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Abstract.  We have studied the critical properties of the contact process 
on a square lattice with quenched site dilution by Monte Carlo simulations. 
This was achieved by generating in advance the percolating cluster, through 
the use of an appropriate epidemic model, and then by the simulation of the 
contact process on the top of the percolating cluster. The dynamic critical 
exponents were calculated by assuming an activated scaling relation and the 
static exponents by the usual power law behavior. Our results are in agreement 
with the prediction that the quenched diluted contact process belongs to the 
universality class of the random transverse-field Ising model. We have also 
analyzed the model and determined the phase diagram by the use of a mean-
field theory that takes into account the correlation between neighboring sites.
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1.  Introduction

In many experiments on condensed matter, quenched disorder may be present either 
because it is an unavoidable feature of the sample or because disorder is deliber-
ated introduced in the sample. In either case, if we wish to describe the properties of 
these systems by statistical mechanical models, quenched disorder should be taken into 
account in these models. In some cases the quenched disorder is irrelevant in the sense 
that it does not change the critical behavior. In other cases, the quenched disorder is a 
relevant feature that changes the critical behavior of the pure system. According to a 
criterion due to Harris [1], a spatially quenched disorder will be irrelevant with respect 
to the critical properties if the inequality dν⊥ > 2 is obeyed for the pure system, where 
ν⊥ is the spatial correlation length exponent and d is the dimension of the system. For 
models belonging to the directed percolation universality class, such as the contact 
process [2–5], this inequality is not fulfilled for d  <  4. We should thus expect a change 
in the critical properties of the contact process with quenched disorder, as is the case of 
the quenched diluted contact process, which is the object of our study here. Numerical 
simulations of the quenched diluted contact process in two dimensional lattices [6–11] 
indeed confirm the change in the critical properties.

A remarkable critical behavior of the quenched diluted contact process is the slow 
activated dynamics, of the logarithmic type, instead of the usual power law type. This 
result was advanced by Hooyberghs et al [12, 13] by mapping the evolution operator of 
the stochastic process describing the quenched diluted contact process into a random 
quantum spin-1/2 operator, and by the use of a renormalization group approach. This 
critical behavior places the quenched diluted contact process into the universality class 
of the random transverse-field Ising model [14–21]. The slow activated dynamics of the 
quenched diluted contact process has been confirmed by numerical simulations in two 
dimensions [8–11].

Here we study a quenched diluted contact process in which the quenched dilution 
is obtained by the removal of a fraction of sites of the lattice. The remaining sites 
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form then clusters of site percolation. We aim to study the critical properties of the 
contact process with quenched dilution by a method in which the percolation clusters 
are understood as related to the stationary state of stochastic models for the spread-
ing of disease [22–24]. The use of an epidemic process turns out to be a procedure to 
create percolation clusters as ecient as the ordinary method of simply creating ran-
dom vacancies and then using a clustering algorithm to find the percolating cluster. A 
straightforward numerical approach to the diluted contact process is to consider all the 
remaining sites of a lattice after a certain fraction of them has been removed [6, 7, 10]. 
Other methods such as ours consider instead just the sites of the percolating cluster [9, 
11]. In this case the total computer time should include the time it takes to generate 
the percolating cluster. However, this time is very short, representing in our approach 
less than 1% of the total computer time.

The stochastic model we use to generate clusters of site percolation is defined as 
follows [23, 24]. Each site of a regular lattice is occupied by an individual that can 
be in one of three states: susceptible, exposed or immune. A susceptible individual, in 
the presence of an exposed individual, becomes exposed with certain probability p and 
immune with the complementary probability. The exposed and immune individuals 
remain forever in these states. Starting with a single exposed individual in a lattice full 
of susceptible individuals, a cluster of exposed individual is generated such that at the 
stationary state it is exactly mapped into a cluster of site percolation [23, 24], with p 
being identified as the probability of a site occupation.

Once a cluster of site percolation is generated by the model of spreading of disease 
explained above, we simulate the contact process in the top of the percolating clus-
ter. Only the percolating cluster is needed because a finite cluster cannot sustain an 
active state. That is, if we wait enough time, the absorbing state will be reached. This 
procedure is thus interpreted as the contact process with quenched site dilution. More 
details on the models will be given in the next section. In this same section we set up 
the evolution equations for one and two-site correlations and solve them by the use a 
pair mean-field approximation, which allows us to construct the phase diagram. This 
phase diagram shows that at the percolation threshold the critical creation rate of the 
quenched diluted contact process is finite.

Using the method presented above, we have obtained the critical properties and the 
phase diagram of the diluted contact process by numerical simulations and also by a 
mean-field theory. The method allowed us to obtain more accurate values for the criti-
cal exponents and thus confirming the prediction that the quenched diluted contact 
process belongs to the universality class of the random transverse-field Ising model. The 
mapping of the epidemic processes into the quenched dilution contact process, allows 
also to conclude that this universality class may include some models for epidemic 
spreading.

The contact process, and other models belonging to the universality of directed 
percolation, describes the transition of an active state to an absorbing state, in which 
a system cannot never scape. This nonequilibrium phase transition is very common in 
nature and may occur in various situations [25]. However, the experimental observa-
tion of the critical exponents is very dicult, as any amount of disorder should alter 
the critical behavior, but the exponents were eventually measured in a electrohydrody-
namic convection of nematic liquid crystals [26].

https://doi.org/10.1088/1742-5468/aa694b
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2. Models and pair approximation

We begin by defining the two models by using the spreading of disease language. The 
two models are illustrated in figure 1. The first model (A) is the one that generates 
the site percolation clusters, and is thus the underlying support over which the second 
model (B), the contact process, is defined.

2.1. First model

Each site of a regular lattice is occupied by an individual that can be susceptible (S), 
immune (U) or exposed (E). The possible processes of the first model are as follows:

S + E → U+ E, rate a,� (1)

S + E → E + E, rate b.� (2)
These two processes define a continuous time stochastic process whose probability dis-
tribution obeys a master equation. Instead of writing down the master equation, which 
gives the time evolution of the probability distribution, we write the time evolution of 
some marginal probability distribution such as the one-site and two-site probability 
distributions. Using a procedure developed earlier [23, 24] and the notations PX, PXY, 
PXYZ for one-site, two-site and three-site probabilities, the following time evolution 
equations can be derived

d

dt
PS = −(a+ b)PES,� (3)

d

dt
PE = bPES,� (4)

d

dt
PES = −a+ b

k
PES − (a+ b)µPESE + bµPESS,� (5)

d

dt
PUS = −(a+ b)µPESU + aµPESS,� (6)

d

dt
PEU =

a

k
PES + aµPESE + bµPESU,� (7)

where k is the coordination number of the regular lattice and µ = (k − 1)/k.

Figure 1.  (A) The processes S → U and S → E are catalytic and represent the 
reactions S  +  E → U  +  E and S  +  E → E  +  E, respectively. (B) The process E → 
I is catalytic and represents the reactions S  +  E → U  +  E. The reaction I → E is 
spontaneous.

https://doi.org/10.1088/1742-5468/aa694b
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An approximate solution can be obtained by the use of the pair mean-field approach 
which amounts to use the approximation PXY Z = PXY PY Z/PY . Using the notation 
x = PS, y = PE, v = PES, u = PUS, and w = PEU, we may write

dx

dt
= −(a+ b)v,� (8)

dy

dt
= bv,� (9)

dv

dt
= −a+ b

k
v − (a+ b)µ

v2

x
+ bµ

v(x− v − u)

x
,� (10)

du

dt
= −(a+ b)µ

vu

x
+ aµ

v(x− v − u)

x
,� (11)

dw

dt
=

a

k
v + aµ

v2

x
+ bµ

vu

x
,� (12)

where we have taken into account that PSS = PS − PES − PUS = x− v − u. Equations (8)–
(12) have been solved in reference [23]. At the stationary state, the solution is

x = sk,� (13)

y = p(1− sk),� (14)

v = 0,� (15)

u = qsk−1(1− sk−1),� (16)

w = pq(1− sk−1),� (17)

where s is the root of the polynomial equation

p sk−1 − s+ q = 0,� (18)
and p  =  b/(a  +  b) and q  =  1  −  p. The trivial solution is s  =  1, which gives x  =  1, 
y  =  v  =  u  =  w  =  0 and corresponds to the non spreading regime. The solution s �= 1 cor-
responds to the spreading regime and occurs only when p  >  pc  =  1/(k  −  1). We remark 
that the stationary solution is exactly mapped into the site percolation model with p 
playing the role of the probability of occupancy or the fraction of occupied sites in the 
percolation model. The spreading regime (s �= 1) corresponds to the existence of the 
percolating cluster. The non-spreading regime corresponds to the absence of the perco-
lating cluster (s  =  1).

2.2. Second model

As before, an individual can be susceptible (S), immune (U) or exposed (E). In addition, 
an individual can also be infected (I). Thus in the second model, each site can be in one 
of the states: S, U, E, and I. However, the sites in states S and U remains forever in 

https://doi.org/10.1088/1742-5468/aa694b
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these states. The only sites that have their states modified are the E and I sites. They 
are modified according to the following processes

E + I → I + I, rate c,� (19)

I → E, rate r,� (20)
which are the reactions of the contact process. The relation between the infection rate 
λ, often used in studies of the contact process, and c and r is given by λ = c/r. For 
convenience, we also make use of a parameter α, defined by α = r/c = λ−1.

The initial state of the second model is chosen to be the stationary state of the first 
model. However, this state has no site in state I and the dynamics does not start. To 
start the dynamics we choose randomly one site in state E and replace it by a state 
I. By this procedure, a cluster of sites in state I growths in the top of the percolation 
cluster. It should be understood that the percolation cluster is formed by sites of type 
E and I. The sites of type U are at the border of the percolation cluster. The rest of the 
sites are in state S, and they are not connected to the sites of the percolation cluster.

The two reactions (19) and (20) show that the number of sites E and sites I is a 
constant implying that the sum PE + PI is a constant. Since these two reactions do not 
involve the sites U and S, it follows that the number of sites U and the number of sites 
S are invariants, and the sum PEU + PIU is a constant.

Again, using the procedure developed earlier [23, 24], the following time evolution 
equations for the one-site and two-site probabilities can be obtained

d

dt
PI = −rPI + cPIE,� (21)

d

dt
PIE = −rPIE + rPII −

c

k
PIE − cµPIEI + cµPIEE,� (22)

d

dt
PIU = −rPIU + cµPIEU,� (23)

where µ = (k − 1)/k. Due to the constraints stated above it is not necessary to write 
down the time evolution equations for the other one-site and two-site probabilities.

Using again the pair approximation and the previous notation together with the 
notations z = PI, g = PIE, h = PIU, we may write

dz

dt
= −rz + cg,� (24)

dg

dt
= −rg + r(z − g − h)− c

k
g − cµ

g2

y
+ cµ

g

y
(y − g − w),� (25)

dh

dt
= −rh+ cµ

gw

y
,� (26)

where we have taken into account that PII = PI − PIE − PIU = z − g − h and 
PEE = PE − PEI − PEU = y − g − w.

https://doi.org/10.1088/1742-5468/aa694b
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Equations (24)–(26) are to be solved using as initial conditions the stationary state 
of the first model. Since PE + PI = y + z is invariant, it follows that y  +  z  =  y0 where 
y0 is the value of PE at the stationary state of the first model, given by equation (14). 
Analogously, PEU + PIU = w + h is invariant implying w  +  h  =  w0 where w0 is the value 
of PEU at the stationary state of the first model, given by equation (17). At stationary 
state, equations  (24)–(26) have a trivial solution z  =  0, characterizing the absorbing 
state, and a nontrivial solution for which z �= 0, characterizing the active state. Solving 
for z, it is possible to obtain an expression for the nontrivial solution z. By taking the 
limit z → 0 of the nontrivial solution we get the critical line, which is given by

α =
r

c
=

k − 1

k

(
1− q(1− s)

p(1− sk)

)
,� (27)

where s is the root of the polynomial equation given by equation (18). The critical line 
α versus q, shown in figure 2, separates the active percolating phase from the inactive 
percolation phase. Notice that, when p → pc = 1/(k − 1) we get α = 2(k − 1)/k2 = α0, 
so that the critical line meet the vertical line p  =  pc at α = α0, as shown in figure 2. It 
straightforward to show that the critical exponent related to the order parameter is the 
same as that of the pure system.

3. Scaling relations and numerical simulations

Around the critical point, the quantities that characterize the critical behavior are 
assumed to obey scaling relations. In the present case of the diluted contact model, for 
which the quenched disorder is relevant, the usual scaling relation in terms of power 
laws in time is replaced by power laws in the logarithm of time, called activated scaling 
[11, 12]. At the critical point, the space correlation length ξ behaves as [12]

ξ ∼ (ln t/t0)
1/ψ,� (28)

where ψ is the tunneling critical exponent [15] and t0 is a constant. Other quantities 
behave similarly at the critical point, such as NI, the number of infected individuals,

NI ∼ (ln t/t0)
θ,� (29)

and P, the survival probability at time t,

P ∼ (ln t/t0)
−δ.� (30)

From the scaling relations (28)–(30) we find that

NI ∼ P−θ/δ,� (31)

NI ∼ ξ θ ψ,� (32)

P ∼ ξ−δψ,� (33)
valid at the critical point. These are useful relations because they do not depend on t0.

https://doi.org/10.1088/1742-5468/aa694b
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At the stationary state (t → ∞), the quantities that describe the critical behavior 
follow the usual power laws, but with exponents distinct from those of the pure sys-
tem. The order parameter ρ, defined as the fraction of infected sites in the percolating 
cluster, behaves as

ρ ∼ (λ− λc)
β.� (34)

Initially, we have simulated the first model to generate a percolating cluster. The 
simulation, with periodic boundary conditions, was performed as follows. At each time 
step, we choose at random a bond from a list of active bonds. An active bond is a pair 
of SE nearest neighbor sites. The site S of the chosen bond becomes E with probabil-
ity p and becomes U with the complementary probability q  =  1  −  p. The chosen bond 
is removed from the list and the list us updated. The time is then incremented by an 
amount 1/Na, where Na is the number of active bonds in the list. Notice that, if a site 
S has nE nearest neighbor sites in states E, then it will appear nE times in the list. 
Starting with just one E site in a lattice full of S sites, this algorithm will generate a 
cluster of E sites. This process stops when there is no SE bonds in the lattice. When 
this happens the cluster of E sites is a site percolating cluster with U sites standing in 
the border of the cluster, separating the E sites from the S sites.

Having generated a percolating cluster of E sites, we simulate the contact model on 
top of the cluster using the following algorithm. At each time step, a site is chosen at 
random among a list of I sites. With probability pa = λ/(λ+ 1) it becomes an E site 
and with the complementary probability 1  −  pa a nearest neighbor site is chosen at 
random. If the chosen neighboring site is in state E, it becomes I, otherwise, nothing 
happens. The time is then incremented by an amount 1/NI, where NI is the number of 
I sites. The initial condition is formed by the cluster of E sites with one E site turned 
into an I site. This I site is taken as the origin.

We have performed simulations on a square lattice with N  =  L2 sites with L up to 
L  =  8192. For several values p and λ, we have measured, as a function of time, the 

Figure 2.  Phase diagram from the pair approximation in the plane α = λ−1 versus 
q  =  1  −  p, for a lattice of coordination k  =  4. The phases are: active percolating 
(AP), inactive percolating (IP), and nonpercolating (N).

https://doi.org/10.1088/1742-5468/aa694b
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number of infected sites NI, the survival probability P and the correlation length ξ 
defined by

ξ2 =
1

NI

∑
i

〈r2i 〉,� (35)

where the summation is over the sites occupied by an infected and ri is the distance 
from the site i to the origin. Each quantity was measured by averaging over 105 to 106 
disorder configurations, where each disorder configuration is obtained by the simula-
tion of the first model starting with a distinct seed of random number. We have also 
performed simulation with smaller values of L. However, results coming from lattice 
with L  =  4096 agree, within statistical errors and up to the maximum time we have 
used, with those coming from L  =  8192. The statistical errors were determined by the 
calculation of the standard statistical deviation. The results for the three quantities NI, 
P and ξ, determined for several values of λ, are shown in figures 3–5. The error bars in 
these figures are not shown, but they are less than 8%. At the critical point, λ = 2.1075, 
they are even less reaching 1%.

Figure 3 shows the plot of the number of infected NI as a function of time t for 
p  =  0.8. Fitting the expression (29) to the data points of figure  3 we estimate the 
critical parameter as being λ = 2.1075(1), the critical exponent as θ = 0.13(2), and 
ln t0 = 6.0(5). To find the exponents ψ and δ and a better estimate of θ we use a pro-
cedure similar to the one used in [11] in which we first determine the quantities θ/δ, 
θ ψ and δψ, by fitting the expressions (31)–(33) to the data points. After that, we use 
expressions (28)–(30) to find the exponents θ, δ and ψ by a constrained fitting, to be 
explained below.

From the plots of NI versus P, shown in figure 4, NI versus ξ, shown in figure 5, 
and P versus ξ, we may get, respectively, θ/δ, θ ψ and δψ. Since the scaling relations 
(31)–(33) do not involve time, the estimates of these quantities are independent of the 
t0, resulting in more precise values, which are found to be

θ/δ = 0.075(5),� (36)

θ ψ = 0.078(4)� (37)

Figure 3.  Log–log plot of the number of infected sites NI versus t obtained from 
numerical simulations at p  =  0.8 for the values of λ indicated.

https://doi.org/10.1088/1742-5468/aa694b
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δψ = 1.034(23).� (38)
The consistency of these values can be checked by dividing equations (37) and (38). 
The result is θ ψ/δψ = 0.0758(57), which is in fair agreement with (36). The value of 
θ/δ can be used to get the ratio β/ν⊥ between the order parameter critical exponents 
β and the critical exponents ν⊥ related to the spatial correlation length. Using the rela-
tion θ/δ = dν⊥/β − 2 we find

β/ν⊥ = 0.964(2).� (39)
The exponents θ, δ and ψ are found by a procedure as follows. For each value of 

t0 in the interval 5.5 � t0 � 6.5, we determine the exponents θ, δ and ψ by fitting the 
expressions (28)–(30) to the data points. After that we choose the actual values of these 
exponents as the ones such that the quantities θ/δ, θ ψ and δψ are as close as possible 
to the values given by (36)–(38). This procedure leads to the following values for the 
exponents:

θ = 0.145(8),� (40)

Figure 4.  Log–log plot of the number of infected sites NI as a function of the 
survival probability P obtained from numerical simulations at p  =  0.8 for the 
values of λ indicated.

Figure 5.  Log–log plot of the number of infected sites NI as a function of the 
spatial correlation length ξ obtained from numerical simulations at p  =  0.8 for the 
values of λ indicated.
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ψ = 0.55(3).� (42)
We have also performed simulations to get the stationary properties by using sys-

tems of linear size L  =  2048. The interest quantities were obtained by the use of 108 
Monte Carlo steps after discarding 107 Monte Carlo steps. In this case, we use as the 
initial state a configuration in which a fraction of sites is in the infected state. Again 
we determined the number of infected sites NI at the stationary state from which we 
obtained the density ρ = NI/NC where NC is the number of sites of the cluster, that is, 
the number of I sites plus the number of E sites. Assuming the critical behavior (34), 
we get the value β = 1.11(6) by plotting ρ as a function of λ− λc, as shown in figure 6 
for the case of p  =  0.8. This result for β together with the numerical value for the ratio 
β/ν⊥, obtained above, gives us ν⊥ = 1.15(6).

Figure 6.  Fraction of infected sites ρ in the percolating cluster as a function of λ. 
The slope of the strait line fitted to the data points gives β = 1.11(6).

Figure 7.  Phase diagram from numerical simulations on a square lattice in the 
plane α = λ−1 versus q  =  1  −  p. The phases are: active percolating (AP), inactive 
percolating (IP), and nonpercolating (N).
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We have also performed similar simulations for other value of p and obtained 
the critical line, shown in figure  7. In particular, at the percolation critical point 
p = pc = 0.592 74, we get λ = 3.10(1).

The critical exponents obtained here are shown in table  1 together with results 
coming from other papers on the quenched diluted contact process [10, 11] and on the 
random transverse-field Ising model [16, 20]. To make contact with exponents used to 
describe the critical behavior of the random transverse-field Ising model, we have deter-
mined from our results the fractal dimension critical exponent dF = d− β/ν⊥ and the 
exponent φ, related to the fractal dimension and the tunneling exponent by dF = φψ 
[16]. We see that our results agree, within the statistical errors, to all other results cited 
in table 1. The results are dF = 1.036(2) and φ = 1.87(10).

4. Conclusion

We have studied the critical properties of the quenched diluted contact process through 
a mean-field theory and Monte Carlo simulations by using a two stage procedure. The 
first was the generation of the percolating cluster, obtained by the use of a stochastic 
lattice model whose stationary states are the clusters of percolation model. The second 
stage was the simulation of the contact process on the top of the percolating cluster. It 
should be remarked that, only the percolating clusters is necessary if we wish to study 
the static stationary properties because finite clusters cannot support an active state. 
For a finite cluster, the absorbing state will be reached if we wait enough time. As to 
the dynamic properties, our results show that they can also be obtained from the per-
colating cluster, or at least their critical properties, as can be inferred by comparing 

Table 1.  Critical exponents obtained by numerical simulations on a square lattice 
at p  =  0.8 and λc = 2.1075 (second column). The third and fourth columns show 
results for the quenched diluted contact process [10, 11] in d  =  2 whereas the last 
two columns show results for the random transverse-field Ising model [16, 20] also 
in d  =  2.

Reference This work [10] [11] [16] [20]

θ 0.145(8) 0.15(3)
ψ 0.55(3) 0.48(7) 0.51(6) 0.42(6) 0.48(2)
δ 1.88(11) 1.9(2)
φ 1.87(10) 2.5(4)
β/ν⊥ 0.964(2) 0.95(2) 0.96(2) 1.0(1) 0.982(15)
β 1.11(6) 1.15(9)
ν⊥ 1.15(6) 1.20(15) 1.07(15) 1.24(2)
dF 1.036(2) 1.0(1) 1.018(15)

Figure 8.  The processes S → U and S → E are catalytic with E or I playing the 
role of catalysts. The process E → I is autocatalytic and the reaction I → E is 
spontaneous.
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our critical exponents with other works. The present method allowed to obtain more 
precise critical exponents, with errors that are at most equal to 6%, confirming the 
prediction that the quenched diluted contact process belongs to the universality class 
of the random transverse-field Ising model.

The mapping of the two epidemic models into the quenched diluted contact process 
allows to speculate about the existence of epidemic models that are in the universality 
class of transverse-field Ising model. In fact, this is the case of the model illustrated in 
figure 8, which may be thought as a merger of the two models in figure 1. The epidemic 
model of figure 8 is defined on a lattice in which each site can be in one of four states: 
S, U, E, and I, and is composed by three catalytic reactions: S → U, S → E, E → I, and 
by a spontaneous reaction I → E. At the stationary states, the I and E sites form a con-
nected cluster of sites consisting of a site percolation cluster. The E and I sites evolves 
then as the contact process on the top of a percolating cluster. Therefore, the model 
defined by rules of figure 8 is also mapped into the quenched diluted contact process 
and its critical properties puts the model in the universality class of the transverse-field 
Ising model.
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