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We consider a double Gaussian approximation to describe the wavefunction of twin photons (also called
a biphoton) created in a nonlinear crystal via a type-I spontaneous parametric downconversion (SPDC)
process. We find that the wavefunction develops a Gouy phase while it propagates, being dependent of
the two-photon correlation through the Rayleigh length. We evaluate the covariance matrix and show
that the logarithmic negativity, useful in quantifying entanglement in Gaussian states, although Rayleigh-

dependent, does not depend on the propagation distance. In addition, we show that the two-photon
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Gouy phase Ref. [1].

entanglement can be connected to the biphoton Gouy phase as these quantities are Rayleigh-length-
related. Then, we focus the double Gaussian biphoton wavefunction using a thin lens and calculate a
Gouy phase that is in reasonable agreement with the experimental data of D. Kawase et al. published in

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since its first detection in 1890 by L.G. Gouy [2,3], the Gouy
phase and its properties have been extensively studied [4-11]. This
phase appears whenever a wave is constrained transversally to
its propagation, which includes diffraction through slits and focus
by lenses. The acquired phase depends on the type of transversal
confinement and on the geometry of the waves. For example: line-
focusing a cylindrical wave propagating from —oo to +oo yields a
Gouy phase of /2, while point-focusing a spherical wave in the
same interval yields a Gouy phase of 7 [6]; Gaussian matter wave
packets diffracting through small apertures pick up a Gouy phase
of 7 /4 [12].

The Gouy phase has been detected in various scenarios, includ-
ing acoustic and water waves [14-16], surface plasmon-polaritons
with non Gaussian spatial properties [13], focused cylindrical
phonon-polariton wave packets in LiTaO3 crystals, and more re-
cently for electron waves [14-16]. Its presence in many systems
justifies potential applications. To name a few, the Gouy phase
is fundamental in evaluating the resonant frequencies in laser
cavities [17], in phase-matching in strong-field and high-order har-
monic generation [18], and in describing the spatial profile of laser
pulses with high repetition rate [19]. In addition, an extra Gouy
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phase appears in optical and matter waves depending on the or-
bital angular momentum’s magnitude [15,20]. In a recent work,
it was found that the Gouy phase may cause nonlocal effects
that modify the symmetries of self-organization in atomic systems
[21]. This phase may also be useful in communication and optical
tweezers using structured light [22].

The Gouy phase is also relevant in coherent matter waves, as
shown for the first time in [12,23-25]. Following that, experiments
were performed in a number of systems, including Bose-Einstein
condensates [14], electron vortex beams [15] and astigmatic elec-
tron waves [16]. Gouy phases in matter waves also display poten-
tial applications, namely: they can be used in mode converters in
quantum information systems [23], in the generation of singular
electron optics [16] and in the study of non-classical (exotic or
looped) paths in interference experiments [26]. In this work, we
are interested in the Gouy phase of entangled photon pairs gener-
ated in a type-I SPDC process.

An SPDC process generates a pair of entangled photons respect-
ing energy-momentum conservation. These processes happen with
extremely low probability - around 107 [27]. Because the first ex-
periments involved non degenerate emerging photon beams, one
with frequency in the IR and the other in the visible range, they
were named idler and signal, respectively [28]. The emerging pho-
tons in these processes are highly correlated in energy, momen-
tum, polarization and angular momentum [29]. They emerge after
a pump beam, with frequency wp, goes through a nonlinear crys-
tal, generating (in those very rare cases) two lower energy photons,
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the idler and signal, with frequencies w; and ws. The type of SPDC
depends on the polarization of the emerging photons with respect
to the incoming pump beam. For example, in a type-I SPDC, the
signal and idler photons display parallel polarizations, both orthog-
onal to the pump beam’s, and form a cone aligned to the pump
beam’s direction. In a type-Il SPDC the signal and idler photons
have orthogonal polarizations and emerge in 2 different cones. The
spatial distribution of the emerging beams is a consequence of
energy-momentum conservation: wp = w; + ws and kp = k; + ks.
This also causes the high degree of energy-momentum correlations
between the emerging beams. For a more details, please consult
Ref. [30] and the references therein. In fact, it is possible to con-
trol the correlations between different degrees of freedom in the
generated pairs [31]. In this work, we will consider twin photons
with wavelength 702.2 nm, typically used in interferometry exper-
iments, such as in Refs. [32,33].

Regarding the entanglement, the Schmidt number plays an
important role. The propagation dynamics of spatially entangled
biphotons was explored via the Schmidt number in Ref. [34]. Like
the logarithmic negativity, the Schmidt number is propagation-
distance-independent and the entanglement migrates between am-
plitude and transverse phase. In this work we will explore the two-
photon entanglement by means of the longitudinal Gouy phase of
the double Gaussian approximation for the biphoton wavefunction.
We calculate the Gouy phase for this approximated biphoton wave-
function and show that it is related with the photon correlation
generated in the nonlinear crystal in a type-I SPDC process. Even
though the photon entanglement is time-independent, whereas the
Gouy phase is time dependent, these quantities become related
by the Rayleigh length. More interestingly we show that the ap-
proximated biphoton Gouy phase fits well the experimental data
published in Ref. [1].

The article is organized as follows: in section 2 we propagate
the double Gaussian biphoton wavefunction and obtain the cor-
responding Gouy phase. In section 3 we evaluate the covariance
matrix and the logarithmic negativity and show that the two-
photon entanglement is longitudinal-distance-independent. We ob-
serve that the entanglement measured by the logarithmic nega-
tivity and the Gouy phase are related by the Rayleigh length. In
section 4 we focus the double Gaussian biphoton wavefunction and
use the corresponding Gouy phase to analyze the existing experi-
mental data. In section 5 we draw our concluding remarks.

2. Propagation of biphoton wavefunction and Gouy phase

In this section we propagate a double Gaussian biphoton wave-
function using free-particle propagators. Then, we obtain a Gaus-
sian solution expressed in terms of real terms and phases. One
of the phases is the Gouy phase, which is transverse-position-
independent and is a function of the longitudinal distance of prop-
agation, the beam pump parameters, and the twin photon correla-
tion. We consider as the initial biphoton wavefunction the follow-
ing entangled state [35-37]

—(x1 —xz)z —(x1 +x2)2

W(x1,x2) = e 42 e 42 | (1)

1
VTOoQ
which is the generalized EPR state for the momentum-entangled
particles. Here, 2 and o quantify the position and momentum un-
certainties of the packet, i.e., Ax; = Ax; =+/Q2 +02 and Apy =
Apxz = (R/4)y/(1/92) + (1/02). This approximated biphoton state
is correlated only if Q # o and Q = o corresponds to a non en-
tangled state which factors as a product of two Gaussians [37].

We will work with relative coordinates r = (x; + x2)/2 and
q = (X1 — x2)/2 since these are convenient for calculations. Thus,
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the initial wavefunction that represents the entangled state can be
rewritten as

U(r,q) = e Z_Ze Q2 (2)

The state describing the biphoton free propagation can be written
as

W(r.q, 0 = f Ko 651, 0Ky (@, £ 4, 0¥ (' 4, 3)
r/yq/

where the propagation kernels of a longitudinal distance z = ct for
the two photons are given by

Ky (r.1',2) =/ L 2m(r —1)*
L2 =y 52 &P irz ’

_27n(q-— q’)z]

irz

1
Kqe(q,q,2) = —
74,9, 2) eXp[ 7

The state after a general distance z can be evaluated as

w(r z)—;ex {—[LJFLH
4= VATt w2 w_(z) P w2 () wi(2)
xexp{—i[—k—orz—k—oqz—FC(Z)“, (5)
r+ r—
where,
z 2 20+ 2
Wi(z)zﬁz[l + (—) ] ri(z)zz[] + (—) } (6)
Z0o+ z
Zo+ = k0§22, Z0- = kocr2 and ko =2m/A. (7)

Now, considering the analogy with the classical Gaussian laser
beam we can identify the biphoton wavefunction terms as: wi(z)
is the beam width, r4(z) the radius of curvature of the wave fronts
and zp+ the corresponding Rayleigh lengths. The function ¢(z) is
the biphoton Gouy phase that, after some algebraic manipulations,
is written as

4@ -
) + 2

1 Z Z0—
= —arctan|z FortZo- , (8)
2 Z0420— — 22

where ¢4 (z) = arctan(z/zp+) and ¢_(z) = arctan(z/zp—). We can
see that this phase is propagation-distance-dependent. It carries
the properties of the laser pump beam and the nonlinear crystal

¢(2)

through the parameter o =,/ %, where 1, is the laser pump
wavelength and L, the crystal length. The two-photon correlation
dependence can be measured through the parameter .

In Fig. 1 we show the plot of the biphoton Gouy phase as a
function of z. As in Ref. [39] we consider the following set of
parameters: biphoton wavelength A = 702 nm, laser pump wave-

length A = 351.1 nm and the crystal length L, = 7.0 mm. This

enables us to obtain o =,/ % =11.4pm and zo_ = kgo? =
1.2 mm. For the curve in blue we consider 2 = 50 and for the
red curve we consider Q = 100. As we can observe, the maximum
variation of the Gouy phase is 7 /2, characterizing one-dimensional
free propagation from z = —oo to z =400 with the beam waist
located at the origin z =0 at the position of the crystal. Also, the
smaller correlation produces a larger Gouy phase variation as we
can see by comparing the curves in blue and red.
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Fig. 1. Biphoton Gouy phase as a function of z. The curve in blue corresponds to
Q =50, and the curve in red corresponds to 2 = 100. (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

3. Entanglement and Gouy phase

Here we show how the two-photon entanglement is related
with the parameters o and Q and therefore with the Rayleigh
length zp+. In fact, the Rayleigh-length-dependence establishes a
connection between the Gouy phase and two-photon entangle-
ment. A good measure of entanglement for Gaussian states is the
logarithmic negativity which is calculated through the covariance
matrix. In the symplectic form the covariance matrix can be writ-
ten as [35,38]

g 0 ¢ O
0 g 0 ¢
M= c 0 h O (9)
0 ¢ 0 h
which is related to
(5] xip14pix1)
G= L2 2n
(x1p1+Dp1x1) L(p7) ’
2h h2
@ (szz;lpz)fz)
H= L
(Xap2+paxa) L2(p?) ’
2h K2
(Xﬂz(z) (X1hpz>
_ L
€= [ (x2p1)  L(p1p2) } :
ﬁZ

through the simple relations detG = g2, detH = h? and detC =
cc’. The constants h and L, which appear in the above matrices,
are inserted to make the matrix M dimensionless. For the next
calculations L can be disregarded (see [35] for further discussion
on these constants). We obtain the quantities of M in Eq. (9) as
follows

<x%):<x§):(az+szz)[(i> (i>+1}, (10)
Z0+ 20—

<mw>=w®=402—9%[<£i><£%>—1} (11)

S, 111 11
UMﬂM=ﬂ@+ﬁ} mmzﬂ@—;}um
wh( z z
(X1p2) = (x2p1) = T(E - Z:) (13)
and
(x1p1 +p1X1)  (X2p2 + p2x2)
7= 2 - 2

wh( z z

wh
- (a + Zo_7> = 7[tan(§'+) +tan(¢-)], (14)
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where ¢; and ¢_ are parts of the biphoton Gouy phase from
Eq. (8). A relation between these two quantities was obtained
previously in the context of a single particle [23]. Here, we are
showing that the biphoton Gouy phase is part of the logarithmic
negativity (entanglement) through the position momentum covari-
ance.

A strong necessary condition for an entanglement quantifier is
that it has to be zero if the state is separable. The Peres-Horodecki
criterion says that if a state is separable, the transpose partial ma-
trix of the state has a non-negative spectrum. In that context, the
Gaussian state is separable if and only if the minimum value of
the symplectic spectrum of M2 is greater than 1/2 (the lowest
value allowed by the uncertainty principle). Thus, a good measure
of entanglement for all Gaussian states is the logarithmic negativ-
ity [35,38]

En = max{0, —10g(2vmin)}, (15)

where, vnin is the lowest symplectic eigenvalue of M2, The equa-
tion determining the symplectic eigenvalues is v* + (g% + ¢% —
2cc’)v? + det(M) = 0, with solutions +ivy, o = 1,2 where v,
is the symplectic spectrum. Therefore, vi = (2/20) and v, =
(0/2%2). Due the uncertainty principle, vy, < 1/2, so that the log-
arithmic negativity is given by

log( /iﬁ—;) if o4 <zo_;

Eny = (16)
log( /ig—j) otherwise,

which is propagation-distance-independent. We observe in Eq. (16)
that the entanglement measured by the logarithmic negativity can
be modified by changing the Rayleigh length zp, since zo_ is
fixed by the laser pump properties. On the other hand, the double
Gaussian biphoton wavefunction approximation shows no entan-
glement for zp; = zp—. In the analysis of Ref. [34], which uses the
Schmidt number, the entanglement is Rayleigh-length-dependent
and the case zp; = zp— implies no entanglement within the spa-
tial phase of entangled photon pairs. In [34] the authors compute
the Schmidt number through their Eq. (6) for the double Gaus-
sian wave function, which, using our wave function Eq. (5), can be
written as

2 2
w w_ 1 1
Kac :(_+ + —) +k3wiw? (— - —)
Wy r— ry

w_
()
Z0+ Z0—

where wi and ry are given by Eq. (6). From Eqgs. (16) and (17)
we obtain Ey = log(v/Kqc) for zo4/zo— < 1 and zp1/zo— > 1. In
Fig. 2 we compare the logarithmic negativity with the logarithm
of the root square of the Schmidt number. In Fig. 2a we plot the
logarithmic negativity and the logarithm of the root square of the
Schmidt number as a function of zp;/zo— <1 and in Fig. 2b we
plot these quantities for zpy/zp— > 1. We observe an agreement of

these quantities in the limits zpy/zo— < 1 and zg4/zo— > 1.

As the Gouy phase is a function of the Rayleigh length zo; and
zp—, one can measure this longitudinal phase as a function of the
entanglement by changing the Rayleigh length zp; and fixing the
parameters z and zo— - see Eq. (8). To observe the behavior of
logarithmic negativity and the Gouy phase as a function of zgpy,
we plot these quantities in Fig. 3. We consider zp_ = 1.2 mm and
the longitudinal position z =20 mm. In Fig. 3a we plot the loga-
rithmic negativity and in Fig. 3b the Gouy phase as a function of

(17)
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Fig. 2. (a) Logarithmic negativity and the logarithm of the root square of the Schmidt number as a function of zp;/zp— <1 and (b) the same quantities for zoy/zo— > 1.

These quantities agree in the limits zo4/zo— < 1 and zo4/zo— > 1.

41 (@)
3 B
EN 2
l 4
0
0.2 0.4 0.6 0.8 1
Zo +
207
1.6 ©
1.2
Ey
0.8 1
0.4
0- T . .
5 10 15 20
Zo+
207

-0.1 1

(b)
~0.12
~0.14
¢ (rad)
016 |
~0.18 |
0 02 04 06 08 1
Zo+
207
(d)
031
041
¢ (rad) _gs |
0.6
0.7
5 10 15 20
Zo+
Zo_

Fig. 3. (a) Logarithmic negativity and (b) Biphoton Gouy phase for the Rayleigh range zo,/zo— <1, (c) Logarithmic negativity and (d) Biphoton Gouy phase for the Rayleigh
range zo+/zo— > 1, with zo— = 1.2 mm and z =20 mm. The logarithmic negativity varies appreciably in both intervals whereas the Gouy phase variation is appreciable only

for the interval zo4/zp— > 1 in which zpy tends to z.

Zo+/20— < 1. In Fig. 3c we plot the logarithmic negativity and in
Fig. 3d the Gouy phase as a function of zg4 /zp— > 1.

We observe that the logarithmic negativity suffers a large vari-
ation for zp4/zp— <1 whereas the Gouy phase does not vary sig-
nificantly. However, for zp;/zo— > 1 the Gouy phase changes ap-
preciably. It is known that the Gouy phase varies the most within
the Rayleigh length. Therefore, the Gouy phase variation as a func-
tion of zg; in the position z =20 mm will be small if z > zo+
(which occurs for zp4 < 1.2 mm, i.e., for zg4/zo— < 1) and appre-
ciable if zp4 is of the order of z (which occurs for zp4 > 1.2 mm,
i.e., for zo4/zo— > 1). In the next section we will consider the two-
dimensional propagation through a thin lens which enables us to
adjust existing experimental data for the biphoton Gouy phase as
a function of the shifted Rayleigh length.

4. Agreement with existing experimental data
In Ref. [1] the authors showed for the first time the relation be-

tween the Gouy phase and the quantum correlations of the twin
photons generated by parametric down conversion. Then, they

measured the coincidence count rates to experimentally obtain the
Gouy phase as a function of the position of the beam waist. In this
section we compare the biphoton Gouy phase with the experimen-
tal data obtained in Ref. [1]. In that experiment they considered as
the pump a continuous wave (CW) argon-ion laser of wavelength
Ap =351 mm and power P =60 mW, which was focused by a lens
of focal distance f =900 mm to the beam radius wj, =178 pm
in a BBO crystal of type I, which produces signal and idler pho-
ton beams with the same wavelength A = 702 nm. Also, they used
lenses of focal distance f =200 mm in the paths of the signal
and idler beams. Therefore, by changing the position of the lens
in the signal path (which corresponds to changing the position of
its beam waist) while scanning with a two-dimensional hologram
the idler path they were able to measure the coincidence count-
ing rates in different positions of the signal beam waist. Then, by
observing that the position of the maximum and minimum coinci-
dences becomes rotated by a phase that includes the Gouy phase
difference of the modes LGgp and LGo-_1, they could relate the
quantum correlation with the Gouy phase.
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In order to analyze the experimental data of Ref. [1] we need to
focus the biphoton wavefunction. Then, by considering a thin lens
approximation, and focal length f, the focused biphoton wavefunc-
tion is given by

v(r,q,z,2)

= / Kr(r,riz+2,2Ke(q, 952+ 2,2 f (', a) v (. 4, 2),
r/’q/
(18)
where the propagators K, and K; are given by Eq. (4), the state

¥(r',q',z) is written as Eq. (5) and the transmittance of a thin
lens is given by [40,41]

/o IN _K /2 12
f(r,q)—exp[ 2f(r +q )]- (19)

After some manipulations, we can write

V(r,q,z,7)= 2 ex r ex 7
.2.2)= [ ppexn |~ Jexp |~ 5 o0

ik ik
X exp ﬁrz—i—l—oqz—i{(z,z’) ,
CR+ CR_
where
2 2
1 2(1 1 1
NG
B+(Z»Z = 5 ) (21)
(2_n> 1
rZ (WZ+
2 2
1 2(1 1 1
B%(z,2)) = 3 , (22)
w2 (1
() ()
2 2
1 2(1 1 1
<W_«2+> +k0(7+m—ﬁ)
Ri(z,Z) = - — — (23)
z’w%r(l—‘_§(7+a))_W
g 1 1 1)?
1 2
()
R-Gz.2)= c 1 (z z x’ (24)
ar (= (G+3)) -5
and
z / 1 1
1 77 tZ )zt 2=
C(Z,Z/)zzarctan{(] Z/zlf )(ZZ‘” 202)}‘ (25)
- zo+zo,(1fz//2f +Z/)

Now, the parameters of the wavefunction are dependent on the
focal distance f. By the analogy with the focused classical Gaus-
sian beam, B (z,Zz') is the corresponding beam width, Ry (z,Z2)
is the corresponding radius of curvature of the wavefronts and
{(z,7)) is the corresponding Gouy phase. In the limit f — oo we
recover the parameters of the biphoton wavefunction in Eq. (5)
for the propagation z + z'. In Fig. 4 we plot the Gouy phase for
the focused biphoton wavefunction Eq. (25) as a function of the
position after the lens z'. We consider the following parameters
Zo+ = 2zo— = 1.2 mm, f =3.0mm and z = 7.0 mm. As we can
observe the phase is null for z = 2f = 6.0 mm. Again the max-
imum Gouy phase variation is 7 /2 as we have considered the
one-dimensional focalization.
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Fig. 4. Gouy phase for the focused biphoton wavefunction Eq. (25) as a function of
the position after the lens z'.
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Fig. 5. Gouy phase as a function of zp,. The squares represent the experimental
data from [1] and the solid line represents the fitting result Eq. (26).

Now, in order to use the biphoton Gouy phase to fit the ex-
perimental data of Ref. [1] we need to rewrite Eq. (25) to include
the two-dimensional propagation through a thin lens which trans-
forms it to

(17;/2]‘ + Z/)((z;);,zf) + zo%)

_ 1 Y4 / 2
(20, —2f)20- (172’/2f +Z)

¢(zoy) = ¢o + arctan . (26)

where o is a reference angle and z; an adjust parameter. In Fig. 5
we show the Gouy phase as a function of the Rayleigh range zp4+
shifted by an offset distance z,srs:. The negative values appear-
ing for zo+ in the horizontal axis is a consequence of the shift by
Zoffset- The squares represent the experimental data from [1] and
the solid line represents the fitting result by Eq. (26). As discussed
before the two-photon entanglement is included in zg. In order to
adjust the experimental data of Fig. 4 of Ref. [1] with Eq. (26) we
used the Maple software which produces the following values of
parameters: biphoton wavelength A = 702 nm, laser pump wave-
length A, = 351.1 nm and the crystal length L, = 7.0 mm. This

enables us to obtain o =/ Lg% =11.4 pm, zo— =koo? =1.2 mm,
f =200 mm, z =500 mm, zZ = 1465.3 mm, ¢y = 1.68 rad and
zg =7.15 mm. Because of some effect of the experimental arrange-
ment, such as that produced by the hologram, we need to include
a parameter zy in Eq. (26) in order to adjust the experimental data.
The reasonable agreement between theory and experimental data
on the Gouy phase indicates the double Gaussian wavefunction is a
valid approximate description of two correlated photons generated
by type-1 SPDC.

In Ref. [1] the Gouy phase was obtained by changing the po-
sition of the beam width zps. Here, we adjust the Gouy phase by
changing the Rayleigh length zo instead of zps. Now, we will show
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Fig. 6. Beam waist position 20+s as function of the Rayleigh range zo .
that these two quantities are related. The beam waist position za's
after a thin lens can be obtained from Eq. (21) and written as
2ckiwdri(cry —2f)f

+
“os = ; 27
0 k2wl (cry — 2f)2 +4f2c2r2 (27)

where w4 and ry are given by Eq. (6), ko is the wavenumber
Eq. (7), c is the speed of light and f is the focal length. This quan-
tity is zo4+-dependent through the parameters w, and r4. In order
to observe the behavior of the beam waist position zot as a func-
tion of the Rayleigh length zo, we plot it in Fig. 6. This plot shows
that the beam waist position varies with the Rayleigh length. We
consider the same parameters of Fig. 5. Therefore, this relation is
the reason why one can also plot the experimental data of Ref. [1]
as a function of the Rayleigh length. In addition, although the au-
thors used a superposition of LG modes to observe the Gouy phase
instead of a Gaussian mode, they observed that the superposition
is converted into a Gaussian mode when the hologram is shifted
and scanned to change the phase between LG modes. As we can
see the expression found in Eq. (8) of Ref. [1] is characteristic of
Gouy phase for Gaussian beams.

5. Concluding remarks

We considered the time (or longitudinal distance) propagation
of the approximated double Gaussian wavefunction describing cor-
related photons generated in a nonlinear crystal. We considered
photons generated in a type I-SPDC process, in which the twin
photons have the same wavelength. We found that the evolved
wavefunction is characterized by parameters similar to that of a
classical Gaussian beam, specially by a Gouy phase term. Next, we
studied the twin photon entanglement by calculating the covari-
ance matrix and the logarithmic negativity for the double Gaussian
wavefunction at the propagation distance. We observed that the
Gouy is part of the elements of the covariance matrix through
the position momentum covariance that develop with the prop-
agation distance. Then, we showed that the logarithmic negativ-
ity is a function of the Rayleigh length and the biphoton Gouy
phase can be obtained by changing the entanglement through the
Rayleigh length. We also compare the logarithmic negativity with
the Schmidt number and found that both entanglement quantifiers
are Rayleigh-length-dependent such that for specific limits the first
entanglement quantifier is the logarithm of the root square of the
second quantifier. Furthermore, we considered an experiment per-
formed with entangled photons generated in a type-I SPDC pro-
cess, in which the Gouy phase was measured as a function of the
signal beam waist position. By knowing that the beam waist posi-
tion and the Rayleigh range are related when a beam is focused by
a lens, we focused the double Gaussian biphoton wavefunction by
a thin lens and adjusted the experimental data as a function of the
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Rayleigh range. We obtained a reasonable agreement between the
biphoton Gouy phase and the experimental data. This agreement
between theory and experiment indicates that the Gouy phase of
the approximated double Gaussian biphoton wavefunction can be
used as good approximation in exploring quantum correlations of
twin photons.

Our results show that the biphoton Gouy phase and the en-
tanglement are Rayleigh length dependents enabling us to connect
these two quantities. The Rayleigh length is focal spot dependent
allowing to interpret both quantities in the same physical origin,
i.e,, the transverse spatial confinement. Also, it is known that these
quantities have geometrical features which is the reason why they
are spatial confinement dependent [42]. Therefore, based in the
spatial confinement by slits, we are going to propose in a future
paper a way to measure the biphoton Gouy phase to obtain the
corresponding portion of entanglement correlations.
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