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In parameter space of nonlinear dynamical systems, windows of periodic states are aligned following
the routes of period-adding configuring periodic window sequences. In state space of driven nonlinear
oscillators, we determine the torsion associated with the periodic states and identify regions of uniform
torsion in the window sequences. Moreover, we find that the measured torsion differs by a constant
between successive windows in periodic window sequences. Finally, combining the torsion-adding
phenomenon, reported in this work, and the known period-adding rule, we deduce a general rule to
obtain the asymptotic winding number in the accumulation limit of such periodic window sequences.

© 2013 Elsevier B.V. All rights reserved.
A conspicuous characteristic in parameter space of dissipative
nonlinear dynamical systems is the appearance of periodic states
for parameter sets immersed in parameter regions correspon-
dent to chaotic states. In the literature, much attention has been
devoted to establish connections between these periodic states.
For example, a successive constant increment on the period of os-
cillation of such states (period-adding phenomenon) [1] has been
experimentally and numerically observed in several real-world sys-
tems such as neuronal activities [2,3], electronic circuits [4], bub-
ble formation [5], semiconductor device [6], and chemical reac-
tion [7]. The period-adding phenomenon has been also observed
for sequences of shrimp-shaped periodic windows accumulating in
specific parameter space regions [8–13]. Once nonlinear dynami-
cal systems can exhibit many different kinds of motion, knowing
adding rules, such as the period-adding and further information
about the accumulating parameter regions, is very advantageous,
specially, for predicting periodic states for different parameter sets
in real-world applications.

Furthermore, besides the intrinsic period of oscillations, in dis-
sipative systems, periodic states have other interesting convergence
properties. For instance, for driven nonlinear oscillators, the tor-
sion number n is defined as the number of twists that local flow
perform around a given periodic solution during a dynamical pe-
riod m, and the winding number defined as w = n/m [14–18]. How-
ever, besides the existence of such convergence properties, addi-
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tional connecting rules between periodic states and accumulating
regions characteristic have not yet been discovered.

Our aim here is to investigate the convergence characteristics,
namely, the torsion and winding number of periodic states within
complex periodic windows, in period-adding sequences in the pa-
rameter space of driven nonlinear oscillators. A torsion-adding
formulation between such periodic states is proposed here. Com-
bining both additive sequences properties, the torsion- and the
period-adding, we describe a generic periodic window in a se-
quence in terms of its winding number. The asymptotic limit of
such description gives a general rule to determine the winding
number for any accumulation of period-adding sequences.

Generally, the driven nonlinear oscillator is described by:

ẍ + g(x, ẋ) = h(t), (1)

where h(t) = h(t + T ) is a periodic function with angular frequency
ω = 2π/T . For this equation, the winding number is obtained by
considering revolutions performed by an orbit γ ′ around of a very
close neighbor periodic orbit γ during the interval time �t = T
(see Fig. 1). The absolute mean value of the revolution angular fre-
quency, Ω(γ ) = |〈α̇(t)〉|, is called torsion frequency:

Ω(γ ) = lim
t→∞

1

t
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t∫

0
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t→∞

|α(t) − α(0)|
t

. (2)

Thus, considering the T -shift map, the winding number is precisely
defined as [14]:

w(γ ) = Ω(γ )
. (3)
ω
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Fig. 1. (Color online.) Sketch of a periodic orbit γ with period Tγ surrounded by a
neighbor orbit γ ′ , α(t) is the phase of the γ ′ revolution around γ . The stroboscopic
Poincaré section Σ is defined by the forcing period T .

Fig. 2. (Color online.) Main-body window in two-dimensional parameter space, sn
and pd are the saddle-node and period-doubling bifurcation curves. The curves λ1

and λ2 are the skeleton of the structure delimiting the regions A (red), B (gray),
C (yellow), and D (green) are regions delimited by the skeleton.

For a more appropriated form, note that the γ period is given by
Tγ = mT = 2πm/ω, while the torsion frequency period is TΩ =
2π/Ω (see Fig. 1). Including these periods in Eq. (3), and defining
the torsion number as n = Tγ /TΩ , we obtain the winding number

w(γ ) = n

m
. (4)

In Fig. 2, we show a sketch of the region with the lowest pe-
riod inside a complex periodic window. We refer to it as main-body
window, frequently found in the two-dimensional parameter space
of the dynamical system given by Eq. (1). This main-body win-
dow has the same period and is bounded by saddle-node (sn) and
period-double (pd) bifurcation curves. On the other hand, we iden-
tify that the winding number (Eq. (3)) is the same in four different
regions A, B , C , and D . The point where the two saddle-node bi-
furcation curves met in region B depicts a cusp bifurcation, where
two periodic orbits are created. Below this point, there are limited
regions where B , C , and D appear in pairs (BC , D B , and DC ), due
to the coexistence of the two periodic orbits. The curves λ1 and λ2
between the colored regions, reveal the window skeleton [19,20].
This skeleton plays an important role in the attractor transient:
the flow converges monotonically or nonmonotonically to the pe-
riodic orbit according the skeleton composition (λ1, λ2). Crossing
a λ curve from one side to the other, the flow convergence suffers
a transition. The direction of this transition characterizes λ1 and λ2
and causes a change in the winding number [21].

Then, we consider the winding number concept for sequences
of periodic windows. Until now these sequences have been de-
scribed only by period-adding rules, i.e., the period of a periodic
window in the sequence can be determined by adding a constant
value ρ to the period of the previous window [22–25]. Now, we
introduce the torsion-adding phenomenon in periodic window se-
quences. In other words, for each increment ρ , in the window
period m1, the torsion number of equivalent regions is also in-
cremented by a constant value τ . Therefore, from Eq. (4), the
winding number w Ri in a generalized main-body window region
R (R = A, B, C , or D) of the i-th window sequence can be deter-
mined in function of the torsion number in region R of a known
window, in particular, in function of the first one, nR1 :

w Ri = nR1 + (i − 1)τ

m1 + (i − 1)ρ
. (5)

Thus, the asymptotic winding number limit of any region R ,

lim
i→∞ w Ri = τ

ρ
, (6)

shows that the winding number of all regions converges to a con-
stant which only depends on the torsion number and the period
increments, τ and ρ , respectively. We denote this limit as w∞ .

Another consequence of the torsion-adding is that the skele-
ton of all windows in a sequence are equivalent. In fact, one can
show that for λ1 curve, in successive windows i and i + 1, the
torsion-adding condition (nRi+1 = nRi + τ ) implies that the tor-
sion number difference between regions A and C is the same
(nAi − nCi = nAi+1 − nCi+1 ). Thus, the λ1 curve promotes the same
transition in all sequence. The same is for λ2.

Now, to verify our results, we present numerical simulations
for a specific driven nonlinear oscillator, namely, the Morse oscil-
lator that describes a diatomic molecule, immersed in an external
electromagnetic field, modeled by the following differential equa-
tion [26]:

ẍ + dẋ + 8e−x(1 − e−x) = 2.5 cos(ωt), (7)

where the parameter d is the amplitude of the system damping
and ω is the angular frequency of the external forcing. Our analysis
is in the two parameter space d × ω.

As we are interested in how a trajectory γ ′ converges to the
stable periodic orbits γ , we consider in our numerical simula-
tion γ ′ starting in a position very close to γ in a such way that
the linearized flow is enough to describe γ ′ dynamics. We repre-
sent a point in γ as (x∗

1, x∗
2, x∗

3) and in γ ′ as (y1, y2, y3). Therefore,
the γ ′ evolution is given by

ẏ1 = y2,

ẏ2 = 8e−x∗
1
(
1 − 2e−x∗

1
)

y1 − dy2, (8)

where we considered y3 = 0, since y3 is any constant in the
linearized flow, i.e., ẏ3 = 0. Finally, considering the solutions of
Eqs. (8) in the polar coordinates y1 = r cos(α) and y2 = r sin(α),
we determine the angular frequency,

α̇ = 1

y2
1 + y2

2

(y1 ẏ2 − y2 ẏ1). (9)

Thus, by Eqs. (2) and (3), we can determine numerically the wind-
ing number inside a period-m main-body window and then calcu-
late the associated torsion number with Eq. (4), where m is given
by m = Tγ /T .

We recall that the orbit γ is stable if the Floquet multipliers
μi associated with the mT -shift map (or any multiple of mT ) are
|μi| < 1. For μi ∈R, if μi are positive, the orbit γ ′ converges to γ
with orientation preserving (monotonically) and if μi are nega-
tive, γ ′ converges to γ with orientation reversing (nonmonotoni-
cally) [21]. Since the multipliers are |μi | < 1 from the saddle-node
bifurcation (μ = 1), in region A, to the period-doubling bifurcation
(μ = −1) in regions C and D , the phase difference by the interval
time �t = mT computed between regions A and C (or D) is π or,
i.e., |nA − nC(D)| = 1/2, as can be seen in Fig. 3.

For the Morse oscillator, we obtain two-dimensional parameter
spaces [shown in Figs. 3 and 4] by computing the torsion and the
winding numbers for each d × ω parameters of a two-dimensional
mesh of 500 × 500 equally spaced. We assign different colors to
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Fig. 3. (Color online.) The white region indicates chaos while the colored regions indicate complex periodic windows according to the winding numbers of a grid of the
system parameters. The numbers noted on the different winding number regions, A, B , C , and D , are the correspondent torsion numbers n. The λ symbols indicate the
window skeleton, and the λ superscript + or − indicates increases or decreases in the torsion numbers. (a) nA = nB = 5.0, nC = 4.5, and nD = 5.5. (b) nC = nD = 14.5,
nA = 14.0, and nB = 15.0. (c) nC = nD = 15.5, nA = 16.0, and nB = 15.0.

Fig. 4. (Color online.) (a) Periodic window sequences obtained by computing the winding numbers. The pairs (nB ,mB ) noted on different periodic windows are the torsion
number and the period of region B . The increments on the torsion number and periods are, respectively, τ = 12.0 and ρ = 4.0. (b) Winding number, as a function of
parameter ω, calculated along a line crossing the B regions of the window sequence of (a). Here, the asymptotic winding number for this sequence is w∞ = 3.0, equal
to its predicted value τ/ρ = 3.0. (c) The same as (a) in another region of the parameter space (in this case τ = 5.0 and ρ = 3.0). (d) The same as in (b) (in this case
w∞ = τ/ρ = 1.6666). The colors have the same meaning as in Fig. 3.
designate winding number values of periodic attractors, while the
white color represents the parameters correspondent to chaotic
attractors. With this procedure we identify the uniform winding
number regions, A, B , C , and D indicated in Fig. 2. We also identify
inside the three periodic windows, in Fig. 3, the skeleton separat-
ing areas with uniform torsion numbers. To be more precise, let us
define the left and right side of the curves λ1 and λ2 traversing the
curve from the bottom to the top (see Fig. 2). The torsion number
is always increased or decreased by 1/2 when we cross the curve
λ1 (λ2) from the right (left) to the left (right). The superscripts +
and −, in λ1 and λ2, indicate if the torsion number increases (+)
or decreases (−) according to the defined orientation. All the three
possible skeletons are shown in Fig. 3.

Note that the main-body windows, shown in Fig. 3, present
three different winding number values. In Fig. 3(a), the torsion
number decreases by 1/2 from A to C (λ1 = λ− , according our
1
convention) and increases by 1/2 from C to B (λ2 = λ+
2 ). Thus,

the torsion number difference between regions A and B is zero.
The same is verified for the route A → D → B , then nA = nB .
Since the parameter sets in this window correspond to orbits with
the same period m, according Eq. (5), the winding number in re-
gions A and B are the same. Similarly, we conclude that in Fig. 3(b)
and (c), where nC = nD , the winding number of regions C and D
are the same. Therefore, for the i-th complex window (see Fig. 4),
the winding number is given by

w Ri = nA1 + (i − 1)τ + (k − l)/2

m1 + (i − 1)ρ
, (10)

where k, l ∈ {0,1,2} are, respectively, the number of times that the
curves type λ+ and λ− are crossed from region A to any region
R crossing λ1 and λ2 just one time. Eq. (10) describes the in-
ternal regions in these periodic window sequence and obey the
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convergence limit established in Eq. (6). Moreover, Eq. (10) states
that if one periodic windows presents w B = τ/ρ , then, the wind-
ing number of region B in any periodic window in the sequence is
w Bi = τ/ρ .

To illustrate the validity of our results, we display in Fig. 4(a)
sequences of periodic windows where all windows have their in-
ternal regions separated by λ−

1 and λ+
2 . For this sequence, accord-

ing to Eq. (10) with k = 1 and l = 1, all periodic windows present
different winding number values in their central region B . Ad-
ditionally, we show in Fig. 4(b) the winding number calculated
along a line passing through the region B of all windows that
compose the sequence. It is clear that the winding numbers con-
verge to w∞ = 3.0. The torsion number and the period increment
can also be determined, in Fig. 4(a), by τ = nBi+1 − nBi = 12 and
ρ = mi+1 −mi = 4, respectively. Thus, the winding number conver-
gence is in agreement with Eq. (6).

In Fig. 4(c), we show another sequence of periodic windows in-
ternally separated by λ+

1 and λ+
2 . For this sequence of windows, we

measure τ = 5, ρ = 3, and the winding number w B = 5/3. Thus, as
predicted by Eq. (10) with k = 2 and l = 0, we measure w Bi = 5/3.
From Fig. 4(d) we also verify the limit w∞ = τ/ρ = 5/3. Fig. 4
shows that the regions where the sequences are accumulating have
the same correspondent winding number w∞ .

In conclusion, we report the existence of torsion-adding phe-
nomenon in periodic window sequences of the driven nonlinear
oscillators. Additionally, we formulate a general rule [Eq. (10)] to
obtain the winding number of any window belonging to the se-
quence. From this general rule we obtain the winding number
asymptotic limit for any sequence (w∞ = τ/ρ), such ratio seems
to be a universal property of dynamical systems, once it requires
only the existence of the period and torsion-adding phenomena.
Moreover, since there is no general theory ensuring that period-
adding sequences are composed of an infinite number of windows,
this limit is a theoretical evidence of the existence of infinite win-
dows in the sequences.

Furthermore, we present numerical simulations for the Morse
oscillator where the reported torsion-adding phenomenon and
winding number asymptotic limit are verified. We also performed
numerical analysis for other nonlinear oscillators described by
Eq. (1), and verified that all results are in complete agreement with
our theory.
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