
Received: 5 October 2022 Revised: 7 October 2023 Accepted: 23 October 2023

DOI: 10.1002/rsa.21196

R E S E A R C H A R T I C L E

Counting orientations of random graphs with
no directed k-cycles

Marcelo Campos1 Maurício Collares2 Guilherme Oliveira Mota3

1
Trinity College, Cambridge, United Kingdom

2
Institute of Discrete Mathematics, Graz

University of Technology, Graz, Austria

3
Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, Brazil

Correspondence
Maurício Collares, Institute of Discrete

Mathematics, Graz University of Technology,

Steyrergasse 30, 8010 Graz, Austria.

Email: mauricio@collares.org

Funding information
CNPq, Grant/Award Numbers: 406248/2021-4,

306620/2020-0; Austrian Science Fund (FWF),

Grant/Award Number: P36131; FAPESP,

Grant/Award Numbers: 2018/04876-1,

2019/13364-7.

Abstract
For every k ⩾ 3, we determine the order of growth, up to

polylogarithmic factors, of the number of orientations of

the binomial random graph containing no directed cycle of

length k. This solves a conjecture of Kohayakawa, Morris

and the last two authors.
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1 INTRODUCTION

An orientation ⃗H of a graph H is an oriented graph obtained by assigning an orientation to each edge

of H. The study of the number of ⃗H-free orientations of a graph G, denoted by D(G, ⃗H), was initiated

by Erdős [7], who posed the problem of determining D(n, ⃗H) ∶= max

{
D(G, ⃗H) ∶ |V(G)| = n

}
. For

tournaments, this problem was solved by Alon and Yuster [2], who proved that D(n, ⃗T) = 2
ex(n,Kk)

holds for any tournament ⃗T on k vertices if n ∈ N is sufficiently large as a function of k.

Let C↻
k denote the directed cycle of length k. Bucić, Janzer and Sudakov [5] determined D(n,C↻

2𝓁+1
)

for every 𝓁 ⩾ 1 as long as n is sufficiently large, extending the proof in [2]. Another extension of the

results in [2] was given by Araújo, Botler, and the last author [3] who determined D(n,C↻
3
) for every

n ∈ N (see also [4]).

In the context of random graphs, Allen, Kohayakawa, Parente, and the last author [1] investi-

gated the problem of determining the typical number of C↻
k -free orientations of the Erdős–Rényi

random graph G(n, p). They proved that, for every k ⩾ 3, with high probability as n → ∞ we have

log
2

D(G(n, p),C↻
k ) = o(pn2) for p ≫ n−1+1∕(k−1)

, and log
2

D(G(n, p),C↻
k ) = (1 + o(1))p

(
n
2

)
for
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n−2
≪ p ≪ n−1+1∕(k−1)

. This result was improved in the case of triangles by Kohayakawa, Morris and

the last two authors [6], who proved, among other things, the following result
1
.

Theorem 1.1 ([6], Theorem 1.2). If p ≫ n−1∕2
, then, with high probability as n →∞,

log D(G(n, p),C↻
3
) = ̃Θ (n∕p) .

For general k, one can show
2

that D(Kn,C↻
k ) ⩽ 2

kn ⋅ n! for every k ⩾ 3. A first step towards

determining log D(G(n, p),C↻
k ) for k ⩾ 4 was also given in [6], where it was proved that

log D(G(n, p),C↻
k ) = ̃O (n∕p) (1)

with high probability. Moreover, they proved that a natural generalisation of the lower bound

construction used in the proof of Theorem 1.1 gives

log D(G(n, p),C↻
k ) = Ω

(
n

p1∕(k−2)

)
(2)

with high probability when p ≫ n−1+1∕(k−1)
. They conjectured that (2) is sharp up to polylogarithmic

factors, and we confirm this conjecture by proving the following result.

Theorem 1.2. Let k ⩾ 3 and p = p(n) ≫ n−1+1∕(k−1)
. Then, with high probability as

n → ∞,

log D
(
G(n, p),C↻

k
)
= ̃Θ

(
n

p1∕(k−2)

)
.

The proof of Theorem 1.2 will be outlined in the next section, but we present here a short overview

of three key ideas in the proof. We will be interested in an auxiliary graph encoding (k − 2)-paths,

since we will be able to encode the orientation of the neighborhood of each vertex as an independent

set in this graph. One of the main challenges will be ensuring this auxiliary graph is dense enough

so that we may apply the graph container lemma. To do so, the first key idea is to define, for each

1 ⩽ r ⩽ k − 2, a pseudorandomness condition on the number of directed r-paths between small sets,

and split the proof into k− 2 cases according to whether such a pseudorandomness condition holds for

a given r. We design these conditions in such a way that the case r = 1 holds for any orientation of

G(n, p) with high probability, and such that we may finish the proof using the graph container method

(introduced by Kleitman and Winston [9], and rediscovered and developed by Sapozhenko [11]) if

the condition holds for r = k − 2. The second key idea is how to deal with orientations that do not

satisfy the pseudorandomness condition for some 2 ⩽ r ⩽ k− 2. In this situation, we provide a way to

efficiently “encode” the orientations that do not satisfy the condition for some value of r but do for all

smaller values.

1
The ̃Θ(⋅) and ̃O(⋅) notation are analogous to Θ and O notation but with polylogarithmic factors omitted. For convenience, from

now on log will denote the natural logarithm.
2
Recall that Harary and Moser [[8]; Theorem 7] observed that every strongly connected tournament with t vertices contains a

cycle of length i for every i = 3, … , t, which implies that every strongly connected component of a C↻
k -free tournament has

size at most k − 1. Therefore, to count C↻
k -free tournaments, it suffices to consider all ordered partitions V1 ∪ · · · ∪ Vp of [n]

with parts of size less than k and count tournaments whose strongly connected components respect this partition and its order.

There are at most 2
n ⋅ n! ordered partitions of [n] and at most (k − 2)n∕2 edges inside parts to orient.

 10982418, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21196 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



678 CAMPOS ET AL.

We remark that, to implement the above two ideas, we need to construct the orientation “online”,

that is, to consider a subgraph H ⊂ G(n, p), and for each possible orientation ⃗H of H, reveal the

randomness between a new subset of vertices and V(H) and consider all ways to extend ⃗H. Counting

orientations of G(n, p) is, however, an “offline” problem: when exposing G(n, p) in multiple rounds,

the orientation of an early-round edge may depend on the randomness of later rounds. To circumvent

this fact, we use our third key idea, which is to count the expected number of orientations of G(n, p) that

are C↻
k -free. When estimating this expectation we will be able to split it in a way that makes possible

to proceed inductively and use the randomness in steps after orienting part of the edges.

2 OUTLINE OF THE PROOF OF THEOREM 1.2

We start by presenting a short sketch of the proof of Theorem 1.2 for C↻
3

, as proved in [6]. This will

motivate the idea behind the proof for general directed cycles C↻
k .

2.1 The proof in [6]

The idea is to obtain, by induction on the number of vertices, the following upper bound on the number

of C↻
3

-free orientations of an n-vertex graph G:

(
n

⩽ 𝛼(G)

)2n

, (3)

where 𝛼(G) denotes the independence number of G, and

(
n
⩽t

)
is shorthand for

∑t
i=0

(
n
i

)
. In order to

obtain such a bound, let G be a graph on vertex set V and consider v ∈ V . Let H = G⧵{v} and suppose

that the number of C↻
3

-free orientations of H is

(
n − 1

⩽ 𝛼(H)

)2(n−1)

. (4)

Then, for each C↻
3

-free orientation ⃗G of G, let ⃗H be its restriction to H and pick ⃗T ⊂ E( ⃗G)⧵E( ⃗H)
minimal such that ⃗G is the only C↻

3
-free orientation of G containing ⃗T ∪ ⃗H. The key observation is

that, by the minimality of T , the vertex sets N+
⃗T
(v) and N−

⃗T
(v) are independent sets in H, so there are at

most

(
n

⩽𝛼(G)

)2

choices for ⃗T . This together with (4) and 𝛼(H) ⩽ 𝛼(G) completes the proof of (3). One

may check that the expected number of independent sets of size (3 log n)∕p in G(n, p) tends to zero

with n, and therefore (3) and the first moment method imply Theorem 1.2 for C↻
3

.

We will generalise the ideas depicted above in two ways, which will be described in the next two

subsections. Directed paths of length k − 2 starting or ending in the neighbourhood of a vertex will

play a key role in our proofs. For this reason, we fix 𝓁 = k−2 ⩾ 1, and our aim is to count orientations

of G(n, p) avoiding copies of C↻
𝓁+2

.

2.2 Pseudorandomness

To count the desired orientations of G(n, p), we define a “pseudorandom” oriented graph property, and

we proceed to separately count the C↻
𝓁+2

-free orientations depending on whether some already-oriented
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CAMPOS ET AL. 679

subgraph ⃗H is pseudorandom. We then use the randomness of G(n, p) in a stronger way, exposing the

randomness bit by bit in each step of the induction.

Let us discuss the pseudorandom property we mentioned in the previous paragraph. We write ⃗Pr
for the directed path with r edges and, given an oriented graph ⃗G, we denote by ⃗G

r
the digraph such

that (u, v) is an edge whenever there is a ⃗Pr from u to v in ⃗G. Roughly speaking, we say an oriented

graph ⃗G is r-locally dense (for a complete description of this property, see Definition 3.2), if

e⃡( ⃗G⧵X)r (A
′
,B) ⩾ 1

2
⋅ p

𝓁−r+1

𝓁 |A′||B| (5)

for all disjoint sets A′,B,X ⊂ V(G) of size roughly (log n)∕p, where ⃗G⧵X is a shorthand for ⃗G[V(G)⧵X]
and e⃡( ⃗G⧵X)r (A

′
,B) denotes the number of edges between A′ and B (in either direction) in the digraph

( ⃗G ⧵ X)r.
Observe that being 1-locally dense does not depend on the orientation of the graph (and the set X

plays no role in this case), that is, being 1-locally dense is a pseudorandom property that depends only

on the underlying graph G. By Chernoff’s inequality, any orientation of G(n, p) is 1-locally dense with

high probability, and one may think of this property as a strengthening of the property that 𝛼(G(n, p)) ⩽
(3 log n)∕p.

2.3 Sketch of the proof

We will count separately the orientations which are 𝓁-locally dense and the orientations which are not

r-locally dense but are (r − 1)-locally dense for some 2 ⩽ r ⩽ 𝓁. To count the C↻
𝓁+2

-free, 𝓁-locally

dense orientations ⃗G (see Lemma 3.6 (ii)), we proceed similarly to the proof in [6]: let v ∈ V , put

H = G ⧵ {v}, and let ⃗H be the restriction of ⃗G to H. Moreover, let ⃗T ⊂ E( ⃗G) ⧵ E( ⃗H) be minimal such

that ⃗G is the only C↻
𝓁+2

-free orientation of G containing ⃗T ∪ ⃗H. Note that, since we are avoiding copies

of C↻
𝓁+2

, the sets T+ ∶= N+
⃗T
(v) and T− ∶= N−

⃗T
(v) are independent sets in ⃗H

𝓁
by minimality of ⃗T . Since

⃗G is 𝓁-locally dense, the edge density of ⃗H
𝓁

is at least of order p1∕𝓁
. This allows us to prove that the

largest independent set in NG(v) has size roughly (log n)∕p1∕𝓁
, which will be enough to finish the proof

of this case using the graph container lemma.

To count orientations ⃗G that are not r-locally dense but are (r−1)-locally dense (see Lemma 3.6 (i)),

we use the fact that there are “large” disjoint sets A′,B ⊂ V and A ⊂ A′, with |A| ⩾ |A′|∕2, such that

for every a ∈ A it holds that ⃡𝑑
⃗G

r (a,B) < p
𝓁−r+1

𝓁 |B|, where ⃡
𝑑(a,B) denotes 𝑑

+(a,B) + 𝑑−(a,B) (for

simplicity, in this outline we assume the set X in (5) is empty). Put ⃗H = ⃗G ⧵ A and note that, since ⃗G
is (r − 1)-locally dense, ⃗H

r−1

has “many” edges between any two “sufficiently large” sets
3
.

Now given a ∈ A we may choose S+ ⊂ V(H) ∩ N+
⃗G
(a), the set of all v ∈ N+

⃗G
(a) such that

𝑑

+
⃗H

r−1(v,B) ⩾
1

4
⋅ p

𝓁−r+2

𝓁 |B|

and S− ⊂ V(H) ∩ N−
⃗G
(a), the set of all v ∈ N−

⃗G
(a) such that

𝑑

−
⃗H

r−1(v,B) >
1

4
⋅ p

𝓁−r+2

𝓁 |B|.

3
Note that we want ⃗H

r−1

= ( ⃗G ⧵ A)r−1
to have many edges between pairs of sets. This does not directly follow from ⃗G being

(r − 1)-locally-dense, because many (r − 1)-paths could pass through A. The set X in the definition of r-locally-dense graphs is

used to handle this issue.
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680 CAMPOS ET AL.

We claim that |S+| + |S−| ⩽ 4p−1∕𝓁
. Indeed, every v ∈ S+ ∪ S− corresponds to at least p

𝓁−r+2

𝓁 |B|∕4

paths of length r starting with the edge av or ending with the edge va, so if |S+| + |S−| > 4p−1∕𝓁
then

⃡
𝑑
⃗G

r (a,B) would be too large. Moreover, we are able to use the randomness of G to show that S+ and

S− determine the orientation of all but a very small number of edges of G between a and V(H).

3 THE MAIN RESULTS

In this section our goal is to count orientations of G(n, p) containing no copies of C↻
𝓁+2

. We prove the

following result, which generalises the upper bound of Theorem 1.2 to the case where 𝓁 is a function

of n and provides an explicit bound on the number of orientations.

Theorem 3.1. Let 𝓁 = 𝓁(n) ∈ N and p = p(n) be such that 0 < p ⩽ (28𝓁)−𝓁 . With high
probability as n → ∞, G(n, p) admits at most

exp

(
13𝓁n(log n)2

p1∕𝓁

)

C↻
𝓁+2

-free orientations.

We remark that, since (1) implies the upper bound in Theorem 1.2 when p and 𝓁 are constant,

proving Theorem 3.1 indeed suffices to complete the proof of Theorem 1.2 despite the extra condition

p ⩽ (28𝓁)−𝓁 . The upper bound on p will be needed in the proof of Lemma 3.6 (i), more specifically in

Claim 4.3. We present the proof of Theorem 3.1 (assuming the validity of Lemma 3.6, which will be

proved in Sections 4 and 5) at the end of the section.

For any oriented graph ⃗G, its underlying undirected graph will be denoted by G. We recall other

useful notation introduced in Section 2: Given a graph ⃗G, the digraph ⃗G
r

contains the edge (u, v)
precisely whenever there is an oriented path of length r starting at u and ending at v in ⃗G. Moreover,

⃗G ⧵ X is a shorthand for ⃗G[V(G) ⧵ X], and, for disjoint sets A,B ⊂ V(G), e⃡
⃗G(A,B) denotes the number

of edges between A and B (in either direction) in ⃗G.

The following definition will be used to “encode” orientations of C↻
𝓁+2

-free graphs. It implicitly

depends on a parameter α which will be chosen later.

Definition 3.2. Given 1 ⩽ r ⩽ 𝓁, an oriented graph ⃗G is r-locally dense if for every

pairwise disjoint sets A′, B, X of V(G) such that

|A′| = 𝛼, r𝛼 ⩽ |B| ⩽ 𝓁𝛼, and |X| ⩽ (𝓁 + 1 − r)𝛼, (6)

we have

e⃡( ⃗G⧵X)r (A
′
,B) ⩾ 1

2
⋅ p

𝓁−r+1

𝓁 |A′||B|. (7)

Otherwise, the orientation ⃗G is called r-locally-sparse.

Even though the following lemma is a trivial application of Chernoff’s inequality together with the

fact that the definition of 1-locally-dense depends solely on the underlying undirected graph and not

on the orientation of the edges, it will be crucial.

Lemma 3.3. With high probability every orientation of G(n, p) is 1-locally-dense for

α= 2
6
(log n)/p.
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CAMPOS ET AL. 681

Given a graph G and an induced subgraph H of G, an orientation ⃗G of G is an extension of an

orientation ⃗H of H if E( ⃗H) ⊂ E( ⃗G). Furthermore, we say that ⃗G extends ⃗H. Due to Lemma 3.3, in the

rest of the paper we count 1-locally-dense C↻
𝓁+2

-free orientations.

Definition 3.4. Let G = (V ,E) be a graph and let ⃗H be an orientation of an induced

subgraph H of G. We denote by r(G, ⃗H) (resp. r(G, ⃗H)) the set of all 1-locally-dense,

C↻
𝓁+2

-free orientations of G that extend ⃗H and are r-locally-dense (resp. r-locally-sparse).

For convenience, we also write r(G) for r(G, ∅) and r(G) for r(G, ∅).

In view of Lemma 3.3 and using the language described in Definition 3.4, our goal is to prove

that |1(G(n, p))| ⩽ exp
(
13𝓁n(log n)2∕p1∕𝓁)

holds with high probability. The rest of the paper will

be dedicated to this task, and from now on 𝓁, n and p will be fixed, all graphs will have vertex set

contained in [n], and we set

𝛼 ∶= 2
6(log n)∕p.

Note that if ⃗G ∈ r(G), then there exist pairwise disjoint sets A′, B and X of V(G) satisfying (6)

such that (7) fails to hold. This fact implies the existence of A ⊂ A′ with |A| = |A′|∕2 such that

⃡
𝑑( ⃗G⧵X)r (a,B) ⩽ p

𝓁−r+1

𝓁 |B| for every a ∈ A. This motivates the following definition, where H will play

the role of G ⧵ A.

Definition 3.5. Let H be a graph, A ⊂ [n] ⧵ V(H) and let B and X be disjoint subsets of

V(H). The quadruple (A,H,B,X) is an r-frame if

|A| = 𝛼∕2, r𝛼 ⩽ |B| ⩽ 𝓁𝛼, and |X| ⩽ (𝓁 + 1 − r)𝛼.

Given an r-frame (A,H,B,X), an orientation ⃗H of H, and a graph G with A = V(G) ⧵
V(H), an orientation ⃗G of G is said to be an (r,B,X)-sparse extension of ⃗H if it holds that

⃡
𝑑( ⃗G⧵X)r (a,B) ⩽ p

𝓁−r+1

𝓁 |B| for every a ∈ A.

We let r(G, ⃗H,B,X) denote the set of all orientations of ⃗G that are (r,B,X)-sparse extensions of

⃗H. Observe that we have

r(G) =
⋃
(A,B,X)

⋃
⃗H∈

1
(G⧵A)

r(G, ⃗H,B,X), (8)

where the first union is over all (A,B,X) such that (A,G ⧵ A,B,X) is an r-frame.

Given a graph H and a set A disjoint from V(H), we define G(A,H, p) as the random graph G on

vertex set V(G) = A ∪ V(H) such that G[V(H)] = H and such that each element of

(
V(G)

2

)
⧵
(

V(H)
2

)

is present in E(G) with probability p independently at random. We are now ready to state the main

tool for the proof of Theorem 3.1, consisting of two bounds on the expected number of extensions of

a digraph ⃗H. Its proof is postponed to Sections 4 and 5.

Lemma 3.6. Let ⃗H be an oriented graph and A ⊂ [n] ⧵ V(H) of size 𝛼∕2. The following
holds for G = G(A,H, p).

(i) If 2 ⩽ r ⩽ 𝓁 and B,X ⊂ V(H) are such that (A,H,B,X) is an r-frame, then

E

[|||r−1(G) ∩ r(G, ⃗H,B,X)
|||
]
⩽ exp

(
9𝛼p−

1

𝓁 log n
)
.

(ii) E

[|||𝓁(G, ⃗H)
|||
]
⩽ exp

(
𝛼(𝓁 + 2)p−

1

𝓁 (log n)2
)
.
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682 CAMPOS ET AL.

Before proving Theorem 3.1, we state a simple probabilistic estimate which will be used a few

times throughout the paper.

Lemma 3.7. Let 0 ⩽ p ⩽ 1 and C > 0. If Sp is a p-random subset of a finite set S, then

E
[
C|Sp|] ⩽ eCp|S|

.

Proof. Since P(|Sp| = t) ⩽ (p|S|)t∕t! for every t ⩾ 0, we can compute

E[C|Sp|] ⩽
∞∑

t=0

(Cp|S|)t
t!

= eCp|S|
,

as claimed. ▪

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that n is fixed, and put z ∶= exp

(
4(𝓁 + 2)p−

1

𝓁 (log n)2
)

.

We will show by induction on n′ ⩽ n that

E

[|||1(G(n′, p))
|||
]
⩽ zn′

, (9)

which together with Lemma 3.3 and Markov’s inequality implies the desired result since

4(𝓁+2) ⩽ 12𝓁. Note that if n′ ⩽ p−1−1∕𝓁(log n)2 holds, then an application of Lemma 3.7

gives

E

[|||1(G(n′, p))
|||
]
⩽ E

[
2

e(G(n′,p))] ⩽ exp
(
p(n′)2

)
⩽ zn′

.

Therefore, we may assume n′ > p−1−1∕𝓁(log n)2, which implies n′ ≫ 𝛼. We claim that it

is enough to prove that

E

[|||1(G(n′, p))
|||
]
⩽ z𝛼∕2 ⋅ E

[|||1(G(n′ − 𝛼∕2, p))|||
]
. (10)

Indeed, by (10) and the induction hypothesis we obtain

E

[|||1(G(n′, p))
|||
]
⩽ z𝛼∕2 ⋅ E

[|||1(G(n′ − 𝛼∕2, p))|||
]
⩽ z𝛼∕2 ⋅ zn′−𝛼∕2 = zn′

,

which proves (9). Thus, the remainder of the proof is dedicated to showing that (10) holds.

Let G = G(n′, p) and notice that, since every 1-locally-dense orientation is either 𝓁-locally

dense or admits a minimal 2 ⩽ r ⩽ 𝓁 for which it is r-locally sparse, we have

1(G) = 𝓁(G) ∪
𝓁⋃

r=2

(r−1(G) ∩ r(G)). (11)

Thus, it suffices to upper bound the expected sizes of the sets in the right-hand side of (11).

Let A ⊂ V(G) be an arbitrary set of size 𝛼∕2, and let H = G ⧵ A and F be the graph with
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CAMPOS ET AL. 683

V(F) = V(G) and E(F) = E(G)⧵
(

V(H)
2

)
. Observe that F and H independent of each other

as random graphs. Therefore,

E

[|||𝓁(G)
|||
]
= EH

[
EF

[∑|||𝓁(G, ⃗H)
|||
||| H

]]
= EH

[∑
EF

[|||𝓁(G, ⃗H)
|||
||| H

]]
, (12)

where the sums are over ⃗H ∈ 1(H). Conditioned on H (i.e., on G ⧵ A = H), the

distribution of F ∪ H is the same as G(A,H, p). Then, from Lemma 3.6 (ii) we obtain

EF

[|||𝓁(G, ⃗H)
|||
||| H

]
⩽ z𝛼∕4

,

and hence, by (12),

E

[|||𝓁(G)
|||
]
⩽ EH

[∑
z𝛼∕4

]
= z𝛼∕4 ⋅ E

[|||1(G(n′ − 𝛼∕2), p)|||
]
.

To bound the expected sizes of the remaining sets of the right-hand side of (11), we proceed

analogously. For any 2 ⩽ r ⩽ 𝓁, using (8) we have

E

[|||r−1(G) ∩ r(G)
|||
]
⩽ E

[ ∑
(A,B,X)

∑|||r−1(G) ∩ r(G, ⃗H,B,X)
|||
]

=
∑
(A,B,X)

EH

[∑
EF

[|||r−1(G) ∩ r(G, ⃗H,B,X)
|||
||| H

]]
,

where the outer sums are over all triples (A,B,X) such that (A,H,B,X) is an r-frame for

H = G⧵A. Since there are at most n(2𝓁+1)𝛼 ⩽ z𝛼∕4
such triples, an application of Lemma 3.6

(i) gives

E

[|||r−1(G) ∩ r(G)
|||
]
⩽

∑
(A,B,X)

EH

[∑
z𝛼∕12

]
⩽ z𝛼∕3 ⋅ E

[|||1(G(n′ − 𝛼∕2), p)|||
]
.

By (11), we thus have

E

[|||1(G(n′, p))
|||
]
⩽ 𝓁z𝛼∕3 ⋅ E

[|||1(G(n′ − 𝛼∕2, p))|||
]

which verifies (10) and concludes the proof of Theorem 3.1, since 𝓁 ⩽ p−1∕𝓁 ⩽ z𝛼∕6
. ▪

4 EXTENDING LOCALLY-SPARSE ORIENTATIONS

The main goal of this section is to prove Lemma 3.6 (i), which bounds the expected number of (r −
1)-locally dense, (r,B,X)-sparse extensions of an oriented graph ⃗H. The deterministic part of the proof

is the following proposition. We remark that, although we intentionally state the result in a way that

emphasises its container-type nature, its proof does not use the Hypergraph Container Lemma.

Proposition 4.1. Let ⃗H be an oriented graph and 2 ⩽ r ⩽ 𝓁. If (A,H,B,X) is an r-frame,
then there exists a family  of digraphs on vertex set A ∪ V(H) such that
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684 CAMPOS ET AL.

(i) For every graph G with V(G) = A ∪ V(H) and every orientation ⃗G ∈ r−1(G) ∩
r(G, ⃗H,B,X), there exists some ⃗C ∈  such that E

⃗G(A,V(H)) ⊂ E(⃗C).
(ii) For every ⃗C ∈ , at most 𝓁𝛼2 pairs {u, v} ⊂ V(⃗C) satisfy {uv, vu} ⊂ E(⃗C),

(iii) || ⩽ exp(8𝛼p−1∕𝓁
log n).

In other words, we find a small family of digraphs (by property (iii)) which cover every orientation

of G inr−1(G)∩r(G, ⃗H,B,X) (by property (i)). Additionally, for each ⃗C ∈ , any two orientations of

G covered by ⃗C differ only in a small set of edges (by property (ii)), allowing us to bound the expected

number of orientations of G = G(n, p) contained in each ⃗C. We will then be able to bound the expected

size of r−1(G) ∩ r(G, ⃗H,B,X) by summing the expected number of orientations of G contained in

⃗C for each ⃗C ∈ .

Proof of Proposition 4.1. The proof loosely follows the idea behind the proof of the

Kleitman–Winston graph container lemma. We will describe an algorithm which takes

as input an orientation ⃗G ∈ r−1(G) ∩ r(G, ⃗H,B,X) for some graph G on vertex set

A ∪ V(H), and outputs a bipartite digraph ⃗C with parts A and V(H) trivially satisfying

properties (i) and (ii). Along with ⃗C, the algorithm will output a special subgraph ⃗T ⊂
⃗C,

called a fingerprint, which will be useful for proving property (iii).

Recall that 𝛼 = 2
6(log n)∕p. Recall also, from the definition of r-frame, that A ⊂

[n] ⧵ V(H), that B,X ⊂ V(H) are disjoint and that

|A| = 𝛼∕2, r𝛼 ⩽ |B| ⩽ 𝓁𝛼, and |X| ⩽ (𝓁 + 1 − r)𝛼.

Set

L = |V(H)| − |B| − |X| − 𝛼

and observe that we may assume L ⩾ 0, since otherwise |V(H)| < |B| + |X| + 𝛼 ⩽ 2𝓁𝛼
and therefore it would suffice to take  = {⃗C}, where ⃗C is the complete bipartite digraph

between A and V(H). Algorithm 1 (Encode), which will be used to construct the desired

family , is presented below. We will denote the outputs of Encode( ⃗G) by ⃗T( ⃗G) and ⃗C( ⃗G),
respectively, and define

 =
{
⃗C( ⃗G) ∶ ⃗G ∈ r−1(G) ∩ r(G, ⃗H,B,X)

}
. (13)

Observe that, for every extension ⃗G of ⃗H, it holds that E(⃗T) ⊂ E
⃗G(A,V(H)), since

edges are only added to ⃗T in line 10. Moreover, whenever ei = uw is added to ⃗C
in line 10, it holds that wu ∉ E( ⃗G), and therefore E

⃗G(A,V(H)) ⊂ E(⃗C), verify-

ing property (i). Similarly, property (ii) holds because, for every a ∈ A, the loop in

line 15 adds |V(H)| − L ⩽ 2𝓁𝛼 pairs of antiparallel edges to ⃗C by the choice of

L, and the other places in which ⃗C is modified (lines 10 and 13) add edges in one

direction only.

Showing that  satisfies property (iii) will require the most amount of work. The

intuition for it (which will be formalised in Claim 4.3) is easy to describe, however: the

if-statement in lines 5–8 determines the orientation of {a, vi} that “extends the major-

ity of (r − 1)-paths” with one endpoint in Bi to r-paths. If this directed edge is in ⃗G, it

is added to ⃗T . Therefore, if the input ⃗G is (r − 1)-locally-dense, each edge added to ⃗T
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CAMPOS ET AL. 685

Algorithm 1. A container-like algorithm for C↻
𝓁+2

-free extensions of ⃗H

Input : An extension ⃗G of ⃗H on vertex set A ∪ V(H)
Output: Digraphs ⃗T and ⃗C such that E(⃗T) ⊂ E

⃗G(A,V(H)) ⊂ E(⃗C)
1 for each a ∈ A do
2 B0 ← B
3 for i ← 1 to L do
4 pick vi ∈ V(H) ⧵ (B ∪ X ∪ {v1,… , vi−1}) maximising

↔

𝑑 ( ⃗H⧵X)r−1( ⋅,Bi−1), with ties broken

canonically

5 if ||N+
( ⃗H⧵X)r−1

(vi,Bi−1)|| ≥ 1

2

||N( ⃗H⧵X)r−1(vi,Bi−1)|| then
6 ei ← avi
7 else
8 ei ← via

9 if ei ∈ E( ⃗G) then
10 add the edge ei to ⃗T and to ⃗C
11 Bi ← Bi−1 ⧵ N( ⃗H⧵X)r−1(vi)
12 else
13 add the edge reverse(ei) to ⃗C, where reverse(uw) = wu
14 Bi ← Bi−1

15 for each v ∈ V(H) ⧵ {v1,… , vL} do
16 add the edges av and va to ⃗C

17 return ⃗T and ⃗C

extends Ω(p
𝓁−r+2

𝓁 |B|) (r − 1)-paths of ⃗H to r-paths of ⃗G. Since ⃗G is an (r,B,X)-sparse

extension of ⃗H, however, there can be at most O(p
𝓁−r+1

𝓁 |B|) r-paths starting or ending

at a given a ∈ A. Therefore, at most O(p−1∕𝓁) edges can be added to ⃗T in line 10

for each a ∈ A. Since ⃗T determines ⃗C (Claim 4.2), this implies that there are few

choices for ⃗C.

We start the formal proof of (iii) by showing that, given an oriented graph ⃗H and an

r-frame (A,H,B,X), the output ⃗T of the algorithm determines the output ⃗C as well.

Claim 4.2. Let ⃗G1 and ⃗G2 be extensions of ⃗H on vertex set A ∪ V(H). If ⃗T( ⃗G1) = ⃗T( ⃗G2),
then ⃗C( ⃗G1) = ⃗C( ⃗G2) (even if the underlying graphs G1 and G2 differ).

Proof. Line 9 is the only time at which the algorithm examines edges outside V(H). There-

fore, if ⃗C( ⃗G1) ≠ ⃗C( ⃗G2), we may suppose without loss of generality there exists a ∈ A and

1 ⩽ i ⩽ L such that ei ∈ E( ⃗G1) and ei ∉ E( ⃗G2). If i is minimal with this property, then

ei is the same in both executions, but then ei is added to ⃗T( ⃗G1) and not added to ⃗T( ⃗G2),
contradicting the fact that ⃗T( ⃗G1) = ⃗T( ⃗G2). ▪

If the extension ⃗G of ⃗H given as input to Encode is not restricted, then it is possible for

the graph ⃗T to have many edges. Roughly speaking, the following claim shows this cannot
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686 CAMPOS ET AL.

happen when ⃗G ∈ r−1(G) ∩ r(G, ⃗H,B,X). In other words, for these digraphs, ⃗T can be

thought of as an “efficient encoding” of most of E
⃗G(A,V(H)).

Claim 4.3. Let ⃗G ∈ r−1(G) ∩ r(G, ⃗H,B,X). If ⃗T = ⃗T( ⃗G) is the fingerprint output by
Encode with input ⃗G, then 𝑑

⃗T (a) ⩽ 8p−1∕𝓁 for every a ∈ A.

Proof. Fix a ∈ A, and let S be the set of values of i ∈ [L] for which lines 10 and 11 of the

algorithm are executed (i.e., for which ei ∈ E( ⃗G)). Observe that |S| = 𝑑
⃗T (a), since only

line 10 adds edges to ⃗T . Therefore, our goal is to upper bound |S|. We claim that

1

2

∑
i∈S

⃡
𝑑( ⃗H⧵X)r−1(vi,Bi−1) ⩽ ⃡

𝑑( ⃗G⧵X)r (a,B) ⩽ p(𝓁−r+1)∕𝓁|B|. (14)

Indeed, the second inequality follows directly from the assumption that ⃗G ∈
r(G, ⃗H,B,X). To see the first inequality, let S+ ⊂ S be those values of i for which

𝑑

+
( ⃗H⧵X)r−1

(vi,Bi−1) ⩾ 1

2

⃡
𝑑( ⃗H⧵X)r−1 (vi,Bi−1) (see line 5), let S− = S ⧵ S+, and define

Ni =
⎧
⎪⎨⎪⎩

N+
( ⃗H⧵X)r−1

(vi,Bi−1) if i ∈ S+

N−
( ⃗H⧵X)r−1

(vi,Bi−1) if i ∈ S−.

Then Ni ⊂ N( ⃗G⧵X)r (a,B), since we can use the edge ei to extend an (r − 1)-path starting or

ending at vi to an r-path starting or ending at a. Moreover, since Ni ⊂ Bi−1 by definition

and Nj∩Bi−1 = ∅ if j < i by line 11, the family {Ni ∶ i ∈ S} is pairwise disjoint. Therefore,∑
i∈S |Ni| ⩽ ⃡

𝑑( ⃗G⧵X)r (a,B). Since |Ni| ⩾ 1

2

⃡
𝑑( ⃗H⧵X)r−1(vi,Bi−1) by line 5 (i.e., by the condition

used to decide whether an i ∈ S is in S+ or S−), we obtain (14).

We will obtain an upper bound on |S| by lower bounding the terms in the left-hand

side sum of (14), which will use the assumption that ⃗G ∈ r−1(G). To do so, recall that

vi was chosen in line 4 to maximize f (x) = ⃡
𝑑( ⃗H⧵X)r−1(x,Bi−1) on Vi ∶= V(H) ⧵ (B ∪ X ∪

{v1, … , vi−1}) and note that |Vi| ⩾ 𝛼. Thus, let A′ be any subset of Vi with vi ∈ A′ and

|A′| = 𝛼 and observe that ⃗H ⧵ X = ⃗G ⧵ (X ∪ A). Then, we have

⃡
𝑑( ⃗H⧵X)r−1(vi,Bi−1) ⩾

1

|A′| ⋅ e( ⃗G⧵(X∪A))r−1 (A′,Bi−1). (15)

We want to use the hypothesis ⃗G ∈ r−1(G) to bound the right-hand side of (15). For

that, from Definition 3.2, we need that |A′| = 𝛼, (r − 1)𝛼 ⩽ |Bi−1| ⩽ 𝓁𝛼, and |X ∪ A| ⩽
(𝓁+2−r)𝛼. It suffices to show that |Bi−1| ⩾ (r−1)𝛼, since the other bounds hold trivially.

We observe that |B0| = |B| and, for every i ∈ [L],

|Bi−1| − |Bi| =
{
⃡
𝑑( ⃗H⧵X)r−1(vi,Bi−1) if i ∈ S
0 if i ∈ [L] ⧵ S,

by lines 11 and 14. Therefore, summing and using (14), we obtain

|BL| ⩾ |B| −∑
i∈S

⃡
𝑑( ⃗H⧵X)r−1(vi,Bi−1) ⩾ |B| − 2p(𝓁−r+1)∕𝓁|B|.
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CAMPOS ET AL. 687

Since p ⩽ (2𝓁)−𝓁 , we have |Bi−1| ⩾ |BL| ⩾ (1 − 1∕𝓁)|B|. In particular, |Bi−1| ⩾ (r − 1)𝛼,

as claimed. Therefore, the condition in Definition 3.2 tells us that

e( ⃗G⧵(X∪A))r−1 (A′,Bi−1) ⩾
1

2
⋅ p(𝓁−r+2)∕𝓁|A′||Bi−1|. (16)

Combining (15) and (16), plugging the resulting bound into (14) and using that |Bi−1| ⩾
|BL|, we obtain that

|S|
4
⋅ p(𝓁−r+2)∕𝓁 ⋅ |BL| ⩽ p(𝓁−r+1)∕𝓁|B|,

As we have already shown that |BL| ⩾ |B|∕2, we obtain that 𝑑
⃗T (a) = |S| ⩽ 8p−1∕𝓁

, as

claimed. ▪

We have already seen that the collection , defined in (13), satisfies the claimed

properties (i) and (ii), and we are now ready to prove (iii). Let

 =
{
⃗T( ⃗G) ∶ ⃗G ∈ r−1(G) ∩ r(G, ⃗H,B,X)

}

and notice that by Claim 4.2 we have || = | |. Moreover, for every ⃗T ∈  , recall that ⃗T
only contains edges incident to A and that, by Claim 4.3, |N+

⃗T
(a)∪N−

⃗T
(a)| ⩽ 8p−1∕𝓁

for each

a ∈ A. By considering the number of ways of choosing these neighborhoods, we obtain

| | ⩽
(

n
⩽ 8p−1∕𝓁

)2|A|
⩽ exp

(
8𝛼p−1∕𝓁

log n
)
,

as desired. ▪

Having proved Proposition 4.1, we are now ready to deduce Lemma 3.6 (i) from Proposition 4.1.

Proof of Lemma 3.6(i). Let G = G(A,H, p), recalling that, by definition, we have V(G) =
A ∪ V(H), G[V(H)] = H and each element of

(
V(G)

2

)
⧵
(

V(H)
2

)
is an edge of G with

probability p independently at random. Let  = r−1(G) ∩ r(G, ⃗H,B,X), and recall that

our goal is to bound the expected size of .

Let  be given by Proposition 4.1 and say an orientation ⃗G ∈  is compatible with a

container ⃗C ∈  if E
⃗G(A,V(H)) ⊂ E(⃗C), and let D(⃗C) be the set of pairs {u, v} for which

{uv, vu} ⊂ E(⃗C). Given a container ⃗C ∈ , let

N(⃗C) = |E(G) ∩ (D(⃗C) ∪ (A × A))|

and observe that 2
N(⃗C)

is an upper bound on the number of orientations ⃗G ∈  which are

compatible with ⃗C. Moreover, by Proposition 4.1 (i), every element of  is compatible

with at least one element of , and therefore

|| ⩽ ∑
2

N(⃗C)
.
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688 CAMPOS ET AL.

We can take expectations on both sides and apply Lemma 3.7 to obtain

E [||] ⩽ ∑
e2p⋅(|D(⃗C)|+|A×A|) ⩽ exp

(
8𝛼p−1∕𝓁

log n + 3𝓁p𝛼2
)
,

where the last inequality uses Proposition 4.1 (ii)–(iii) to bound |D(⃗C)| and ||, respec-

tively. Since p𝛼 = 2
6

log n and p ⩽ (28𝓁)−𝓁 , we have 𝓁p𝛼 ⩽ p−1∕𝓁(log n)∕4.

Therefore,

E [||] ⩽ exp
(
9𝛼p−1∕𝓁

log n
)
.

This finishes the proof. ▪

5 EXTENDING LOCALLY-DENSE ORIENTATIONS

In this section we prove Lemma 3.6 (ii), which bounds the expected number of 𝓁-locally-dense exten-

sions of an oriented graph ⃗H. For that we use the graph container lemma, implicit in the work of

Kleitman and Winston [9] and explicitly stated by Sapozhenko [11]. The version we use can be found

on a survey of Samotij [10].

Lemma 5.1 ([10], Lemmas 1 and 2). Let G be a graph on n vertices, an integer q and
reals 0 ⩽ 𝛽 ⩽ 1 and R such that R ⩾ e−𝛽qn. Suppose that every set U ⊂ V(G) with
|U| ⩾ R satisfies

e(G[U]) ⩾ 𝛽

(|U|
2

)
.

Then there exists a collection  ⊂ (V(G)) such that:

(i) Every independent set of G is contained in some C ∈ ,

(ii) |C| ⩽ R + q for every C ∈ ,

(iii) || ⩽ ∑q
i=0

(
n
i

)
.

The following simple averaging result will be useful for applying the graph container lemma in the

proof of Lemma 3.6 (ii).

Lemma 5.2. Let ⃗G be an 𝓁-locally-dense oriented graph. For every pair of disjoint sets
U, X ⊂ V(G) with |U| ⩾ (𝓁+1)𝛼 and |X| = 𝛼, the graph ⃗H = ⃗G⧵X satisfies e( ⃗H

𝓁
[U]) ⩾

p1∕𝓁
(|U|

2

)
∕(2𝓁 + 2).

Proof. Let W be a random subset of U of size (𝓁+1)𝛼. By splitting W arbitrarily into two

sets of size 𝛼 and 𝓁𝛼 and applying the hypothesis that ⃗G is 𝓁-locally-dense, we see that

e( ⃗H
𝓁
[W]) ⩾ p1∕𝓁 ⋅ 𝓁𝛼2

2
⩾ 𝓁p1∕𝓁

(𝓁 + 1)2
⋅
(|W|

2

)
⩾ p1∕𝓁

2(𝓁 + 1)
⋅
(|W|

2

)
.

On the other hand, the probability that an edge of ⃗H[U] is present in ⃗H[W] equals(|W|
2

)
∕
(|U|

2

)
. Therefore, E[e( ⃗H[W])] = e( ⃗H[U]) ⋅

(|W|
2

)
∕
(|U|

2

)
, and the result

follows. ▪
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We are now ready to estimate the expected number of 𝓁-locally dense extensions of an oriented

graph ⃗H. Recall that we need to show that

E

[|||𝓁(G, ⃗H)
|||
]
⩽ exp

(
𝛼(𝓁 + 2)p−

1

𝓁 (log n)2
)
.

Proof of Lemma 3.6(ii). Given the random graph G = G(A,H, p) and an orientation ⃗H,

we want to find the expected size of 𝓁(G, ⃗H), that is, the expected number of C↻
𝓁+2

-free,

𝓁-locally-dense extensions of ⃗H. We will follow the proof strategy from [6]. For each

orientation ⃗G, let ⃗T = ⃗T( ⃗G) be a minimal subset of E( ⃗G) ⧵ E( ⃗H) such that ⃗G is the unique

C↻
𝓁+2

-free orientation of G containing ⃗T ∪ E( ⃗H). For a ∈ A, let

⃗T
+
a = {v ∈ V(H) ∶ av ∈ ⃗T}.

We claim that ⃗T
+
a is an independent set in ⃗H

𝓁
. Indeed, suppose there are x, y ∈ ⃗T

+
a such that

xy ∈ E( ⃗H
𝓁
). Let ⃗T

′
= ⃗T ⧵{ay} and observe that every orientation containing ⃗T

′
∪{ya}∪ ⃗H

contains a C↻
𝓁+2

of the form ax⃗Pya for some path ⃗P ⊂
⃗H of length 𝓁. Therefore, any

C↻
𝓁+2

-free orientation of ⃗G containing ⃗T
′
∪ ⃗H also contains the edge ay, contradicting

the minimality of ⃗T . By symmetry, the sets ⃗T
−
a , defined analogously for a ∈ A, are also

independent sets in ⃗H
𝓁
. With this in mind, set

1 =
{
⃗T( ⃗G) ⧵ (A × A) ∶ ⃗G ∈ 𝓁(G, ⃗H)

}
.

To bound |1| using the graph container lemma (Lemma 5.1), set

𝛽 = p1∕𝓁

2(𝓁 + 1)
, q = 2(𝓁 + 1) log n

p1∕𝓁 , R = (𝓁 + 1)𝛼.

Using Lemma 5.2, one can check that these constants satisfy the conditions of Lemma 5.1,

from which we obtain a family  of containers for the independent sets of ⃗H
𝓁
. Therefore,

since T+a and T−a are independent sets in ⃗H
𝓁

contained in NG(a) for each a ∈ A, we obtain

|1| ⩽
∏
a∈A

(∑
C∈

2
|C∩NG(a)|

)2

⩽
∏
a∈A

(
|| ⋅∑

C∈
4
|C∩NG(a)|

)
, (17)

where the last inequality follows by convexity. On the other hand, it is clear that the set

2 = {⃗T( ⃗G) ∩ (A × A) ∶ ⃗G ∈ 𝓁(G, ⃗H)} satisfies

|2| ⩽ 3
|E(G)∩(A×A)|

. (18)

Since ⃗T( ⃗G) uniquely determines an orientation ⃗G ∈ 𝓁(G, ⃗H) by definition, we can use

linearity of expectation and the fact that the exponents in (17) and (18) depend on pairwise

disjoint sets of edges of G to obtain

E

[
|𝓁(G, ⃗H)|

]
⩽ E

[
3
|E(G)∩(A×A)|] ⋅∏

a∈A

(
|| ⋅∑

C∈
E
[
4
|C∩NG(a)|]

)
(19)
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By Lemma 5.1, we have

|| ⩽
q∑

i=0

(n
i

)
⩽
(

en
q

)q

⩽ eq log n
.

Moreover, since |C| ⩽ R + q ⩽ 2R for every C ∈ , we can apply Lemma 3.7 and obtain

E
[
3
|E(G)∩(A×A)|] ⩽ e3p|A|2

and E
[
4
|C∩NG(a)|] ⩽ e8pR

.

Plugging these bounds in (19) and recalling that |A| = 𝛼∕2, R = (𝓁 + 1)𝛼 and q =
2(𝓁 + 1)p−1∕𝓁

log n, we have

E

[
|𝓁(G, ⃗H)|

]
⩽ exp

(
3p|A|2 + |A|(q log n + 8pR)

)

⩽ exp
(
p𝛼2 + 𝛼(𝓁 + 1)p−1∕𝓁(log n)2 + 4p(𝓁 + 1)𝛼2

)

⩽ exp
(
𝛼(𝓁 + 2)p−1∕𝓁(log n)2

)
,

where in the last inequality we used that 𝓁p𝛼 = o(p−1∕𝓁(log n)2), which follows from

p𝛼 = 2
6

log n and p ⩽
(
2

7𝓁
)−𝓁

. This finishes the proof. ▪

6 CONCLUDING REMARKS

This paper fits into the effort of understanding the number of ⃗H-free orientations of G(n, p), and there

is still much to be understood about this problem. It is still an open problem to provide good estimates

on log D(G(n, p), ⃗H) when ⃗H is a strongly connected tournament with at least four vertices.

Conjecture 6.1. Let ⃗H be a strongly connected tournament with k ∶= v(H) ⩾ 4 and let
p ≫ n−2∕(k+1)

. Then, with high probability,

log D(G(n, p), ⃗H) = ̃Θ
(

n
p(k−1)∕2

)
.

We remark that a more general version of Conjecture 6.1 appeared in [6]. Coming back to the

case studied in the present paper, there are also several open problems when ⃗H is a directed cycle. We

believe Theorem 1.2 can be tightened as in the following.

Conjecture 6.2. If p ≫ n−1+1∕(k−1) then, with high probability,

log D(G(n, p),C↻
k ) = Θ

(
n

p1∕(k−2) + n log n
)
.

The lower bound for this conjecture was proved in [6], but the upper bound is not known even in

the case k = 3. It would also be interesting to understand the behavior of log D(G(n, p),C↻
k ) as k grows

with n. For instance, it is not clear to us what should happen when k ≫ log n.
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