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Abstract: We report on optimized architectures containing layer-by-layer (LbL) films  

of natural rubber latex (NRL), carboxymethyl-chitosan (CMC) and magnetite (Fe3O4) 

nanoparticles (MNPs) deposited on flexible substrates, which could be easily bent by an 

external magnetic field. The mechanical response depended on the number of deposited 

layers and was explained semi-quantitatively with a fully atomistic model, where the LbL 

film was represented as superposing layers of hexagonal graphene-like atomic arrangements 

deposited on a stiffer substrate. The bending with no direct current or voltage being applied 

to a supramolecular structure containing biocompatible and antimicrobial materials represents 

a proof-of-principle experiment that is promising for tissue engineering applications  

in biomedicine. 
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1. Introduction 

The wide variety of new nanomaterials with multifunctional properties has sparked studies aimed at 

biological applications such as artificial muscles [1–4], drug delivery [5–8], implants [9,10] and drug 

therapies within the nanomedicine paradigm [11,12]. Very stringent requirements must be satisfied for 

such applications, especially with regard to biocompatibility and/or biodegradability, in addition to the 

need of suitable mechanical properties. In almost all of these cases, the materials must be assembled in 

a controlled fashion, which can be performed with various experimental techniques. The layer-by-layer 

(LbL) method [5,13–17] based on physisorption of alternating layers of positive and negatively 

charged species has been proven a useful tool to adjust physicochemical properties and improve 

biocompatibility and mechanical properties of materials for biological applications and tissue 

engineering [18–23]. In addition to being suitable for functionalizing surfaces with high degree of 

control, it also allows for bioactivity preservation of enzymes and proteins [24,25], with which 

applications can be developed in bioengineering, biotechnology and biosensing. Indeed, LbL films 

have been used to tune the mechanical strength, cell attachment and proliferation for musculoskeletal 

tissue engineering [13] and in scaffolds for controlled release of drugs [26]. Jiang et al. obtained highly 

ordered free-standing structures from LbL films made with conventional polyelectrolytes and  

gold nanoparticles deposited onto cellulose acetate [27]. Flexible LbL films have been used as  

thermo-mechanical sensors, in drug delivery and optical detection [28–30] and actuation in LbL films 

has been also obtained with carbon nanotubes assembled on Nafion membranes [31] and with 

polymer/metal nanocomposites [32]. 

As a further step in LbL film applications, we conceived new architectures exploiting the properties 

of three types of material, namely natural rubber latex (NRL), carboxymethyl chitosan (CMC) and 

magnetic nanoparticles (MNPs). NRL was chosen due to its biocompatibility and ability to induce 

angiogenesis [8,33,34], in addition to the mechanical properties largely explored in industrial 

applications, which now allow its use in biomembranes, implants and patches for drug delivery [35–38]. 

CMC is a water-soluble chitosan derivative with antimicrobial, anti-bacterial, analgesic and wound 

healing effects, largely employed as scaffolding biomedical applications [11,39,40]. MNPs have been 

studied for hyperthermia treatment of cancer cells [41–44] and in drug delivery systems [45,46], 

especially for exploiting their biocompatibility and response to magnetic stimuli. Stimuli-responsive 

structures have been used in various studies where surface properties of LbL films were controlled [47–52], 

as in synchronized cantilever movements using an external magnetic field [29], superhydrophobic, 

antireflection surfaces [53] and nanoporous membranes [50]. The aim here was to identify optimized 

supramolecular architectures deposited onto flexible membranes amenable to exhibit deformation 

under low external electromagnetic fields, with no need of passing an electric current through the 

device, which might be troublesome depending on the desired application. Furthermore, synergy can 

be sought upon combining two biocompatible materials in a single coating, with a material able to kill 
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bacteria (CMC) and another that may induce angiogenesis (NRL). We developed LbL structures able 

to bend flexible substrates in response to an external magnetic field with a totally reversible behavior, 

which have great potential for biomedical applications. In addition, we wished to address the challenge 

of providing—even if with only a semi-quantitative treatment—an explanation for the movement of 

the functionalized membranes under the magnetic field. This was achieved using molecular dynamics 

in a fully atomistic model, which allowed us to correlate the mechanical response with the number of 

deposited layers in the LbL films. Though this modeling may appear of interest from the point of view 

of basic physics only, we argue that the success in the design of nanodevices may increasingly depend 

on establishing realistic models to explain their usually complex responses. 

2. Results and Discussion 

A detailed study of the adsorption kinetics of the sequential LbL assembly was carried out to 

determine optimized immersion times for a full layer to be built. The stability of the magnetic 

nanoparticles in solution was induced by using CMC in two ways: (i) CMC was added during the 

MNP synthesis (MNP-CMC1) and (ii) through a physical mixture of MNPs and CMC (MNP-CMC2), 

obtained after 30 min in an ultrasound bath. The optimized immersion times for the LbL film 

fabrication were 600, 420, 300 and 300 s for NRL, CMC, MNPs and MNP-CMC2, respectively  

(results not shown), with an immersion time of 120 s for MNP-CMC1, since longer times led to MNP 

precipitation during film fabrication. 

The following LbL film architectures were fabricated: NRL/MNP-CMC1, NRL/MNP-CMC2, 

NRL/MNP/CMC and NRL/CMC/MNP. The UV-Vis. absorption increased linearly with the number of 

trilayers and bilayers for all film architectures, as indicated in Figure 1. Film growth was monitored by 

measuring optical absorption at 200 nm where NRL absorbance is maximum. The linear behavior 

indicates that the same amount of material was adsorbed in each deposition step, with the highest 

adsorption for NRL/MNP/CMC and NRL/MNP-CMC2, which were further confirmed in the AFM 

analysis. The stability of these NRL/MNP/CMC and NRL/MNP-CMC2 LbL films was checked by 

keeping them in ultrapure water under moderate stirring for 10 min. Seven of these immersions in 

water were performed, with a UV-Vis absorption spectrum taken after each dipping. There was a 

decrease of only 0.8% in the absorbance, thus demonstrating good adhesion of the LbL films to the 

flexible substrates. All the three materials used are expected to be negatively charged at the pH of the 

experiments, and, therefore, secondary forces (e.g., hydrogen bonding, hydrophobic and van der Waals 

interactions [54]) should drive the thermodynamic process for spontaneous adsorption in bilayers and 

trilayers described here, with the components being physisorbed in supramolecular structures. 
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Figure 1. Growth of containing layer-by-layer (LbL) films: (a) Natural rubber 

latex/magnetite (Fe3O4) nanoparticles/carboxymethyl-chitosan (NRL/MNP/CMC) and 

NRL/CMC/MNP; (b) NRL/MNP-CMC1 and NRL/MNP-CMC2. 

 

Because of a more effective adsorption, we chose the NRL/MNP/CMC and NRL/MNP-CMC2 

systems for further studies. The presence of the film components in these LbL architectures was 

confirmed in the FTIR spectra in Figure A1. The spectra for NRL/MNP/CMC and NRL/MNP-CMC2 

LbL films deposited onto ZnSe substrates displayed the same bands of the neat materials, with a few 

differences caused by molecular-level interaction in the LbL film owing to the intimate contact of the 

film components [55]. For instance, the prominent band assigned to carboxylate groups of CMC is less 

intense in the LbL films, as these charged groups might be involved in interactions responsible for the 

film formation. 

Atomic force microscopy (AFM) images for NRL/MNP/CMC and NRL/MNP-CMC2 LbL films in 

Figure 2 display agglomerates of different sizes, distributed over the surface for both films. The MNPs 

appear in larger amounts and better distributed in the NRL/MNP-CMC2 bilayer, which is consistent 

with the higher adsorption inferred from Figure 1. This means that the MNPs were stabilized in the 

CMC solution during the LbL film formation, while in the trilayer CMC just covers the deposited 

MNP layer. The root mean square (RMS) roughness was 8.6 and 8.4 nm for NRL/MNP/CMC and 

NRL/MNP-CMC2, respectively, which is much higher than that of LbL films with no MNPs (RMS 

roughness ~0.8 nm for a neat LbL NRL film, and RMS ~0.7 nm for a 10-bilayer NRL/CMC LbL film). 

Figure 2. 3D atomic force microscopy (AFM) height micrographs: (a) Five trilayers of 

NRL/MNP/CMC; (b) Five bilayers of NRL/MNP-CMC2. 
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Since the RMS roughness values were close for NRL/MNP/CMC and NRL/MNP-CMC2, the 

bearing tool was used in the AFM analysis, providing the ratio between the MNPs occupied area and 

the total LbL area against the average height of the MNPs at the LbL film surface. Table 1 indicates 

that the NRL/MNP/CMC film had lower area and occupied volume, with aggregates possessing higher 

average height and size, being, therefore, distributed less uniformly over the LbL film surface.  

In contrast, the values for the NRL/MNP-CMC2 bilayer confirmed the smaller, better distributed 

agglomerates in the LbL structure. Therefore, we chose NRL/MNP-CMC2 to be deposited onto 

flexible membranes for the remaining analysis. 

Table 1. Morphological parameters for the LbL films. The average height of grains was 

estimated from the ratio between their volume and area. This procedure was adopted 

because the AFM image could not be segmented accurately into grains, and taking the grain 

size directly from the image could introduce errors due to convolution of the AFM tip. 

 NRL/MNP/CMC NRL/MNP-CMC2 

RMS roughness (nm) 8.6 8.5 
Maximum height (nm) 136.2 79.9 

Average roughness (nm) 4.1 5.8 
% of the ratio between the occupied area against 

the total area 
10.7 29.2 

Occupied area (106 nm2) 2.7 7.2 
Occupied volume (107 nm3) 4.3 8.4 

Average height (nm) 16.0 11.5 

Figure 3 shows the Raman spectra at three distinct regions in the NRL/MNP-CMC2 LbL films, 

together with optical micrographs acquired with 500× magnification. The 633 nm excitation laser line 

and the 50× objective lens lead to a spatial resolution of ca.1 µm2. The red dot indicates the place 

where the data were acquired. In the first spectrum (at the top), the presence of NRL and MNPs was 

confirmed in the LbL bilayer film, with characteristic bands at 663 cm−1 (Fe–O vibrations) in black 

aggregates for MNPs [56], and at 1664 cm−1 (C=C stretching of isoprene vibrations) for NRL at the 

lighter sites [57]. In the other region, NRL bands were predominant at ca. 1000 cm−1 assigned to  

C–C stretching, at 1373 and 1450 cm−1 due to C–H bending of CH3 and CH2, respectively, besides  

at 1664 cm−1. A zoom at the higher wavenumbers region allows one to identify bands at 2855 and 

2912 cm−1 assigned to CH2 and CH3 symmetric stretching, respectively, and at 2930 and 2965 cm−1 

attributed to CH2 and CH3 antisymmetric stretching, respectively. The weak band at 3043 cm−1 is 

assigned to =C–H stretching. CMC is not seen because its Raman cross section is very low for exciting 

lasers in the visible range, leading to undetectable signals. 

Figure 4a depicts the area of a10-bilayer NRL/MNP-CMC2 LbL film onto a quartz plate, which was 

scanned with the 633 nm laser line and 50× objective lens to obtain a Raman mapping. The latter was 

built by collecting Raman spectra every 2 µm (step) along an area of 60 µm × 60 µm (ca. 1 µm2 spatial 

resolution) and then plotting the intensity of a certain peak where brighter spots correspond to higher 

intensities (higher material concentration). Figure 4b shows the 1664 cm−1 band as bright regions in 

the scanned area, indicating NRL agglomerates. In Figure 4c the mapping of the 663 cm−1 band shows 

the MNP aggregates at the brighter regions. In addition, there are a few bright spots in Figure 4c, 
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indicating only a few aggregates of MNPs in the NRL matrix. Note that NRL retains its particulate 

form with distinct aggregate sizes even in LbL films [58]. 

Figure 3. Raman spectra and optical micrographs (500× magnification) made at distinct 

regions of a 10-bilayer NRL/MNP-CMC2 LbL film. Excitation laser line: 633 nm.  

 

Figure 4. Raman mapping for a 10-bilayer NRL/MNP-CMC2 LbL film grown onto a 

quartz plate. (a) Scanned area (60 µm × 60 µm, step 2 µm); (b) Mapping of the 1664 cm−1 

band, characteristic of NRL; (c) Mapping of the 663 cm−1 band, characteristic of MNPs. 

Excitation laser line: 633 nm. 

 

The spots containing higher concentrations of NRL (brighter spots in Figure 4b) also present the 

Raman signal from aggregated MNPs (bright spots in Figure 4c), showing that MNPs are trapped 

within NRL agglomerates, forming aggregates of micrometer size. One could speculate that the 

distribution of the MNPs in the Raman mapping are not as homogeneous as shown by AFM (Figure 2), 

leading to inconsistent results. However, the latter must be attributed to the different spatial resolution 

of these techniques (AFM and micro-Raman). In the regions with well distributed MNPs (as shown  

in the AFM image in Figure 2) the concentration of material is not sufficient for detection via  

micro-Raman scattering, thus yielding dark regions in the Raman mapping (Figure 4c), i.e., the  
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micro-Raman is able to detect only aggregates of MNPs. Therefore, the few bright spots in Figure 4c 

are indeed consistent with a homogeneous distribution of MNPs. For instance, there were 27 spectra 

corresponding to MNPs out of 900 spectra recorded for the scanned area. 

LbL Coating of Flexible Membranes 

15-layer NRL/MNP-CMC2 LbL films were deposited onto cellophane paper and transparency 

sheets. Due to its higher density, a 32-layer NRL/MNP-CMC2 LbL film was deposited onto NRL 

membranes, all of them responding positively to an external magnetic field, as shown in Figure 5. 

Figure 5. Flexible membranes bent by an external magnetic field: (a) Cellophane paper 

without LbL assembly; (b–d) Cellophane paper, transparency sheet, and NRL membrane, 

respectively, coated with NRL/MNP-CMC2 LbL film. 

 

The lowest amount of deposited material required for a response to an external magnetic field able 

to bend the flexible membranes positioned 2 mm from a magnetized iron core was seven bilayers of 

NRL/MNP-CMC2. This was inferred from Figure 6, where the applied current required for bending is 

plotted against the number of deposited bilayers. The results considering thickness, mass and measured 

current of the membranes onto which the LbL films were deposited, are summarized in Table 2. As 

expected, heavier membranes needed higher currents to be bent, and with increasing thickness of the 

LbL films lower currents were needed (mA in some cases) to produce the same physical effect 

(mechanical bending). This is due to the increased adsorption of MNPs in the LbL film, confirming the 

incorporation of magnetite, consequently requiring lower external magnetic fields to move the 

membranes. It is worth mentioning that without the incorporation of MNPs in the LbL structure, no 

magnetic effect (or bending) could be observed. Also, when the electric field was removed, the 

membrane recovered its former positioning immediately.  

Table 2. Voltage and current values for a NRL/MNP-CMC2 LbL film deposited on 

different substrates. 

Substrate Mass (g) 
Minimum number of deposited 
bilayers for attraction at 2 mm 

Voltage (V) Current (A) 

Cellophane 0.01004 7 19.4 2.09 
Transparency 0.01120 7 28.4 2.93 

NRL 0.19775 19 28.9 3.07 

The mechanical properties of LbL films have been studied [59,60] normally aimed at practical 

applications, but in some cases including analysis of basic elasticity phenomena. Particularly relevant 
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for the present work are the papers by Jiang et al. [61], where a reduced elasticity was reported for 

films thinner than the lengths of the domains responsible for the mechanical properties, and Jiang and 

Tsukruk which brings a review on the characteristics of freestanding films fabricated via the LbL 

technique [28]. With regard to modeling the elastic properties, a one-dimensional finite element 

representation was used for calculating the elasticity in layer-by-layer systems [62]. However, 

simulations at the atomistic level have not been presented in the literature, which is done here. 

Figure 6. Electric current required to bend a flexible membrane placed 2 mm from a 

magnetized iron core. With thicker films a lower current is required. 

 

The experimental data in Figure 6 and Table 2 can be understood as a competition process between 

the magnetic force tending to bend the structure against the elastic restoration force that opposes it. 

The net response will depend on many factors, such as the number of layers, number of magnetic 

particles and force intensities. In order to test this hypothesis, we carried molecular dynamics (MD) 

simulations based on a fully atomistic model, where these parameters can be varied and the mechanical 

deformations analyzed. It should be stressed that a similar analysis could also have been done using 

finite elements or coarse grain models. However, the number of unknown parameters would imply in 

an extensive number of simulations, being difficult to isolate the main contributions to the observed 

behavior. With MD we have a very flexible framework to probe interactions between layers, which is 

useful to identify and isolate the main contributions for the effects we experimentally observed. This 

approach can be easily adapted for other film architectures and components, thus allowing a direct 

comparison with similar materials. Also, an atomistic model is interesting because it is relatively easy 

to include a realistic description of the interlayer interactions, which is of crucial importance in the 

present study.  

Figure 7 depicts an overview of the atomistic model used to simulate the essential features of the 

experiment leading to the results in Figure 8. The model consisted of a superposition of membranes 

made of hexagonal graphene-like atomic arrangements. The systems considered here have sizes 

ranging from approximately 15,000 up to 58,000 atoms. Small atomic metallic clusters were deposited 

on these membranes in order to simulate the effect of magnetic nanoparticles into the system. The 

membranes were in close contact with a stiffer membrane, which simulates the effect of a rigid 

substrate. The action of a magnetic field over the nanoparticles was simulated by the application of a 

per-atom force on the atoms of the clusters, while the temperature was controlled by a Langevin 
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thermostat. The use of graphene-like layers with embedded metallic clusters is believed to be a good 

model for the problem investigated here for the following reasons: (i) the graphene-like layers can 

easily be tuned (adjusting the parameters) to mimic the experimental conditions in terms of elasticity 

(bending/stiffness), as well as the strength of the interlayers interactions. In this way we can identify 

the importance of different contributions to the observed behavior. The membrane elastic behavior  

as well as the interlayers interactions can be varied by changing the parameters associated with  

bond-lengths, bond-angles and dihedrals; (ii) the nanoparticles can also be easily simulated as a cluster 

of metallic atoms embedded on the graphene-like layers. More importantly, the external forces can be 

applied only on the nanoparticles, thus realistically reproducing the experimental conditions.  

Figure 7. Scheme of the atomistic model used, with the case of 5-layer structures being 

highlighted. The membranes represented in cyan color containing magnetic nanoparticles 

(in orange) were constructed as hexagonal lattices. The substrate is represented by a green 

layer which was made stiffer than the graphene-like membranes to mimic the rigid 

substrates. (a) Front view; (b) Side view of the model and its internal structure;  

(c) A five-membrane system bent after application of magnetic force on the nanoparticles. 

 

Figure 8. Bending deformation as a function of the number of layers. The deformation is 

measured as indicated in the inset. 

 

The interactions between atoms in the membrane, nanoparticles and substrates were simulated using 

the well-known, widely tested CHARMM force field potential [63], as implemented in the Large-scale 



Int. J. Mol. Sci. 2013, 14 12962 

 

 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [64]. With the model in Figure 7, it 

was possible to study bending as a direct function of the number of layers, as in the experiments. We 

considered five cases, from one up to five layers deposited on the substrates. Our results show indeed a 

threshold for the magnetic field to obtain the bending effect. Above this threshold, bending is 

proportional to the number of layers, in good qualitative agreement with the experimental data, in 

particular those presented in Figure 6, thus validating our working hypothesis. Also, the effect of 

bending on the systems is similar for four and five layers, as can be seen in Figure 8, indicative of a 

saturation regime. These results can be better visualized in the video in the Supplementary Material, 

which shows the evolution of bending as a function of the number of magnetic layers. 

Finally, the experiments performed here do not allow us to determine whether stresses generated by 

migration of magnetic particles in the LbL films would affect the bending. In case this migration 

occurs, the reorganization of materials on a molecular scale could actually maximize the transduction 

efficiency, thus enabling hundreds of bending cycles under small magnetic external stimuli. This 

would be promising for sensing and actuation, especially as the reversibility of the bending process is 

dictated by the magnetic effect of the MNPs in the LbL films, instead of swelling, electrostatic, steric 

or solvation forces of the polymer layers. 

3. Experimental Section  

3.1. Materials  

All solutions were prepared using ultrapure water supplied by a Millipore Direct-Q system  

(18.2 MΩ.cm at 25 °C). Natural rubber latex was collected from Hevea brasiliensis RRIM 600 clones, 

kindly donated by EMBRAPA (São Carlos, Brazil), and stored in 20% NH4OH solutions to avoid 

coagulation. Under these conditions, Mw = 1.4 × 106 g/mol [65]. Latex is a complex colloidal system 

composed of cis-1,4-isoprene particles coated with non-rubber compounds such as phospholipids, 

proteins, lipids and water [66]. The particles are negatively charged at high pHs and have sizes varying 

from 5 nm to 3 μm [58]. CMC was prepared according to the procedures of ref. [67], and had a 

substitution degree of 0.49 and negative charge due to its carboxylate groups. All polyelectrolytes had 

pH 8 adjusted by adding 0.01 M HCl or NaOH solutions. MNPs were synthesized using the  

co-precipitation method, in which NaOH was added to a 1:2 mixture of Fe2+/Fe3+ (15 mL of  

FeCl2 5H2O 0.1 M and 30 mL of FeCl3 6H2O 0.1 M) at pH 10, kept at 80 °C for 1 h. The product was 

filtered and dried in a glass desiccator. The powder was analyzed with X-ray diffraction (XRD) 

(Figure A2 in Appendix), from which an average diameter of 12.6 nm was obtained using the Scherrer 

equation [30,68,69]. MNP-CMC1 suspensions were prepared by adding 100 mL of a 1 mg/mL solution 

of CMC during the synthesis of MNPs. In addition, MNP-CMC2 suspensions were prepared by adding 

MNPs in a CMC solution, kept for 30 min. in an ultrasound bath. 

3.2. Layer-by-Layer Assembly 

The quartz substrates used were thoroughly washed in ethanol, acetone and immersed in a (1:1:5) 

solution of (NH4OH:H2O2:H2O) and heated at 80 °C for ~10 min. After cooling, the quartz plates were 

washed and stored in Milli-Q water. The flexible substrates used were cellophane paper, transparency 
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sheets and NRL membranes (made by spreading 9 mL of neat NRL in a Petri dish heated at 60 °C till 

drying). These substrates were all cleaned in ethanol before use. It is worth mentioning that a layer of 

poly(allylamine hydrochloride) (PAH) was used as a cushion to improve the LbL growth on flexible 

substrates. The LbL films were mechanically fabricated by alternated immersions in the different 

materials using the dipping mechanism of a Langmuir trough (NIMA, Coventry, UK, model 602). We 

investigated four different architectures: trilayers of NRL/CMC/MNP and NRL/MNP/CMC and 

bilayers of NRL/MNP-CMC1 and NRL/MNP-CMC2. 

3.3. Characterization of Layer-by-Layer Assembly 

UV-Vis absorption spectroscopy measurements were performed in a Thermo Scientific, Mumbay, 

India, Genesys 6 and Varian, Santa Clara, CA, USA, Cary 50 Conc spectrometers. FTIR data were 

obtained in a Brucker, Coventry, UK, Vector 22 equipment, and Raman analysis was done using a 

micro-Raman Renishaw, in-Via model, with a 633 nm laserline. AFM micrographs were acquired in a 

Multimode Nanoscope 3a (VEECO-Digital Instruments, Santa Barbara, CA, USA) in the tapping 

mode with a silicon cantilever at 330 kHz and 10 µm/s scan at ambient temperature. The images were 

analyzed with the WSxM 5.0 software from Nanotec Electronics, Madrid, Spain [70]. The 

experimental setup used to analyze the actuation of flexible membranes onto which LbL films were 

deposited consisted of a DC generator (Instrutherm, São Paulo, Brazil, model FA-3005) associated 

with two coils (~700 turns each) and an iron core to amplify the magnetization effect. Flexible 

membranes coated with LbL films were observed against a graph paper placed 2 mm from the iron 

core and a DC voltage was applied until magnetic attraction was observed with the membrane moving 

toward the iron core. The corresponding current was plotted against the number of deposited layers in 

the LbL films. 

4. Conclusions 

We have tested various LbL film architectures using NRL, CMC and MNPs deposited onto quartz 

substrates. The transfer of the film components was confirmed using FTIR and Raman spectroscopes. 

Because LbL films with the NRL/MNP-CMC2 were the most uniform with more homogeneous 

distribution of MNPs, according to the AFM and micro-Raman analyses, they were further deposited 

on flexible substrates. This allowed the bending of flexible membranes, which increased with the 

amount of MNP embedded in the LbL assembly. These experimental data could be explained  

semi-quantitatively with a molecular dynamics model at the atomistic level, in which the films were 

represented by graphene-like structures containing embedded magnetic nanoparticles. Bending was the 

outcome of two major competitive forces, namely the magnetic force and the elastic restoration force. 

The successful modeling paves the way for assisting in the design of supramolecular structures used in 

biomedical applications, in particular with promising LbL structures that could be successfully applied 

as versatile interfaces able to be modulated by external stimuli. Moreover, with the use of biologically 

compatible materials from natural resources, as in the LbL films employed here, one may achieve a 

reversible actuation mechanism due to an interfacial stress promoted by MNPs in the LbL films. This 

might be an advantage for biomedicine, as there is no need of metallic electrodes, ionic transport, 

swelling of the materials or currents passing through the sample. 



Int. J. Mol. Sci. 2013, 14 12964 

 

 

Acknowledgments 

The authors are grateful to FAPESP, CAPES, CNPq and rede nBioNet (Brazil) for the financial 

support, to Felippe Pavinatto and Adriana Pavinatto for kindly providing CMC and to Mateus Silva 

Laranjeira with the electrical measurement setup. 

Conflict of Interest 

The authors declare no conflict of interest. 

Appendix 

Figure A1. FTIR spectra for NRL/MNP/CMC and NRL/NMP-CMC2 LbL films and cast 

films of CMC, MNP and NRL. The MNP band at 563 cm−1 appears for both LbL films, 

while the band at 629 cm−1 for the cast film appears in the trilayer LbL film at 650 cm−1. 

This band is not evident in the LbL film because each bilayer was obtained with a mixed 

MNP and CMC solution, sonicated 30 min before using, and under such conditions CMC 

might form a structure surrounding the MNP, thus causing changes in the vibrational 

spectrum. In other words, the shift is probably due to steric hindrance, being typical in LbL 

films owing to the intimate contact between the film components [55]. 
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Figure A2. XRD diffraction patterns for the synthesized magnetic nanoparticles.  

Using the Scherrer equation, an average diameter of 12.6 nm was obtained for the 

synthesized nanoparticles. 

 

A video film is available at http://www.ifi.unicamp.br/~galvao/Toto [71], which shows the results 

from the atomistic simulations. 
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