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Wet and dry tropical forests show opposite
successional pathways in wood density but
converge over time
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Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary
succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mecha-
nisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using
1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in commu-
nity composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon
storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values),
in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (con-
servative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional envi-
ronments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence
of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection
for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally
have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.

increase, modifying environmental conditions and leading to  at a site'. Although the study of succession has a long history?, we
shifts in species performance and composition. Successional  currently lack tests of successional hypotheses across broad bio-
pathways depend on the traits of the individual species, which  geographic scales because biogeographically distinct areas have

D uring succession, the structure and complexity of vegetation  determine their ability to establish, grow, survive and reproduce
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Fig. 1| Recovery of WD values and WD variation with time since abandonment in Neotropical secondary forest sites. a, CWM WD. b, WD range within
each community (that is, plot). Each line represents a different site (n=50). Significant changes (P<0.05) over time are indicated by continuous lines.
Non-significant changes are indicated by broken lines. Lines and dots (individual plots; n=1,403) are colour coded according to forest type: dry forest
(700-1,500 mmyr~, green); moist forest (1,500-2,500 mmyr~, light blue); and wet forest (>2,500 mmyr~', dark blue). The range is calculated per plot as
the trait value of the 90th percentile minus the trait value of the 10th percentile of trait values in a plot.

different taxonomic species compositions. It is difficult to gener-
alize successional patterns based on different species lists, whereas
such a direct and quantitative comparison across regions can be
made using species traits. Species traits provide important insights
not only into the mechanisms of succession and community
assembly, but also into ecosystem recovery in carbon, water and
nutrient cycling.

Open space, and light, water and nutrient availability all tend
to decline over time during forest succession. Successional change
is therefore thought to be partly governed by trade-offs between
resource acquisition and conservation®. Life history and resource
use theory predict a spectrum of plant strategies between early and
late successional species. Early successional species are expected to
have acquisitive trait values that allow them to acquire resources,
grow fast and complete their life cycle under high-resource condi-
tions™®. Late successional species are expected to have conserva-
tive trait values that allow them to conserve limiting resources and
survive under low-resource conditions*’. These ideas have been
confirmed in mesic forests, where succession is driven by changes
in light availability®*'°. Yet, a recent study'' showed that succession
may be fundamentally different in environments that differ in water
availability. In wet forests, where there is no seasonal water stress,
early successional species indeed had acquisitive trait values to
take advantage of ample light and water resources, but in the low-
resource environment of a dry forest, early successional species had
conservative trait values such as dense wood and tough leaves to tol-
erate drought and heat and enhance tissue longevity. These prelimi-
nary results from two sites would imply that traditional successional
theory holds for wet but not dry forests and that we should recon-
sider one of the successional paradigms. However, the question is to
what extent these results can be generalized. Here, we report recov-
ery in wood density (WD) in a systematic way at a continental scale,
and assess how recovery is driven by variation in rainfall and soil
fertility across sites.

We analysed WD recovery at an unprecedented spatial scale,
using original data from 50 sites, 1,403 plots and >16,000 trees, cov-
ering most of the latitudinal, climatic and soil fertility gradients in
lowland Neotropical forests. To provide a long-term perspective on
succession, we used chronosequences (hereafter referred to as ‘sites’)
where plots that differ in time since agricultural abandonment
(0-100years) were compared. We focused on stem WD because
it is a key trait that shapes plant responses to the environment
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and impacts carbon cycling. WD is a key trait as it is at the nexus
of many plant functions; low WD facilitates water storage, hydrau-
lic conductivity', carbon gain and growth', whereas high WD is
associated with increased physiological drought tolerance', biome-
chanical stability", nutrient retention, defense against herbivores,
fungi and pathogens'®, and increased plant survival. For these rea-
sons, WD is an important component of global plant strategies'’
and the global wood economics spectrum'. Moreover, WD has
been measured across many sites, making cross-site comparisons
possible. For each plot, the average (that is, community-weighted
mean (CWM)) and variation in community WD was calculated
based on the proportional basal area and WD values of the species.
For each site, recovery was analysed by regressing community WD
values against time since land abandonment. The start (interpolated
value at five years) and direction (slope of the fitted time course) of
succession were then related to climatic water availability (CWA)
and cation exchange capacity (CEC) as an indicator of soil fertility.

Results

The CWM WD varied widely across all plots early in succession and
more narrowly later in succession (Fig. 1a). There is a funnel shape
because sites differed both in their initial trait values (the inter-
cept) and in their direction of successional change over time (the
slope). Initial values and slopes were both driven by CWA and, to a
lesser extent, soil fertility (Table 1). The community WD at 5years
(WD) varied from 0.32-1.14gcm™ across sites (Table 1) cover-
ing nearly the whole natural range in WD, with drier sites having
significantly higher initial WD values than wetter sites (Table 1 and
Fig. 2a). The direction and slope of successional change in WD var-
ied across sites, in relation to CWA. Drier sites showed a decrease
in WD over time and wetter sites showed an increase (Fig. 2b), so
that overall, WD values converged over time for wet and dry forests
towards more similar values (Fig. 1a). The same results were found
after a randomization test (Supplementary Fig. 3), indicating that
our results still hold, independent of species richness (see Methods).

Discussion

Successional theory predicts that fast-growing acquisitive species
will be replaced by persistent, conservative species, but here we
found a variety of patterns. Across all plots, community WD val-
ues differed considerably in early succession and converged later
in succession (that is, a funnel-shaped relationship is observed).
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Table 1| Environmental predictors of community WD and range across Neotropical forest sites

Trait Variable CWA CWA? CEC R?

p P p P p P
WD Syears 0.0002 0.251 5.8x1077 0.001 0.0030 0.035 0.58
WD Slope —0.0001 0.178 -1.9%x10~7 0.001 —0.0013 0.012 0.52
WD range Syears —0.0007 <0.001 —-8.7x10~7 <0.001 = = 0.38
WD range Slope 0.0002 0177 3.4x1077 0.007 - - 0.31

The CWM WD, and CWM WD change over time (slope), as well as the range in WDs, and the change in range of WD over time (slope), were evaluated for 50 sites. All possible combinations of
predictors (CWA, its squared value (CWA?) and CEC) were compared, and the best-supported model with the lowest AlCc value was selected (Supplementary Table 2). The parameter estimate (),

Pvalue and explained variation (R?) are shown. See Supplementary Fig. 2 for bivariate relationships.
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Fig. 2| CWM WD, and successional changes in CWM WD as a function of CWA. a, CWM WD, versus CWA. b, Successional changes in CWM WD
(slope) versus CWA for 50 Neotropical sites. Black symbols indicate sites with significant slopes. CWA refers to the water deficit during the dry season,

with zero meaning no water deficit.

Some sites showed a significant increase in WD over time, while
others showed a significant decrease or no net change (Fig. 1a).
Such contrasting results can contribute to the idea that succession is
highly unpredictable, stochastic and context dependent”. However,
we show at the continental scale that this seemingly idiosyncratic
behaviour is partly caused by opposite patterns in the start (that is,
initial state) and direction (that is, trajectory) of succession, largely
due to climate. Species with high WD values increase in abundance
with time after land abandonment in wet forests, while the reverse
occurs in drier forests. These opposing patterns have potentially
large implications for the recovery of forest functioning during nat-
ural regeneration and restoration.

The strong differences in starting values among sites may be
caused by strong functional constraints imposed by climatic filter-
ing (Fig. 2a). Early in succession, sparse vegetation cover results in
sun-exposed, hot and (atmospherically) dry conditions during the
growing season, especially in drier climates. Early successional spe-
cies in dry forests are therefore characterized by dense wood, which
in this setting is associated with enhanced cavitation resistance and
tolerance to drought'** and fire’'. In dry forests, resprouting from
stumps and roots is an important regeneration mechanism after fire
and drought disturbance”. WD increases the survival of resprouts,
and hence the plant, possibly because it increases resistance to fungi
and pathogens and reduces stem decay”. In wetter climates, high
rainfall and cloud cover lead to more benign microclimatic condi-
tions. Early successional species in wet forests are therefore charac-
terized by soft wood, which enhances water transport, and therefore
carbon gain and growth under wet and high-light conditions'.
Variation in plot WD is large at the start of succession (Fig. 1a), not
only because of climatic filtering across sites, but also because of large
trait variation within sites caused by dispersal limitation (colonizing
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species are not a random selection of the regional species pool),
priority effects (the first incoming species have a head start in the
developing community) and the resulting high species dominance
of such first-comers or better-adapted species.

Neotropical communities also differed strikingly in the direc-
tion of trait changes during succession. WD increased over time for
wetter forests and decreased over time for drier forests (Fig. 2b). In
other words, it tended to converge later during succession (Fig. 1a).
In wet forests, light availability in the lower forest strata decreases
as the forest regrows, dense-wooded, late successional species that
persist better in the shade become dominant, and community WD
increases over time®. In dry forests, the situation for early succes-
sional species is characterized by low water availability and high
heat load'***. As vegetation regrows, the understory becomes
cooler and more humid®, allowing establishment of late succes-
sional species with softer wood that better compete for light under
more benign conditions, resulting in a decrease in community WD
over time (Fig. 1a).

Across sites, the start and direction of succession were driven by
CWA and, to a lesser extent, CEC (Table 1; for a discussion on CEC,
see Supplementary Information 1). At these broad biogeographic
scales, climate seems to be a stronger filter than soils (Table 1)*.
Alternatively, CEC may have had limited predictive power because
at many sites soil fertility was inferred from a global database rather
than measured locally, or because tropical forest communities are
driven not by CEC and base cations, but rather by nitrogen and
especially phosphorus”.

For most sites, within-plot variation in WD increased over time
(Fig. 1b), which may have been caused by: (1) weaker environmen-
tal filtering; (2) larger diversity over time because of competitive
interactions resulting in limiting similarity; (3) finer partitioning or
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a wider range of niches in structurally more complex vegetation; (4)
species accumulation over time with some species having extreme
trait values; and (5) some pioneer trees with extreme trait values still
being present in the older successional plots, thus extending the WD
range. This is partly in line with recent experimental® and theoreti-
cal” studies on community assembly. Under strong environmental
filtering, community assembly is often more niche based, but when
filtering is relaxed, community assembly can be more neutral or dis-
persal based. WD variation increased more strongly over time for
drier forests (Fig. 1b and Table 1), perhaps because drier forests start
with fewer species, or because of a rapid accumulation of different
drought-coping strategies during succession.

Successional shifts in WD values may also have large impacts
on ecosystem functioning. In dry forests, succession proceeds from
conservative to acquisitive trait values (decreasing community WD
with time), which may accelerate water and carbon cycling through
faster water transport by lower WD stems and larger carbon assimi-
lation by leaves™, and may accelerate nutrient cycling through faster
decomposition of soft stem litter’. In wet forests, succession pro-
ceeds from acquisitive to conservative trait values (increasing the
community WD with time), which may slow down biogeochemi-
cal cycling and partly offset the positive effects of increased above-
ground biomass. Increased trait variation during succession in
many forests (Fig. 1b) may lead to greater niche complementarity,
more efficient resource use and higher productivity™. It may also
buffer ecosystem functioning to environmental change and enhance
ecosystem resilience™.

Insight into the mechanisms of succession can facilitate the
design of effective forest restoration strategies adapted to local
site conditions. The need for efficient reforestation is urgent given
global ambitions to restore an area of 3.5millionkm? by 2030 (of
which 1.7 million has been pledged so far)*, to enhance biodiver-
sity™, site productivity, water quality and flows, and carbon storage™.
Rapid establishment of an initial vegetation layer is of paramount
importance because it ameliorates local microclimate and soil, sup-
presses weeds and facilitates the establishment of late successional
species™”’. Succession is governed by various processes, such as dis-
persal, facilitation™, competition and tolerance®. In areas with suf-
ficient high surrounding forest cover, natural regeneration is often
an appropriate and economically efficient forest restoration strategy.
However, in fragmented or degraded areas that suffer dispersal limi-
tation, direct seeding or planting can accelerate the establishment
of an initial layer®. Species selected for initial planting should fulfil
many criteria (such as economic and cultural values, being native or
attracting frugivore dispersers*'), depending on the goals of restora-
tion. Nevertheless, species should at least be well adapted to local site
conditions to be successful. WD can be used as an additional ecolog-
ical criterion and an easy proxy for species selection. In dry regions,
dense-wooded, drought-tolerant conservative species should be
selected that can tolerate the harsh initial conditions, whereas in
wet regions, soft-wooded, fast-growing acquisitive species should
be selected that can rapidly restore vegetation cover and facilitate
succession together with dense-wooded, shade-tolerant species that
may replace them in the long term. Early successional forests in
Latin America show tremendous variation in community-weighted
mean (CWM) WD, and the relationship between CWM WD, and
CWA (Fig. 2a) can be used to optimize species selection for restora-
tion. Additionally, in climatically harsh environments, land manag-
ers may use nurse shrubs to facilitate and increase the survival of
planted target trees”, as their canopy improves the microclimate and
may protect target plants against grazing, while hydraulic lift and lit-
ter accumulation may increase water and nutrient availability*.

In summary: (1) succession proceeds from acquisitive towards
conservative WD values in wet forest but from conservative towards
acquisitive WD values in dry forest; (2) during succession, there is
a shift from strong abiotic filtering in open early successional envi-

ronments towards weaker abiotic filtering in benign, closed, late
successional environments; and (3) combined, these processes lead
to trait convergence across sites over time. Future research should
demonstrate whether our findings for WD of long-lived stems also
apply to traits of shorter-lived leaves, as some studies show that stem
and leaf traits are strongly coupled*, whereas others show that they
are uncoupled®. This climate dependence of successional processes
should be taken into account in restoration efforts to meet global
commitments for forest restoration and climate change mitigation.

Methods

Study sites. We compiled site data for 50 Neotropical lowland forest sites*
covering the entire latitudinal gradient in the Neotropics (Supplementary Fig. 1
and Supplementary Table 1). We focused on the Neotropics (that is, tropical South
America and Mesoamerica) because shifting cultivation is an important land-use
type there, and many chronosequence studies have been established in the area.
Annual rainfall varied from 750-4,000 mm yr~" across sites, topsoil CEC varied
from 1.7-64.6 centimoles of positive charge per kilogram of soil (cmol(+)kg™),
and percentage forest cover in the landscape matrix ranged from 9-100%
(Supplementary Table 1).

Plots. On average, 28 plots (range 5-251) were established per site, with the age

of the youngest plot ranging from 0-20years in the time since abandonment. The
age range covered by site plots varied from 9-80 years across sites (Supplementary
Table 1) and plot sizes ranged from 0.01-1.00 ha, with an average of 0.10ha across
all plots. Per site, plots were of the same size. For trees, palms and shrubs, all stems
with a stem diameter at breast height of >5 were measured and identified to species
level, except at six sites where the minimum stem diameter at breast height was

10 cm. Across sites, on average, 94.5% of stems were identified to species level
(range 71-100%), and 99.5% (range 94-100%) were identified to family, genus,
species or morphospecies level.

WD. We focused on stem WD as a key response trait (indicating how communities
are assembled during succession) and a key effect trait (determining how
ecosystems function in terms of carbon, water and nutrient stocks and cycling).
WD (in gecm~?), which is also known as wood-specific gravity, is the wood dry
mass divided by the wood green volume. It reflects a trade-off between fast
volumetric growth of soft-wooded species and high survival due to resistance
against biophysical hazards and drought in dense-wooded species. Soft wood

is associated with high resource acquisition and fast growth and returns on
investment, whereas dense wood is associated with resource conservation and
persistence’'°. WD also has an important effect on carbon, water and nutrient
stocks and cycling. High WD is associated with narrow vessels and hence lower
water transport capacity, but also with longer-lived tissues that are difficult to
decompose, hence WD increases carbon and nutrient stocks in the stand.

Community functional composition. For each plot, we calculated the community
functional composition based on species-specific WD values. Traits can be
plastic and respond to environmental gradients. To take trait acclimatization and
adaptation to local site conditions into account, WD data were, as far as possible,
locally collected at the site. Because WD data were collected at the site level and
not at the plot level, plasticity in response to the successional stage could not be
accounted for, although within-species variation in WD tends to be small, with an
average coefficient of variation of 5-9%". Successional changes in community WD
as reported here are therefore only due to species turnover and not plasticity.

Species-specific WD data were collected for 22 sites and taken from a WD
database for the remaining sites*’. When local species data were not available,
we used the average local site data at the genus or family level, as WD values of
tropical trees are strongly phylogenetically conserved”, although WD can also vary
substantially within coexisting genera or families, due to adaptive radiation®. For
an average of 23.0% of the trees, we used average site-specific genus-level data; for
8.7% of the trees, we used average site-specific family-level data; and for 3.6% of
the trees, we used mean plot-specific WD data. The imputed data have only a small
effect on the calculated community-weighted WD; plot CWM WD values with and
without imputed data are strongly correlated (Pearson's r=0.88; P<0.0001). The
remaining species without trait values were excluded from the analysis.

For each plot, we calculated CWM WD values based on the proportional
basal area of the species in the plots and their species-level WD values. We
weighted by basal area since basal area scales closely with total leaf area and with
the water transport capacity of trees, and therefore with the effects that trees
have on ecosystem functioning. To describe trait variation in each community,
we calculated for each plot the WD range as the 90th percentile minus the 10th
percentile of WD values in the community, thus ignoring extreme, outlying species.

Environmental conditions. Annual rainfall (mmyr~') was obtained for each
site from the nearest weather station. As seasonality in water availability is
a stronger determinant of forest composition and functioning than annual
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rainfall”’, we obtained CWA (in mmyr~'; also referred to as climatic water deficit)
from http://chave.ups-tlse.fr/pantropical_allometry.htm. CWA indicates the
cumulative amount of water lost to the atmosphere during the months when
evapotranspiration exceeds rainfall (that is, the sum of (evapotranspiration minus
rainfall) over the course of the dry season). It therefore reflects the dry season
intensity. CWA is by definition negative, and sites with a CWA value of zero do
not experience seasonal drought stress. For one site where CWA was not available
(Providencia Island), we estimated CWA from a linear regression between CWA
and rainfall based on the other sites (CWA =—949 + 0.279 X rainfall; n=49;
P<0.0001; coefficient of determination (R?) =0.53).

Topsoil CEC (in cmol(+)kg™) over the first 30 cm of the soil was used as an
indicator of soil nutrient availability as it scales well with the total concentrations
of base cations. Also, data were available for some of the sites and could be
obtained from the global SoilGrids database of the International Soil Reference and
Information Centre™ for the remaining sites. It should be noted that CEC not only
includes the base cations Ca, Mg and K, but also Na and Al, which can impair plant
growth. However, in general, CEC scales positively with the total concentration of
base cations, and is therefore a reasonable indicator of soil fertility. Soil clay content
was also available in the global database, and had similar effects on community
traits as CEC. We preferred to use CEC as it is a more direct measure of nutrient
resource availability than clay, which can also affect soil aeration, stability and
water retention capacity. We acknowledge that soil nitrogen or phosphorus might
be stronger drivers of forest recovery, as nitrogen especially might be limiting in
the early stages of succession and phosphorus is thought to limit plant growth in
highly weathered and leached tropical soils. We preferably included local CEC
data from old-growth forest plots (instead of secondary forest plots) because they
allow us to rank the sites based on their potential soil fertility; in this respect,
they are consistent with date from the SoilGrids database, which for these tropical
areas also mostly include soil characteristics associated with mature forest. For
34 sites for which no local CEC data were available, CEC values were obtained
from the SoilGrids database™. SoilGrids does not contain data on soil nitrogen
and phosphorus. Across sites, CEC and CWA were not significantly correlated
(Pearson's r=—0.09; n="50; P=0.548).

Statistical analyses. Successional changes in functional composition were
assessed for each site using secondary forest plots only. We related the functional
properties of the plot (CWM WD and WD range) to the time since abandonment
using linear regressions. Time since abandonment was natural log-transformed
before analysis because forest structure, environmental conditions and species
composition typically change nonlinearly over time with rapid initial changes and
slow changes afterwards. The regression slope (WD) indicates the direction and
pace of functional change during succession. We used the site-specific regression
equations to predict CWM WD;,, reflecting the early successional community
that is filtered out by the macroenvironment. WD, and WD, were then related

to CWA (as an indicator of water availability), CWA? (to account for nonlinear
relationships) and CEC (as an indicator of soil fertility), using subsets multiple
regression analysis. Different models of predictor combinations were compared
using Akaike’s information criterion adjusted for small sample sizes (AICc), and
the best-supported model with the lowest AICc given the number of predictors was
selected. All statistical tests were two-sided, and all analyses were performed in R
3.3.2. CWM WD was calculated using the FD package™. In our results we observed
a convergence of WD values from different forests over time. Convergence

over time may also arise from a sampling effect, as at our sites, species richness
increases logarithmically over time*, and a larger number of species may lead to

a convergence in the trait distributions between forests over time and, hence, a
more central CWM WD value, as WD is averaged across many species. To test to
what extent species accumulation over time drives the observed relationships, we
performed a randomization test in which we randomized species identity within
sites. For each plot, we maintained the community structure (that is, the number of
species and their abundances) but randomized the species names and, hence, WD
values within a site, based on the species pool occurring in the plots within a site.
We performed 999 iterations per site, and in each iteration calculated the CWM
WD for all of the plots at that site. After each iteration, we calculated for the site
the slope of CWM WD versus In[age], and calculated the average slope over 999
iterations. This randomized slope represents the change in CWM WD over time if
changes were only driven by species accumulation, and a strong deviation between
the random and observed slopes indicates that the pattern is largely independent
of species accumulation. In fact, the randomized slopes were close to—and not
significantly different from—zero. To quantify the deviation from random, we
then calculated the standardized slope per site as: (observed slope — the average

of random slopes) / the standard deviation of random slopes. We then plotted the
standardized slopes against CWA.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The dataset on CWM WD values and WD ranges for the plots from 49 sites (Fig. 1)
is available from the Data Archiving and Networked Services repository at https://

doi.org/10.17026/dans-z3s-3d7t. For one other site, data are available on request.
The data used to produce Fig. 2 can be found in Supplementary Table 1.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Plot-level data and, where possible, species-specific wood density data were collected by the data owners, and provided using excel
sheets. Other wood density data was downloaded from the global wood density database.

Data analysis All analyses were performed in R 3.3.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The dataset on community weighted mean wood density and wood density range for plots from 49 sites (Fig. 1) is available from the DANS repository, http://
doi.org/XX.XXXXX/dans-XXX-XXXX (46), and for one site it is available upon request. The data of Fig. 2 can be found in Extended Table 1. The authors declare no
competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be
addressed to L.P. (lourens.poorter@wur.nl).
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We compiled chronosequence data for 50 Neotropical lowland forest sites covering the entire latitudinal gradient in the Neotropics
(Extended Data Fig 1, Extended Data Table 1). We focused on the Neotropics, i.e., tropical South America and Mesoamerica, because
(1) shifting cultivation is an important land use type there, (2) the region has a relatively shared biogeographic history, thus reducing
confounding historical effects, and (3) many chronosequence studies have been established in the area. On average 28 plots (range
5-251) were established per chronosequence, with the age of the youngest plot ranging from 0 to 20 years in time since
abandonment. The age range covered by chronosequence plots varied from 9 to 80 years across sites (Extended Data Table 1).
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Research sample Plot sizes ranged from 0.01 to 1 ha, with an average of 0.1 ha across all plots. Per site, plots were of the same size.

Sampling strategy Plots were established in different areas, to cover different time since abandonment. The exact location of the plots depended
therefore on the ages known and available. The number of replicate plots varied per site, as this is a compilation of different studies
that were establsihed for different purposes. It depended, amongst others, on financial and logistic opportunities, and the amount of
secondary forest of different ages available in the area.

Data collection All trees, palms and shrubs all stems > 5 cm stem diameter at breast height (dbh) were measured for dbh and identified to species,
except for six sites where minimum dbh was 10 cm.

Timing and spatial scale  This is a compilation of 50 studies. We have provided the references of the original studies, so that you can know when they were

established
Data exclusions No data was excluded.
Reproducibility This is a field study and not an experiment.
Randomization Not relevant (it is a field study without treatments (the "treatment" was time since abandonment).
Blinding Not applicable.

Did the study involve field work? ~ [X] Yes [ Ino

Field work, collection and transport

Field conditions Annual rainfall varied from 750-4000 mm y-1 across sites, topsoil cation exchange capacity (CEC) from 1.7-64.6 cmol(+) kg-1, and
percent forest cover in the landscape matrix ranged from 9-100% (Extended Data Table 1).

Location See the Extended table 1 in the manuscript with the locations.
Access and import/export See the original 50 studies.

Disturbance The only disturbance was sometimes collection of plant vouchers for species identification.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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