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We present a pedagogical introduction to Bose–Einstein condensation in traps with spherical

symmetry, namely, the spherical box and the thick shell, sometimes called bubble trap. In order

to obtain the critical temperature for Bose–Einstein condensation, we describe how to calculate

the cumulative state number and density of states in these geometries, using numerical and

analytical (semi-classical) approaches. The differences in the results of both methods are a

manifestation of Weyl’s theorem, i.e., they reveal how the geometry of the trap (boundary

condition) affects the number of the eigenstates counted. Using the same calculation procedure,

we analyzed the impact of going from three-dimensions to two-dimensions, as we move from a

thick shell to a two-dimensional shell. The temperature range we obtained, for the most

commonly used atomic species and reasonable confinement volumes, is compatible with current

cold atom experiments, which demonstrates that these trapping potentials may be employed in

experiments. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5125092

I. INTRODUCTION

A Bose–Einstein condensate (BEC) corresponds to the
macroscopic occupation of the lowest energy quantum state
by the particles of a system (see Refs. 1–3 for a historical
overview, and Ref. 4 for a pedagogical description of
the BEC phase formation in terms of coherent states).
Bose–Einstein condensation occurs when the system is
cooled below a critical temperature Tc and the mean interpar-
ticle distance �l ¼ q�1=3, q being the number density of N par-
ticles in a volume V, becomes comparable to the de Broglie
wavelength

k ¼ h

Mv
; (1)

where M is the mass of the atoms, and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
is their

thermal velocity, kB being the Boltzmann constant. Imposing
k � �l implies that a homogeneous gas will undergo a
Bose–Einstein condensation at a temperature

Tc �
h2q2=3

MkB
: (2)

This simple qualitative argument differs from the accurate5,6

result only by a factor of �3.3.
The first experimental realizations of Bose–Einstein con-

densation in dilute gases7–9 were achieved in 1995, and cur-
rently several laboratories around the world produce BECs
on a daily basis (for an introduction to this research field,
including a complete list of relevant books and articles, the
reader is referred to Ref. 10). One feature of experiments
with cold atomic gases that led to rapid advances in the field
is the ability to control the parameters of the system.11,12

The interatomic interactions and trapping potentials can be
changed by external electromagnetic fields, with unprece-
dented control. Although harmonic potentials are the most
commonly used traps in experiments, other geometries, such
as box traps,13 recently became available.

In this work, we are interested in dilute gases. Here we
study a BEC trapped in spherically symmetric potentials, the
spherical box and the thick shell, sometimes called bubble

trap. Our theoretical studies are motivated by the experimen-
tal possibility of confining the atoms in this kind of trap,14–16

which has to be inserted in a microgravity setting to produce
a spherical atom distribution.17 It is worth pointing out that
there is a proposal18 to implement a realistic experimental
framework for generating shell-geometry BECs using an
experimental apparatus placed in orbit (NASA Cold Atom
Laboratory,19 aboard the International Space Station).

We determined the cumulative state number and density
of states in these geometries in order to calculate the critical
temperature for Bose–Einstein condensation. The tempera-
ture range we obtained is compatible with current cold atom
experiments, which demonstrates that these trapping poten-
tials may be employed in experiments. We also discuss, very
briefly, the effects of reducing the dimensionality of the sys-
tem of interest from 3D to 2D, which is what happens when
the thickness of the shell goes to zero. The study of cold
gases has proven to be a very rich research field, and the
investigation of low-dimensional systems has become an
active area in this context.20,21

We wrote this manuscript in a pedagogical way, hoping
that dedicated undergraduate students will find all the neces-
sary ingredients to reproduce the results presented here.
Moreover, we wish to show that even if some problems in
statistical physics do not have analytical solutions, numerical
methods offer some insight into the underlying physics of
the system (we refer the reader to article by Price et al.;22

see also by Ligare23), as we will show here.
This work is structured as it follows. In Sec. II, we intro-

duce the concepts related to the cumulative state number and
density of states. We begin by calculating the energy levels
of a particle in a rigid box, Sec. II A; then we show how the
density of states can be obtained from the cumulative state
number, Sec. II B; we write expressions for these quantities
in the high-energy limit, Sec. II C, and semi-classical approx-
imations, Sec. II D. Weyl’s theorem is presented in Sec. II E.
Bose–Einstein condensation is introduced in Sec. III, where
we derive the expression for the critical temperature in
three-dimensions. Section IV deals with the solution of
Schr€odinger’s equation for a spherically symmetric potential,
which is then applied to two different trapping potentials: the
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spherical box and the thick shell, Secs. V and VI, respec-
tively. The critical temperatures are calculated in Sec. VII,
for three-dimensional, Sec. VII A, and two-dimensional
systems, Sec. VII B. Finally, we summarize our findings in
Sec. VIII. Appendix A deals with the generalization of the
critical temperature expression for D dimensions.

II. CUMULATIVE STATE NUMBER AND DENSITY

OF STATES

In this section, the concept of the density of states will be
introduced through the calculation of the cumulative state
number for a particle in a rigid box. Then, the semi-classical
approximation will be presented to generalize the density of
states to an arbitrary confining potential.

A. Particle in a rigid box

The concept of density of states (DOS) is ubiquitous to
many areas of physics, such as: specific heat calculations,
black-body radiation, phonon spectra, reaction rates in
nuclear physics, and many more. For a pedagogical over-
view, the reader is referred to Ref. 24. In this work, we are
going to use the DOS to calculate the critical temperature of
a trapped BEC.

In statistical physics, many quantities can be expressed as
integrations over the phase space, which can be very compli-
cated. An alternative is to replace the variables in terms of
the energy of the system, thus replacing the volume in phase
space by a weight factor in the energy integral. This weight
factor is the density of states, which typically makes the inte-
grals more tractable.

Let us begin with the case of a particle in a rigid box, that
is, subjected to a potential which is zero inside the box and
infinite outside it. Although it is a very simple example, it
exhibits the nonclassical behavior expected from a quantum
mechanical problem, and it also serves as a building block to
more complex examples (scattering, double-well, among
many others). A nonrelativistic particle of mass M inside a
one-dimensional box of size L has energy levels given by25

e1D
n ¼

�h2

2M

p2

L2
n2

x ¼ e0n2
x ; (3)

where we defined e0 ¼ p2�h2=ð2mL2Þ and nx is a positive inte-
ger. In a two-dimensional square box of sides L, the energy

levels are simply e2D
n ¼ e0ðn2

x þ n2
yÞ, where we introduced an

extra integer ny to take into account the y-dimension. Finally,
a straightforward generalization to three-dimensions yields

e3D
n ¼ e0ðn2

x þ n2
y þ n2

z Þ.

B. n-space representation

For the following discussion, we are going to assume the
two-dimensional case because its visualization is easier, but
the arguments hold in the other cases. The momentum space
is defined by the variables px and py, but they only differ
from nx and ny by a constant, pi ¼ �hki ¼ nip�h=L with i¼ x,
y. So let us call this space, defined by nx and ny, n-space. We
can think of each quantum number being a line, and the
intersection of the lines corresponds to the allowed quantum
states (nx, ny). In Fig. 1, we represent the two-dimensional
n-space, and for each quantum state we write the energy e2D

n
in units of e0. A curve with constant energy or, conversely,

constant n2, is given by n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
. When independent

states correspond to the same energy we say they are degen-
erate. This is illustrated in Fig. 1 by the quarter circle

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
¼ 5 which intersects two grid points, (3, 4)

and (4, 3), corresponding to the two degenerate energy states.
Notice, however, that not all energies are allowed, for exam-

ple, n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
¼ 6 does not intersect any points.

If we list all the allowed energies e of our system, or more
practically all the possible energies up to a cutoff, and their
corresponding degeneracies d(e), we could make a plot of
d(e), which would correspond to the “number of states with
energy e” vs e. This graph would be a series of spikes, at the
allowed energies e, each with height d(e). At this point, it is
helpful to introduce a new quantity, the cumulative state
number NðeÞ defined as the number of states with energy
less than or equal to e. Its graph is a staircase where each
step has a height d(e) and a width given by the gap between
two consecutive energy levels.

Finally, we can introduce the density of states function
g(e) as being related to the cumulative state number through
gðeÞde ¼ dNðeÞ, so we identify g(e) with the slope of NðeÞ.
From a computational point of view, we can take the numeri-
cal derivative using a finite difference expression

gðeÞ ¼ dN
de
¼ Nðeþ deÞ � N ðe� deÞ

2de
; (4)

where de is small compared to e. Then, if we divide the
energy interval into bins of width de, g(e) will correspond to
“number of states in a bin” divided by the “width of the bin,”
in accordance with our definition of the density of states.
Throughout this paper, we favor working with Nð�Þ rather
than g(e). From the theoretical point of view, they contain
the same physical information and they are interchangeable.
However, from the computational perspective, the cumula-
tive state number will be a smoother function due to the fact

Fig. 1. Energies, in units of e2D
0 , of a particle in a 2D square box as a function

of the integers nx and ny. The quarter circles correspond to n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
¼ 5

and 6. Notice that n¼ 5 intersects two grid points, (3, 4) and (4, 3), correspond-

ing to the degeneracy of this energy level, whereas n¼ 6 does not intersect any

points.
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it corresponds simply to the addition of integers, whereas the
density of states corresponds to numerical derivatives, hence
it suffers more from noisy data.

C. Analytic expressions for the cumulative state number
and density of states

Equation (4) corresponds to a numerical representation of
g(e). However, there are analytic expressions for the rigid
box potentials we introduced earlier, when the DOS is large
and well approximated by a smooth function. The states in
the energy interval between e and e þ de are represented in
n-space by a spherical shell of thickness dn with positive
coordinates. In the two-dimensional example of Fig. 1, the
number of states between n and n þ dn is proportional to the
area of the band. Clearly, this is an approximation, since nx

and ny are discrete, however this becomes increasingly accu-
rate when the energy levels become closely spaced. Hence,
the 2D DOS is given by g2DðeÞde ¼ ð1=4Þð2pÞðndnÞ, where
the factor of 1/4 corresponds to the positive quadrant, and
we consider polar coordinates such that the radial coordinate

is n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
and the factor of 2p accounts for the angu-

lar direction (supposing that the function is isotropic). Thus,
we can write the DOS as g2DðeÞ ¼ ð1=2ÞpnðeÞdn=de.
Substituting nðeÞ ¼

ffiffiffiffiffiffiffiffiffi
e=e0

p
yields g2DðeÞ ¼ p=ð4e0Þ, that is, a

constant. Since the cumulative state number is the integral of
g(e), then N 2DðeÞ ¼ ðp=ð4e0ÞÞe is a straight line.

For the three-dimensional case, the appropriate construc-
tion in n-space is a shell of thickness dn in the all positive
coordinates octant of a sphere, which leads to g3DðeÞde
¼ ð1=8Þð4pÞðn2dnÞ, where the factor of 1/8 corresponds to
only one octant, and we consider spherical coordinates, such

that n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
is the radial coordinate, and the

factor of 4p corresponds to the solid angle average. Hence,

g3DðeÞ ¼
p

4e3=2
0

ffiffi
e
p
; (5)

and

N 3DðeÞ ¼
p

6e3=2
0

e3=2: (6)

So far we were restricted to the problem of one particle in
a D-dimensional box. If we have N noninteracting particles
in a cube, then the total energy is the sum of the energy of
individual particles, which can be related to the surface of a
D-dimensional hypersphere, with D¼ 3N. The “content” (in
2D it is the area, in 3D the volume, and so on) of a D-dimen-
sional hypersphere of radius R is given by26

VD ¼
pD=2

CðD=2þ 1ÞR
D ¼ C0DRD; (7)

where C is the gamma function,27 and we defined C0D
¼ pD=2=CðD=2þ 1Þ. Notice that this formula reproduces the
familiar results C02 ¼ p, and C03 ¼ 4p=3. The hyper-surface
area (in 2D the perimeter, and in 3D the surface) is given by
SD ¼ DC0DRD�1, and its portion in the all positive coordi-
nates region is given by (1/2D)SD. Thus, the cumulative state
number is given by the phase space volume enclosed by
n ¼

ffiffiffiffiffiffiffiffiffi
e=e0

p

N DðeÞ ¼
1

2D C0DnD ¼ 1

2D C0D
e
e0

� �D=2

: (8)

The DOS is obtained by differentiating the above expression

gDðeÞ ¼
1

2Dþ1
C0DD

eD=2�1

eD=2
0

: (9)

D. The semi-classical approximation

The energy levels we employed in Secs. II A–II C were
obtained analytically. However, such calculations are possi-
ble only for a few systems in quantum mechanics.
Nevertheless, it is possible to calculate the density of states
employing the so-called semi-classical approximation.28,29

The main idea behind it is that the volume in phase space
between two surfaces of energy e and e þ de is proportional
to the number of states in that interval.

The uncertainty principle defines the smallest volume in
phase space as being dV ¼ dp3dr3/h3. If we want to calculate
the cumulative state number as a function of the momentum
p, then

N SCðpÞ ¼
1

h3

ð
d3r

ðp

0

4pp02dp0 ¼ 4p
3h3

ð
d3r p3; (10)

where we used spherical coordinates to do the integral over the

momenta. The total energy is equal to e ¼ p2=ð2MÞ þ UðrÞ,
and solving for p yields p ¼ ð2Mðe� UðrÞÞ1=2

, so that

N SCðeÞ ¼
1

6p2

2M

�h2

� �3=2 ð
V�ð�Þ

d3r e� UðrÞð Þ3=2; (11)

where the integration is done over the volume V*(e) avail-
able to the particle with energy e. Note that the external
potential UðrÞ has an important contribution to the calcula-
tion of the DOS, since it constrains the space available to the
system.

Taking the derivative of Eq. (11) gives us the 3D DOS in
this semi-classical approximation

gSCðeÞ ¼
1

4p2

2M

�h2

� �3=2 ð
V�ðeÞ

d3r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� UðrÞ

p
: (12)

For the rigid box, N SCðeÞ agrees with N 3DðeÞ, Eq. (6), and
gSC(e) agrees with g3D (e), Eq. (5).

The semi-classical model is a realistic approximation
when the energy of a fundamental state is much less than
kBT, the latter being comparable to the energy of the system.
Let us try to demonstrate the model validity considering a
BEC in an isotropic harmonic oscillator potential in 3D, with
an energy spectrum given by

enxnynz
¼ �hxðnx þ ny þ nzÞ þ e0; (13)

where ni ¼ 0, 1, 2, 3,…(i¼ x, y, z), with e0 ¼ ð3=2Þ�hx being
the fundamental state energy. The density of states can be
calculated considering the energy-levels degenerescence of
this system. That gives30
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gðeÞ ¼ 1

2

e2

ð�hxÞ3
þ 3

2

e

ð�hxÞ2
þOðe0Þ: (14)

Notice that in this derivation we considered the fundamental
state energy different from zero.

Now we consider the density of states for the same system
using the semi-classical approach. The potential energy of
interest is UðrÞ ¼ ðmx2r2Þ=2. Substituting this potential into
Eq. (12) yields

gSCðeÞ ¼
1

2

e2

ð�hxÞ3
: (15)

Comparing Eq. (14) with Eq. (15), we can see that the dif-
ference is in the second term of Eq. (14), 3=2ðe=ð�hxÞ2Þ. If
e� �hx, however, both results will converge to the same
value. As mentioned before, that is the requirement for the
semi-classical approach validity, considering that e0 � �hx.
For more general confining potentials, the quantum correc-
tion to the semi-classical result can be obtained using the
path-integral procedure, through the short time expansion of
the propagator between two spacetime points (see Ref. 31).

E. Weyl’s theorem

So far we discussed only D-dimensional rigid boxes, and
Eqs. (8) and (9) were derived for the high-energy limit
assuming these cubical geometries. One might ask if these
expressions would be modified in different geometries.

If the box is sufficiently large, the shape of the “box” (we
use this word in the sense of the region in which the particle
is trapped, much like V* in Eq. (11)) should not affect the
particle, as long as kD� V, where k ¼ 2p/k is the de Broglie
wavelength of the particle (see Eq. (1)). Thus a slow particle,
with long wavelength, will know about the edge of the box,
whereas a fast particle, with short wavelength, will not be
sensitive to the walls. This physical intuition is in agreement
with the so-called Weyl’s theorem,32 which can be para-
phrased as “high-energy eigenvalues of the wave function
are insensitive to the shape of the boundary.” A good expla-
nation about the emergence of the theorem is given in Ref.
33, and an explicit proof for the sphere is given in Ref. 34.

Hence, the conclusion is that for kD� V, the high-energy
limit, the density of states and the cumulative state number
are unaffected by the shape of the box. This is also why the
semi-classical approximation yields good results for large
values of k. As we will see, for kD � V, deviations from
Eqs. (8) and (9) might occur, and they can affect consider-
ably the calculation of thermodynamical quantities, as we
will demonstrate here.

III. BOSE–EINSTEIN CONDENSATION

We work within the grand-canonical ensemble, that is, our
system is in contact with heat and particle baths. For a didac-
tic approach to the topic of ensembles in statistical physics,
the reader is referred to Ref. 35. The thermodynamical quan-
tities are functions of the volume V, the temperature T, and
the chemical potential l. The grand-canonical partition func-
tion is given by

ln NðT;V; lÞ ¼ �
X

j

ln 1� exp �bðej � lÞ
� �� �

; (16)

where the sum is done over single-particle states, b ¼ 1/
(kBT), and ej is the energy of the j-th level of the system.
From the partition function, it is possible to obtain the
expected value of the occupation of the j-th level

hnji ¼
1

exp bðej � lÞ
� �

� 1
; (17)

and the total number of particles

N ¼
X

j

hnji ¼
X

j

1

exp bðej � lÞ
� �

� 1
: (18)

These equations only make sense if ej – l > 0, that is, a
strictly negative chemical potential. For the classical limit of
high temperatures, it is easy to see that l < 0. However, in
the quantum mechanical context, l ¼ 0 gives rise to the
Bose–Einstein condensation (a clear explanation about the
meaning of the chemical potential in a broad context is given
by Cook et al. in Ref. 36).

In order to calculate37 the critical temperature Tc where
l! 0�, let us take Eq. (18) with l ¼ 0. Furthermore, let us
assume that these are free-particles, with an energy spectrum
of ej ¼ �h2k2=ð2MÞ. In the thermodynamical limit, the sum
may be replaced by an integral,38 and the set of expected
occupation numbers hnji becomes a smooth function of the
energy, which we denote by f ðeÞ ¼ 1=ðexp ½bðe� lÞ� � 1Þ.
This function is often called Bose–Einstein distribution.
Putting all this information together, we have an expression
that relates the number of particles with the temperature

N ¼
ð

degðeÞf ðeÞ: (19)

Here, we see the importance of the DOS function, see Sec.
II. The Bose–Einstein distribution f(e) gives us the expected
number of occupied states at a given energy f(e), that is, a
number between 0 and 1. However, the energies might be
degenerate, so we use g(e)de to count the number of avail-
able states between e and e þ de.

A straightforward substitution of Eq. (9) into (19) yields

N ¼ 1

2Dþ1

C0D

eD=2
0

ð1
0

de
eD=2�1

exp ðbceÞ � 1
; (20)

where we defined bc ¼ 1/(kBTc). This integral can be solved
analytically (see Appendix A for a step-by-step solution).
Solving for Tc yields

Tc ¼
1

kB

1

CDCðD=2ÞfðD=2Þ
N

V

	 
2=D

; (21)

where f is the Riemann zeta function39 and CD ¼ C0DD=

ð2Dþ1eD=2
0 VÞ. This is the critical temperature for an ideal

D-dimensional Bose gas. Notice that Tc is inversely propor-
tional to f(D/2)2=D, which diverges for D	 2, implying that
Tc ! 0. Therefore, BEC does not occur, at finite tempera-
ture, for uniform infinite systems in space dimensions less
than three. The physics behind the absence of BEC in 2D is
related to the proliferation of low-lying thermal excitations
(infrared divergence) that destroy the coherence of the BEC
state. On the other hand, in a spatially confined system there
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is a BEC even in 2D, as will be shown in Sec. VII. In this
case, the confining potential alters the low-energy behavior
of the DOS in favor of the BEC formation (see Appendix B
for a detailed discussion).

IV. SPHERICALLY SYMMETRIC POTENTIALS

Let us consider a particle of mass M and energy E> 0
subjected to an external potential V(r) which depends only
of the distance r from the origin. The time-independent
Schr€odinger equation obeyed by the wave function of the
particle W(r) is

� �h2

2M
r2WðrÞ þ VðrÞWðrÞ ¼ EWðrÞ: (22)

The fact that the potential is spherically symmetric suggests
that our calculations might be easier in spherical coordi-
nates, where we employ the usual convention for (r, h, u).
Equation (22) takes the form

� �h2

2M

"
1

r2

@

@r
r2 @W
@r

� �
þ 1

r2 sin h
@

@h
sin h

@W
@h

� �

þ 1

r2 sin2h

@2W
@u2

 !#
þ VðrÞW ¼ EW: (23)

Let us look for solutions that are separable into products25,40

Wnlm r; h;uð Þ ¼ Rnl rð ÞYlm h;uð Þ: (24)

After a few mathematical manipulations,

1

Rnl

d

dr
r2 dRnl

dr

� �
� 2Mr2

�h2
ðVðrÞ � EÞ

	 


þ 1

Ylm

1

sin h
@

@h
sin h

@Ylm

@h

� �
þ 1

sin2h

@2Ylm

@u2

 !" #
¼ 0:

(25)

The terms inside the first brackets depend only on r, while
the terms inside the second brackets contain only terms that
depend on h and u. For this equation to be true for all values
of r, h, and u, the first term must be equal to a constant, and
the second one to minus the same constant. For convenience,
we will call this constant l(lþ 1), so that

1

Rnl

d

dr
r2 dRnl

dr

� �
� 2Mr2

�h2
ðVðrÞ � EÞ ¼ þlðlþ 1Þ; (26)

1

Ylm

1

sinh
@

@h
sinh

@Ylm

@h

� �
þ 1

sin2h

@2Ylm

@u2

 !" #
¼�lðlþ1Þ:

(27)

In principle, l(lþ 1) could be any complex number, and
there is no loss of generality in writing the separation
constant this way. However, if the reader is familiar with
quantum mechanics, it is known that l turns out to be an
integer, l ¼ 0; 1;…, and the quantum number associated
with orbital angular momentum. The angular equation gives
rise to the spherical harmonics

Ylmðh;uÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p
ðl� jmjÞ!
ðlþ jmjÞ!

s
eimuPm

l ðcos hÞ; (28)

where � ¼ (–1)m for mP0 and �¼ 1 for m6 0, and Pm
l is the

associated Legendre function.25 The quantum number m,
sometimes called the magnetic quantum number, takes
the integer values m ¼ �l;…; 0;…; l. We do not discuss the
angular solutions in detail—the reader is referred to an
undergraduate-level quantum mechanics textbook for this
matter25—because we will see that, for our purposes, the
only pertinent detail of the angular solutions that we need is
their degeneracy. For a fixed value of l the degeneracy is 2l
þ 1, corresponding to how many values m can take.

Notice that, so far, we did not specify V(r). That is because
the angular equation, Eq. (27), does not depend on the poten-
tial, it only appears in the radial equation, Eq. (26). In Secs.
V and VI, we solve the radial equation for two cases: a
spherical box and a spherical shell of finite thickness.

V. SPHERICAL BOX

Let us consider the external potential

VðrÞ ¼
0 if 06r < a;

þ1 if rPa;

(
(29)

a being the radius of the sphere where the particle is con-
fined. Equation (26) for the region 0 6 r < a now reads

d2Rnl

dr2
þ 2

r

dRnl

dr
þ k2 � lðlþ 1Þ

r2

� �
Rnl ¼ 0; (30)

where we introduced k2 ¼ 2ME=�h2. The change in variables
z ¼ kr allows us to recast this equation into

d2Rnl

dz2
þ 2

z

dRnl

dz
þ 1� lðlþ 1Þ

z2

� �
Rnl ¼ 0; (31)

which is the spherical Bessel differential equation.39 Its solu-
tions are given by linear combinations of

jlðzÞ ¼ ð�zÞl 1

z

d

dz

� �l
sin z

z
; (32)

ylðzÞ ¼ �ð�zÞl 1

z

d

dz

� �l
cos z

z
: (33)

The functions of Eq. (32) are known as spherical Bessel
functions of the first kind, while the spherical Bessel func-
tions of the second kind are given in Eq. (33). In Fig. 2, we
plot these functions for the orders l¼ 0, 1, 2.

To obtain the energy levels, we need to apply the bound-
ary conditions of our problem into the solutions of Eq. (31).
The wave function must be well-behaved at the origin, hence
the spherical Bessel functions of the second kind are not
acceptable solutions. Also, it cannot have any kinks at the
origin, thus R0nlð0Þ ¼ 0, which is satisfied by the spherical
Bessel functions of the first kind. The boundary condition at
r¼ a, where the wave function must vanish, gives us the
condition Rnl(ka) ¼ 0. Denoting the n-th zero of jl by znl, we
have k ¼ znl/a, and the energy levels are
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enl ¼
�h2

2M

z2
nl

a2
: (34)

Thus our problem of determining the energy levels for this
system reduces to finding the zeros of Bessel functions of the
first kind. In Fig. 2, we show the first zeros for l¼ 0, 1, 2.
Although there are no analytical expressions for the znl, we
can easily find them numerically.41 As we found out in Sec.
IV, each of these levels has a 2l þ 1 degeneracy correspond-
ing to the angular part of the solution.

Now that we determined the energy levels and their
degeneracies, the cumulative state number function NðeÞ,
Sec. II C, can be easily calculated. The steps can be summa-
rized as

(1) Choose a maximum value of the energy em, or equiva-
lently, a maximum value of k, km ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Mem

p
=�h.

(2) Choose a number of bins, nbin. Each bin will correspond
to an energy interval of width �h2k2

m=ð2MnbinÞ, centered
at ebin.

(3) Find all the znl6kma. For each one of the zeros, we con-
sider its 2l þ 1 degenerescence in the corresponding bin.

(4) For each of the bins, add the value of all the preceding
bins to it. This guarantees that we are counting the total
number of states with energy e6 ebin, as required by the
definition of NðeÞ.

We used this procedure to calculate the cumulative state
number and density of states of a spherical box, Fig. 3, which
we compared with the predictions of the semi-classical
approximation, Eqs. (11) and (12). Two main features are
illustrated in this plot. The cumulative state function we
obtained from our quantum mechanical calculation is
slightly below the semi-classical approximation result, which
means that thermodynamical quantities differ in these two
schemes, as we will see in Sec. VII A. Another feature is that
the numerical calculation of the cumulative state number is
smoother than the respective density of states, as discussed
in Sec. II B.

The energy levels of the sphere, Eq. (34), can be written
as enl ¼ esp(znl)

2, with esp ¼ �h2=ð2Ma2Þ. That is why we
chose to express energy-dependent quantities in energy units
of esp. This has the advantage of making our results system-
independent, in the sense that the calculation is the same for
different values of the mass of the atoms M and radius of the
sphere a. Once values of M and a are chosen, then the energy
is rescaled by the value of esp, accordingly.

Equation (8) gives us the cumulative state number for a D-
dimensional system. In particular, for the 3D sphere we can
rewrite the equation as

NðeÞ ¼ Cspe
a; (35)

where

Csp ¼
2

9pe3=2
sp

and a ¼ 3

2
: (36)

A close inspection of Fig. 3 reveals that the relative differ-
ence between our numerical results and the semi-classical
approximation is of the order of 1% for e¼ 104esp. If we
increase the energy cutoff, beyond the range of the graph,
then it would drop to �0.1% for e¼ 1.5 105 esp, and the dif-
ference between them continues to decrease as we increase
the energy cutoff. This is in agreement with the findings of
Sec. II C, for large energy values the two expressions should
coincide.

However, this difference impacts the behavior of the sys-
tem for small energies. In order to quantify this deviation,
we took the logarithm of Eq. (35)

lnNðeÞ ¼ ln Csp þ a ln e: (37)

The plot of lnN vs lne graph is simply a line, with angular
coefficient a and linear coefficient lnCsp. In Fig. 4, we show
the angular and linear coefficients for the e612 000esp

energy range. Each of the points {ei} corresponds to a linear

Fig. 2. (Color online) Examples of Bessel functions of the first, Eq. (32),

and second, Eq. (33), kind. We plot the first three orders, l¼ 0, 1, 2, using

solid, dashed, short-dashed, long-dashed, dash-dotted, and short-dash-dotted

curves to denote j0, j1, j2, y0, y1, and y2, respectively. The solid circles denote

the Bessel zeros z10, z11, and z12. Notice that the Bessel functions of the first

kind are well-behaved near the origin, whereas the ones of the second kind

diverge.

Fig. 3. (Color online) Cumulative state number and density of states of a

spherical box as a function of the energy. The points correspond to our

numerical calculations, squares denote the cumulative state number NðeÞ,
while circles represent the density of states g(e). The curves are given by the

semi-classical approximation, the solid curve corresponds to Eq. (11),

N SCðeÞ, and the dashed curve to Eq. (12), gSC(e). The energies are expressed

in terms of the energy unit esp ¼ �h2=ð2Ma2Þ. Notice that the NðeÞ from our

quantum calculation is slightly lower than the expected result from the semi-

classical approximation. Another feature this plot illustrates is that numeri-

cal calculations of the cumulative state number are smoother than the den-

sity of states.
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fit of our data, up to that energy, to Eq. (37). We can see that
increasing the energy cutoff yields coefficients that are much
closer to the expected high-energy limits.

Another feature that we chose to illustrate in Fig. 4 is
Weyl’s theorem. The bottom panel shows, for a fixed vol-
ume, the ratio V/k3, which increases with the energy. As we
can see, as the ratio increases, the closer the angular and lin-
ear coefficients become to the high-energy limit given in
Eq. (36). This is consistent with what we presented in Sec.
II E, as the energy of the particle increases, it becomes
insensitive to the shape of the sphere, and its cumulative
state number approaches the expression we derived for a
rigid box.

VI. THICK SHELL

Let us consider the external potential

VðrÞ ¼ 0 if a < r < b;
þ1 otherwise:

�
(38)

We refer to this potential as a thick shell because a shell is a
two-dimensional object, whereas the potential of Eq. (38)
traps the particle in a spherically symmetric region with
thickness d ¼ b – a. Equation (26) for the region a< r < b is
the same as Eq. (30), which means that linear combinations
of the spherical Bessel functions of the first and second
kinds, Eqs. (32) and (33), are also solutions to this equation.

However, the boundary conditions are different from the
ones employed in the spherical box, Sec. V, Rnl(r¼ a)
¼Rnl(r¼ b) ¼ 0. This yields the system of linear equations

AjlðkaÞ þ BylðkaÞ ¼ 0;

AjlðkbÞ þ BylðkbÞ ¼ 0; (39)

where A and B are constants that need to be determined. The
non-trivial solution requires

jlðkaÞylðkbÞ � jlðkbÞylðkaÞ ¼ 0: (40)

Again, our problem reduces to finding the values of k that
satisfy the equation above. We employ numerical methods to
find them.41

Unlike the spherical box, where the only length scale of
the problem is the radius of the sphere, there are two length
scales present in the thick shell: the radii a and b or, equiva-
lently, the thickness d and the center of the sphere R
¼ (aþ b)/2. This means that the approach we employed in
the case of the sphere, of defining quantities in energy units
of esp, will not work here. Hence, the parameter choice
was made keeping in mind typical values for the number
density employed in trapped BECs,42 which yields the range
between 10 and 15 lm for a and b.

In Fig. 5, we plot the cumulative state number for the
spherical box and the thick shell. For both sets of internal
radii a¼ 10 lm and a¼ 14 lm, with the external radius
b¼ 15 lm fixed, our (quantum) numerical calculations yield
slightly lower values if compared to the semi-classical
approximation of Eq. (11). Again it is possible to see the
manifestation of Weyl’s theorem. The spherical box with
radius a ¼ (153 – 143)1=3lm � 8.6 lm and the thick shell
with a¼ 14 lm and b¼ 15 lm have the same volumes, how-
ever totally different shapes. Their cumulative state number
function presents a small deviation, which increases with the
decreasing of the trap volume.

In order to quantify this difference, we proceeded analo-
gously to what we did in Sec. V. The logarithm of the state
number function is given by

ln NðeÞ ¼ ln Csh þ a ln e; (41)

where the high-energy limit corresponds to a ¼ 3/2 and
Csh ¼ ½2ðb3 � a3Þ=ð9pÞ�ð2M=�h2Þ3=2

. In Fig. 6 we show the
linear fit of our data to Eq. (41). It is possible to see that
larger values of the thickness yield angular and linear coeffi-
cients that are closer to the high-energy limit, as expected.

Fig. 4. (Color online) Angular coefficient a, linear coefficient lnCsp, and vol-

ume over wavelength cubed V/k3, for a spherical box as a function of the

energy. The dashed lines correspond to the classical (high-energy) limit of

a¼ 3/2 and ln Csp ¼ ln ð2=ð9pe3=2
sp ÞÞ. The bottom panel illustrates Weyl’s

theorem: we fixed the volume V and varied the wavelength k¼ 2p/k. Larger

values of V/k3 correspond to angular and linear coefficients that are closer to

the expected classical limit.

Fig. 5. (Color online) Cumulative state number for the spherical box and

thick shell as a function of the energy. The points correspond to our numeri-

cal calculations, and the curves to the semi-classical approximation of Eq.

(11). The open circles correspond to the spherical box with radius

a¼ (153 – 143)1=3lm � 8.6 lm, which was chosen such that the sphere has

the same volume as the thick shell with a¼ 14 lm and b¼ 15 lm, open tri-

angles. We also plot the cumulative state number for a different internal

radius, a¼ 10 lm, while keeping the external radius fixed at b¼ 15 lm,

denoted by the solid triangles, and the spherical box (same volume) of radius

� 13.3 lm solid circles. The semi-classical approximations for a¼ 10 lm

and a¼ 14 lm, solid and dashed curves respectively, are slightly above the

corresponding quantum calculations.
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We should note that the angular coefficients a are slightly
lower than 3/2 for d � 8 lm. This is explained by the fact
that increasing the volume, or the energy cutoff, makes the
angular coefficient approach 3/2 from below, as was the case
with the spherical box, see Fig. 4. For the range d � 8 lm,
there is competition between the energy cutoff, the change in
volume, and also the change in dimensionality, as d/R� 1.

We also verified Weyl’s theorem by varying both the vol-
ume V and the wavelength k and calculating the ratio V/k3.
For a fixed value of the thickness (for example, d ¼ 1 lm),
the larger the ratio, the closer the angular and linear coeffi-
cients are to the expected limits.

VII. CRITICAL TEMPERATURE

In this section, the critical temperature for the spherical
box and shell potentials will be calculated. The result for the
quasi-2D shell configuration will be contrasted with the criti-
cal temperature expected for a strictly two-dimensional
shell.

A. Three-dimensional systems

Finally, we have all the ingredients to calculate the critical
temperature for Bose–Einstein condensation in the spherical
box and thick shell traps. The semi-classical calculation cor-
responds to Eq. (21) with the pertinent volume. We assume
N¼ 105 particles, which is consistent with cold gases in har-
monic traps.42 We considered three atomic species which are
commonly employed in cold atoms experiments: 23Na, 87Rb,
and 133Cs. We disregard the interaction between the atoms,
i.e., we are assuming an ideal Bose gas. Their atomic masses
are available in Ref. 43 in unified atomic mass units. A use-
ful reference for physical constants is the “2014 CODATA
(Committee on Data for Science and Technology)

recommended values,” which is generally recognized world-
wide for use in all fields of science and technology.44 We
used their values for atomic units ½u c2�; �hc ½eV lm�, and kB

[eV/K] to compute Eq. (21).
We present our results for the semi-classical values of Tc

in Fig. 7 as open symbols. Equation (21) shows that Tc is
inversely proportional to the atomic mass M hence, for a
given geometry, 23Na displays the highest critical tempera-
ture and 133Cs the lowest. We should also note that the spher-
ical trap with a ¼ (153 – 143)1=3lm � 8.6 lm and the thick
shell with a¼ 14 lm and b¼ 15 lm have the same volumes,
thus their critical temperatures are the same in the semi-
classical scheme.

We also calculated the critical temperature using our
numerical calculations of the density of states g(e) and Eq.
(19). We show the results in Fig. 7 using solid symbols.
Although many of the results are within the error bars (the
computation of the density of states introduces numerical
errors), our quantum results are consistently larger than the
semi-classical ones, mainly when we consider the thinner
shell case. This is in agreement with our findings in Secs. V
and VI, where our cumulative state number functions are
smaller than the semi-classical approximation.

B. From 3D to 2D

As the thickness d of the shell approaches zero, we expect
the behavior of the system to transition from 3D to 2D. Let us
see what happens when the external radius b¼ a þ d goes to
the internal radius a, d! 0. We can perform a Taylor expan-
sion of the spherical Bessel functions, Eqs. (32) and (33)

flðkðaþ dÞÞ ¼ flðkaÞ þ d
2

kfl�1ðkaÞ � flðkaÞ
aþ d

�

�kflþ1ðkaÞ
�
þOðd2Þ; (42)

Fig. 6. (Color online) Angular coefficient a, linear coefficient lnCsh, and the

ratio V/k3, for a thick shell as a function of the thickness d. The external radius

was kept fixed at 15 lm, while the internal radius a was varied between 4 and

14 lm. We plot the data points corresponding to our numerical calculations for

the cutoffs km ¼ 40, 50, and 60 lm�1, triangles, circles, and squares, respec-

tively. The dashed lines correspond to the classical (high-energy) limit of

a¼ 3/2 and ln Csh ¼ ln ½2ðb3 � a3Þ=ð9pÞ�ð2M=�h2Þ3=2
. The bottom panel illus-

trates Weyl’s theorem: for different values of k we calculated the ratio V/k3,

with k¼ 2p/k. We show the ratios for k¼ 40, 50, and 60 lm�1, short-dashed,

dashed, and solid curve, respectively. Larger values of V/k3 correspond to

angular and linear coefficients that are closer to the expected classical limit as

illustrated, for example, by the values of a for d¼ 1 lm.

Fig. 7. (Color online) Critical temperature for Bose–Einstein condensation

for different atomic species in spherically symmetric traps. Open symbols

stand for the semi-classical approximation of Eq. (21), while solid symbols

correspond to our numerical calculations. We denote 23Na, 87Rb, and 133Cs

by squares, circles, and triangles, respectively. Note that the spherical trap

with a ¼ (153 – 143)1=3lm � 8.6 lm and the thick shell with a¼ 14 lm and

b¼ 15 lm contain the same volumes, thus their critical temperatures are the

same in the semi-classical approximation. The same is true for the sphere

with a ¼ (153 – 103)1=3lm � 13.3 lm and the thick shell with a¼ 10 lm

and b¼ 15 lm.
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where fl can denote either jl or yl, and we used the property
dflðzÞ=dz ¼ ð1=2Þðfl�1ðzÞ � flðzÞ=zþ flþ1ðzÞÞ. Substituting
this into Eq. (40) yields

kd jlðkaÞyl�1ðkaÞ � jl�1ðkaÞylðkaÞð Þ ¼ 0: (43)

Another property of the spherical functions is39

jlðzÞyl�1ðzÞ � jl�1ðzÞylðzÞ ¼
1

z2
: (44)

Putting everything together we have

d
a

� �
1

ka

� �
¼ 0: (45)

This should not be surprising: as d/a goes to zero we need an
infinite amount of energy, here represented by ka ! 1, to
excite the radial degree of freedom.

The proper way to determine the energy levels of a truly
two-dimensional shell is to start from the 2D Schr€odinger
equation. However, we already saw in Sec. IV that the spher-
ical harmonics are the solutions for this case

� �h2

2M
r2Ylm ¼

�h2

2Ma2
lðlþ 1Þ; (46)

from where we get the energy levels

el ¼ esplðlþ 1Þ; (47)

with degeneracy 2l þ 1, as argued in Sec. IV.
The total number of bosons is given in Eq. (18)

N ¼
Xþ1
l¼0

2lþ 1

exp ðel � lÞ=ðkBTÞ½ � � 1
: (48)

In the Bose–Einstein condensate, we can set l ¼ 0 and
we can separate the number of atoms in the lowest energy
state N0

N ¼ N0 þ
Xþ1
l¼1

2lþ 1

exp el=ðkBTÞ½ � � 1
: (49)

The critical temperature corresponds to one above which N0

¼ 0. Within a semi-classical approximation,45 we can takePþ1
l¼1 !

Ðþ1
1

dl, yielding

N ¼ N0 þ
4pa2MkBT

2p�h2

�h2

Ma2kBT

 

�ln exp
�h2

ðma2kBTÞ

" #
� 1

 !!
: (50)

In the low-temperature limit, the second term on the right
hand side vanishes and N coincides with N0. At Tc, N0 must
be zero, hence we have the implicit equation for Tc

Tc ¼

2p�h2

MkB

N

A

� �

�h2

Ma2kBTc
� ln exp �h2=ðma2kBTcÞ

� �
� 1

� 
 ! ; (51)

where A¼ 4pa2 is the area of the shell. We used Eq. (51) to
compute the critical temperature for 2D shells of radii com-
patible with the thick shells we studied in Sec. VII A. For
example, the thick shell with internal radius 10 lm and exter-
nal radius 15 lm was compared with a shell at 12.5 lm. We
found that the critical temperature of the shells is 1.5 to 2
times larger than the one for the thick shells. This means that
our thick shells are far away from being two-dimensional
systems.

It is worth mentioning that the semi-classical approxima-
tion for the two-dimensional shell, the 2D equivalent of Eq.
(12), does not give a finite critical temperature for
Bose–Einstein condensation, with Tc being zero in the limit
of a plane geometry. It is the curvature of the spherical shell
that allows a finite critical temperature.

VIII. SUMMARY

One of the main goals of this work was to compare and
contrast the semi-classical approximation for the density of
states and cumulative state number, with quantum mechan-
ical calculations. We found differences at the low-energy
regime, which is the most relevant for cold atomic gases,
which impact the thermodynamical properties of these
systems. We also verified the manifestation of Weyl’s the-
orem by comparing the same geometry with different
energy regimes, or the spherical box and thick shell with
the same volume.

The critical temperature range we obtained, see Fig. 7, is
compatible with current cold atom experiments (for a
pedagogical model of the cooling mechanism in gaseous
samples, which elucidates the usual range of temperatures
achieved, the reader is referred to Ref. 46). Indeed, systems
with thick-shell trapping potentials, usually called
bubble traps, are being investigated theoretically47 and
experimentally.17,48

In Sec. VII B, we discussed the effects of reducing the
dimensionality of the system of interest from 3D to 2D,
which is what happens when the thickness of the shell goes
to zero. The change of dimensionality is an active topic of
research in cold atoms.21,49

We consider the calculations presented in this paper good
introductory examples for numerical computations in statisti-
cal physics.22 Understandably, undergraduate physics
courses tend to focus on analytically solvable problems.
However, it is of paramount importance that students learn
to perform numerical calculations, since analytical solutions
are very rare in active research areas.

This manuscript can also be used as a starting point to
study trapping geometries with other symmetries. For exam-
ple, cylindrical geometries are useful in the study of vortex
lines in cold gases.50–52 In two-dimensions, disks can be
used to investigate point-like vortices.53–55
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APPENDIX A: CRITICAL TEMPERATURE IN

D-DIMENSIONS

In this appendix, we calculate the critical temperature for
a D-dimensional condensate. First, let us consider the
integral

IðpÞ ¼
ð1

0

dx
xp�1

ex � 1
¼
ð1

0

dx e�xð1� e�xÞ�1xp�1

¼
ð1

0

dx e�x
X1
k¼0

ðe�xÞk
" #

xp�1

¼
X1
k¼0

ð1
0

dx e�xðkþ1Þxp�1: (A1)

Integrals of this form are often called Bose integrals.
Substituting y¼ x(kþ 1),

IðpÞ¼
X1
k¼0

1

ðkþ1Þp
ð1

0

dye�yyp�1

¼CðpÞ
X1
k¼0

1

ðkþ1Þp¼CðpÞ
X1
k¼1

1

kp
¼CðpÞfðpÞ; (A2)

where C is the gamma function and f is the Riemann zeta
function.

Equation (9) gives us the expression for the D-dimensional
density of states, which can be rewritten in the form gDðeÞ
¼ CDVeD=2�1, with CD ¼ C0DD=ð2Dþ1eD=2

0 VÞ, for brevity.
For this density of states,

N ¼ CDV

ð1
0

de
eD=2�1

ebce � 1
: (A3)

Let us perform the substitution x ¼ bce

N ¼ CDV

bD=2
c

ð1
0

dx
xD=2�1

ex � 1
: (A4)

Using the result of Eq. (A2)

N ¼ CDV

bD=2
c

C
D

2

� �
f

D

2

� �
: (A5)

Solving for the critical temperature yields

Tc ¼
1

kB

1

CDCðD=2ÞfðD=2Þ
N

V

	 
2=D

: (A6)

APPENDIX B: HOHENBERG–MERMIN–WAGNER

THEOREM

According to Hohenberg’s theorem: a Bose gas in an uni-
form infinite system with dimension D	 2 does not exhibit
BEC at finite temperature. This theorem can be easily proved
for an ideal Bose gas, through the calculation of the number
of particles in the excited state (see Eq. (20) with D¼ 3). As
showed in the main text, the 3D density of states is propor-
tional to

ffiffi
e
p

and rapidly decreases as e! 0; therefore a mac-
roscopic occupation of the lowest energy state is energetically

favorable. In contrast, in 1D, the DOS is proportional to
1=

ffiffi
e
p

, and diverges as e! 0; then Eq. (20) shows the impos-
sibility of saturation of the excited states and, consequently,
we do not have a macroscopic number of particles in the low-
est energy state. The physics behind the absence of BECs in
this case is the proliferation of low energy excitations (infra-
red divergence) which disturb the particles into the lowest
momentum state. The situation is marginal in 2D, where DOS
is independent of e (quasi long-range order associated with
the emergence of a topological quantum phase transition).

For spatially confined systems, in appropriated conditions,
the system can exhibit BEC even for D	 2. The volume that
is occupied by a nonuniform system, in general, depends on
its energy e, and this dependence alters the low energy
behavior of the DOS in favor of BEC. For example, when
the system is confined in a power law potential V(r) / rn,
since we can consider the particle with energy e is spatially
extended over L � e1=n, there is a contribution to DOS from
the volume LD such that qðeÞ / LDeD=2�1 ¼ eD=nþD=2�1.
This changes the condition under which the integral for the
number of excited particles converges (BEC can exist only if
D/nþD/2 – 1> 0).

For interacting bosons, the absence of the U(1) gauge sym-
metry breaking in one and two dimensions at nonzero tem-
perature can be shown based on Bogoliubov’s inequality.56

That corresponds to Hohenberg–Mermin–Wagner theorem,
which shows the absence of the U(1) gauge symmetry break-
ing in low dimensions. It concludes that even at absolute
zero, the U(1) gauge symmetry does not break down in one
dimension but it does so in two dimensions. Because the
DOS diverges for e ! 0 in one dimension, quantum fluctua-
tions are enhanced, thus destroying the coherent state. It is
out of the scope of this paper to show the demonstration here.
A pedagogical derivation of the Hohenberg–Mermin–Wagner
theorem can be found in the book, Ref. 56.
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47K. Padavić, K. Sun, C. Lannert, and S. Vishveshwara, “Physics of hollow

Bose–Einstein condensates,” EPL 120(2), 20004 (2017).
48D. Becker et al., “Space-borne Bose–Einstein condensation for precision

interferometry,” Nature 562(7727), 391–395 (2018).
49A. G€orlitz et al., “Realization of Bose–Einstein condensates in lower

dimensions,” Phys. Rev. Lett. 87(13),130402 (2001).
50S. A. Vitiello, L. Reatto, G. V. Chester, and M. H. Kalos, “Vortex line in

superfluid 4He: A variational Monte Carlo calculation,” Phys. Rev. B 54,

1205–1212 (1996).
51L. Madeira, S. A. Vitiello, S. Gandolfi, and K. E. Schmidt, “Vortex line in

the unitary Fermi gas,” Phys. Rev. A 93(4), 043604–043611 (2016).
52L. Madeira, S. Gandolfi, K. E. Schmidt, and V. S. Bagnato, “Vortices in

low-density neutron matter and cold Fermi gases,” Phys. Rev. C 100(1),

014001–014011 (2019).
53G. Ortiz and D. M. Ceperley, “Core structure of a vortex in superfluid

4He,” Phys. Rev. Lett. 75(25), 4642–4645 (1995).
54S. Giorgini, J. Boronat, and J. Casulleras, “Vortex excitation in superfluid

4He: A diffusion Monte Carlo study,” Phys. Rev. Lett. 77(13), 2754–2757

(1996).
55L. Madeira, S. Gandolfi, and K. E. Schmidt, “Core structure of two-

dimensional Fermi gas vortices in the BEC-BCS crossover region,” Phys.

Rev. A 95(5), 053603–053612 (2017).
56M. Ueda, Fundamentals and New Frontiers of Bose–Einstein

Condensation, 1st ed. (World Scientific Pub Co Inc, Singapore, 2010).

934 Am. J. Phys., Vol. 87, No. 11, November 2019 Bereta et al. 934

https://doi.org/10.1103/PhysRevLett.86.1195
https://doi.org/10.1103/PhysRevA.69.023605
https://doi.org/10.1103/PhysRevA.69.023605
https://doi.org/10.1088/0953-4075/49/17/172001
https://doi.org/10.1088/0953-4075/49/17/172001
https://doi.org/10.1038/s41526-018-0049-9
http://arxiv.org/abs/1906.05885v1
https://coldatomlab.jpl.nasa.gov
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1119/1.4822174
https://doi.org/10.1119/1.18843
https://doi.org/10.1119/1.4867489
https://doi.org/10.1103/PhysRevA.35.4354
https://doi.org/10.1103/PhysRevA.72.033608
https://doi.org/10.1016/0375-9601(95)00766-V
https://doi.org/10.1007/BF01456804
https://doi.org/10.1080/00029890.1966.11970915
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.17844
https://doi.org/10.1119/1.1976292
https://doi.org/10.1119/1.17416
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/RevModPhys.88.035009
http://arxiv.org/abs/1903.08453
https://doi.org/10.1119/1.2752823
https://doi.org/10.1209/0295-5075/120/20004
https://doi.org/10.1038/s41586-018-0605-1
https://doi.org/10.1103/PhysRevLett.87.130402
https://doi.org/10.1103/PhysRevB.54.1205
https://doi.org/10.1103/PhysRevA.93.043604
https://doi.org/10.1103/PhysRevC.100.014001
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.77.2754
https://doi.org/10.1103/PhysRevA.95.053603
https://doi.org/10.1103/PhysRevA.95.053603

	s1
	d1
	d2
	s2
	s2A
	d3
	s2B
	d4
	f1
	s2C
	d5
	d6
	d7
	d8
	d9
	s2D
	d10
	d11
	d12
	d13
	d14
	d15
	s2E
	s3
	d16
	d17
	d18
	d19
	d20
	d21
	s4
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s5
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	d36
	d37
	f2
	f3
	s6
	d38
	d39
	d40
	d41
	f4
	f5
	s7
	s7A
	s7B
	d42
	f6
	f7
	d43
	d44
	d45
	d46
	d47
	d48
	d49
	d50
	d51
	s8
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	dA6
	app2
	n1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56



