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ABSTRACT. Let M be a compact n-dimensional Riemanian manifold, End(M)
the set of the endomorphisms of M with the usual C® topology and ¢ : M — R
continuous. We prove, extending the main result of [2], that there exists a
dense subset of A of End(M) such that, if f € A, there exists a f invariant
measure fmax supported on a periodic orbit that maximizes the integral of ¢
among all f invariant Borel probability measures.

1. Introduction. A relatively new field of study, ergodic optimization has dis-
played under a new point of view several distinct problems in dynamical systems,
and enjoyed the benefits of allying techniques from optimization theory and er-
godic theory to address them. Its usual setup is a dynamical system f : X — X,
where X is a topological space, and a potential function ¢ : X — R, and the
prototypical problem in the field is to determine, among all f invariant Borel prob-
ability measures M, (f), if there exists measures that maximize the functional
Py : Mino(f) = R, Py(n) = [ ¢dp and to further characterize these maximizing
measures in term of their support.

Several problems can be put under this context, like finding Lyapunov exponents,
action minimizing solutions to Lagrangian systems and the zero temperature limits
of Gibbs equilibrium states in thermodynamical formalism. Some of the first ideas of
the field appeared in the early work [8] and a very good introduction to the subject
is [10], where the fundamental results of the theory are displayed alongside the main
lines of research. One of these research lines seeks to determine, when X is compact
and ¢ is continuous, what are the typical support of the maximizing measures (note
that the existence of at least one maximizing measure is assured in this case by the
compactness of the set of invariant probability measures in the weak-* topology).
This is inspired by the classical conjecture of Mané that, generically, the measures
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that minimize the Lagrangian action in Lagrangian flows are supported in periodic
orbits.

There are some different conceptual approaches to this question. First, one
may be interested in a specific dynamical property (as, for instance, Lyapunov
exponents or rotation numbers) and so the potential is determined by the choice of
the dynamical system. Examples of this are [11, 9, 7, 6]. Another approach, followed
for instance in [5, 12, 13], involves fixing a dynamical system f, usually with some
specific dynamical condition like hiperbolicity or expansiveness, and varying the
potential in a suitable space.

In this work we follow yet a different line, searching to understand how the
maximizing measures behave when the potential is fixed, but the dynamics are
allowed to change in a given space. In [3] it is shown that, if M is a compact
Riemannian manifold of dimension n > 2, then for any continuous ¢ : M — R there
exists a dense set of homeomorphisms of M with a maximizing measure supported
on aperiodic orbit, but in [1] it is shown that this set is meager. And in [2] it is shown
that for a dense set of endomorphisms of the circle, there exists a ¢ maximizing
measure supported on a periodic orbit. In this note we extend this last result,
showing that

Theorem 1.1. Let M be a compact Riemannian manifold and ¢g : M — R con-
tinuous. Then there exists a dense subset A of End(M ) such that, for every f € A
there exists a ¢g mazrimizing measure supported on a periodic orbit.

Where End(M) is the set of continuous surjections of M endowed with the C°
metric, d(fa g) = SUPgeMm d(f(.l?),g(.l?))

The strategy of the proof, similar to the one used in [2], is to make a series of
local perturbations in order to obtain a periodic source with large ¢¢ average while
controlling the Birkhoff averages of the return map to the perturbation support.
The proof of [2] relied on the local ordered structure of the domain, particularly in
the definition of the support of the perturbations and in controlling the Birkhoff
averages, two key points that were not adaptable to higher dimensions. In here we
dealt with these difficulties by supporting perturbations in convex sets and analyzing
the maximal Birkhoff sums on homothetic copies of the perturbation support, and
by controlling the radial rate of escape from the periodic source.

The paper is organized as follows: In the next section we present some pre-
liminary lemmas and notations, and in section 3 prove the theorem. Since the
argument is perturbative, for a given endomorphism we analyze several possibili-
ties, each dealt with in a different subsection, and show for each possibility how to
construct a perturbed endomorphism close to f with the desired property.

2. Preliminaries. We start with some notations and preliminary results. Let M
be a compact Riemannian manifold and End(M) the set of endomorphisms of M,
its continuous surjections. We endow End(M) with its usual topology of uniform
convergence and define the metric d(f, ) = sup e (d(f(2), 9(x)), f, g € End(M).

Given f € End(M) we denote by My, (f) the set of f invariant Borel probability
measures, which is non-empty, convex and also compact in the weak-* topology. The
subset of ergodic measures of My, (f) is denoted by M, (f).

Given ¢ : M — R continuous and f € End(M), we define Py : M, (f) —
R, Py(p) = [ ¢du. As the functional P, is affine and My, (f) is a convex com-
pact set, Py must have a maximum point at an extremal point of M, (f). Since
the extremal points of M, are precisely the ergodic measures, there exists some
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n—1
Hmax € Merg(f) that maximizes P;,. We denote S, f(z) := Z &(f(x)) to the n
i=0
Birkhoff sum of ¢.
The following lemma is a direct consequence of Atkinson’s Lemma (see [4])

Lemma 2.1. Let ¢ : M — R be a continuous function, f €End(M) and p €
Merg(f), such that,

[ o@dutz) =
Then for p-almost all x € M, there exist ny — oo such that,
™ (x) =z and Sy, f(x) = 0.
We begin with the following simple result

Lemma 2.2. There exists a dense subset of End(M ) such that, for all x € M and
all f in this subset, the set {y € M : f(y) = x} is finite.

Proof. Let fy be an endomorphism, and let € > 0. We will find some f with the
stated property e close to fy. First, let 6 > 0 be such that, for all 1,25 € M, if
d(x1,22) < 0, then d(f(x1), f(z2)) < e/2K, where K is the ratio of the radii of the
circunscribed and inscribed spheres in the n dimensional regular simplex.

Since every n-dimensional differential manifold admits a triangulation and M is
compact, we can assume that M has a triangulation &7 with finitely many triangles,
such that each simplex has diameter less then ¢ and let &5 be a subtriangulation
of &1 such that, for each A; € & there exists some Aji € &9 which is contained in
the interior of A;.

Now we define f: M — M, in a way that f is a linear bijection in each triangle
of S5 and such that, in local coordinates, f (AJ) is a simplex that contains fo(A;)
and is contained in a sphere or radius €/2. It should be immediate that f is a
continuous surjection, since M = {J;c; fo(A:) C U, e, f(A;,) C f(M). Moreover if
z € Aj for some A € S then d(fo(z), f()) < £/2, this implies d(fo, f) < &.

As f is linear in each simplex of Iy, the set {y € Aj NM : f(y) = z} is either
empty or unitary, and therefore {y € M : f3(y) = z} has cardinality smaller than
or equal to the number of simplexes in s O

The structure of proof of Theorem 1.1 is the following. Let ¢¢ : M — R be fixed.
We start with an endomorphism f which we assume that, for every x € M, the
pre-image of z is finite and we construct successive small perturbations to produce
an endomorphism f which is € close to f and such that f has a ¢9 maximizing
measure supported on a periodic orbit.

Let fimax € Merg(f) be a ¢ maximizing measure and let ¢ = ¢o — [ ¢dpimax,
so that [ @¢dumax = 0, and we remark that, for any endomorphism g, u is a ¢
maximizing measure if and only if it is a ¢ maximizing measure.

Lemma 2.3. For all x € supp(fimax) and € > 0 there exist y € B.(z) and n > 0
with f*(y) € Be(x) and S, f(y) > 0.

Proof. Let © € supp(fmax).- By 2.1, since pmar(Be(x)) > 0, there exist z; €
Supp(fmax) and ng, such that f(x1) — x; as k — oo, and such that S,, f(z1) — 0.
Let ky > 0 be such that f™1(z;) € Be(z) and let a1 = Sy, f(v1). If a; > 0
we set y = x1,n = ng, and we are done. If a3 < 0, let ng, > ng, be such
that f"*2(z1) € Be(r) and such that S,, f(r1) > ai. Then, as Sy, f(r1) =
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Snk-l f(xl) + S(nkz—nkl)f(fnkl (351))7 we set y = f"* (‘Tl) and n = Ny — Ny and we
are done. 0

The next proposition is a consequence of the M ¢ compactness.

Proposition 1. For every constant a > 0, there exist a positive integer mo = mg(a)
such that, for all m > mgy and x € M

Proof. This follows from

1
limsupmax —S,, f(x) =  sup /(bdu =0,
n—oo @EM T HEMiny (f)

proposition 2.1 of [10] O

3. Contruction of the perturbed endomorphism. Fix z € supp(p) and let
€ > 0. There are two possibilities,
I For all y € B.(x) and all n > 0, if f"(y) € B:(x) then S, f(y) <0
IT There exists zg € Be () and ng > 0 such that f™(x¢) € B.(x) and Sy, f(x0) >
0.

3.1. Case I. Let us show first how to construct f in the case I : Denote, for
simplicity, B = B.(x). We assume that for all y € B and all n > 0, if f"(y) € B
then S, f(y) < 0. From Lemma 2.3 there exists zyp € B and ny > 0 such that
Snof(x0) >0, and so Sy, f(z0) = 0. Let 0 < ny < ng be the first return of z to B.
Note that, as

0= Sy, f(w0) = S, f(x0) + Sno—ny [(f"* (x0)) < Sny f(20),

where the inequality comes from assuming that we are in case I, then S, f(z¢) >0
and, again from the assumption, Sy, f(x¢) = 0.

Let T': M — M be a homeomorphism such that T'(f"*(zo)) = zo, and such that
T is the identity outside of B, let f T'o f. Note that z is a ny periodic point for
f Let 11 be the measure uniformly distributed on the points of the f orbit of xg.

Lemma 3.1. u; is a ¢ mazimizing measure for f

Proof. Clearly [ ¢du; = n%Smf(xo) = H%Smf(xo) = 0. Furthermore, if z € M is
such that there exists n, such that, if n > n, then f(z) §§ B, then

limsuplSnf( )—hmbup S WF O (2 ))—hmsup S f(f"z( ) <0

n—oo M n—o0 n—00
where the last inequality comes from the fact that Py(u) < 0 for all g € M, (f).

On the other hand, if the return times of z to B are 0 < tg < t1 < ta..... with
tr — oo, then

L) = & [5u7+ 308 FF ) | < L) 0

j=1

15, f(2) < [ ¢dp for all z € M and we have the result O

so that lim,, o o
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3.2. Case II. Assume now we are in case II, and let ag = nioSnOf(xo) > 0.
Denote by Bc[z] the closed ball with center z and radius e.
Let mo = mo(ap) > no > 0 be the integer from Proposition (1), and for each
k€ {1,2,...,mo} consider the compact sets

Ky, = Belzo] N f~*(Belo)).

For each k, let ¢, = sup,ck, %Skf(z) and let ¢ = sup{cy,...,cm, - Note that, by
the choice of g, ¢p, > ag. Furthermore, by Proposition (1), if n > mg then for all
z €M, 1S,f(z) < %. This, and the choice of ¢ implies that, for each z € Be[x]
and n > 0 such that f"(z) € Be[zg], we have 15, f(2) <.

We consider 2 distinct possibilities:

(a) There exists ¢ € B[], ny > 0 such that nianqf(q) = ¢ and f"(q) lies in
the open ball B.(xq)

(b) For all z € B.[zg],n > 0if 25, f(2) = € and f"(z) € Be[xo], then f"(2) €
835 [l‘o]

3.2.1. Case (a). If (a) happens then we can define f: Tof, where T is the identity
outside of B.[zg] and T is an endomorphism of B.[zg] satisfying T(f"(q)) = q.

The next lemma show us that the finvariant measure supported on the periodic
orbit of ¢ is a ¢-maximizing measure.

Lemma 3.2. For any z € M, liminf, %Snf(z) < nianq flg)=c¢

Proof. Let z € M and first assume that z is such that there exists some 7 such that
fi(2) ¢ B.[wo] whenever i > 7, then

lim inf %Snf(z) = lim inf %Snf(fﬁ(z)) = lim inf %Snf(f"(z)) <0

n— oo n—oo n—oo

where the second equality follows from the fact that f(y) = f(y) whenever y ¢
B:[zp], and the inequality follows since the maximal ¢ average for f is 0, and from
Sup, ¢y Hmsup,,_, o %Snf(fﬁ(z)) < SUD ey (f) J Gdp As nianqf(q) > 0, we are
done in this case.

Now assume that there exists an increasing sequence of times Np — oo,k > 1
such that fi(z) belongs to B:|zo] if and only if i = Ny for some integer k. Then it
holds that

1 N, _ 1 N
N ) = i F )
and
1 B 1 Ni—1 - Nj—1 -
mfE = & ;0 $o fi(z)+ ---+Z_:%_l¢ofl<z>
N; — N, ~
= Nik (Nj — NZSNrNof(Z) o

N — Np—1

+mSNkak_1J?<J’FNFI (Z)))
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k
- (S sy
1 k
< NiIf : (Ni_NZ'71)E:E.

Where the inequality (1) follows from Sy f(z) = Sk f(2), as fi(z) ¢ Belag), 0 < i <
k—1. O

The previous lemma shows that, if z is a typical point of an fergodic invariant
measure 4, then lim,, +.5, f(2) = [ ¢dp < ianf(q) and we are done.

3.2.2. Case (b). There exists some 21 € B.[rg] and n,, > 0 such that f™=1(z1) €
0Bc[zo], and such that %anf(zl) =¢. Let us call gg = f™=1(21). Since each

z1 .
point in M has finitely many preimages, the set P = (U~ f~%(q0)) N Be[zo] is
finite, as is

- 1
P ={z¢€ P|3n, > 0such that f"*(z) = qo and — S, f(z) =¢}.
n.

Let ¢ € P be a point which is closest to gy and let nq be such that f™(q) = ¢o and
nianq (¢) = ¢. Finally, let E be some closed convex set contained in B.[zg] such
that, if d(z1,22) > d(q,qo) and z1, 20 € E, then {21, 22} = {q,qo}.

Proposition 2. There exist § > 0 such that, if z is not in the connected component
of
£~ (Bslao)) () (Bslao] U E)

that contains q, then

1 _

55jf<z> <
for all j € N*.
Proof. By the choice of E, PN E = {q} and so for any z # ¢ in PN E and
n, such that f™=(z) = qo, iSnzf(z) is strictly smaller than ¢. Thus, by the

continuity of f and ¢, there exist d;(z) > 0 such that if d(z,y) < 01(2) we have
18:f(y) < nianqf(q). Moreover, for each d1(z) there exist d2(z) such that the

connected component of f~%(Bs,(,)(qo)) which contain z is contained in By, (.)(z).
Finally there exists d3 > 0 such that, if f~¢(Bs,(qo)) intersects E then there is some
point of P in this component. By taking § = min,cp{d2(z),d3} we are done. O

Denote the set EU Bj|qo] by I, we will construct a new endomorphism ]? =Tof,
where T3\ 7(2) = 2 , and such that there exist a f-periodic point in I whose average

is strictly positive.
Let

D=1InN <U fi(1)> :
i=1
Over D we define the following functions:
Nyet(z) = inf{j € N*: f/(z) € I}
f2($> — va‘et(x)(m)



MAXIMIZING MEASURES SUPPORTED ON A PERIODIC ORBIT 3321

1 Nret(w)_l

be) = 2;0 o(f'(x))

By the Proposition 2, let W, be the connected component of f *(Bs[qo]) which
contains ¢, if z € D and 9(z) > 9(q), then z € Wy. Denote by zpyax the point in
Wp that maximizes ¥(z). Choose a € Wy sufficiently close to zpax such that the
inequality

4mo[t(Zmax) — ()] < [¢(@) — ¥(q)] (2)

is true, and such that fa(a) € int(Bs[qo])-

Now we consider L to be the line segment joining o and fao(«), Th : M — M an
homeomorphism mapping fa(a) to «, that is, T1(f2(«)) = a and such that T; is
the identity outside V' (L), where

V(L) ={z€ M:d(z,L) <65},

and d3 > 0, chosen such that V(L) is contained in the interior of I.
In figure (1), the shadow part is the neighborhood of the line segment L.

F1GURE 1. Neighborhood of L.

We define now fby the composition f = T; o f. Note that o is a ng periodic
point for f and that the ¢ average over the orbit of a is ¢(a) > LS, f(q) > 0.

Yet the dynamics defined by f may have some new invariant measures whose ¢
average is strictly larger than ¢ («). Still, it should be clear that, as in the proof of
Lemma 3.2 if z is such that the forbit of z returns to D finitely many times, then
limsup,,_, ., +5,f(z) <0, and if z € D returns infinitely-many times by f to the
set I, but its orbit does not intersect Wy (or just intersects it finitely many times),

then if nq,ns, ... are the return times to D, we have, by 2:
1 ’I’kal -
lim — ' < =C.
Jim o ;) o(f*(x)) <¥(g) =7 (3)

Now we define W, = Wo () f5 " (V(L)). If z € Wy \ W, then fa(2) € Bs[qo] and
we remark that Bj|go] is disjoint from Wy. So, if there is some future time ny > n,
such that f™(z) € Wy, we can write ny = ng + k with f"(2) = f2(2) € Bs[qo] and
fratk(2) € Wy. The following estimate will be useful

. _ ng(e) + R (2)
— 3" ()~ ¥la) = R

n
1o

—(a)
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ng¥(2max) + k¢ (q)

< ng + —¥(a)
nqw(zmax) + T/’(Q)
< P — ()
o () = wﬁ? 1— () —¥(a) _ 0. (4)

where the last inequality follows from (2).

3.3. The last pertubation. In order to finish the demonstration of the Theorem
(1.1) we need to control the averages of those elements which have infinitely many
returns on W,. In this section we construct a new pertubation 75 such that o will
be a source for the new endomorphism 75 o ]?, and W, is contained in its basin of
repulsion.

Let D=1nN (Ufil fv_l(I)) be the set of points who return to I by the function

f- Over this set we define the following functions:

Noer(w) = inf{j €N": f(z) € I}
folw) = JNe@(g)
b@) = =Sy @)

N,et(ﬂj‘) ret
The following propositions are immediate from the definitions:
) D= D N
b) Jymg(x) = Nyet(x) for all z € D;
c) ¢¥(z) =¢(x) for all € D;
d) falx) =Tio fo(x) and if = ¢ f; 1 (V(L)), then fo(z) = fo().
Let ¥max : I — R be the following function:
Ymax(2) = max  P(y).
YEB(a,2) ]
Note that ¢¥max(@) = P(a), P(z) < Pmax(z), for all z € I and if d(a, z1) < d(a, 22)
then Ymax(21) < Ymax(22)-

Define the function P : R — R:
P(s) = sup 1(z) — ().

z€Bs(a)

This function is continuous non decreasing with P(0) = 0, moreover, given z with
d(z,) = s, then P(s) = thmax(2) — ¥(a).

Let Ry, Rs, 0 < Ry < Ry be such that W, C By, (o) C Bg,(a) and Bg,(a) C E
as shown in figure (2):

The perturbation Ty differs from the identity only at Bgr,(«). Define the set
As = {z € Br,(a) : s < d(a,z) < Ry} for all 0 < s < Ry and we define the
function

Q(s) = inf d(f2(2),q).

zEA,

Q(s) is a non-decreasing continuous function. Since for all z € M, f{l(z) is a
finite set, @ has only one pre-image by fs in Bpg, (). This implies Q(0) = 0, and if
s> 0 then Q(s) > 0.
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BR(IEI,)

FIGURE 2. Perturbation region

Given sg = Ry, we define two sequences s; and r; by:
P(s;) = %P(Rl) and r; = min{Q(s;), s; }.
Now we define the function A(z) by the rule: If riy; < d(z,a) < 1 < R; then
sk < A2)d(z, ) < sg—1.

)d(ar,a)—rk+1

Sk + (Sp—1 — Sk P—

d(z, a)

One such function can be A(z) =

If d(z,c) > Ry then A\(z) = 1.
Finally counsider f = Tyo f, where T5 on Bg, () is the identity, and T5 on Bgi(«)
is defined by

To(2) = M2)(z — a) + a.
Note the function 73 is a continuous function and a radial expansion with variable
speed A(z). Define fa(z) = Ty o fa(z2).
Lemma 3.3. If z € W, with d(f2(z),a) < si, then
d(z,a) < s41.
Proof. If d(z,a) > spy1 then d(fa(2),a) > rpy1 this implies
d(f2(2), @) = dA(f2(2))(fa(2) — @) + @, @) = A(fa(2))d(fa(2), @) > s,

we can conclude, if d(fo(2), @) < sg, then d(z, o) < spi1. O

Proposition 3. If z, f2(2),..., fN(z) € Wa, then d(z,0) < sy.

Proof. Let us prove the proposition by induction over N. For N = 0 we have
d(z,a) < Ry therefore d(z,a) < sg, the induction hypothesis is that we assume
true the assertion for k = N — 1.

For k= N,ify = fg(z) and as vy, fg(y), ceey A2Nfl(y) € W, then by the induction
hypothesis:

d(y,a) < sy—1 = d(f2(z),a) < sy—1 by lemma (3.3) d(z,a) < sy.
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Lemma 3.4. If z, f2(2),..., fE(2) € Wa, then Nyer(fi(2)) = Nyer(q) for all i =
.,k and

1 s 1

o SkN, () (2) S U(@) + - (Y(Tmax) — (@)

7et( ) E
Proof. If z, f2(2), ..., f¥(z) € Wa, then Nyei(fi(2)) = Nypet(q) for all i = 1,... k.
Note that
1 ) k—1
mSkNmt (q)f(Z) - ret lz:; N’fet ))
< < Zwmax (f3(2)) and as P(d(z,@)) = tmax(2) — ()
= N
< Y)Y PU(i(:),0)
=0

By the proposition (3) d(fi(z),®) < sk_;, therefore

P(A(f}(=),0)) < Plss—i) = 5

moreover, P(R1) < ¥(zmaz) — ¥ (). This way we can conclude:
k-1

P(Ry),

£ P) ) < 2(;+251+...+;>P(Rl)

1

%P(Rl) < ('(,Z)(zmax) - 1/)(04)) s

and we are done. O

IN
El i

As the ¢ integral over the measure equidistributed over the f orbit of « is P(a),
the final step in the proof of Theorem 1.1 is

Proposition 4. For all z € M, lim,,_, %Snf(z) < Y(a).

Proof. First, note that, if the f orbit of z does visit Wy infinitely many times, then
3 and the same argument applied in lemmas 3.1 and 3.2 show the result.

Second, if the f orbit of z visits Wy infinitely many times, but only visits W, a
finite number of times, then using (4) and again using the reasoning in lemmas 3.1
and 3.2 we have the result.

Now assume z € W, returns to W, infinitely many times, and let n; the sequence
of times such that fm(z) = (Tz o )" (x) € I, where ng = 0 and n;41 = n; +
Nyet(f™(2)). Consider the following subsequences of (ny)ren:

e aj, where a; = 0 and a;41 is the smallest integer larger than a; such that

freit(x) is in Wy, but f"*+171(x) is not.

o b;, where b; is the smallest integer larger than a; such that f™—1(z) is in W,

but f™(x) is not.

We have that:

ap—1

S f1) = Y NP @) (@) = 5)

el Nar 155
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k—1 bj—l aj41— 1
LSS Nl @t z Noet (™ @) (@) | .
U j=1 \l=a,

furthermore if a; < ¢ < b; — 1 then f” (x) € Wy and if b; < i < aj4q1 — 1 then
fri (z) ¢ Wy, for all x € W, this way:

aj41—1
Yo Neal M (@)9(f" (@) < (R, — o)W (a), (6)
For the other term in expression (6) we have:
bi—1
D Neael S (@) (@(f™ (2)) = v(@)) (7)
l=a;
bi—1
= Y Nl @ (@) — (b — a3) Nreal@)b(0)
l=a;
< (b] - aj)Nret<Q) (Wa) + bj — a; [w(xmax) ¢(a)]> (b - a])Nret(Q)lp(O‘)
= Nret(q)(qp(xmax) - w(a)) S ’(/}(04> ;w<Q)
which holds by lemma (3.4) and by (2) since N,¢t(q) < mg. Then
bj—1
> Nl @) < DD gy ). @
l=a;
Replacing (6) and (8) in (6) we have:
k—1
X R

by the manner « was chosen we have ¥ (a) > ¥(q), so

k—1

1 1 1
Z w(a) nb]’ - naj —= |+ ¢(Q) naj+1 - nbj + =
Na, 5 2 2
1 = n
< 3 () (a1 — ) = (@) — 225 (0) = (o)
ag j=1 ag
concluding the proof of the proposition and the theorem O
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