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1 | INTRODUCTION

An orientation H of a graph H is an oriented graph obtained by assigning an orientation to each edge
of H. The study of the number of H-free orientations of a graph G, denoted by D(G, H), was initiated

by Erd6s [7], who posed the problem of determining D(n,ﬁl) := max {D(G, FI) V(G| = n} For

tournaments, this problem was solved by Alon and Yuster [2], who proved that D(n, 7“) = 2Ky
holds for any tournament T on k vertices if n € N is sufficiently large as a function of k.

Let CkO denote the directed cycle of length k. Buci¢, Janzer and Sudakov [5] determined D(n, Czof )
for every £ > 1 as long as n is sufficiently large, extending the proof in [2]. Another extension of the
results in [2] was given by Aratijo, Botler, and the last author [3] who determined D(n, C§) ) for every
n € N (see also [4]).

In the context of random graphs, Allen, Kohayakawa, Parente, and the last author [1] investi-
gated the problem of determining the typical number of C,S)-free orientations of the Erd6s—Rényi
random graph G(n, p). They proved that, for every k > 3, with high probability as n — oo we have
log, D(G(n, p), CP) = o(pn?) for p > n~ /4D and log, D(G(n,p),CP) = (1 + o(1))p(;) for
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n~? <« p < n~1*1/&=D_This result was improved in the case of triangles by Kohayakawa, Morris and
the last two authors [6], who proved, among other things, the following result'.

Theorem 1.1 ([6], Theorem 1.2). If p > n~'/2, then, with high probability as n — o,

log D(G(n, p), C¥) = © (n/p).

For general &, one can show? that D(K,,, Cko) < 2k .y for every k > 3. A first step towards
determining log D(G(n, p), C,S)) for k > 4 was also given in [6], where it was proved that

log D(G(n, p), C2) = O (n/p) (1)

with high probability. Moreover, they proved that a natural generalisation of the lower bound
construction used in the proof of Theorem 1.1 gives

log D(G(n, p), CP) = Q<pl/(nk—2>> @

with high probability when p > n~!*1/(=1)_They conjectured that (2) is sharp up to polylogarithmic
factors, and we confirm this conjecture by proving the following result.

Theorem 1.2. Let k > 3 and p = p(n) > n~"*V/*®V_ Then, with high probability as

n— oo,

~ n
log D (G(n,p),C{) =© <pl/(k—2)> '

The proof of Theorem 1.2 will be outlined in the next section, but we present here a short overview
of three key ideas in the proof. We will be interested in an auxiliary graph encoding (k — 2)-paths,
since we will be able to encode the orientation of the neighborhood of each vertex as an independent
set in this graph. One of the main challenges will be ensuring this auxiliary graph is dense enough
so that we may apply the graph container lemma. To do so, the first key idea is to define, for each
1 < r £ k— 2, a pseudorandomness condition on the number of directed r-paths between small sets,
and split the proof into k — 2 cases according to whether such a pseudorandomness condition holds for
a given r. We design these conditions in such a way that the case r = 1 holds for any orientation of
G(n, p) with high probability, and such that we may finish the proof using the graph container method
(introduced by Kleitman and Winston [9], and rediscovered and developed by Sapozhenko [11]) if
the condition holds for » = k — 2. The second key idea is how to deal with orientations that do not
satisfy the pseudorandomness condition for some 2 < r < k — 2. In this situation, we provide a way to
efficiently “encode” the orientations that do not satisfy the condition for some value of r but do for all
smaller values.

'The @( -) and 5(-) notation are analogous to ® and O notation but with polylogarithmic factors omitted. For convenience, from

now on log will denote the natural logarithm.
2Recall that Harary and Moser [[8]; Theorem 7] observed that every strongly connected tournament with ¢ vertices contains a

cycle of length i for every i = 3, ... ,f, which implies that every strongly connected component of a C,S) -free tournament has
size at most k — 1. Therefore, to count CkO -free tournaments, it suffices to consider all ordered partitions V; U --- U v, of [n]
with parts of size less than k and count tournaments whose strongly connected components respect this partition and its order.
There are at most 2" - n! ordered partitions of [n] and at most (k — 2)n/2 edges inside parts to orient.
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We remark that, to implement the above two ideas, we need to construct the orientation “online”,
that is, to consider a subgraph H C G(n,p), and for each possible orientation Hof H , reveal the
randomness between a new subset of vertices and V(H) and consider all ways to extend . Counting
orientations of G(n, p) is, however, an “offline” problem: when exposing G(n, p) in multiple rounds,
the orientation of an early-round edge may depend on the randomness of later rounds. To circumvent
this fact, we use our third key idea, which is to count the expected number of orientations of G(n, p) that
are C,S) -free. When estimating this expectation we will be able to split it in a way that makes possible
to proceed inductively and use the randomness in steps after orienting part of the edges.

2 | OUTLINE OF THE PROOF OF THEOREM 1.2

We start by presenting a short sketch of the proof of Theorem 1.2 for CP, as proved in [6]. This will
motivate the idea behind the proof for general directed cycles C, ,9

2.1 | The proof in [6]

The idea is to obtain, by induction on the number of vertices, the following upper bound on the number
of C3O -free orientations of an n-vertex graph G:

2n
n
<< a(G)) ’ )

where a(G) denotes the independence number of G, and (g) is shorthand for ZE:()( 'l' ) In order to

obtain such a bound, let G be a graph on vertex set V and consider v € V. Let H = G\ {v} and suppose
that the number of C3O -free orientations of H is

n_1 2(n—1)
<< a(H)) ' @

Then, for each C?—free orientation G of G, let H be its restriction to H and pick T c E(f})\E(ﬁI)
minimal such that G is the only Cg) -free orientation of G containing T U H. The key observation is
that, by the minimality of T, the vertex sets N%’ (v) and NYZ(V) are independent sets in H, so there are at
most (@Z 6 )2 choices for 7. This together with (4) and a(H) < a(G) completes the proof of (3). One
may check that the expected number of independent sets of size (3logn)/p in G(n, p) tends to zero
with n, and therefore (3) and the first moment method imply Theorem 1.2 for C3O.

We will generalise the ideas depicted above in two ways, which will be described in the next two
subsections. Directed paths of length k — 2 starting or ending in the neighbourhood of a vertex will
play a key role in our proofs. For this reason, we fix £ = k—2 > 1, and our aim is to count orientations
of G(n, p) avoiding copies of Cfﬂ)+2-

2.2 | Pseudorandomness

To count the desired orientations of G(n, p), we define a “pseudorandom” oriented graph property, and
we proceed to separately count the C?Jrz—free orientations depending on whether some already-oriented
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subgraph His pseudorandom. We then use the randomness of G(n, p) in a stronger way, exposing the
randomness bit by bit in each step of the induction.

Let us discuss the pseudorandom property we mentioned in the previous paragraph. We write P,
for the directed path with r edges and, g1ven an oriented graph G we denote by G the digraph such
that (u, v) is an edge whenever there is a P, from u to v in G. Roughly speaking, we say an oriented
graph G is r-locally dense (for a complete description of this property, see Definition 3.2), if
£=rtl
p 7 |A|IB] ®

< ’
€y (A,B) >

[\ \

for all disjoint sets A’, B, X C V(G) of size roughly (log n)/p, where é\X is a shorthand for é[V(G)\X]
and z(é\xy (A’, B) denotes the number of edges between A’ and B (in either direction) in the digraph
G\ X).

Observe that being 1-locally dense does not depend on the orientation of the graph (and the set X
plays no role in this case), that is, being 1-locally dense is a pseudorandom property that depends only
on the underlying graph G. By Chernoff’s inequality, any orientation of G(n, p) is 1-locally dense with
high probability, and one may think of this property as a strengthening of the property that a(G(n, p)) <

(3logn)/p.

2.3 | Sketch of the proof

We will count separately the orientations which are £ -1oca11y dense and the orientations which are not
r-locally dense but are (r — 1)-locally dense for some 2 < r < £. To count the c® 71o-Tree, £-locally

dense orientations G (see Lemma 3.6 (ii)), we proceed 51m11arly to the proof in [6] letv € V, put
H= G\ {v}, and let H be the restriction of G to H. Moreover let T C E(G) \ E(H) be minimal such
that G is the only c® /»-Tree orientation of G containing T UH. Note that, since we are avoiding copies

¢ -
of C® 742> the sets TF ©= N;(v) and T~ .= NT_ (v) are independent sets in H by minimality of 7. Since

Gis? -locally dense, the edge density of I_{If is at least of order p!/%. This allows us to prove that the
largest independent set in Ng(v) has size roughly (log n)/p'/?, which will be enough to finish the proof
of this case using the graph container lemma.

To count orientations G that are not r-locally dense but are (r—1)-locally dense (see Lemma 3.6 (i),
we use the fact that there are “large” disjoint sets A’, B C V and A C A’, with |A| > |A’|/2, such that
for every a € A it holds that d(a, B) < p " |B|, where d(a, B) denotes d*(a, B) + d~(a, B) (for
simplicity, in this outline we assume the set X in (5) is empty). Put H=G \ A and note that, since G
is (r — 1)-locally dense, H ! has “many” edges between any two “sufficiently large” sets>.

Now given a € A we may choose S* C V(H)n Ng(a), the setof all v € Ng(a) such that

d-_‘:r—l (V7 B) > >
H

and S” Cc V(H)n Ng(a), the setof all v € Né(a) such that

- 1 o2
dH,.,l(v,B) > 1 -p~7 |B|.

—-r—1 - -
3Note that we want H = (G \ A)""! to have many edges between pairs of sets. This does not directly follow from G being
(r — 1)-locally-dense, because many (r — 1)-paths could pass through A. The set X in the definition of r-locally-dense graphs is
used to handle this issue.
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We claim that |S*| + |S7| < 4p~'/?. Indeed, every v € S* U S~ corresponds to at leastp% |B|/4
paths of length r starting with the edge av or ending with the edge va, so if |S*| + |S™| > 4p~!/* then
d el (a, B) would be too large. Moreover, we are able to use the randomness of G to show that S* and
S~ determine the orientation of all but a very small number of edges of G between a and V(H).

3 | THE MAIN RESULTS

In this section our goal is to count orientations of G(n, p) containing no copies of C?Jrz. We prove the
following result, which generalises the upper bound of Theorem 1.2 to the case where £ is a function
of n and provides an explicit bound on the number of orientations.

Theorem 3.1. Let £ = £(n) € N and p = p(n) be such that 0 < p < (2%¢)~¢. With high
probability as n — oo, G(n, p) admits at most

2
exp( 13¢n(logn) )

pl/f

&) . .
C;.,,-free orientations.

We remark that, since (1) implies the upper bound in Theorem 1.2 when p and ¢ are constant,
proving Theorem 3.1 indeed suffices to complete the proof of Theorem 1.2 despite the extra condition
p < (%)~ . The upper bound on p will be needed in the proof of Lemma 3.6 (i), more specifically in
Claim 4.3. We present the proof of Theorem 3.1 (assuming the validity of Lemma 3.6, which will be
proved in Sections 4 and 5) at the end of the section.

For any oriented graph G, its underlying undirected graph will be denoted by G. We recall other
useful notation introduced in Section 2: Given a graph G, the digraph G contains the edge (u,v)
precisely whenever there is an oriented path of length r starting at # and ending at v in G. Moreover,
G \ X is a shorthand for a[V(G) \ X1, and, for disjoint sets A, B C V(G), ?G(A, B) denotes the number

of edges between A and B (in either direction) in G.
The following definition will be used to “encode” orientations of C;ﬂrz-free graphs. It implicitly
depends on a parameter a which will be chosen later.

Definition 3.2. Given 1 < r < £, an oriented graph G is r-locally dense if for every
pairwise disjoint sets A’, B, X of V(G) such that
A = a, ra < |B| € fa, and XI <@ +1-=na, (6)

we have

A1), )

o ’ 1
e(é\X)r(A ’B) = 5 P

Otherwise, the orientation G is called r-locally-sparse.

Even though the following lemma is a trivial application of Chernoff’s inequality together with the
fact that the definition of 1-locally-dense depends solely on the underlying undirected graph and not
on the orientation of the edges, it will be crucial.

Lemma 3.3. With high probability every orientation of G(n,p) is I-locally-dense for
a=25(log n)/p.
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Given a graph G and an induced subgraph H of G, an orientation G of G is an extension of an
orientation H of H if E(H) C E(G). Furthermore, we say that G extends H. Due to Lemma 3.3, in the
rest of the paper we count 1-locally-dense C ,/9+2-free orientations.

Definition 3.4. Let G = (V,E) be a graph and let H be an orientation of an induced
subgraph H of G. We denote by D, (G, H ) (resp. S,(G, FI)) the set of all 1-locally-dense,
C ?Jrz-free orientations of G that extend H and are r-locally-dense (resp. r-locally-sparse).
For convenience, we also write D,(G) for D,(G, @) and S,(G) for S,(G, 9).

In view of Lemma 3.3 and using the language described in Definition 3.4, our goal is to prove
that |D1(G(n, p))| < exp (13f n(log n)?/p'/* ) holds with high probability. The rest of the paper will
be dedicated to this task, and from now on Z, n and p will be fixed, all graphs will have vertex set
contained in [n], and we set

a :=25%(ogn)/p.

Note that if G € S,(G), then there exist pairwise disjoint sets A’, B and X of V(G) satisfying (6)
such that (7) fails to hold. This fact implies the existence of A C A’ with |A|] = |A’|/2 such that

(G\X),(a B) £ p = |B | for every a € A. This motivates the following definition, where H will play
the role of G \ A.

Definition 3.5. Let H be a graph, A C [n] \ V(H) and let B and X be disjoint subsets of
V(H). The quadruple (A, H, B, X) is an r-frame if

Al = a/2, ra £ |B| £ Za, and X| <@ +1-ra.

Given an r-frame (A, H, B, X), an orientation H of H, and a graph G with A = V(G) \
V(H), an orlentatlon G of G is said to be an (r, B, X)-sparse extension of H if it holds that

(G\X),(a B) <p ; |B| for every a € A.

We let S,.(G, H , B, X) denote the set of all orientations of G that are (r, B, X)-sparse extensions of
H. Observe that we have

so=1 U sGHBX), ®)

(A.BX) HeD, (G\A)

where the first union is over all (4, B, X) such that (A, G \ A, B, X) is an r-frame.

Given a graph H and a set A disjoint from V(H), we define G(A, H, p) as the random graph G on
vertex set V(G) = A U V(H) such that G[V(H)] = H and such that each element of (V(G) > \ (V(;I)>
is present in E(G) with probability p independently at random. We are now ready to state the main
tool for the proof of Theorem 3.1, consisting of two bounds on the expected number of extensions of

a digraph H.1ts proof is postponed to Sections 4 and 5.

Lemma 3.6. Let H be an oriented graph and A C [n] \ V(H) of size a/2. The following
holds for G = G(A, H, p).

(@) If 2<r<?¢and B,X C V(H) are such that (A, H, B, X) is an r-frame, then

HD,_l(G) N S.(G, H, B, X)H exp(9ap ¢ 1ogn)

(i) E[|Df(G H)H exp<a(f+2)p t(logn)2>
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Before proving Theorem 3.1, we state a simple probabilistic estimate which will be used a few
times throughout the paper.

Lemma 3.7. Let 0 < p < 1and C > 0.If S, is a p-random subset of a finite set S, then
E[C|Sp|] < e,

Proof. Since P(|S,| = 1) < (p|S|)/t! for every ¢ > 0, we can compute

[c)

E[CS < Z(CplSD’ = ePISI,
=0

t!

as claimed. n

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that n is fixed, and put z 1= exp (4(/ +2)p~7 (log n)2>.

We will show by induction on n’ < n that
E||piGar py|| <2, ©

which together with Lemma 3.3 and Markov’s inequality implies the desired result since
4(¢ +2) < 12¢. Note that if n’ < p~'~'/?(log n)* holds, then an application of Lemma 3.7
gives

E[|piGorp|| <B[242] < exp (pn'?) <2

Therefore, we may assume n’ > p~'~1/“(log n)?, which implies n’ > «. We claim that it
is enough to prove that

E[|DiGar.p|] <2 E [[DiGor - a/2.p)]. 10)
Indeed, by (10) and the induction hypothesis we obtain
E||DiGor py|| < 2 E||Di(Gor = aj2.pp|| < 2 2o = 2,

which proves (9). Thus, the remainder of the proof is dedicated to showing that (10) holds.
Let G = G(n’, p) and notice that, since every 1-locally-dense orientation is either #-locally
dense or admits a minimal 2 < r < ¢ for which it is r-locally sparse, we have

¢

Di(G) =D¢(G) U U (Dr-1(G) N S(G)). 1)
r=2

Thus, it suffices to upper bound the expected sizes of the sets in the right-hand side of (11).
Let A C V(G) be an arbitrary set of size /2, and let H = G \ A and F be the graph with
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V(F) = V(G)and E(F) = E(G)\ ( V(ZH) ) Observe that F and H independent of each other

as random graphs. Therefore,
e 1 B o X 87 | S

where the sums are over H € Dy (H). Conditioned on H (i.e., on G \ A = H), the
distribution of F' U H is the same as G(A, H, p). Then, from Lemma 3.6 (ii) we obtain

Er||DeG.iD| | H] <2,
and hence, by (12),

E||pAG)|| < By [ Xe| = B [|DiGor - ar2.p)].

To bound the expected sizes of the remaining sets of the right-hand side of (11), we proceed
analogously. For any 2 < r < 7, using (8) we have

E [|D,_1(G)ms,(c;)|] <E l 3 Z‘D,._l(G)nSr(G,FI,B,X)I]

(A,B.X)

= Y By [ZEF[|D,_1(G)n5,(G,FI,B,X)| |HH
(A,B.X)

where the outer sums are over all triples (A, B, X) such that (A, H, B, X) is an r-frame for
H = G\A. Since there are at most n?*+D* < z#/4 such triples, an application of Lemma 3.6
(i) gives

E[|[p@ns@| < Y BTl <2 K [|DuGor - /2.0

(A,B.X)

By (11), we thus have
E|[DiGor py|| < 227 B [|DiGar - a/2.p)|

which verifies (10) and concludes the proof of Theorem 3.1, since £ < p‘l/ £ <00 m

4 | EXTENDING LOCALLY-SPARSE ORIENTATIONS

The main goal of this section is to prove Lemma 3.6 (i), which bounds the expected number of (r —
1)-locally dense, (r, B, X)-sparse extensions of an oriented graph H. The deterministic part of the proof
is the following proposition. We remark that, although we intentionally state the result in a way that
emphasises its container-type nature, its proof does not use the Hypergraph Container Lemma.

Proposition 4.1. Let H be an oriented graphand?2 < r < ¢.If (A,H, B, X) is an r-frame,
then there exists a family C of digraphs on vertex set A U V(H) such that
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(i) For every graph G with V(G) = A U V(H) and every orientation G e D,_1(G)n
SAG, H,B,X), there exists some C € C such that E(A, V(H)) C E(C).
(ii) For every Ce C, at most €a* pairs {u,v} C V(a‘) satisfy {uv,vu} C E(a’),
(iii) |C| < exp(8ap~'/? logn).

In other words, we find a small family of digraphs (by property (iii)) which cover every orientation
of Gin D,_1(G)NS,(G, H , B, X) (by property (i)). Additionally, for each Cec , any two orientations of
G covered by C differ only in a small set of edges (by property (ii)), allowing us to bound the expected
number of orientations of G = G(n, p) contained in each C. We will then be able to bound the expected
size of D,_1(G) n S,(G, H , B, X) by summing the expected number of orientations of G contained in
C for each C € C.

Proof of Proposition 4.1. The proof loosely follows the idea behind the proof of the
Kleitman—Winston graph container lemma. We will describe an algorithm which takes
as input an orientation G e D,_1(G)NnS (G fl B, X) for some graph G on vertex set
A U V(H), and outputs a bipartite dlgraph C with parts A and V(H) trivially satlsfymg
properties (i) and (ii). Along with C, the algorithm will output a special subgraph Tcc,
called a fingerprint, which will be useful for proving property (iii).

Recall that @ = 2%(logn)/p. Recall also, from the definition of r-frame, that A C
[n] \ V(H), that B, X C V(H) are disjoint and that

Al = a/2, ra £ |B| £ e, and X| <@ +1-ra.

Set

=|VH)| = |B] = |X]| -«

and observe that we may assume L > 0, since otherwise |V(H)| < |B| + |X| + a < 2¢a
and therefore it would suffice to take C = {C }, where C is the complete bipartite digraph
between A and V(H). Algorithm 1 (Encode), which will be used to construct the desired
family C, is presented below. We will denote the outputs of Encode(é) by T(é) and E’(é),
respectively, and define

={ C(©) : G e D, (G)nS(G,H,B,X) } (13)

Observe that, for every extension G of I_-} it holds that E(T) C Ez(A,V(H)), since

edges are only added to T in line 10. Moreover, whenever ¢; = uw is added to C
in line 10, it holds that wu ¢ E(f}), and therefore Ez(A,V(H)) C E(E‘), verify-
ing property (i). Similarly, property (ii) holds because, for every a € A, the loop in
line 15 adds |V(H)| — L < 2Za pairs of antiparallel edges to C by the choice of
L, and the other places in which C is modified (lines 10 and 13) add edges in one
direction only.

Showing that C satisfies property (iii) will require the most amount of work. The
intuition for it (which will be formalised in Claim 4.3) is easy to describe, however: the
if-statement in lines 5-8 determines the orientation of {a,v;} that “extends the major-
ity of (r — 1)-paths” with one endpoint in B; to r-paths. If this directed edge is in é, it
is added to T. Therefore, if the input G is (r — 1)-locally-dense, each edge added to T
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Algorithm 1. A container-like algorithm for ng-free extensions of H

1
2
3

4

9
10
11
12
13
14

15
16

17

Input : An extension G of H on vertex set A U V(H)

Output: Digraphs 7 and C such that E(T) C E(A, V(H)) € E(C)
for eacha € A do

BO < B

fori < 1toLdo

canonically

if |N(-;-_~1\X),_,(Vi,Bi—l)| > %|N(;,\X)r_1(vi,3i—1)| then
‘ e; < ay;

else

L e < va
if ¢; € E(G) then

add the edge ¢; to T and to C
Bi < B\ N,
else

add the edge reverse(e;) to E‘, where reverse(uw) = wu
B; < B;_;

A\X)-! i)

for eachv e V(H) \ {vy,...,v.} do
L add the edges av and va to C

return 7 and C

pickv; € V(H)\ (BUX U {vy,...,v,_1}) maximising d(H\X),.,, (-, B;_1), with ties broken

extends Q(pf_fﬁz |Bl) (r — 1)-paths of H to r-paths of G. Since G is an (r, B, X)-sparse
extension of H, however, there can be at most O(ptiz_y’+1 |B|) r-paths starting or ending
at a given a € A. Therefore, at most O(p~'/%) edges can be added to T in line 10
for each @ € A. Since T determines C (Claim 4.2), this implies that there are few
choices for C.

We start the formal proof of (iii) by showing that, given an oriented graph H and an

r-frame (A, H, B, X), the output T of the algorithm determines the output C as well.

Claim 4.2. Let él and 62 be extensions of H on vertex set AU V(H). If T(él) = T(éz),
then C(Gy) = C(G») (even if the underlying graphs G and G, differ).

Proof. Line 9 is the only time at which the algorithm examines edges outside V(H). There-
fore, if E‘(él) # (_f(éz), we may suppose without loss of generality there exists a € A and
1 < i< Lsuchthate; € E(él) and ¢; & E(éz). If i is minimal with this property, then
e; is the same in both executions, but then ¢; is added to T(él) and not added to T(éz),
contradicting the fact that T(él) = f(f}z). =

If the extension G of H given as input to Encode is not restricted, then it is possible for
the graph T to have many edges. Roughly speaking, the following claim shows this cannot
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happen when Ge D,_1(G)Nn S, (G, H , B, X). In other words, for these digraphs, T can be
thought of as an “efficient encoding” of most of E(A, V(H)).

Claim 4.3. Let G € D,_1(G) n S,(G, H,B ,X). If T = i‘(é) is the fingerprint output by
Encode with input G, then d- 7(a) < 8p~ ¢ for every a € A.

Proof. Fixa € A, and let S be the set of values of i € [L] for which lines 10 and 11 of the
algorithm are executed (i.e., for which ¢; € E(G)). Observe that |S| = dz(a), since only

line 10 adds edges to T Therefore, our goal is to upper bound |S|. We claim that

Zd(H\X),_I(v,, Bi1) < d gy (@, B) < pHV/7|BY. (14)

tES

Indeed, the second inequality follows directly from the assumption that G €
S, (G,H,B,X). To see the first inequality, let S* C S be those values of i for which

d(%\x)r_l(vh 1) = 2 (H\X),_,(v,, i—1) (see line 5), let S~ = S\ S*, and define
+ B. T +
N(H\X)’ (i, Bi-1) ifieS
Ni =
N(FI\X)"*](vi’Bi_l) if ieS .
Then N; C N -, ,..(a, B), since we can use the edge ¢; to extend an (r — 1)-path starting or

(G\X)
ending at v; to an r-path starting or ending at a. Moreover, since N; C B;_; by definition

and N;nB;_; = @ifj < ibyline 11, the family {N; : i € S} ispairwise disjoint. Therefore,
Yics INi| < (G\X),(a B). Since |N;| > (H\X), (vi, Bi—1) by line 5 (i.e., by the condition
used to decide whether an i € S is in SJr or S7), we obtain (14).

We will obtain an upper bound on |S| by lower bounding the terms in the left-hand
side sum of (14), which will use the assumption that G € D,_;(G). To do so, recall that
v; was chosen in line 4 to maximize f(x) = d(H\X), ((x,Bi-j)onV; :=V(H)\ (BUXU
{vi, ... ,vi_1}) and note that |V;| > a. Thus, let A’ be any subset of V; with v; € A’ and
|A’| = a and observe that H \ X = G \ (X U A). Then, we have

o 1

d([?[\x)r—l (Vis Bi—l) 2 m . e(f}\(XuA))r-l (A/, B,‘_]). (15)
We want to use the hypothesis G e D,_,(G) to bound the right-hand side of (15). For
that, from Definition 3.2, we need that |A’| = a, (r — )a < |Bi—1| € fa, and [XUA| <
(¢ +2—r)a. It suffices to show that |B;_;| > (r— 1)a, since the other bounds hold trivially.
We observe that |By| = |B| and, for every i € [L],

|B— | |B | = (“\X) l(vl’Bl‘—l) ]I 1 € S
i—1 i

by lines 11 and 14. Therefore, summing and using (14), we obtain

Bl > 1Bl = ) g g1 (vin Bict) > |B| = 2p“ =D/ B,

ieS
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Since p < (2¢), wehave |Bi_| > |B.| = (1 — 1/¢)|B|. In particular, |B;_1| = (r — Da,
as claimed. Therefore, the condition in Definition 3.2 tells us that

1 bl
e(a\(XuA))f-l(A/’Bi—1)> pCTII|A By . (16)

N |

Combining (15) and (16), plugging the resulting bound into (14) and using that |B;_;| >
|B.|, we obtain that

S _ _
u _p(f r+2)/¢ |BL| Sp(f r+l)/f|B|,

4

As we have already shown that |Br| > |B|/2, we obtain that dz(a) = |S| < 8p~1/7, as
claimed. .

We have already seen that the collection C, defined in (13), satisfies the claimed
properties (i) and (ii), and we are now ready to prove (iii). Let

T = { 7@©) : G € D,_,(G)n S.(G.H,B.X) }

and notice that by Claim 4.2 we have |C| = |7 |. Moreover, for every Te T, recall that T
only contains edges incident to A and that, by Claim 4.3, |N ; (a) UNT_(a)l < 8p~ /% for each
a € A. By considering the number of ways of choosing these neighborhoods, we obtain

204
n _
71 << 8p—1/f> < exp(8ap™!/" logn),
=<

as desired. (]
Having proved Proposition 4.1, we are now ready to deduce Lemma 3.6 (i) from Proposition 4.1.

Proof of Lemma 3.6(1). Let G = G(A, H, p), recalling that, by definition, we have V(G) =
A U V(H), G[V(H)] = H and each element of (V(ZG)> \ <V(2H)) is an edge of G with
probability p independently at random. Let © = D,_{(G) N S,(G, H , B, X), and recall that
our goal is to bound the expected size of O. _

Let C Ee given by Proposition 4.1 jlnd say an orientation G € O is compatible with a
container C € C if Ez(A, V(H)) C E(C), and let D(C) be the set of pairs {u, v} for which
{uv,vu} C E(z‘). Given a container C € C, let

N(C) = |E(G) n (D(C) U (A X A))|
and observe that 2"V © is an upper bound on the number of orientations G € O which are

compatible with C. Moreover, by Proposition 4.1 (i), every element of @ is compatible
with at least one element of C, and therefore

0] < Y 2¥O,
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We can take expectations on both sides and apply Lemma 3.7 to obtain
E[0O]] € Zez”'“D@)H'AXA') < exp(8ap™/* logn + 3¢pa?),

where the last inequality uses Proposition 4.1 (ii)—(iii) to bound |D(E‘)| and |C|, respec-
tively. Since pa = 2°logn and p < (2%¢)7%, we have fpa < p~'/“(logn)/4.
Therefore,

E[lO]] £ exp(9ap_1/’f log n)

This finishes the proof. [

5 | EXTENDING LOCALLY-DENSE ORIENTATIONS

In this section we prove Lemma 3.6 (ii), which bounds the expected number of £-locally-dense exten-
sions of an oriented graph H. For that we use the graph container lemma, implicit in the work of
Kleitman and Winston [9] and explicitly stated by Sapozhenko [11]. The version we use can be found
on a survey of Samotij [10].

Lemma 5.1 ([10], Lemmas 1 and 2). Let G be a graph on n vertices, an integer q and
reals 0 < f < 1 and R such that R > e Pin. Suppose that every set U C V(G) with
|U| = R satisfies

ecton > (1),

Then there exists a collection C C P(V(G)) such that:

(i) Every independent set of G is contained in some C € C,
(i) |Cl| <R+ qforevery C eC,
G 1€1< ZLo(1)-
The following simple averaging result will be useful for applying the graph container lemma in the
proof of Lemma 3.6 (ii).
Lemma 5.2. Let G be an ¢ -locally-dense oriented graph. For every pair of disjoint sets
oS g

U, X cV(G)with |U| 2 (£ + Da and |X| = a, the graph H = G\ X satisfies e(H [U]) >
pl/f( i )/(M +2).

Proof. Let W be arandom subset of U of size (£ + 1)a. By splitting W arbitrarily into two
sets of size a and Za and applying the hypothesis that G is £-locally-dense, we see that

¢ pl/f'bﬂC{Z fpl/f <|W|> pl/f <|W|>
H [W]) > > . > . .
WHIWD> > U2 )27+ 2

On the other hand, the probability that an edge of IEI[U] is present in fI[W] equals

('?')/('Z'). Therefore, E[e(HIW])] = e(H[U]) - (l‘gl)/(l;}l)’ and the result

follows. m
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We are now ready to estimate the expected number of #-locally dense extensions of an oriented
graph H. Recall that we need to show that

HDK(G H)H exp(a(f +2)p~7 (log n)2>

Proof of Lemma 3.6(ii). Given the random graph G = G(A, H, p) and an orientation H ,
we want to find the expected size of D, (G, H ), that is, the expected number of C® 7 1o-1ree,
¢-locally-dense extensions of H. We will follow the proof strategy from [6]. For each
orientation G letT = T(G) be a m1n1ma1 subset of E(G) \ E(H ) such that G is the unique
c® 74o-Tree orientation of G containing Tu E(H ). Fora € A, let

={veVH): avef}.

-+ > >+
We claim that 7, is an independent setin H . Indeed, suppose there are x,y € T, such that

7 - o - o
xy € E(H ). Let T, = T\ {ay} and observe that every orientation containing T/U {yvalUH
contains a C,,9+2 of the form axPya for some path P C H of length #. Therefore, any

- =/ -
C;J+2-free orientation of G containing 7 U H also contains the edge ay, contradicting
the minimality of T. By symmetry, the sets T,, defined analogously for a € A, are also

-7
independent sets in H . With this in mind, set

T = { TG\ (AxA) : G e DG, H) }
To bound | 77| using the graph container lemma (Lemma 5.1), set

5= p'/? _2(Z+1logn

R = R= Da.
iy ¢ P (Z+ Da

Using Lemma 5.2, one can check that these constants satisfy the conditions of Lemma 5.1,
-7
from which we obtain a family C of containers for the independent sets of H . Therefore,

o7
since T and T;; are independent sets in H contained in Ng(a) for each a € A, we obtain
2
IT1] < H<Z 2ICnNa(a)I> < H <|C| . Z4ICnNc(a)|> , 17)
a€A \ CeC a€A cec

where the last inequality follows by convexity. On the other hand, it is clear that the set
T, ={T(G)N(AXA) : G € Ds(G, H)} satisfies

Since T(é) uniquely determines an orientation Ge D, (G, ﬁl) by definition, we can use

linearity of expectation and the fact that the exponents in (17) and (18) depend on pairwise
disjoint sets of edges of G to obtain

E|IDA(G. il| < E 3] . TT <|C| DN [4'C”NG(“)']> (19)

a€A ceC
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By Lemma 5.1, we have
& (n en\!
Icl < Z( ) < <> < edloen
i=0 ! q
Moreover, since |C| < R+ g < 2R for every C € C, we can apply Lemma 3.7 and obtain

E [3|E(G)O(A><A)I] < 63117|A|2 and E [4|CﬁNc(a)|] < eSPR.

Plugging these bounds in (19) and recalling that |A| = /2, R = (£ + 1)a and g =
2(¢ 4 1)p~'/% log n, we have

E[IDAG.B)l| < exp (3pIAF +1Al(glogn + 8pR))

exp (pa® + a(£ + Dp~"/" (logn)* + 4p(¢ + 1)a?)

<
< exp (a(Z +2)p~"/" (logn)?) ,

where in the last inequality we used that Zpa = o(p~'/“(logn)?), which follows from
pa =2%lognand p < (271,”)_5. This finishes the proof. .

6 | CONCLUDING REMARKS

This paper fits into the effort of understanding the number of H-free orientations of G(n, p), and there
is still much to be understood about this problem. It is still an open problem to provide good estimates
on log D(G(n, p), H) when H is a strongly connected tournament with at least four vertices.

Conjecture 6.1. Let Hbea strongly connected tournament with k := v(H) > 4 and let
p > n~2/®*D Then, with high probability,

L n
log D(G(n, p), H) = ®<p(k_1)/2>

We remark that a more general version of Conjecture 6.1 appeared in [6]. Coming back to the
case studied in the present paper, there are also several open problems when H is a directed cycle. We
believe Theorem 1.2 can be tightened as in the following.

Conjecture 6.2. If p > n~"*1/%=D then, with high probability,

log D(G(n, p), C,?) = ®<pl/?k—2) + nlogn).

The lower bound for this conjecture was proved in [6], but the upper bound is not known even in
the case k = 3. It would also be interesting to understand the behavior of log D(G(n, p), C,S) ) as k grows
with n. For instance, it is not clear to us what should happen when k > log n.
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