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ABSTRACT

Predicting the insulating thermal behavior of a multi-component refractory ceramic system could be a difficult task, which can be
tackled using the finite element (FE) method to solve the partial differential equations of the heat transfer problem, thus calculating
the temperature profiles throughout the system in any given period. Nevertheless, using FE can still be very time-consuming when
analyzing the thermal performance of insulating systems in some scenarios. This paper proposes a framework based on a machine
learning surrogate model to significantly reduce the required computation time for estimating the thermal performance of several
multi-component insulating systems. Based on an electric resistance furnace case study, the framework estimated the feasibility and the
final temperature of nearly 1:9� 105 insulating candidates’ arrangements with reasonable accuracy by simulating only an initial
sample of 2:8% of them via FE. The framework accuracy was evaluated by varying the initial sample size from �0:9% to 8% of total
combinations, indicating that 3%–5% is the optimal range in the case study. Finally, the proposed framework was compared to the
evolutionary screening procedure, a previously proposed method for selecting insulating materials for furnace linings, from which it
was concluded that the machine learning framework provides better control over the number of required FE simulations, provides
faster optimization of its hyperparameters, and enables the designers to estimate the thermal performance of the entire search space
with small errors on temperature prediction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004395

NOMENCLATURE

ERF Electric resistance furnace
ESP Evolutionary screening procedure
FE Finite elements
FN False negative
FP False positive
GA Genetic algorithm
LS Learning set

MAE Mean-absolute error
ML Machine learning
MLPc Multi-layer perceptron classifier
MLPr Multi-layer perceptron regressor
RMSE Root mean squared error
RRc Ridge regression classifier
TN True negative
TN True positive
XGB Extreme gradient boosting
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I. INTRODUCTION

Industrial processes involving high temperatures usually require
insulation linings containing more than one layer of refractory
ceramic materials in order to optimize costs, overall thicknesses, and
insulating efficiency.1 All those require critical decision steps related
to selecting a proper set of commercial products to design and build
the roofs, walls, and floors of heating chambers. Designers need to
calculate the thermal performance of those linings based on their
properties so they can compare costs and benefits among the candi-
dates.2 Nevertheless, assessing combinations of multiple material
layers leads to solving a computationally intensive dynamical
system,3 which relies on initial conditions, heat propagation, and
transient behaviors. In practical terms, the temperature profile along
the insulating lining will be a consequence of the interaction of
thermal properties of each component material, which responds dif-
ferently to temperature variations.4

Finite element (FE) modeling has been used to calculate the
heat transfer and resultant temperature distribution for complex
scenarios by using computer simulations.5,6 However, depending
on the object structural complexities, physical phenomena to be
modeled (which may increase the number and complexity of
model equations), mesh refinement, total processing time and
other factors, the FE model can be quite time-consuming, thus hin-
dering a full analysis of the thermal performance when there are
various likely combinations of materials.7

One may take advantage of other computer techniques in con-
junction with FE to reduce the time required to estimate the tem-
perature distributions of a vast number of insulating systems.8–10

As an example, an evolutionary screening procedure (ESP) based
on multi-objective genetic algorithms (GAs) and FE was capable of
presenting 100 near-optimal trade-off lining systems by simulating
�3:8% of all the possible configurations.7 Although this methodol-
ogy has proven to be useful from the perspective of material selec-
tion, other performance-equivalent but faster surrogate strategies
should be taken into account to substitute the FE model.11

A powerful collection of computational tools is available within
the area of machine learning (ML).12 For instance, supervised learn-
ing algorithms have been frequently used to make data-driven predic-
tions in materials science domains.13–15 They theoretically converge
to the best as possible classifier/regression function mapping input
variables (X) into output ones (Y), according to samples obtained
from some joint probability distribution P(X � Y).16 The reason they
are referred to as “supervised” is that given some training set with
known values provided for (x, y) [ X � Y , the algorithm “learns”
those relations, and is capable of generalizing (or extrapolating)
known patterns to unseen inputs still inferring their outputs. A
careful description of several mechanisms, theories, and algorithms
that support the statistical learning theory and ML foundations can
be found elsewhere.16–19

In this context, this paper introduces an ML framework
designed and developed to predict the thermal performance of elec-
tric resistance furnace (ERF) linings under different configurations,
all based on candidate materials obtained from a previous study.7

The framework consists of a two-stage supervised learning: (i) ini-
tially, a classification model is used to predict whether a combina-
tion of materials would fail, i.e., if the temperature profile along the

insulating lining would exceed its maximum working temperatures
(thus operating as a problem constraint) and (ii) next, a regression
model is used to predict the final external temperature of the feasi-
ble lining systems (thus working as the objective function). The
previously developed FE model7 was applied to carry out thermal
simulations of nearly 2:8% of all combinations of candidate materi-
als as an initial learning sample. Afterward, the ML framework was
applied to learn the non-linear relations mapping the furnace
linings (according to their attributes: thermal conductivity, specific
heat capacity, density, thickness, and maximum working tempera-
ture) into their respective thermal responses.

This study aims to present a faster and effective alternative for
inferring the thermal responses of insulating systems in an attempt
to simplify a multi-objective materials selection optimization.
Unlike a previous study,7 in which GA was capable of finding a
near-Pareto20 front by calculating the performance of around 3:8%
of the combinations, the machine learning framework herein pro-
posed can be used to estimate the behavior of all feasible system
settings, thus providing an approximation for the real Pareto curve.
The pros and cons of each methodology were discussed and, addi-
tionally, the effect of the initial set size in the predictability of the
proposed model was evaluated in the range of 0:9% to 8% of all
likely material configurations subject to the required constraints.

II. MATERIALS AND METHODS

A. Electric resistance furnace case study

This work is based on the case study of an electric resistance
furnace (ERF) optimization, originally built up in a previous
study.7 Moreover, 121 products were selected as potential candi-
dates to build the insulating system of a laboratory ERF with wall
dimensions of 300� 300 mm2 operating up to 1600 �C for ceramic
thermal processing purposes. From each product data sheet, the
following pieces of information were collected: product form (rigid
or flexible); thermal properties (thermal conductivity, specific heat
capacity, and maximum operating temperature); thickness; density;
and price (in US$/m2). The objective is to investigate which combi-
nation of insulating products would minimize both the furnace
external temperature and the insulation cost such that its total
thickness remain in the range of 40–200 mm and respecting the
individual materials maximum operating temperature.

B. Insulating systems’ datasets

Each insulating system comprises a sequence of products in
the inner, middle, and outer layers, respecting the following build-
ing rules: (i) in the inner layer, only rigid materials with a
maximum working temperature above 1600 �C can be used; (ii) in
the middle one, only materials withstanding a maximum working
temperature higher than 1180 �C are allowed; and (iii) at the outer
layer, only those with a maximum working temperature below
1260 �C were accepted. Under these constraints, 37 products could
be used in the inner layer, 105 in the middle, and 49 in the outer
one so that a total of 1:9� 105 insulating systems were, at first,
likely to be used.

In order to create the data examples for the insulating system,
as a training set for the supervised machine learning algorithms,
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5538 products combinations (around 2:83% of the total possibili-
ties) were randomly chosen according to a single criterion: the
number of times a product appeared in a layer should be approxi-
mately equal to all other products in that same layer such that the
final set consisted of a proportionally balanced distribution of
product combinations. From now on, this will be called the
Learning Set (LS).

LS was then simulated by the FE model to obtain two pieces
of information: (i) check whether the insulating system respected
the constraints of maximum working temperatures and (ii) calcu-
late the lining external temperature after the heating process. Then,
both were added to LS as response attributes of the respective
lining product combination.

C. Feature engineering

The next step was to convert product names into quantifiable
variables, which could be interpreted by the ML procedure. Each
insulating product was described using nine new variables: the
thermal conductivity value for six equally spaced temperature
points, the specific heat capacity multiplied by the material density,
the product thickness, and the maximum working temperature. All
data supporting our findings are available within the Appendix of
Ref. 7. The authors collected the materials’ properties from several
commercial data sheets available from their manufacturers and
prices either from different suppliers or after directly quoting with
the manufacturers which were then converted to US dollars by
square meter for normalization purposes.

At this point, LS consisted of 5538 rows by 29 columns
(9 input attributes per insulating product plus 2 response ones).
In order to improve the learning capability, each LS value was
re-scaled into the range [�1, 1]. Additionally, the principal compo-
nent analysis16 was applied as a dimensionality reduction tool, for
which 99:9% of the data variance was explained by the selected
eigenvectors.

The same procedure was repeated to create another collection
of insulating systems for testing the trained ML algorithms. To
obtain consistent results, a much larger quantity of examples,
17 924 combinations of insulating products, was randomly chosen
while respecting a single criterion: they were not present in the LS.
From now on, this collection will be referred to as testing set.
Datasets of sizes varying in the range of 0:9%–8:0% also followed
this procedure in order to measure their influences on the predict-
ability of the ML model.

D. Machine learning framework

The framework for the learning task was divided into two
steps. (i) The first, referred to here as the classification task, a classi-
fication algorithm should learn to determine whether, during the
heating process, a combination of insulating products would
respect the temperature constraints across all three layers. The
whole system fails if any of the materials become hotter than its
maximum allowed temperature. (ii) The second step, referred to
here as the regression task, a regression algorithm should learn to
predict the external temperature after the whole heating procedure.

For the classification task, LS was split into training and vali-
dation samples with a proportion of 80% to 20%, respectively. An

ensemble strategy was developed: initially, a multi-layer perceptron
classifier (MLPc) algorithm and an extreme gradient boosting
(XGB) algorithm for random forests predicted the failure probabili-
ties of each insulating system; afterward, based on the probabilities
resulting from both algorithms, a ridge regression classifier (RRc)
algorithm was trained to produce the final result, i.e., whether the
system would fail or not.

For the regression task, in turn, only the systems that did not
fail in the classification task were considered. Those were also split
into training and validation samples with the same proportion of
80% and 20%, respectively. A single multi-layer perceptron regres-
sor (MLPr) algorithm was used to predict the external temperature
at the final moment of the heating curve.

Various strategies were previously tested to select this set of
algorithms comprising the ML framework. Each one of the selected
models was configured using a set of empirical hyperparameters
obtained from a grid search strategy for this specific case study.
The main criterion to choose the model framework and its respec-
tive hyperparameters was based on the accuracy of the training set
in the classification task, which was complemented by both assess-
ment criteria, i.e., the root mean-squared error (RMSE) and the
mean-absolute error (MAE) of the training set, to support the
regression task.

III. RESULTS AND DISCUSSION

A. Predictive analysis

As described in Sec. II, in order to illustrate the ML frame-
work operation, the thermal performance of around 2:8% of all
likely insulating systems (within the initial list of candidate prod-
ucts) was calculated by a FE model, which had been previously val-
idated with experimental data.7 Based on these initial results, the
ML framework was applied to estimate the external temperature of
unseen lining combinations, capable of carrying out assessments in
a much shorter time.

1. Failure prediction

For the classification task of failure prediction, the procedure
consisted of an ensemble method which predicted the failure prob-
ability using the following parameterization: (i) initially, the lining
failure probability was estimated by two distinct classifiers: an
MLPc with back-propagation error, 23 nodes at the hidden layer
using the Adam solver (stochastic optimization) and the Relu acti-
vation function, and an XGB with 1662 trees along three layers and
(ii) next, an RRc with an alpha parameter of 20 determined
whether the systems would fail or not.

At the first step of failure probability prediction, 4430 exam-
ples were used as the training sample and 1108 as the validation
one. At the second step, the former validating sample was split into
two equally sized samples with 554 examples each, one for training
and another for validating the RRc. Table I lists the classification
prediction accuracies for the validation examples of the ensemble
method. The proposed procedure was capable of predicting (with
nearly 98:4% of accuracy) when a system would fail based on 554
unseen examples.
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In the validation sample, one can measure the quality of the
model by quantifying the number of false positives (FPs), true posi-
tives (TPs), false negatives (FNs), and true negatives (TNs). The
insulating systems which got correct predictions about failing or
not during the heating procedure are represented, respectively, by
TP and TN. In this context, there are two kinds of missclassifica-
tions that designers should care about: the FNs, which refer to
systems that the FE analysis classified as failed, but the ML frame-
work classified as not failed, and the FPs, where FE classified as not
failed, but the ML framework classified as failed.

In order to prevent the effect of FNs, the designer should sim-
ulate the desired materials combinations to make sure they would
not fail under the application procedure. FPs present a higher risk
because systems that might be useful will not have their external
temperatures estimated by the model, so designers could end up
ignoring good insulating solutions.

Considering the validation sample, the model predicted that
265 insulating systems would fail (True). However, seven of these
would actually withstand the heating. By the formula %FP = FP/
(FP + TP), this makes a total of 2:64% of FPs, thus resulting in a
minor and acceptable risk.

2. External temperature prediction

After carrying out the classification task, the next step is to
proceed with the regression one. From the initial, 5538 lining systems

comprising the LS, only 2916 configurations did not fail in the FE
analysis. They were split into 2332 examples for training and 584 for
validating the model consisting of an MLPr with back-propagated
errors, 24 hidden nodes, using the limited-memory Broyden–
Fletcher–Goldfarb–Shano solver and the logistic activation function.
Figure 1 compares the machine learning estimation of the external
temperatures and the respective FE results for the same sample.

The MLPr errors were very small and reproduced very well
according to the FE calculations with less than 1 �C difference on
average. Hence, the proposed machine learning model shows evidence
of being a fine tool to estimate the furnace linings’ external tempera-
tures. However, a more robust proof of concept should be evaluated
in order to draw conclusions about the proposed methodology.

3. Framework test on large unseen set of examples

In order to test the ML framework generalization, i.e., its
capacity of predicting the thermal performance of unseen com-
binations of materials linings, the same learning procedure of
Secs. II B–II D was repeated on samples from the whole LS and
then applied to predict the failure and estimate the external tem-
peratures of a much larger data pool. This test set consisted of
17 924 unseen random insulating systems, corresponding to nearly
9:4% of all combinations.

As shown in Table II, the classification task was concluded
with 97:08% accuracy in failure prediction such that it has a gener-
alization error of 1:38% when compared to the validation sample.
It means that the precision obtained when training and validating
are expected to be reduced by nearly 1:38% when applying this
model in large sets of unseen examples. Such a small error makes
the validation precision of the classification task trustworthy. The
percentage of FPs was 3:34%, which could still be considered a
small risk of information loss for the proposed ML framework.

Next, 9065 systems classified as not failing had their external
temperatures evaluated at the regression task. Figure 2 shows the
regression errors for the testing set, which remained significantly
low. When compared to the validation sample, the test RMSE was
only 0:003 greater and the MAE was even 0:04 smaller. These results
show that the generalization error is almost null such that the preci-
sion obtained during training and validating the regression model is
highly trustworthy and that the whole framework generalized well.

B. Insulating systems’ multi-objective optimization

A multi-objective task involving the thermal performance of
refractory insulating materials becomes easily solvable by using the
validated ML model, no matter how large the dataset is.

FIG. 1. Comparison between the external temperatures according to the FE cal-
culation and to the ML framework on a given sample. Root mean-squared
errors (RMSEs) and mean-absolute errors (MAEs) were taken into account.

TABLE I. Confusion matrix for the classification task using the ML framework on
the validation set. Accuracy based on 554 examples: 98:38%.

Predicted

Actual False True Total

False 287 7 294
True 2 258 260
Total 289 265 554

TABLE II. Confusion matrix for the classification task using the ML framework on
the testing set. Accuracy computed on 17 924 examples: 97:08%.

Predicted

Actual False True Total

False 9065 288 9353
True 235 8336 8571
Total 9300 8624 17924
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As an example, in order to check the trade-off between
thermal performance and total costs for each one of the 190 365
likely insulating systems comprising the case study, price data for
the candidate insulating products were considered as an additional
system attribute, whereas the final external temperature was esti-
mated by the proposed framework. Figure 3 shows a two-
dimensional histogram that highlights the frequency distribution of
the systems in terms of both criteria.

Because there are many possibilities, it is necessary to filter
only the most potential insulating systems considering the objective
of reducing both costs and external temperatures. For that, the
dominance concept was applied to draw Pareto curves to analyze
the whole set of feasible solutions into hierarchical ranks such that
lower ranks contained better solutions in terms of costs and bene-
fits than the higher ones. This means that for each solution at some

rank k, there is at least one solution at rank k�1 that holds any of
the following: it is cheaper for the same thermal insulating perfor-
mance, it is a better insulator for the same price, or it is better in
both objectives. Figure 4 shows the solutions belonging to the 10
best Pareto ranks, and Fig. 5 shows the Pareto fronts for each one
of those ranks.

These results indicate that the proposed ML framework is
useful to carry out multi-objective optimization in scenarios with a
great number of options. While the FE simulation of all likely out-
comes would take weeks or even months, using the surrogate
model it took less than 10 min to generate the bi-objective trade-off
in an Intel Core i3 with 8 GB of RAM memory.

When comparing the ML framework results to the
Evolutionary Screening Procedure (ESP),7 where multi-objective
GA was used in order to make the ERF optimizations, certain
points should be highlighted. (i) Using ML requires an initial

FIG. 3. Frequency distribution of the whole set of likely insulating systems in
terms of external temperature and materials’ costs.

FIG. 2. Comparison between the external temperatures provided by the FE cal-
culation and by the ML framework using the testing set. Root mean-squared
errors (RMSEs) and mean-absolute errors (MAEs) were taken into account.

FIG. 4. Trade-off of insulating systems considering the thermal performance
and total costs for the ten best Pareto ranks.

FIG. 5. Approximated Pareto fronts for the ten best Pareto ranks.
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balanced dataset with calculated outputs so the model could learn
the non-linear relations among variables such that the size of this
initial set is set up by the designers, whereas the ESP strategy will
simulate as many insulating systems as necessary to meet the estab-
lished stop criteria. Hence, the former provides more control over
the number of FE simulations and the latter does not demand such
a decision. (ii) ML is somewhat more deterministic because its
accuracy measure does not vary much when using the same input
dataset such that its hyperparameters could be optimized in order
to improve predictability during training. On the other hand, ESP
presents substantial variations within the same hyperparameters,
making their convergence to optimal values difficult for specific
cases. (iii) ML procedure enables the designers to estimate the
thermal performance of the whole search space of possibilities with
small regression errors, except for the FPs eliminated in the classifi-
cation task. The ESP mechanism, in turn, provides only the
thermal performance of the best trade-off solutions found along
iterations, but in most cases, it misses some of the Pareto optimal
solutions.

C. Prediction performance dependence on the LS size

In order to better understand the impact of the initial learning
set (LS) size on the performance of the proposed ML framework,
new sets were generated, with sizes equal to 0:96%, 1:93%, 2:90%,
3:87%, 4:84%, 5:80%, 6:78%, and 7:75%, sampled from a uniform
probability distribution applied on the original dataset. The train-
ing steps described in Sec. II were repeated seven times for each LS
and tested over 17 924 unseen examples. The classification accuracy
and both the percentages of true positives (%TP = 1�%FP) and
true negatives (%TN = 1�%FN) are shown in Fig. 6 while the
regression errors are depicted in Fig. 7, all of them as functions of
the initial sample size in their respective LS.

For the ERF case study, the failure prediction accuracy rate
grows when increasing the initial sample size from 0 to values
around 5%, after which the accuracy seems to stabilize at a plateau.

Between 7% and 8%, the accuracy begins to rise slightly. However,
there seems to be an inherent misclassification error of at least 2%
when using initial sample sizes in the range of 3%–7%.

As discussed before, part of this error is related to FPs, which,
in other words, represent systems that might withstand the temper-
ature conditions but were discarded by the procedure. In this
range, the percentage of FPs is always greater than the percentage
of FNs, and the difference gets bigger as the initial sample size gets
smaller than 3%. This makes the classification task the major draw-
back for the proposed ML framework.

The regression task, in turn, has a great performance for all
initial sample sizes of at least 3%, presenting an average RMSE
smaller than 1. Still, it does not improve much for larger LS, remain-
ing approximately constant for both RMSE and MAE values.

Hence, furnace designers would be advised to choose an
initial sample size in the range of nearly 3% up to around 5% of
total combinations to guarantee reasonable performance predict-
ability. Their final decision should take into account the balance
between the risk of losing information with FPs and the available
amount of time for carrying out FE simulations.

IV. CONCLUSIONS AND SUMMARY

In this paper, an ML framework was proposed to predict pos-
sible thermal failure and estimate the thermal performance of a
large number of multi-component insulating systems as a surrogate
model for finite elements (FEs). By initially simulating only nearly
2:8% of the likely electric resistance furnace (ERF) configurations
for the training set, the proposed framework had a generalization
error of 1:38% in failure prediction and almost 0 during thermal
performance prediction, with a precision of 97:08% at the first step
and a RMSE of 0.822 at the second one. Hence, it was possible to
estimate the temperatures of all the other systems with high preci-
sion in a shorter time than it took to simulate the training set.
It was also shown that with this surrogate model strategy, any

FIG. 6. Impact of the initial LS size on the classification task accuracy when
applied to test sets with unseen data (each corresponding to nearly 9:4% of all
combinations).

FIG. 7. Impact of the initial LS size on the regression task errors (RMSE and
MAE) when applied to test sets with unseen data (each corresponding to nearly
9:4% of all combinations).
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multi-objective optimization of furnace linings considering thermal
performance as a criterion could have its time demand considerably
reduced, regardless of the complexity of the FE model or the
number of insulating systems to be evaluated.

A major drawback inherent to the proposed procedure is the
misclassification in the failure prediction stage, mainly with false
positives (FPs) which are discarded and, therefore, are not consid-
ered in multi-objective trade-offs. For the specific case of the
electric resistance furnace, it was found out that the optimal range
of the LS size is between �3% and �5% of uniformly sampled
examples, in which the designers should consider the balance
between the available time for carrying out the FE analysis and the
acceptable risk of reducing the failure classification accuracy (in the
range of 97%–98%).

The proposed ML framework was compared to a genetic algo-
rithm procedure for electric resistance furnace lining optimization,
from which it was concluded that: (i) the present proposal is more
predictable in terms of computational costs, as it allows furnace
designers to choose the number of FE simulations a priori; (ii) the
hyperparameters from the ML framework models could be opti-
mized without requiring new FE simulations; and (iii) unlike the GA
method, the proposed framework could be used to evaluate the
thermal performance of the entire search space of insulating systems.
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