) or not. The GAD models are compared with hur-
dle models based on the Generalized Pareto Distribution (GPD), which are special cases
of the one in Couturier and Victoria-Feser (2010). The GPD is also a highly flexible
continuous probability distribution, although we argue that it is not as flexible as, and
do not fit the data as good as, the GAD. For an assessment of the goodness-of-fit of the
GPD for healthcare expenses see Cebrian, Denuit, and Lambert (2003).

In Section 2 we present a survey on the current state of GAD research. In Section 3
we propose a hurdle GAD and present its main properties. In Section 4 we present a
survey on GAD regression and develop a hurdle GAD regression model. In Section 5 we
present a simulation study about the asymptotic properties of the hurdle GAD regres-
sion coefficients. In Section 6 we apply the developed methods to model healthcare
expenses and compare G/D and GPD models.

2. The generalized lambda distribution

In this section we present the main properties of two distinct parametrizations of the
G/D, known as RS and FKML GAD.

2.1. RS generalized lambda distribution

The RS GAD, proposed by Ramberg and Schmeiser (1974), is a generalization of
Tukey’s Lambda Distribution, obtained from an uniform random variable. Let U be an
uniform random variable with range [0, 1] defined in a probability space (Q,F,P).
Then, the random variable X, also defined in (Q, F,P), and given by
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U —(1-0)™
X =Q(U) =14 ++ (1)

has an RS GAD with parameters 4 = (1y,/,,43,44), whose quantile functions is
Qi(u),u €10,1], as Q;(u) = F;*(u), in which F;(x) = P(X; < x). The density of X; is
given by

1 2

QE(X)  JaFs(x)" + aa(1—Fa(x)) ! 2)

fulx) =

in which Q] (F,(x)) is the derivative of Q; at point F;(x). The parametric space A =
{4 € R*: F; is a cumulative distribution function} of 4 is a proper subset of R* and is
given implicitly by inequality

Jaus ™ 4 Qy(1—u)™™!
Ja

for 0 < u < 1, which is obtained by noting that f;(x) > 0 if, and only if, Q;(F,(x)) > 0.

The RS GAD is quite flexible, as it is possible to choose its parameters in order to
obtain a distribution with given mean, variance, skewness and kurtosis. Indeed, the
mean can be shifted to any value by choosing A; properly, the skewness and kurtosis
are determined by /3 and A, and, given A; and A,, the variance is determined by ..
The range of X is [Q;(0),Q;(1)] and depends on 4 (see Karian and Dudewicz 2000,
Theorem 1.4.23). The kth moment of the RS G/AD exists if, and only if,
min(/3, 44) > —k ' and, when it exists and 4; = 0, it is given by

E(xt) = Az"i (f) (1) (s (k—i) + 1; 2ai + 1) ()

in which f(a;b) is the beta function evaluated at (a, b). A proof for (4) is given in
Ramberg and Schmeiser (1974). The central moments of X; when 4; # 0 may be obtained
from (4) by applying the properties of the expectation operator. For instance, we have that

(Ua+1)"'—(a+1)"
I

>0 3)

1
E(X;)=/A +

(5)

so that E(X;) = 4, if, and only if, 23 = /4 and X, is symmetric.

The classical estimation technique for the RS G/D is the Method of Moments (MM),
as introduced by Ramberg and Schmeiser (1974) and consolidated by Karian, Dudewicz,
and Mcdonald (1996). Although easily implemented, the MM has some limitations.
First of all, two different vectors 4;,4, € A may yield the same first four moments of
the RS GAD. As pointed out by Karian, Dudewicz, and Mcdonald (1996), this may be
seen as a problem or an opportunity, for it enables a flexible fit for the data, as we may
choose the parameters that best fulfill our objectives regarding the fit. Another limita-
tion of the MM is the fact that the existence of the first four moments depends on 4
and, therefore, it cannot be applied for a subset of A. Furthermore, simulation studies
have showed that the MM performs worse than other methods, as the Numerical
Maximum Likelihood Method (NMLM) and the percentile matching method, for
example (Karian and Dudewicz 2003; Su 2007b).
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Even though other estimation techniques, as the least square estimation method pro-
posed by Oztiirk and Dale (1985), the Starship Method developed by King and
MacGillivray (1999), the flexible discretized approach proposed by Su (2005) and the
percentile matching method, similar to the MM but with best results in simulation stud-
ies, as introduced by Karian and Dudewicz (1999) and further studied by Karian and
Dudewicz (2000) and Karian and Dudewicz (2003), are available in the literature, this
paper treats only estimation by the NMLM, as proposed by Su (2007b) and Su (2011).
For a good account of other estimation techniques see Lakhany and Mausser (2000).

The log-likelihood of a sample {xi,...,x,} of an RS GAD random variable may be
written in terms of the cumulative distribution function F;, by denoting
u; = F;(x;),i=1,...,n, so that

1 )
Ins(4) = Z log 2

. : A e A (6)
i—1 1314?371 + /14(1*14,‘)/%71

In order to maximize (6) it is preferable to apply direct numerical methods than the
usual method of differentiation, as they are much more reliable and efficient than solv-
ing the conventional linear equations on 4, because, in many cases, the RS GAD may be
undefined for certain 4, as was pointed out by Su (2011). Therefore, we apply the algo-
rithm proposed by Su (2007b) to maximize (6) numerically.

The main issue in maximizing (6) is in finding suitable initial values for the quantile
sample {uy, ..., u, }. The most efficient way of obtaining them is through the estimation of
A by the percentile method, as this is the method that, apart from the NMLM, has had
more efficient results estimating the RS GAD parameters (Karian and Dudewicz 2003).

The pth percentile of a sample {xi,...,x,} is defined as 7, = x(;) + k(x(;11)—X(y))> in
which {x(1),...,X(s)} is the sample ordered in ascending order and r is the greatest inte-
ger lesser than (n+ 1)p, with k= (n+ 1)p—r. Rather than matching the sample
moments to their theoretical values, in the percentile method we match the statistics

A oA A oA N A Tos5—Ty ~ _ To.75—T0.25
P1L=Tos5 Pr=T1—v—Ty P3=7 Py = ﬁ (7)
2

iy — To5
to their theoretical values, in which v is an arbitrary number between 0 and 0.25, that we
choose to be 0.1, so that it is consistent with Karian and Dudewicz (2000) and Su (2007b).

Matching the theoretical values of p,, p,, p; and p4 to the quantile function of an RS
GAD we obtain the following identities:

0.5%—0.5%
pl(/l) = QA(O.S) =M+ T
)R s N,
p2(4) = Qu(1—v)—Qu(v) = (—v)"—v Z(l V)" —v
: 8
() = Qi(0.5)-Qi(v) (1=v)™ —vb 4 0.5 —0.5% (8)
3 Ql(l — V) - Ql(OS) (l_v);ﬁ _ V)“‘ + 0.524 . 0.523
py(4) = Qi(0.75)—Qs(0.25)  0.75%—0.25" + 0.75%1—0.25%
4 N - .

02 P2
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The conditions —o0 < p; <00, p, >0, p3 > 0 and p, € [0,1] must be satisfied, as can
be established from (7). In order to estimate 4 we match the sample values (7) to their the-
oretical values (8) and solve numerically for 4 by the Newton-Raphson method, for
example, with the stopping rule given by the minimization of the Euclidean 2-norm
H(4) = ||(p3(4), ps(A))—(p3, p4)ll,- Once A3 and 1, are obtained from the last two equa-
tions of (8), we substitute their values in the first two equations of (8) in order to obtain 4,
and A,.

The percentile method is applied to get initial values in order to maximize (6). The
maximization of (6) is performed by a 4-step algorithm proposed by Su (2007b)," which
employs quasi random numbers and the percentile method. The algorithm is as follows:

1. Specify the range of initial values for A; and 4, and the number of initial values
to be generated. In this step, quasi random numbers are sampled as candidates
for the initial values of A3 and 4. Su (2007b) proposes that 10, 000 quasi random
values (scrambled so that the sampled values fill uniformly the considered space)
be chosen from the square [—1.5,1.5].

2. Evaluate 4y, 4, for each of the initial values of A3, A4 in the first two equations of
(8). Remove all initial values that
a. Do not result in a legal parametrization of the RS GAD by (3).

b. Do not span the entire region of the dataset.
Among the initial points not removed, find the initial set Jo that minimizes
the norm H(A).

3. Calculate the quantiles {u, ..., u,} by solving numerically (1) with the initial val-
ues Ao.

4. Once {uy,...,u,} is obtained, substitute them in (6) and solve it numerically for i
It is convenient to repeat this process for different initials values, in order to check
the consistency of the solution. The obtained estimator is called revised percentile
estimator of the RS GAD under maximum likelihood estimation. The quality of the
fitted distribution may be established by diagnostic techniques, as the data histogram
superimposed by the estimated density, quantile plots and goodness-of-fit tests.

2.2. FKML generalized lambda distribution

The FKML GAD, proposed by Freimer, Kollia, Mudholkar, and Lin (1988), is also a
four parameter generalization of Tukey’s Lambda Distribution obtained from an uni-
form distribution. Indeed, let U be an uniform random variable with range [0, 1] defined
in a probability space (Q,F,P). Then, the random variable X;, also defined in
(Q, F,P), and given by

Us—1 (1-U)"-1

1
X5 = QuU) = 4 +

2

has an FKML GAD with parameters 4 = (41, 42, 43, 44). The FKML G/D is a probability
distribution for all real-valued parameters A, with the restriction that 4, >0 and the

(9)

43 4

The algorithm in Su (2007b) has five steps, that we reduced to four, without loss of content.
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COIIVCIItiOIlS2 that X(;Ll,;%o,;%) = lim)d%() X(/117;u2,;»3,/14) and X(/‘q,iz,%ﬂ) = hm).;;HO X(/ll,iz,i3,/l4)'
The main motivation for generalizing Tukey’s Lambda distribution to (9) is the weaker
restrictions on its parametric space when comparing to the RS GAD, which facilitates
the estimation of its parameters. Although both the RS and FKML GAD are generaliza-
tions of Tukey’s Lambda Distribution, they are not equivalent, so the distribution fitted
by one parametrization differs in general from the one fitted by the other.

The range of X; depends on 4 and is given by [Q;(0),Q;(1)]. The density of the
FKML G/D is obtained in a similar manner of (2) and is given by

1 A2
fl(x) - Q;(FA(X)) - F,l(x)irl + (I—Fl(x))’l“_l : (10)

The distribution of X, is symmetric if, and only if, 43 = A4, although its skewness
measure may be zero for’ A3 # 14. The parameters A; and 14 determine single-handedly
the nature and shape of the left and right tails of X, respectively, although the shape of
the probability density function depends on both A; and 4,. Examples of FKML G/D
may be found in Su (2015). Although the parameters of both the RS and FKML G/D
are denoted by 4;, 4,, 43 and 44, and are related to the same properties of the distribu-
tion, they are not equivalent, nor comparable. Nevertheless, the FKML GAD is also
highly flexible, as it is possible to choose 4 so that X, has specific mean, variance, skew-
ness and kurtosis. Furthermore, its tails are also flexible, so that the FKML GAD (and
the RS GAD) provides a better fit for heavy tailed data than the usual Generalized
Additive Models for Location, Scale and Shape (Rigby and Stasinopoulos, 2005),
for example.

The kth moment of the FKML GAD also exists if, and only if, min(4;,44) > —k™".
Denoting a =1/, and b= A;—1/43 + 1/A/4, the kth moment of X; may be
obtained from the moments of (X;—b)/a that, when exist, are given by

sk = E([X’l_b} k) = zk: <k> (=125 %02 B (s (k—i) + 1; i + 1) (11)

i
a i=0

as showed in Freimer, Kollia, Mudholkar, and Lin (1988) and Lakhany and Mausser
(2000). The central moments of X; may be obtained from (11).

Although there is a vast literature about the estimation of the FKML G/AD parame-
ters, we treat only the NMLM as proposed by Su (2007b) and Su (2011). The log-likeli-
hood of a sample {xi, ...,x,} of an FKML GAD is given by

”

n s
ek (4) = lo —— |, 21,23, 24 ER, 1, >0 (12)
FKML ; g lufrl n (1_ui>ﬂ411 15,43, A4 2

in which u; = Fj(x;),i = 1,...,n. The maximization of (12) is performed applying an
algorithm slightly different from the one applied to maximize (6). The main issue in
maximizing (12) is also in finding initial values for {u,...,u,}, and the estimation
method, apart from the NMLM, that seems to perform the best for the FKML GAD is
the method of moments, as outlined by the simulation studies of Lakhany and Mausser

The same conventions apply to the RS G/D.
3This is also the case for the RS G/D.
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(2000). Therefore, this is the method we use to find the initial values of {u,...,u,} in a
similar manner of what has been done for the RS GAD.

The method of moments for the FKML G/D, presented in Lakhany and Mausser
(2000), consists on matching the first four sample moments of {x, ..., x,} given by

(13)
= — LS ) = s> ()
3 Xi—HUq 4 - Xi—
n(tuZ)ls i=1 n(.“Z) i=1
to their theoretical moments
1 1 1 1
A)=—— — A= —(s,—s2
‘ul( ) 1 Ja <A3 1 g+ 1> :u2< ) ;é (52 51)
$3—3515, + 25 s4—4s153 + 6575, —3s] (14)
W) == u(t) = o
(52_51) (52—51)

As proposed by Lakhany and Mausser (2000), we first solve numerically
(03(A),04(A)) = (03,04) for A3 and A4 in the plane (—1/4,00) x (—1/4,00) by the
minimization of the Euclidean 2-norm H(4) = ||(a3(4), 04(4))—(&3,04)],, and then
substitute their values in the first two equations of (14) to obtain A; and 4,. Using the
estimates from the method of moments as initial values, we apply an algorithm analo-
gous to the one applied to the RS GAD in order to obtain NMLM estimates. The algo-
rithm was also proposed by Su (2007b), and is a slight modification of the algorithm of
Section 2.1, in which the method of moments is used to find the initial values instead
of the percentile method, and the FKML GAD likelihood is maximized, instead of the
RS G/D one. More details about it may be found in Su (2007b).

3. Hurdle generalized lambda distribution

In this section we propose a Hurdle Generalized Lambda Distribution (HGAD), which
is obtained by adding a fifth parameter A, to either the RS or FKML G/D to represent
their probability mass at zero.

3.1. Hurdle RS generalized lambda distribution

Let U and V be independent random variables defined in (Q, F,P), such that U is uni-
formly distributed in [0,1] and P(V =1) = 1-P(V = 0) = Jy. We say that the random
variable Y+ given by

(15)

Uk—(1-0)"
A
has a hurdle RS GAD (HRS G/AD) with parameters A* = (Ao, 41, A2, 43, 44) in the para-
metric space A" = [0,1] X A.
The random variable Y- follows a mixed probability distribution, that has a probabil-
ity mass Ao at zero and a probability mass 1—/, spread over [Qj.(0,0),Q;.(1,0)]

Y =Q(U,V)=(1-V) <,11 +
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according to an RS GAD. As the flexibility of the GAD is maintained in our hurdle gen-
eralization, an advantage of fitting an HRS G/D is that it is suitable for modeling data
with heavy tails and skewness that also has excessive zeros.

3.1.1. Estimation

The estimation of the HRS GAD parameters may be performed by the NMLM, by
extending the method of Su (2007b). We represent a sample of Y;+ by
{(1,v1), -, W, va)}, in which y; are the observed values and* v; = 1{y; = 0},
i=1,...,n, so that the log-likelihood of A" = (4, 4) is given by

Ls(2°) = lesry (o) + IZS(Z)U) (16)

in which

I (1)(’10) = ;vi log 7o + (1—v;) log (1—40)

" A
ljzs(z)(l) = Z(l — vi)log :

i—1 ;u3l/l%3_1 + }4(1—111')}‘471

1

As he log-likelihood (16) may be factored into two functions, one depending on A,
and other depending on 4, 4y and A are orthogonal and, therefore, may be estimated
independently.

On the one hand, the maximum likelihood estimator of A, is 4y = Ly V. On the
other hand, (41, 4, 43, 44) may be estimated by applying the algorithm of Section 2.1 to
the non-zero data values, so that we obtain the revised percentile estimator 3" of the
HRS GAD under maximum likelihood estimation. As the estimated distribution fits the
zero data values perfectly, it is enough to apply diagnostic techniques to the non-zero
data values, e.g., by comparing graphically their histogram with the density of an RS

GAD with parameters (11, 12, 13, ju4).

3.2. Hurdle FKML generalized lambda distribution

The hurdle FKML GAD (HFKML GAD) is constructed in the same manner as the HRS
G/D, by letting U and V be independent random variables defined in (Q, F,P), such
that U is uniformly distributed in [0,1] and P(V =1) = 1-P(V = 0) = /o, and defin-
ing the random variable Y+ as

1 |UP—1 (1-U)"—1
%) 13 )V4

so that Y;+ has an HFKML G/D with parameters A" = (g, 41, 42, 43, 44) € [0,1] x R*
with the restriction that A, >0 and the same conventions of (9). The random variable
Y;+ also follows a mixed probability distribution with the same general characteristics of

*1 is the indicator function.
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the HRS GAD: it is highly flexible, has a probability mass 4, at zero and a probability
mass 1—/4y spread over [Q}.(0,0), Q;.(1,0)] according to an FKML G/D.

3.2.1. Estimation

The estimation of the HFKML GAD is performed in a way analogous to that of the HRS
G/AD, as the log-likelihood of an HFKML GAD sample {(y1,v1),..., Vn,Vn)}s
vi = I{y; = 0},i = 1...,n, may be factored as

T (27) = l;KML(l)()'()) + Z;KML(z)(}“)v (18)
in which
l*

rr(n) (A0) = ZW log 7o + (1—v;) log (1—20)

i=1

* - ;L/Z
lFKML(Z)““) - Z(l ~v)log Lt )/14‘1] ’

i—1 14371 + (1—u;

so that 4y and (41, 42, 43, 4) are orthogonal, and may be estimated independently.

In order to obtain the revised method of moments estimator 2 of the HFEKML G/D
under maximum likelihood estimation, we estimate A, by the proportion of zero data
values 49 = 13" v, and (L1, A, /3, /4) by applying the algorithm of Section 2.1 to the
non-zero data values. Diagnostic methods may be applied to the non-zero data values
in order to assess the quality of the fitted model.

4. Hurdle generalized lambda distribution regression

In this section we propose a regression model for the HG/AD, in which we model its
location and probability mass at zero as functions of covariates W and Z, respectively,
which are random vectors defined in (Q,F,PP), that may share some variables or be
equal. Our method is an adaptation of the one presented in Su (2015). We first outline
the method of Su (2015) and then extend it to the HGAD.

4.1. Flexible parametric quantile regression model

The algorithm of Su (2015) seeks to estimate the parameters (f, 45, 43, 44) of model
X|W=W'B+e (19)

in which e ~ GAD(4], 22, 43, A4) and A is such that E(e) =0, i.e.,

i+ 1) =g+ 17"
—(3+) (4 +1) for the RS G/D

i = /2 . (20)

) = +1)7"
(43+1) } (4 +1) for the FKML GAD
)

In order to estimate the parameters of (19) we apply a 5-step algorithm that is analo-
gous to the algorithm of Section 2.1: find initial values in order to evaluate and maxi-
mize the log-likelihood to get NMLM estimates.



10 @ D. MARCONDES ET AL.

Let {(x1,w1), ..., (x4, w,)} be a sample of the response variable and covariates. The
algorithm is as follows and more details about it are presented in Su (2015).

1. Obtain ii(o) from the least square method by solving

5(0)

B = argmﬂiniz_nl: (xi—w,-T[i)z

= xi—WiT/}(O)

2. Obtain the initial estimates (220), 2;0) ;lio)) by applying the algorithm of Section
2.1 to sample {¢\” ©
. ple {¢;,....,en '} of €.
3. Calculate the log-likelihood of the model:
(a) Evaluate ZT(O) by (20) so that the initial estimated distribution of error e
has zero mean.

(b)  Force the residuals sample mean to be zero by making
1 n
= (y—wlp)—= E :
€ —()’z Wi ﬂ) ni:1 €

(c) Evaluate the log-likelihood of the zero mean residuals from equations (6)

(0)

and calculate the initial residuals é;

or (12):
(i) For the RS GAD with 4 € A
1 ;uz
I-(B, 22, A3, Ag) = lo . : (21)
(B, 72, 23, A4) ; g Lauiﬂgl n /14<1_ui)ﬂ4—11
) A
B (11— ; 4
. e G (22)
A2
(ii) For the FKML GAD with 43,44 € R, 1, >0
\ - A2
le- (B, 72, 23, 24) = ; log [ufg—l n (l—u,-))*“ll (23)
IS [ F7/ R 7R C |
= ! — 24
“ =ML A %4 (24)

in which u; is given implicitly by (22) and (24), depending on the paramet-
rization, and is a function of (B, /2, A3, A4).

4. Maximize numerically, by the Nelder-Mead simplex algorithm (Nelder and Mead
1965), for example, the log-likelihood (21) or (23), depending on the paramet-
rization, employing i}<0),i§0),;1;0> and ;lio) as initial values, in order to obtain
i{, }Lz, i3 and }L4.

5. Obtain 4, substituting the estimated values 4,, 3 and A4 in (20).

6. Conduct simulations to obtain statistical properties of the estimated regression
coefficients f as follows:

a. Generate {¢j,...,6,} from the GAD with parameters (}.’[,22,23,24) and
obtain a new sample {x},...,x'} by adding x = w;"B +¢;,i=1,...,n. Fit a
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regression model to {x],..,x:} obtaining estimates for the regression
coefficients.

b. Repeat step (a) 1000 times to obtain 1000 coefficients.’

c. Adjust each coefficient sample in (b) so that its mean is equal to the final
estimated coefficients of step 5. The simulated coefficients histogram may be
plotted and (1—a)% confidence intervals may be found by evaluating the
/2 and 1—o/2 quantiles of the simulated samples. We use quantile type 8
from the quantile function in R (Hyndman and Fan 1996; R Core Team
2017) in order to be consistent to Su (2015).

Any other method could be used to estimate the parameters of the error distribution in
step 2. However, we prefer the NMLM for it provides better estimates, as has been
established in the literature, although it may not converge in some cases. A limitation
of this method is the lack of asymptotic theoretical results about the distribution of the
estimators, so that we cannot construct asymptotic confidence intervals for the coeffi-
cients, nor test hypothesis. Nevertheless, computational methods for generating confi-
dence intervals and establishing goodness-of-fit are implemented and can be applied
(Su 2016).

4.2. HG/D regression model

In order to develop an HGAD regression model, we rely on the factorization of the log-
likelihoods (16) and (18), which allows to model the probability mass at zero and the
location of the distribution independently. Indeed, our regression model, whose
response variable is Y and covariates are® (W, Z), may be written as

Y|(W,Z) = (1—(V[Z)) (W'B +¢)

P(V=1Z) \ (25)
log <1 PV = 1|z>> =z

in which e ~ GAD(2], 22, 43, A4) and 1] is such that E(¢) = 0.

Given a sample {(y1,vi,w1,21), s VsV, Wn,2,)} of model (25), in which
vi = I{y; = 0},i =1, ..., n, its log-likelihood is given by
exp (z]'y) "
T+ exp (217

fyi—w/B) ] e
)

I(B,y, 72,73, 44) = ) log
iz=1: 1+ exp (2fy

n (26)
=Y vizly—log (1 + exp (2]y)) + (1—vi) log (f (yi—w/ B))
i=1

= Ff ('y) —|— l;(ﬁ, )Q, 2,3, /14)

in which f(y;—w! B) is either the density (2) or (10) with parameters (4}, 42, 43, 14) eval-
uated at point y,—w!B,i=1,...,n.

The number 1000 is arbitrary. It could be sampled more or less coefficients.
W and Z are random vectors which may share some variables or be equal.
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The estimation of model (25) may be performed by maximizing [;(y) and
(B, 22,73, A4) independently, so that we get the maximum likelihood estimator § and

the NMLM estimators ﬁ , ZT,/{Z, ;13 and /4. On the one hand, the maximization of I (y)
is performed by fitting a logistic regression in the usual manner (see Hilbe (2009)) to
sample {(v1,21), ..., (Vu,2x)}. On the other hand, the maximization of (B, 4,, A3, A4) is
performed by applying the algorithm of Section 4.1 to the non-zero data values.

As y and (B, 2], 22, 43, A4) are orthogonal, their maximum likelihood estimators are
asymptotically independent (Cox and Reid 1987). Therefore, the usual methods of infer-
ence for logistic regression models may be applied to infer about y, and logistic regres-
sion diagnostic techniques may be employed to asses the quality of the fit. However, as

the estimators if,jbi,/fz,j»3 and /Al4 are not of maximum likelihood, the usual inference
techniques for maximum likelihood estimators cannot be applied to them. Nevertheless,
we may construct numerical confidence intervals for B by applying the algorithm of
Section 4.1 (step 6) to the non-zero data values.

The goodness-of-fit of HGAD regression models may be established by the study of
two types of residuals: error residuals and normalized quantile residuals. The error

residuals are given by e = y—wTB for y # 0 and their empirical distribution may be

compared with the G)LD(/AI’I, Iy 23, ;14), fitted to error ¢, in order to establish goodness-
of-fit. This comparison may be performed by the use of QQ-plots; a histogram of e
superimposed by the estimated density; and a quantile plot that superimposes the esti-
mated and empirical quantile functions of € and e, respectively.

The normalized quantile residuals, presented in Dunn and Smyth (1996), are defined
as r =@ (F; (y—wTp)), in which ® and F; are the cumulative distribution function of

the standard normal distribution and the RS or FKML G/lD(j:, Ja, As, L), respectively.
The normalized quantile residuals are expected to be normally distributed if the model
is properly fitted, so that we may regard the model as well fitted if the density estimate
of r is close to the standard normal distribution density and the points of the normal
QQ-plot of r are distributed around the line with intercept zero and slope one, for
example. Normalised quantile residuals may also be employed to asses the goodness-of-
fit of the logistic regression model (Rigby and Stasinopoulos 2005).

5. Simulation study

In this section we perform a simulation study in order to assess the asymptotic proper-
ties of the HGAD regression coefficients. We consider the model

Y|(JC1,X2) = (1—(V|X1,X2))(613—0021X1—035X2 + 6)
1 P(V = 1|X1,X2)
1-— P(V = 1|X1,X2)

(27)

) =1.6—0.13x; + 0.21x,

in which x; ~ RS GAD(3.87,0.10,0.024,0.19) and P(x, = 1) = 1-P(x, = 0) = 0.6. We
simulate four different scenarios, in which the distribution of error e is symmetric
(RS GAD(0,2,0.13,0.13) and FKML GA4D(0,2,0.13,0.13)), and right skewed (RS
G/AD(—1.43,0.11,0.0023,0.19) and FKML GAD(—0.147,—0.41,1.07,0.84,0.02)).
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For each scenario and sample size n =100, 200, 1000, we generate 1000 samples and,
for each sample, we fit a HGAD regression model, estimating the coefficients of (27).
We then study the mean, standard error, and 2.5th and 97.5th percentiles of the esti-
mated coefficients over the 1000 samples. The results are presented in Table 1.

We observe, in all scenarios, that the mean of the estimated coefficients is close to
the target value, especially for samples of size n=1000, which is evidence that the esti-
mators are unbiased. Furthermore, we see that as greater the sample size, the smaller is
the standard error of the estimated coefficients, which is evidence that the estimators
are consistent. Overall, the simulation study support the consistency of the estimators,
so that it is not lost when we consider the hurdle model: the logistic regression consist-
ency, theoretically established, and the consistency of the GAD regression, supported by
the simulations of Su (2015), seems to be preserved when we consider the hur-
dle model.

6. Fitting an HG/D to healthcare expenses data

Healthcare expenses data has some peculiarities which make the HGAD a great option
for modeling it: a great number of zeros, normally more than 50% of the data, as not
every customer uses their health insurance in the period of a year; high skewness; and a
heavy right tail that is hardly modeled by the usual distributions, as the Gamma,
Weibull, Log-normal and Inverse-Gaussian.

In the following sections, we model a dataset that contains the yearly expenses of all
insured customers of a Brazilian healthcare insurance company between 2006 and 2009.
Our analysis focuses on modeling the yearly expenses in function of the covariates age,
sex and previous year expenses. All expenses are in Reais’ (R$) and were deflated to
January 2006 value. The HGAD models are compared with GPD models in order to
establish which better fits the data.

The GPD, introduced by Pickands (1975), is a three parameter positive probability
distribution with density

for y > a, in which o > 0 is the location, 7 > 0 the scale and £ € R the shape parameter.

The mean of the GPD is finite only for £ <1 and is given by
T

E(YY) =u= —. 28

(V) = p=at— : (28)

Note that the GPD may be re-parametrized so that u is the scale parameter, instead

of 7. Given a sample {y, ..., y,} and a known threshold o, (£, 1) (or (&, 1)) may be esti-

mated by the Maximum Likelihood Method in the usual manner (see Hosking and

Wallis (1987) and Grimshaw (1993)).

"Brazilian currency.
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Table 1. Mean, standard error and

2.5th and 97.5th percentiles of samples of the coefficients

of (27).
Percentiles
Sample Standard
Distribution of ¢ Coefficient Target size Mean error 2.5th 97.5th
Non-zero intercept 6.12 100 6.131 0.091 5.959 6.309
200 6.130 0.059 6.009 6.244
1000 6.130 0.022 6.085 6.174
Non-zero x; —0.021 100 —0.021 0.016 —0.052 0.008
200 —0.021 0.010 —0.040 0.001
1000 —0.021 0.004 —0.028 —0.013
Non-zero x, —0.35 100 —0.350 0.048 —0.446 —0.255
200 —0.350 0.033 —0.416 —0.284
HRS 1000 —0.350 0.012 —0.375 —0.326
G/D(0,2,0.13,0.13) Zero intercept 1.6 100 1.659 0.944 —0.001 3.762
200 1.627 0.650 0.401 2.984
1000 1.611 0.272 1.097 2.136
Zero x; —0.13 100 —0.136 0.164 —0.464 0.191
200 —0.131 0.110 —0.362 0.083
1000 —0.132 0.046 —0.223 —0.043
Zero x, 0.21 100 0.190 0.492 —0.768 1.139
200 0.207 0.341 —0.481 0.829
1000 0.216 0.149 —0.072 0.509
Non-zero intercept 6.12 100 6.145 0.750 4.615 7.664
200 6.114 0.489 5.215 7.215
1000 6.123 0.176 5.780 6.470
Non-zero x; —0.021 100 —0.022 0.129 —0.283 0.243
200 —0.018 0.083 —0.201 0.131
1000 —0.020 0.029 —0.077 0.034
Non-zero x, —0.35 100 —0.359 0.409 —1.124 0.469
200 —0.353 0.266 —0.876 0.165
HFKML 1000 —0.346 0.094 —0.532 —0.158
GAD(0,2,0.13,0.13) Zero intercept 1.6 100 1.623 0.916 0.040 3.577
200 1.620 0.649 0.388 2975
1000 1.611 0.272 1.097 2.136
Zero x; —0.13 100 —0.136 0.159 —0.438 0.171
200 —0.131 0.108 —0.362 0.081
1000 —0.132 0.046 —0.223 —0.043
Zero x, 0.21 100 0.206 0.482 —0.735 1.149
200 0.205 0.342 —0.484 0.834
1000 0.216 0.149 —0.072 0.509
Non-zero intercept 6.12 100 6.080 0.784 4434 7.697
200 6.102 0.448 5.200 7.003
1000 6.115 0.179 5.742 6.451
Non-zero x; —0.021 100 —0.014 0.134 —0.273 0.300
200 —0.019 0.073 —0.158 0.134
1000 —0.020 0.028 —0.080 0.041
Non-zero x, —0.35 100 —0.337 0.403 —1.197 0.518
200 —0.339 0.210 —0.738 0.078
HRS 1000 —0.342 0.067 —0.462 —0.185
G/AD(—1.43,0.11, Zero intercept 1.6 100 1.623 0.906 —0.045 3.534
0.0023,0.19) 200 1.632 0.620 0.433 2924
1000 1.616 0.273 1.068 2.152
Zero x; —0.13 100 —0.131 0.160 —0.442 0.188
200 —0.134 0.107 —0.349 0.083
1000 —0.132 0.047 —0.223 —0.038
Zero x, 0.21 100 0.211 0.493 —0.776 1171
200 0.209 0.328 —0.447 0.848
1000 0.213 0.155 —0.073 0.507
Non-zero intercept 6.12 100 6.139 0.777 4.584 7.906
200 6.083 0.411 5.259 6.861
1000 6.130 0.110 5.923 6.350

(continued)
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Table 1. Continued.

Percentiles
Sample Standard _
Distribution of € Coefficient Target size Mean error 2.5th 97.5th
Non-zero x; —0.021 100 —0.022 0.133 —0.309 0.236
200 —0.011 0.066 —0.149 0.128
1000 —0.021 0.015 —0.050 0.011
Non-zero x, —0.35 100 —0.352 0.408 —1.232 0.513
200 —0.366 0.187 —0.742 0.019
HFKML 1000 —0.351 0.042 —0.446 —0.268
GAD(—0.147,—0.41, Zero intercept 1.6 100 1.635 0.916 —0.098 3.433
1.07,0.84,0.02) 200 1.615 0.652 0.402 2.962
1000 1.613 0.279 1.054 2.154
Zero X, —0.13 100 —0.132 0.157 —0.434 0.187
200 —0.132 0.111 —0.353 0.086
1000 —0.132 0.048 —0.225 —0.035
Zero x, 0.21 100 0.194 0.509 —0.820 1.246
200 0.200 0.338 —0.459 0.847
1000 0.212 0.154 —0.073 0.507

In order to fit a GPD when there are covariates, we employ a generalized linear
model (GLM) framework, as introduced by Nelder and Baker (1972). In this framework,
we suppose that the location parameter a is known and independent of the covariates,
and that the shape parameter ¢ is unknown, but is lesser than one and independent of
the covariates. Then, we model the mean p as E(Y|x;) := y; = exp (x! B), in which x;
are the covariates of the i — th observation and f are the coefficients of the model. The
coefficients (&, f) are estimated by Maximum Likelihood numerically and their asymp-
totic distributions are obtained by the asymptotic properties of Maximum
Likelihood Estimators.

A Hurdle Generalized Pareto Distribution (HGPD) may be developed in a similar
manner as the HGAD model, as it is enough to add a parameter /, to the GPD to rep-
resent its probability mass at zero, and then estimate the parameters accordingly: the
estimate of Jy is the proportion of zeros in the sample and the estimate of (&, 1) is the
Maximum Likelihood estimate of the GPD fitted to the non-zero data values.

A HGPD GLM is obtained by replacing (W'B + ¢) in expression (25) by a random
variable U|/WT that has a GPD with parameters («, &, = exp (W' p)). The parameters
related to the probability mass at zero and to the GPD GLM for the non-zero values
are orthogonal, so that their estimation may be performed independently. This hurdle
model is a special case of the Zero-inflated Truncated Generalized Pareto Distribution
introduced by Couturier and Victoria-Feser (2010).

In order to establish the goodness-of-fit of the HGPD GLM we may consider the
zero and non-zero data values separately. For the zero values we consider logistic
regression diagnostic techniques and for the non-zero values we propose the study of
two types of residuals: normalized quantile residuals and error residuals, that are given
respectively by

y—o

r=o! <F(“#)(y)) e= P

in which Fi i 1s the cumulative probability function of a GPD with parameters

(o, &, t), for y # 0. If the model is well-fitted then r is normally distributed and e has a
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Figure 1. Frequency of each yearly expense value greater than zero in the logarithm scale.

GPD with parameters o, = 0,&, = ¢ and U, =1, so that graphical tools, as QQ-plots,
may be used to establish goodness-of-fit. The error residuals were proposed by
Couturier and Victoria-Feser (2010) where more details are presented.

6.1. The dataset

In order to fit a model to the data at hand, we first observe some systematic behavior
of the data and transform it to obtain a better fit. First of all, there are some yearly
expenses which are observed in the dataset hundreds of times, as can be seen in Figure
1, for there are some simple medical procedures that have standardized costs. These
repeated values make it hard to fit a continuous model, as some expenses have a prob-
ability mass greater than zero. Therefore, we truncate the yearly expenses at R$100, and
consider all yearly expenses lesser than R$100 to be zero. This truncation is justified by
the practical application of the fitted model, as the main interest in modeling healthcare
expenses is in properly fitting the tail of the distribution, i.e., the yearly expenses that
are dozens of times the expected one, so that low expenses, as those less than R$100,
may be regarded as zero without any loss for the practical application of the model.
Even though 69% of the dataset has an expense less than R$100, their expenses sum to
R$2,552,800, which is less than 2% of the total expenses of the dataset, that
is R$137,382,575.

Truncating the dataset at R$100, we have, for each year and for the whole dataset,
the proportion of zeros, selected percentiles, mean, standard deviation and maximum
expense displayed in Table 2. The percentiles, mean and standard deviation refer to the
truncated data, ie., are calculated considering only data values greater than R$100.
From Table 2 it can be seen that the 99th percentile is approximately twice the 98th
percentile, the same occurring with the 99.5th and 99th percentiles. Furthermore, the
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Table 2. Descriptive statistics of the yearly expenses. The percentiles, mean and standard deviation
refer to the truncated data values, i.e., consider only the yearly expenses which are greater
than R$100.

Year 2006 2007 2008 2009 All data
Size 70,186 71,814 73,038 74,418 289,456
Percentage of < R$ 100 60 81 82 51 69
Percentiles
25 195 151 154 249 190
50 367 237 259 514 366
75 807 453 510 1,147 830
90 1,901 1,033 1,180 2,782 2,040
95 3,610 2,309 2,737 5,662 4,145
96 4,412 3,035 3,632 7,123 5,186
97 5,756 4,227 4,950 9,593 6,878
98 8,337 6,633 7,906 14,754 10,629
99 15,971 13,168 15,583 27,675 20,023
99.5 28,700 22,990 29,614 50,549 35,821
99.9 106,744 61,111 68,552 151,114 116,643
Maximum 377,862 295,736 279,450 675,440 675,440
Mean 1,313 870 991 2,028 1,485
Standard deviation 7,082 4,689 4,898 10,966 8,387

99.9th percentile is around three times the 99.5th percentile and the maximum is up to
almost five times the 99.9th percentile, which shows that the dataset has heavy tails, as
can be also seen in the box-plots of the logarithm of the yearly expenses in Figure 2.

Figure 3 shows the dispersion of the logarithm of the yearly expenses by each one of
the covariates that are considered on the regression model, i.e., age, sex and the loga-
rithm of the previous year expenses. The data considered for the regression model con-
template the yearly expenses of 2007, 2008 and 2009, and regards only customers that
were enrolled in the insurance program in the considered year and in the previous year,
which amounts to 214,925 observations. Figure 3 does not yield any clear relation
between the logarithm of the yearly expenses and age or previous year expenses,
although it seems that women tend to have greater yearly expenses than men.

6.2. HGAD model fit

We first fit HGADs and HGPDs to the yearly expenses of each year (2006, 2007, 2008
and 2009) without considering any covariate. All models are fitted to the logarithm of
the yearly expenses in order to obtain better fitted models and for computation opti-
mization, as the non-transformed data has some extreme outliers, which makes it hard
to fit a model properly. The goodness-of-fit is established graphically by the use of QQ-
plots and the histogram of the data superimposed by the estimated curves. The fitted
distributions are also compared with the kernel density estimate in order to establish
which is the model that best fit the data objectively. See Bickel and Rosenblatt (1973)
and Fan (1994) for examples of how the kernel density estimation is used for assessing
goodness-of-fit. We apply the method proposed by Sheather and Jones (1991) in order
to choose the bandwidth of the kernel estimate, and select the probability density func-
tion of a standard normal distribution as the kernel. For more details on kernel estima-
tion see Silverman (1986).

In order to compare the fitted distributions to the kernel density estimate we use
three different distance measures: the global distance, the L> norm and the L norm
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Figure 2. Box-plot of the logarithm of the yearly expenses by year. The expenses lesser than R$100
were omitted for a better visualization.
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Figure 3. Dispersion of the logarithm of the yearly expenses by each one of the covariates. The
yearly expenses lesser than R$100 were omitted for a better visualization.

that Aare Agiven respective}y ) by D(f,fk) :A%Z?Z}[]?(yi)—fk(yi)]z, |[f—fk||2 =
U™ ) —~F e Py and [[f =il = max,ege |f (7))

metric probability density function (GAD or GPD) fitted to the non-zero yearly

, in which f is the para-

expenses and f « is the kernel density estimate. Note that the probability mass at zero is
the same for all fitted distributions, so there is no need to compare them regarding the
zero valued yearly expenses.
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Table 3. Estimated parameters for the HGAD and HGPD models fitted to the yearly expenses, for
each year.

GAD GPD
Year Ao Par A A A3 A4 Scale Shape Location
2006 0.60 RS 4.74 0.12 0.0032 0.20 1.80 —0.22 4.61
FKML 5.74 1.13 0.78 0.03
2007 0.81 RS 4.62 0.07 0.0002 0.08 1.22 —0.09 4.61
FKML 530 1.37 1.05 —0.07
2008 0.82 RS 4.61 0.10 0 0.14 1.33 —0.12 4.61
FKML 5.39 1.43 0.89 —0.10
2009 0.51 RS 5.20 0.11 0.02 0.18 217 —0.25 4.61
FKML 6.06 1.07 0.64 0.04
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Figure 4. The distance between the fitted curve and the kernel density estimate for each model
and year.

The estimated parameters for each year and model are displayed in Table 3. The esti-
mated parameters differ significantly from one year to another, for all fitted models,
although we observe in every year that the fitted GADs are highly skewed, as the values
of /3 and /A4 are quite different. In Figure 4 we see that the densities estimated by the
HRS and HFKML GAD are closer to the kernel estimate density for all years, by all dis-
tance measures. Furthermore, Figure 5 displays the histogram of the logarithm of the
yearly expenses superimposed by the fitted GADs and HGPD, and the QQ-plots
between the empirical and fitted distributions, for all years, from which it can be seen
that the HGADs fit the data better for low values (near the threshold 4.61), and that the
HRS GAD and HGPD fit as good the tail, while the HFKML G/AD seems to fit
it poorer.

From the diagnostic plots in Figure 5 we see that the major advantage of the HG/ADs
over the HGPD is that they are not necessarily threshold modal and monotonically
decreasing so that they fit better the bulk of the distribution, i.e., the values near the
threshold, when the distribution mode is greater than the threshold. Nevertheless, the
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Figure 5. The top four plots display the histogram of the data superimposed by the estimated
HGADs and HGPD, for each year. The bottom four plots display the QQ-plot between the sample
quantiles and the theoretical quantiles of the HGADs and HGPD, for each year.

HRS G/D and the HGPD fit the tail of the distribution better, while the HFKML GAD
fits its bulk better, for it is the distribution with best overall fit according to the distance
measures. Therefore, the HGADs fit the data better, especially the HRS G/D, although
the HGPD fits the right tail of the distribution as good as them.

In order to choose between the proposed hurdle models, one should observe the
nature of the data he seeks to fit. Indeed, although the GPD has a highly flexible right
tail, which makes it useful for fitting heavy tailed data, its left tail is not quite flexible,
which makes it a poor choice for modeling data that demands flexibility in both tails.
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Table 4. Estimated parameters of the logistic regression that models the logit of the yearly expenses
being less than R$100.

Parameter Estimate SE t value p-value

Intercept 1.6266 0.0121 134.8826 <2e—16
LE —0.1253 0.0018 —71.4760 <2e—16
Male 0.2093 0.0098 21.2574 <2e—16
Age —0.0159 0.0002 —63.9644 <2e—16

SE, standard deviation; LE, logarithm of the previous year expenses.

Table 5. Estimated parameters and numerical confidence intervals of the HRS G/D and HFKML GAD
regression models.

Confidence interval

Parametrization Parameter Estimate LB (0.5%) UB (99.5%)
HFKML GAD Intercept 6.13 6.11 6.24
LE —0.0000215 —0.0050842 0.0016275
Male —0.0003554 —0.2338218 0.0392448
Age 0.0000259 —0.0002445 0.0003319
A —-0.41 —0.59 —0.29
A2 1.07 0.94 1.56
A3 0.84 0.50 1.02
N 0.02 —0.26 0.09
HRS GAD Intercept 6.10 6.08 6.11
LE 0.0013937 0.0005463 0.0023140
Male —0.0126310 —0.0182945 —0.0074669
Age 0.0009363 0.0007947 0.0010634
e 141 —143 —1.40
A2 0.1102 0.1061 0.1142
A3 0.0023749 0.0021813 0.0025770
N 0.19 0.18 0.20

LE, logarithm of the previous year expenses; LB, lower bound; UB, upper bound.

On the other hand, both tails of the GAD are flexible, so that it is a more robust choice
when comparing to the GPD. As the parametrizations of the RS and FKML G/D are
not equivalent, one must also choose between them, what may be done by observing
the quality of each fit by applying tools as the distance to the kernel estimate or diag-
nostic plots.

6.3. HG/D regression model

In this section, HGAD regression models are fitted to the logarithm of the yearly
expenses and compared with the HGPD GLM by the use of error and normalized quan-
tile residuals. The estimated coefficients of the logistic regression, i.e., the parameters of
the model for the probability mass at zero, are the same for all fitted models, as they
are orthogonal to the parameters of the models for the non-zero values. Also, the logit
modeled in the logistic regression is the logit of the expense being less than R$100, as
the yearly expenses were truncated at R$100. We assume that, given the logarithm of
the previous year expenses, the age and the sex, the logarithm of the yearly expenses are
independent, even the expenses that refer to the same customer in different years, so
that we have a sample of the model variables.

The estimated parameters of the logistic regression for the zero-valued data are presented
in Table 4, in which the contrast used for the sex is “treatment” in which the female sex is



22 @ D. MARCONDES ET AL.

Table 6. Estimated parameters and p-values of the HGPD model.

Parameter Estimate SE p-value

Shape 0.9924 2.58e-13 <2e—16
Intercept 4.6576 0.0091 <2e—16
LE 0.0152 0.0021 8.26e—13
Male —0.1198 0.0125 <2e—-16
Age 0.0082 0.0003 <2e—16

SE, standard deviation; LE, logarithm of the previous year expenses.

the base. The minus sign of the estimated coefficients of the logarithm of the previous year
expenses and age shows that as greater the previous year expense or the age of a customer,
the lesser is the probability of him having less than R$100 in yearly expenses, while the
plus sign of the estimated coefficient for the male sex shows that men are more likely to
have yearly healthcare expenses lesser than R$100 than women.

The estimated parameters of both parametrizations of the GAD regression and of the
GPD GLM for the non-zero data values are presented in Tables 5 and 6, in which the
female sex is again taken as the base for the “treatment” contrast of sex. On the one hand,
as the zero is in the 99% confidence interval of all coefficients of the HFKML GAD model,
there is no evidence that the location of the distribution depends on any of the covariates
at a significance of 1% and we may regard these coefficients as zero. On the other hand, all
the coefficients of the HRS GAD and HGPD model are different of zero at a significance of
1%, so that we regard only the estimated coefficients of these models.

The signs of the estimated coefficients of the HRS GAD and HGPD models are
exchanged when comparing with the signs of the ones in Table 4, which is consistent.
Indeed, we see that as greater the previous year expenses or the age, the greater is the
location parameter of the HGAD and the mean of the HGPD, and that the location
(and mean) of the male sex is lesser than the female’s, confirming what were was
observed in the box-plot in Figure 3. Therefore, we obtain the same kind of interpret-
ation for the yearly expenses from the logistic regression, HRS GAD model and HGPD
GLM: as greater the previous year expenses or the age, the greater the expense; and
women have greater expense than men.

The diagnostic plots for the HG/D models and the HGPD GLM are presented in
Figures 6 and 7. Figure 6 displays plots of the normalized quantile residuals, while
Figure 7 displays plots of the error residuals. Figure 6 yields that the HRS GAD and
HFKML GAD regression models are fairly fitted, as the distributions of their normalized
quantile residuals do not greatly deviate from the normal distribution. Furthermore,
from Figure 7 it may be established that the HRS GAD and HFKML G/D models are
well-fitted, as the points of their error residuals QQ-plot are distributed around the line
with intercept zero and slope one. In fact, when comparing with the HGPD GLM, the
HRS G/D and HFKML G/D regression models seem to better fit the data.

On the other hand, the fit of the HGPD GLM is not good, as its error residuals do
not seem to be distributed as a GPD and its normalized quantile residuals are highly
skewed. The HGPD GLM does not properly fit the residuals because the data is not
threshold modal and the fitted distribution is supposed to have infinity mean, as can be
seem from the estimate of the shape parameter that is close to one. The lack of flexibil-
ity of its left tail makes the GPD improper to fit data that presents a behavior on it that
is not threshold modal and monotonically decreasing. Furthermore, the GLM
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Figure 6. Estimated density and Normal QQ-plot of the normalized quantile residuals of the HRS GAD
and HFKML GAD regression models, and the HGD GLM, for the non-zero yearly expenses.

framework is restricted to GPDs that have finite mean, i.e., such that £ <1. On the
other hand, the G/D is exactly the opposite of the GPD in the matter of tail flexibility,
as its tails may have different shapes. Moreover, the HGAD models the location of the
distribution, so that it may fit distributions with infinite mean.

In general, when choosing between the proposed hurdle regression models, one must take
into account the statistical significance of their coefficients, and carefully analyze the behavior
of the normalized quantile and error residuals. The G/D regression models are more robust,
as are also adequate when the conditional distribution of the response variable given the cova-
riates has infinite mean or is not monotonically decreasing with the threshold as the mode.
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Figure 7. Diagnostics for the HRS GAD and HFKML GAD regression models, and the HGPD GLM, for
the non-zero yearly expenses. The histograms are that of the respective error residuals and are super-
imposed by their theoretical distribution. The QQ-plots compare the empirical quantiles of the error
residuals with their theoretical quantiles.

Nevertheless, one has also to choose between the RS and FKML GAD, which are not equiva-
lent and, in order to do so, must carefully analyze both models, and choose the one that best
fulfills the objective of the regression, e.g., best predicts an outcome or best fit the dataset.

An interesting feature of the HGAD regression models is that the fitted curve takes
into account the probability mass at zero, so that we may readily see which are the pro-
files, i.e., combinations of the covariate’s levels, that tend to have great and low
expenses. As an example, we consider 12 profiles, that are presented in Table 7 and
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Table 7. The covariates of each profile, their location, /o and selected estimated percentiles for the
yearly expenses from the HRS GAD regression model.

Selected Percentiles

Profile ~Age Sex LE Ao Location 75th 90th 95th 99th 99.5th 99.9th

1 20 F 0 0.79 452.53 0 360.78 948.72 5768.93 10763.16  34689.11
2 20 F 7 0.61 456.97 228.98 865.29  2040.61 10176.05 17736.15  50318.16
3 40 F 0 0.73 461.08 122.14 52295 1314.88 7374.60 13383.05  40952.71
4 40 F 7 053 465.60 309.58  1115.03  2554.16  12069.66  20650.44  56586.22
5 60 F 0 0.66 469.80 183.74 725.48 1754.89 9169.98 16241.66  47487.74
6 60 F 7 0.45 474.40 398.82 1381.68  3089.37 13958.85  23516.69  62600.83
7 20 M 0 0.82 446.85 0 275.79 749.75 4834.56 9202.52  30793.22
8 20 M 7 065 451.23 182.43 716.00  1726.10 8963.52  15842.01  46133.72
9 40 M 0 0.77 455.30 0 411.71 1065.33 6293.60 11626.53  36784.42
10 40 M 7 0.58 459.76 255.32 94796  2212.09 10817.96 18728.74  52469.37
" 60 M 0 0.71 463.90 141.94 587.78 1457.46 7969.18 14336.51 43159.53
12 60 M 7 050 468.45 339.34  1204.89 273573 1271794 2163732  58667.27

The location and percentiles are exponentiated. LE, logarithm of the previous year expenses.
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Figure 8. Estimated curves for the profiles in Table 7 given by the HRS GAD regression model.

whose HRS GAD fitted curves are displayed in Figure 8. On the one hand, the location
of the curves is almost the same for all profiles, even though there are profiles that dif-
fer reasonably on all the covariates. On the other hand, the probability mass at zero dif-
fers significantly from one profile to another, as can be seen from the area under each
curve. The exponential of selected percentiles for the 12 profiles are presented in Table
7, in which we observe that the percentiles differ significantly from one profile to
another and their values are a reflex of the estimated coefficients of Tables 4 and 5.

7. Final remarks

The HG/AD models proposed in this paper have a great potential for applications, not
only to healthcare expenses data, but also to any highly skewed data, with excessive
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zeros and heavy tails. According to the results obtained in Section 6, we may argue that
the HGPD is in general as good as the HGAD when fitting unimodal monotonically
decreasing distributions, while the HGAD seems to better fit data that demands a higher
flexibility on the left tail. Therefore, the methods developed in this paper bring contri-
butions to the state-of-the-art in modeling heavy tailed clumped-at-zero data.

Although the HG/D fits best some kinds of data, it is still necessary to improve its
estimation techniques, especially what concerns the asymptotic properties of the estima-
tors and the computation of the estimates, which may take days, depending on the size
of the dataset and the number of parameters. Therefore, a more theoretical research
about the HG/D and the optimization of the algorithms used to estimate its parameters
are interesting topics for future researches.

Supplementary material

The data analysis has been performed in the 3.4.2 version of R (R Core Team, 2017) by
the adaptation of functions of the GAMLSS (Rigby and Stasinopoulos, 2005), GLDEX
(Su, 2007a) and GLDReg (Su, 2016) packages. In the on-line supplementary material we
provide an R package with functions to all the models of this paper and an R script
that reproduce all tables and gures of this paper.
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