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Abstract—Online event detection in streaming time series is
a critical task with applications across various domains. For
example, the right-on-time event detection for control systems is a
key for correctly addressing the issues related to the events. How-
ever, events may not be identified right after their occurrence.
Depending on the monitoring solution, a time difference may exist
between the event’s occurrence and detection. This problem raises
research questions regarding the study of such a temporal gap.
The paper introduces novel metrics (detection probability and
detection lag) to address these questions. It explores the impact of
configurable batches on detection performance. The experimental
evaluation of diverse datasets reveals nuanced insights into the
interplay between batch parameters, detection accuracy, and
computational performance.

I. INTRODUCTION

Time series events are characterized by the occurrence of a
significant change in the behavior of a time series at a certain
point or time interval [1, 2, 3]. Such events are commonly
identified using change point or anomaly detection methods
[4, 5, 6, 7]. Event detection methods are either offline or online
[8, 9, 10, 11]. When offline, they rely on prior access to all
historical data. When online, they have to detect occurrences
by monitoring the streaming of process data while it is being
generated [12, 9, 13].

Many control systems demand right-on-time detection to
enable undesirable situations to be addressed promptly. In
this way, continuously monitoring streaming time series raises
an important fact. An observation that characterizes an event
might not be detected when the observation appears in the
time series. New observations might be appended before event
detection methods discover them [14, 15, 16]. Thus, if an event
occurs in time t but is only detected by an online detection
method at time t+ k, the detection lag is k.

Considering the detection lag problem, it is possible to raise
the following research questions: How can one evaluate the
elapsed time between when an observation in the time series
is read and its detection as an event? Is it possible to assess the

behavior of methods throughout the streaming process? How
can information about the behavior of methods contribute to
identifying changes in the streaming time series?

To explore these questions and enhance online event de-
tection in time series, this paper introduces new metrics for
analyzing the performance of event detection methods over
streaming time series. The presented metrics enable assessing
the probability of a detection corresponding to an event and lag
in detections. Since existing studies do not correctly address
these aspects, these are important contributions of this paper.

In addition to this introduction, this paper is divided into five
more sections. Section II presents the theoretical framework
for event detection. Section III discusses related works. Section
IV introduces the general framework with the proposed proba-
bility and lag analysis in event detection. Section V discusses
the results of the experiments, and Section VI presents the
research conclusions.

II. BACKGROUND

This section introduces fundamental event detection and
subsequence analysis concepts in time series.

A. Event Detection

Event detection can be based on predicted values, where
methods include a step for predicting the next values in the
time series. Events are detected when there is a discrepancy
between the actual value of a new observation and predicted
values. Alternatively, events can be detected based on bound-
aries, defining upper and lower limits beyond which each new
streaming observation is marked as an event [17, 18, 16, 7, 19].

There are two main modes for online event detection in
streaming time series: static and dynamic. In static mode, the
model detects events in the streaming time series using a pre-
trained model with historical data. In dynamic mode, training
is done once a warm-up size for the time series is achieved.
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As new observations are received via streaming, the model is
retrained incrementally [15].

B. Subsequence Analysis in Time Series

To analyze local properties in a time series X , subsequences
of size p can be extracted as described by Equation 1. The
sliding windows technique involves extracting subsequences
that traverse the entire time series. For this, a set of subse-
quences of the same size is generated, represented as a matrix
A containing all the time series X subsequences, as defined in
Equation 2. The sliding window enables continuous analyses
of the local properties of time series [20].

seqp,i(X) =< xi, xi+1, · · · , xi+(p−1) >,

|seqp,i(X)| = p, 1 ≤ i ≤ |X| − p
(1)

∀ai ∈ A, ai = seqp,i(X) (2)

Event detection methods such as Exponentially Weighted
Moving Average (EWMA) [21], and Forward and Backward
Inertial Anomaly Detector (FBIAD) [22] use sliding windows
either integrated or as an intermediate preprocessing [23].
Naturally, considering a scenario in which a new observation
is appended one at a time and an event detection method
is immediately triggered, the concept of sliding windows is
seamlessly prepared for online event detection. For example,
Zeileis et al. [24] present an R package called strucchange to
detect change points in streaming time series through sliding
windows.

However, when the data arrives very fast, analyzing all
sliding windows each time a single observation arrives is not
feasible. In these cases, grouping the arrival of new obser-
vations into batches makes sense. Although the term batch
processing is typically associated with offline processing, even
streaming data processing can occur by sending and receiving
individual small batches [9, 5, 25]. For example, batches
are used in the Spark streaming tool. The tool uses micro-
batches, i.e., small batches of data to be processed [5]. A
similar intuition for dividing the time series into batches was
explored for streaming processing to identify concept changes
by Iwashita and Papa [26], Giusti et al. [27].

How batches are configured is a key for online event
detection. The number of batches preserved in memory is
also a parameter commonly studied. It gives the flexibility of
enabling a connection between the two scenarios previously
indicated. The case in which we define a batch of size 1,
preserving m batches in memory, provides the same context
of having sliding windows of size m. So, these concepts are
not antagonistic.

III. RELATED WORK

This section discusses online event methods and tools and
ways of comparing them. Subsection III-A presents works that
propose event detection methods and tools. Subsection III-B
presents works comparing methods. Finally, Subsection III-C
wraps up related work and presents identified research gaps.

A. Event Detection Methods in Streaming Time Series

Various methods have been developed for offline event
detection, but works such as Talagala et al. [16] and Ariyaluran
Habeeb et al. [15] indicate the challenges of these meth-
ods in handling streaming time series. However, there is
no definitive evidence of the non-applicability of methods
initially designed for offline detection in the streaming sce-
nario. Considering their widespread use, they should not be
overlooked [28, 29, 9, 30]. Some examples include Holt-
Winters (HW) [31], FBIAD [22], Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) [32], EWMA [1],
and ChangeFinder (CF) [33, 30]. There are also certain tools
with hybrid applications developed for offline and online
detection, including Strucchange [24] and k-Nearest Neighbors
- Conformal Anomaly Detector (KNN-CAD) [17].

Rettig et al. [5] introduced an online event detection method
targeting gradual and abrupt changes. Gradual changes in
the data stream are identified using relative entropy, whereas
abrupt changes with Pearson correlation [5]. Ahmad et al. [17]
proposed a method for event detection in time series streaming.
The Hierarchical Temporal Memory (HTM) uses machine
learning to model the distribution of the time series and
compares new observations with model predictions, marking
anomaly events based on the discrepancy between actual and
predicted values [17, 31]. Zhang et al. [7] presented the MF-
stacked LSTM-EWMA method that employs a prediction step
and a detection step based on the divergence between actual
streaming observations and model predictions. The method is
divided into three steps: (i) identifying obvious anomalies, (ii)
predicting the next observations in the time series, and (iii)
detecting events.

Ren et al. [19] implemented a service called Microsoft
Anomaly Detector (MAD) on the Microsoft Azure cloud
platform. MAD used the SR-CNN algorithm, a combination
of the SR algorithm and a CNN [19]. SR performs a time
series transformation, generating a saliency map representation
where extreme values are accentuated. At the same time,
CNN uses this transformed version of the time series to learn
boundaries to determine event occurrences.

B. Comparative Studies of Methods

In addition to works focused on proposing methods for event
detection, efforts were made to identify studies comparing
these methods. Salles et al. [29] developed the Harbinger
framework, which provides functions for event detection,
evaluation, visualization, method combination, and compari-
son of detections. Harbinger enables the implementation and
combination of different event detection methods but executes
them offline.

Ahmad et al. [17] provides a framework named Numenta,
the Numenta Anomaly Benchmark (NAB) dataset, and the
NAB Score metric. Several methods were compared for online
detection, and the three methods with the best-published
performances were HTM, Relative Entropy, and Twitter ADVec
[17]. The methods were compared using the NAB Score metric
and microsecond latency time. Hasani [6] analyzes online
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event detection methods and compares performance, execution
time, and CPU usage.

Belacel et al. [11] present a proof of concept for using
methods existing in the Scikit-Multiflow and River packages
integrated into the Kafka streaming platform. The main contri-
butions of the work relate to proposing a model for integrating
methods with Kafka and reducing execution time in streaming
scenarios compared to offline detection. In the analysis of
comparative method studies, the use of traditional metrics
for classification tasks [34, 29] and computational cost [6]
is observed. Some metrics adapted for the time series context
are also used [17, 30].

C. Summary

A synthesis of the analysis of related works is presented
in Table I. An important aspect of identifying gaps in the
literature is that most works do not provide an analysis of
batch configuration during streaming processing and do not
address a deeper discussion on evaluation metrics. Table I
shows that using detection metrics adapted from classification
tasks is common. While evaluating streaming, the focus is on
computational performance, such as execution time, latency,
and CPU usage. This paper explores these limitations through
the methodology presented in the next section.

TABLE I
METRICS FOR COMPARISON IN STREAMING DETECTION

Work Metrics
Numenta [17] Latency
Harbinger [29] No
MAD [19] No
Strucchange [24] No
Rettig et al. [5] No
Hasani [6] Execution Time, CPU Usage
Belacel et al. [11] No

IV. METHODS

This section discusses the general scenario for online time
series event detection in streaming. It also provides new
metrics to support the evaluation of detectors. Section IV-A
provides the basic formalization. Section IV-B presents how
detections in streaming scenarios are carried out. Sections
IV-C and IV-D formalize Detection Probability (DP) and
Detection Lag (DL), respectively.

A. Formalization

Given a time series X of size n, it is partitioned into batches
of size s. The number of batches of X is defined as dns e. Thus,
each batch bj (1 ≤ j ≤ dns e) has a sequence of s observations
< x(j−1)·s+1, . . . , xj·s >.

For streaming processing, w is the number of batches
to fill in memory (warm-up) to start the event detection
process. Besides, m is the number of batches to preserve in
memory. In steady state, for full memory (old batches are not
discarded) m ≥ w, whereas for partial memory (old batches
are discarded) m = w.

B. Online Event Detection Process

We established a configurable batch for event detection
workflow to conduct detections and develop probability and
lag analysis metrics. The workflow is presented in Figure 1.
It receives a time series X and additional parameters Pr for
streaming event detection on the time series. These additional
configuration parameters are streaming process parameters s,
w, and m and the applied method M for detection with its
respective hyperparameters. The workflow continues executing
by sliding along the time series in batches of size s iteratively
until the entire time series is traversed.

Fig. 1. Workflow for event detection in streaming time series

This process of analyzing the series iteratively through
batches is described in the following steps that detail Figure
1. Initially, the warm-up subset is selected (Step 1). Then,
the method M with the provided hyperparameters for event
detection is applied in the warm-up (Step 2). This step
generates a set of event detections with the latest j-th batch,
denoted by Dj .

After detection is completed, if the series has not yet
reached the end, a new batch bj is included (Step 3). If the
configurable batch is defined as full memory, i.e., m = 0,
the workflow maintains the memory of old batches. However,
when m ≥ 1 (partial memory), the oldest batch bj−m+1 is
removed (Step 4) when a new batch bj+1 is appended in a
steady state. At this point, j is incremented in one unit.
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The process is repeated from step 2, i.e., method M is
applied again to detect events, generating a new set of events
Dj . Finally, the detection results from each stream processing
iteration (Dj) are consolidated in the CD set (Step 5) to
measure the events detected and their detection times correctly.

The goal of using configurable batches with full or partial
memory approaches aims to balance the accuracy of the
detection methods and the computational cost of analyzing the
time series in streaming. In both cases, the batches are added
continuously. Hence, the methods use the in-memory batches
to learn the expected behavior of the time series. With access
to observations, methods are applied to detect events.

In full-memory detection, batches are added continuously,
and the time series is analyzed cumulatively. This way, there
is more information for use by the methods that can help
increase accuracy. However, it is natural for a gradual increase
in computational cost, and old observations might interfere too
much with event detection.

With partial memory, old batches are removed as new
batches are added. Thus, only the most recent batches equiva-
lent to the memory size m defined in the execution parameters
remain in memory. It is expected to evaluate whether this op-
tion generates the opposite effect of full-memory preservation,
i.e., with lower computational cost, greater influence of recent
observations on event detection, and their effects on detection
accuracy.

C. Detection Probability

Consider a time series X; the assessment of the DP requires
the mapping of each observation xi while present in batches
during processing. Assuming that xi appeared in batch bj , such
j = d ise, xi is available for time series detection bf(xi) times.
In steady state, Equation 3 characterizes the batch frequency
for an observation xi, considering partial and full memory
cases.

bf(xi) =

{
m, for the partial memory case
dns e, for the full memory case.

(3)

Let Bi be set of the most recent batches an observa-
tion xi is presented in the batch memory, such that Bi =
{bj , . . . , bj+bf(xi)}, a detector M has bf(xi) evaluations to
check if xi is an event or not. It is possible to define as a defi-
nition frequency df(xi) as the number of times xi was marked
by M as an event. From this definition, 0 ≤ df(xi) ≤ bf(xi).

Under this vein, it is possible to define the detection
probability DP (xi), presented by Equation 4, as the ratio
between detection frequency and batch frequency for xi.

DP (xi) =
df(xi)

bf(xi)
(4)

To exemplify how DP can be applied to enhance the analysis
of online event detections, two hypothetical observations, x3

and x5 in a series X , can be assumed. Considering that
when analyzing the series through a batch size 1 with the
batch memory size 7 (m = 7), method M detects x3 as

event 2 times. In contrast, the observation x5 is detected as
event 6 times, so df(x3) = 2 and df(x5) = 6. Consider-
ing, furthermore, that both observations appear in 7 batches,
hence bf(x3) = bf(x5) = 7. Thus, DP (x3) = 0.29 and
DP (x5) = 0.86.

D. Detection Lag

The DL of each detection is evaluated to assess the early
detection capability of DL-executed methods. For this purpose,
DL is considered the lag in detection, i.e., the number of
batches elapsed between the first reading of the observation
and the first batch in which this observation is detected as
an event. Formally, considering an observation xi in the time
series X , sbi as the start of reading this observation in
batches (start batch), and fdbi as the first batch in which the
observation xi is detected as an event (first detection batch),
we have Lagsi for a batch size s obtained by Equation 5. The
DL identifies how many batches the method took to detect
an event, helping to assess the methods’ early event detection
capability.

Lagsi = fdbi − sbi (5)

To illustrate the use and interpretation of Lagsi , one can
consider a hypothetical observation in time 9 (x9) for a time
series of size 12. Assuming a batch size 3, the start batch sb9
equals 3. Besides, if we consider that the detector M only
found x9 as an event in batch 4, i.e., fdb9 = 4. In this way,
Lag39 equals 1.

Considering that it is possible to configure batches with
different sizes (s), it is not recommended to compare the DL
obtained in batches using Equation 5 between executions of
different batch sizes. As an alternative, for cases in which this
type of comparison is desired, obtaining the DL value in the
number of observations is possible using Equation 6.

Lagi = (fdbi − sbi + 1) · s (6)

V. EXPERIMENTAL EVALUATION

This section comprehensively analyzes the online event
detection process and proposed novel metrics. Firstly, Section
V-A introduces the experimental setup, laying the foundation
for subsequent discussions. Following this, an in-depth exper-
imental evaluation is presented to address three key aspects:
(i) the comparison of various batch parameter combinations
(Section V-B), (ii) an assessment of the utility of the detection
probability (Section V-C), and (iii) an exploration of the
detection lag associated with the methods employed (Section
V-D).

A. Experimental Setup

Datasets representing a wide diversity of domain areas and
time series behaviors were selected to explore the studied
methods properly. These datasets include Yahoo Labs [19],
Numenta [17], and RARE [35]. The datasets used in the
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experiments were made available in a public repository1 to
facilitate reproducibility.

The time series contained in the Yahoo Labs, NAB, and
RARE datasets are from domain areas related to technology,
such as network and internet data traffic, cloud computing, and
computer equipment monitoring [17, 35]. The Yahoo Labs and
NAB time series are extensively used in research comparing
event detection methods [6, 29, 35]. Thus, all the time series
from these datasets were included in the analysis.

The selected detection methods were CF [1], FBIAD [22],
ARIMA [28], GARCH [32], and LSTM [7]. This choice aims
to explore a suitable diversity of event detection approaches.
Regarding the types of events, the CF method detects change
points, and GARCH detects volatility anomalies. In contrast,
the other methods detect anomalies in general.

The parameters used for each method are displayed in
Table II. These parameters represent the default values of each
method as implemented in the Harbinger framework [29]. In
the experiments, no exploration of different parameter values
for the methods was conducted to maintain uniform behavior
and vary only the parameters related to their online execution.
Thus, the experiments enable a more suitable evaluation of
the impact of batches in memory on detection results for each
method, with different batch sizes and preservation of com-
plete or partial data memory across batches during execution.

TABLE II
PARAMETERS PER METHOD

Method Parameter Value
FBIAD sw (sliding window size) 30
ARIMA mdl (model) Autoarima

ARIMA(p, d, q) order(1,6,2)
CF mdl (model) Linear regression

ma (moving average size) 30

GARCH variance.model,
mean.model

sGARCH: garchOrder
= (1, 1), armaOrder
= (1, 1)

LSTM inputsize, epochs,
normalization

4 neurons, 10000
epochs, Global
Min-Max

Since the methods employed have different operational
mechanisms, many parameters do not have equivalence or
similarity. However, when more than one method uses similar
parameters, the values are kept the same for better compara-
bility of results. In Table II, it is possible to verify similar
parameters with equal values in the rows of sw and ma for
the FBIAD and CF methods, respectively, as well as the alpha
parameters for the FBIAD and GARCH methods.

The parameters used in the batches are the warm-up size,
batch size, and batch memory (w, s,m). The options follow
a uniform proportion for the warm-up and batch size values
given in the number of time series observations. For batch
memory, expressed in the number of batches, the used options
are complete memory of all batches and partial memory (the
last three or nine batches, depending on the dataset and
methods).

1Available at https://github.com/cefet-rj-dal/event datasets

The selected values for batch size (s) enable observation-
to-observation analysis execution (size = 1) up to larger
batches with 243 observations. The range of value options was
defined to enable the proper execution of methods requiring
a minimum number of observations. Different value options
also aimed to enable experiments with larger time series,
where very small batches could make experiments too slow
and computationally expensive.

Values for defining batch size (s) start at one. They follow
a uniform progression of multiples of three from the second
option. However, considering that the selected methods may
use central tendency techniques, the first value was the one
closer to 30 (s = 27), which is known as a sample size that it
may be possible to assume normal distribution considering the
Central Limit Theorem. Moreover, values below s = 81 might
be insufficient for methods requiring more model training
observations or greater values of w and m. For fairness
in execution conditions and result comparison, when this
occurs for a specific method, the experiment parameters are
configured to start from the minimum value that works for all
methods.

Regarding values for batch memory (m), in addition to
exploring the complete time series by preserving the memory
of all batches, attention was given to situations where memory
is incompatible with the number of batches in the experiment.
For example, the number of preserved batches must equal or
smaller than the total number of batches analyzed. It also does
not make sense for the number of batches to be very close to
the total number of time series batches since the effect of both
data volume for analysis and computational cost would be very
close or equal to full memory execution.

The experiments were implemented using the R program-
ming language. They were executed on a computer with an
Intel i7-7820X CPU with 16 cores and 128 GB of main
memory. The datasets were loaded into memory from a
repository on the GitHub platform2.

B. Batches in Memory

This subsection details the detection performance of dif-
ferent batch parameters and method combinations to explore
the behavior of each parameter and the different methods. The
average results for each metric across all datasets are presented
in Table III and IV. The values were calculated by obtaining
the performance average of each metric for all batch parameter
combinations in each dataset.

TABLE III
AVERAGE ACCURACY FOR METHODS BY DATASETS

Method Yahoo Numenta RARE
ARIMA 93.28 92.78 92.12
CF 97.01 96.15 94.31
FBIAD 97.01 82.41 93.00
GARCH 97.56 97.65 93.71
LSTM 93.32 92.84 91.44

2Available at https://github.com/cefet-rj-dal/event datasets
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No significant differences were found at a significance
level of 5% among different combinations within each dataset
for detection performance metrics. For batch execution time,
executions with partial memory showed statistical significance
compared to their full-memory counterparts. The batch size
variable proved relevant and positively correlated with this
metric. The execution time results per method and batch
parameter are described in Table V.

TABLE IV
AVERAGE F1 SCORE FOR METHODS BY DATASETS

Method Yahoo Numenta RARE
ARIMA 8.66 1.79 7.04
CF 1.75 2.81 1.65
FBIAD 1.31 0.78 6.97
GARCH 10.80 3.68 4.41
LSTM 7.69 1.12 3.84

TABLE V
TIME PER BATCH FOR EACH COMBINATION, METHOD, AND DATASET

Set. Dataset ARIMA CF FBIAD GARCH LSTM
1,
81,
F

Yahoo 3.54 - 0.98 16.82 4.43
Numenta 13.98 - 4.11 31.60 6.30
RARE 1.85 - 5.80 41.97 4.60

1,
81,
P*

Yahoo 1.56 - 0.40 13.96 5.66
Numenta 0.91 - 0.47 12.11 8.02
RARE 0.80 - 0.97 13.04 4.31

1,
243,
F

Yahoo 12.57 2.43 3.96 62.95 11.86
Numenta 39.32 11.83 13.51 96.14 12.56
RARE 5.83 21.81 17.28 130.69 11.49

9,
27,
F

Yahoo 1.48 0.20 0.35 5.71 2.47
Numenta 5.06 2.27 1.44 10.77 3.78
RARE 0.69 2.41 1.91 15.26 3.21

1,
243,
P

Yahoo 7.93 1.44 2.44 51.18 11.45
Numenta 5.77 1.50 2.56 33.80 14.26
RARE 3.56 3.27 5.38 51.60 10.42
* The CF method does not support window size 81

Considering that most batch parameters may not influence
detection accuracy according to these results, partial memory
may be an effective option to reduce batch execution time.
Moreover, some methods, such as the GARCH and LSTM,
may be more complex than others. Nevertheless, considering
the results presented and the purpose of this paper, the
configuration of (w = 1, s = 243, m = 0) was used as the
base for the upcoming experiments involving DP and DL. This
combination was chosen because it was faster to execute and
also provided more steps in the analysis, which are important
for the metrics presented in the next sections.

C. Analysis of Detection Probability

This section analyses the impact of the detection probability
on the detection performance in online event detection. Specif-
ically, a new DP threshold is proposed based on the times
each observation is detected and the total amount of times
the observations are read. The purpose is to test whether the
detection performance could improve with this new threshold.

The results showed that the hypothesis that non-zero thresh-
olds may improve the detection performance is still unclear.

Specifically, of the three datasets used in the experiments, only
the Yahoo time series showed a significant improvement at
thresholds 0.5 and 0.8 compared to 0 for both accuracy and
F1. The results are presented in Table VI and VII.

The behavior of methods, expressed by the accuracy values
for different thresholds, might be seen in Figure 2. The RARE
dataset showed no difference between thresholds 0.5 and 0.8.
Numenta only performed better in F1 for 0.5 and accuracy
for 0.5 and 0.8. This dataset showed the biggest difference
in accuracy when compared to 0, as illustrated by the abrupt
growth in Figure 2.

TABLE VI
ACCURACY METRICS FOR EACH THRESHOLD GROUP AND DATASET

Dataset Threshold
0 0.5 0.8

Yahoo 91.93 92.48 93.61
Numenta 80.90 90.50 91.55
Rare 90.76 91.09 91.50
Overall 90.73 91.29 92.31

Fig. 2. Visual analysis of accuracy metrics for each threshold

TABLE VII
F1 METRICS FOR EACH THRESHOLD GROUP AND DATASET

Dataset Threshold
0 0.5 0.8

Yahoo 9.78 10.25 11.32
Numenta 11.59 13.25 17.42
Rare 5.83 5.73 5.58
Overall 4.85 5.11 5.72

Regarding the performance gain in cases where it occurred,
the highest gains were around 5% F1 and 10% Accuracy.
These results indicate that the proposed detection probability
metric can be a good alternative to optimize the performance
of univariate time series event detection. However, it is impos-
sible to generalize to all databases, making it necessary to tune
different detection probability values in each case. Specifically,
the improvements achieved with the detection probability may

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on January 02,2025 at 22:52:06 UTC from IEEE Xplore.  Restrictions apply. 



be explained by reducing false positives. Nevertheless, this
improvement may not always hold with a high incidence of
false negatives.

D. Analysis of Detection Lag

This subsection analyses the detection lag metric of all
methods. Specifically, it shows how many batches each method
takes to make a detection. To the best of our knowledge,
these results may generate important information about the
performance of the methods that were not available in any
other known metric.

The results with the DL variable indicate that the values may
depend significantly on the datasets. Specifically, the Yahoo
dataset had a median DL of one window for all methods,
indicating that real events tend to be detected faster in this
dataset. Table VIII presents the DL analysis of the three
datasets.

TABLE VIII
COMPARISON OF DL FOR YAHOO, NAB, AND RARE DATASETS

Parameters: w = 1, s = 243,m = 0.
Method Yahoo NAB RARE
FBIAD 1 9 10
ARIMA 1 11 11
GARCH 1 4 6
CF 1 13 8
LSTM 1 5 10

Values: Median for all time series in each dataset

When there are no differences in this aspect, selecting the
best method can be based on the balance between detection
accuracy and execution time. However, as in the NAB and
RARE time series, where DL values are quite distinct between
methods, it is necessary to evaluate which methods achieve the
best combination of accuracy, processing time, and lower lags
in detections.

For NAB, a high value is observed for the median of
DL, mainly due to some time series whose median lags are
very high, all with Lagsi > 10. However, in the time series
that originated the median calculation, the DL generally was
close to Lagsi = 3. With such differences, as in NAB, the
importance of evaluating the joint aspects of accuracy, time,
and mentioned lag is emphasized.

The RARE dataset has peculiar characteristics, such as
many time series without changes over time, which are consid-
ered anomalies according to the labels. There are also punctual
changes in some time series intervals, without the labels of
events coinciding with the moments when the greatest changes
occur. Thus, many false negatives exist in detections and high
lags, as seen in Table VIII, where only two methods have a
median Lagsi ≤ 10.

Among the three technology datasets, NAB has the greatest
difference between Lagsi values. As an exercise to show the
intuition of balancing the available metrics in the detection, it
is noted that GARCH and LSTM have better Lagsi results.

Table IX confirms a difference in DL values with statistical
significance between GARCH and LSTM. The same test was

performed for the DL and accuracy metrics for a complete
evaluation. This test compares all results and generates a
value called the effect size, the magnitude of the size of the
difference, which is classified on a scale as nonexistent, small,
moderate, or large. In this comparison, only the difference in
DL was classified as small. At the same time, accuracy has
differences that are classified as large.

TABLE IX
COMPARISON BETWEEN GARCH AND LSTM USING WILCOX EFFECT

SIZE STATISTICAL TEST IN NAB DATASET

Parameters: w = 1, s = 243,m = 0

Metric Difference Effect size Magnitude
DL Yes 0.054 Small
Accuracy Yes 0.728 Large

Considering real-world scenarios, it is important to evaluate
whether DL obtained by detection methods is appropriate for
response time reaction by domain experts. For example, in an
oil drilling and exploration [36] context, 15 minutes could be
the right time to stop oil production in case of an incident.
If DL could lead to an elapsed time higher than the time
constraint, novel detection methods should be explored.

The different usage scenarios also deepen the importance of
information on the behavior of streaming methods provided by
DL and DP metrics. As demonstrated, especially in exploring
the NAB time series, this information on the behavior of
detections over streaming enriches the foundations for the
proper selection of methods. According to the authors’ best
knowledge, this type of detail about the streaming of time
series is a unique characteristic of this paper and reinforces
its relevance.

VI. CONCLUSION

This paper proposed a comprehensive approach to online
event detection in streaming time series. It introduces novel
metrics for evaluating detection performance. The configurable
batch methodology was formalized, enabling a balance be-
tween accuracy and computational cost.

The new metrics, Detection Probability (DP) and Detection
Lag (DL), provide insights into the behavior of detection meth-
ods during streaming processing. DP measures the probability
of detecting an event at each observation, and DL evaluates
the lag between observing an event and its detection.

The experimental evaluation covered diverse datasets and
methods. The analysis explored different batch parameter
combinations, revealing that, in general, the choice of batch
parameters does not significantly affect detection accuracy.
However, partial memory configurations clarify the potential to
reduce batch execution time without compromising accuracy.

The insights provided by DP and DL metrics contribute
to a more informed decision-making process when deploying
online event detection systems. In future work, using these
metrics to evaluate event detection methods can be further ex-
plored to improve detection performance and evaluate whether
the DL is acceptable for the specific problem.
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