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FREE GROUPS AND INVOLUTIONS IN THE UNIT GROUP OF
A GROUP ALGEBRA

A. GIAMBRUNO AND C. POLCINO MILIES

ABSTRACT. We study the existence of free groups of rank 2 in the group gen-
erated by the involutions of a group algebra over a non-absolute field.

1. INTRODUCTION

Let U(RG) denote the group of units of the group ring of a group G over a com-
mutative ring with unity R. The study of the structure of U(RG) is an interesting
problem and it turns out that, in most cases, this group is quite large. For instance,
Hartley and Pickel [9] showed that, for a finite group G, the group U(ZG) where
Z denotes the ring of rational integers, always contains a free group of rank two,
except when G is either abelian or a Hamiltonian 2-group. Then, Marciniak and
Sehgal [11] gave a method of explicitly constructing units that generate such a free
group, provided that ZG contains a nontrivial bicyclic unit.

In case the ring of coefficients is a field F or a ring of algebraic integers, the
existence of free subgroups of rank 2 was studied by Gongalves in [2], [3] and [4].
Related results were given by Bovdi in [1]. A construction of free subgroups of units
when F is a non-absolute field with char F = p > 0 and G is a torsion p’-group was
given by Gongalvez and Passman [6] and yet another construction appeared in [7].

At the light of these results, it is natural to ask which significant subgroups of
the unit group are large in the sense that they still contain a free subgroup of rank
2 or, in other words, if one can built generators of the free group out of some special
kind of units. In this vein, Gongalvez and Passman [8] investigated the existence of
free groups in the subgroup of unitary units with respect to the natural involution
of FG induced by the map g — g™, for all g € G.

In this paper we discuss the existence of free groups in another significant sub-
group of U(FG): the subgroup Uz(FG) generated by all units of order 2.

2. MAIN RESULTS

Throughout this note F will be a field and, in case R is an algebra over F,
U2(R) = {(u € R | v = 1) will denote the multiplicative group generated by all
units of order 2 in R.

We start by observing that there is a 1—1 correspondence between units of order
2 and semi-idempotents 0 # e € R such that e? = 2e. In fact, if u € R is such that
u? =1, then (1 — u)? = 2(1 — u). Whereas if e? = 2, then 1 — ¢ is a unit of order
2
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In case % € R, the above correspondence can be set between units of order 2 and
nonzero idempotents of B. In fact, if e2 = e, then 1 — 2e is a unit of order 2 and,
if u? = 1, then 4(1 — u) is an idempotent.

We start our investigation of U(R) by exploiting the above correspondence in
matrices.

Proposition 1. Let R be a semisimple artinian algebra over a non-absolute field
F, charF # 2. Then Uy(R) does not contain a free group of rank two if and only
if R 1s a finite direct sum of division algebras.

Proof. Let R= M,,,(D1) @+ - & My, (Dx) be the Wedderburn decomposition of R
where Dy, ..., D are division rings and suppose that n; > 1, for some i.

Assume first that char F = p > 2. Let P be the prime subfield of F and let t € F'
be transcendental over P. We next prove that My, (P(t)) C M,,(D;) contains a
free group of rank two.

Let epx denote the usual matrix units of M,,(D;) and consider the following
elements of R:

ur =1 - 2e5y, ug=1—2e3,
v=1-2(ey; +te1a), w=1~2(eaz+ teas).
Clearly uy,u3,v,w € U3(R). Moreover ujv = 1 + 2te;3 and ugw = 1+ 2tes; are
units of order p and it is well known that they generate a free product Z, * Z,,
where Z,, is the cyclic group of order p. Since Z, * Zj contains a free group of rank
two (see for instance [10, pag. 195]) and v, uzw € Ua(R), it follows that the same
conclusion holds for Uz(R).

If char F = 0, we construct units u;, u3, v, w € Ua(R) by specializing ¢ = 1 in the
above, and we obtain that u;v and usw are of infinite order in this case. Since it is
well known that u;v and uaw generate a free group of rank two in My, (Q) (see {14,
Theorem 10.1.3]), this completes the proof of the only if part of the proposition.

Conversely, suppose that R = D, @---@® Dy is a direct sum of division algebras.
In this case U3(R) is an elementary abelian 2-group of order 2* and, so, it cannot
contain a free group of rank two. In fact, if e;,...,ex are the minimal central
idempotents of R, the elements E:;l e;¢; with ¢; € {1,—1}, account for all units
of R of order at most 2. It is clear that they are 2* in number and they form an
elementary abelian 2-group. o

We next point out two consequences of the previous result in the setting of group
algebras, Let FG denote the group algebra of a group G over a field F.

Corollary 2. Let G be a finite group and let F be a non-absolute field, char F # 2,
such that either charF =0 or charF =p > 0 and p } |G|. Then, Ua(FG) does
not contain a free group of rank two if and only if one of the following conditions
holds:

(i) G is abelian.

(ii) charF =0, G is a Hamiltonian group of order 2"m, where m is odd, the
multipliative order of 2 in Z,, is odd and the equation z° + y?> = —1 has
no non-trivial solution in every estension field of the form F({4) for every
primitive d-th root of unity (g withd } m.

Proof. Since FG is semisimple artinian, by the previous proposition if Us(FG)
contains a free group of rank two, then FG is a direct sum of division rings. In
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this last case all idempotents of G are central and thus G is either abelian or a
Hamiltonian group (see [14, p. 227)).

In case G is Hamiltonian it is of the form G = Kg x E x A where Kg is the
quaternion group of order 8, E is an elementary abelian 2-group and A is an abelian
group of odd order m. As FG 2 F(E x A)Kg and F(E x A) is a direct sum of
fields of the form F({;) where d|m, it follows that FG is a direct sum of rings of
the form F((4)Ks.

It is well known that, when char I > 2, FKg contains a copy of the algebra
of 2 x 2 matrices over F and this in turn contains a free group of rank two, so it
follows that when G is nonabelian, we must have char F = 0.

Also notice that

F{Ca)Ks = F(Ca) @ F(Ca) ® F(Ca) ® F(Ca) ® Hr(g,)s
where Hp(c,) denotes the ring of quaternions over F((y). It is well-known that this
is a division rings if and only if the equation 2? + y? = —1 has no solution in F({s).
Since this implies that the equation above has no solution also in Q((y) for all d
dividing m, it follows that the multiplicative order of 2 in Z, is odd (see [12]). O

Notice that an equivalent formulation of Proposition 1 is that Us(R) does not
contain a free group of rank two if and only if R has no nonzero nilpotent elements.
Hence, using standard reductions to the finite case, we have the following.

Corollary 3. Let F be a non-absolute field with char F # 2 and let G be a locally
finite group such that, when charF = p > 0, G contains no p-elements. Then,
U2(R) does not contain a free group of rank two if and only if FG contains no
non-zero nilpotent elements.

The next result is a simplified version of the lemma in [5, p.4212]

Lemma 4. Let R be an F-algebra, charF = p > 2 and let a,b € R be such
that a® = b? = 0 and ab is not nilpotent. If R[t] denotes the polynomial ring
in an indeterminate i, then 1 4+ ta and 1 + tb are units of order p of R[t] and
(L+ta,1+1tb) = Z,»Z,.

Proof. For any integer k and for any z € R, we have that (1 +tz)* = 1+ ktz.
Hence it is clear that 1 +1a and 1 + ¢tb are units of order p. Suppose, by way of
contradiction, that there exists a nontrivial relation of the type

(1) (L+ta)r (14 8) - (1 +ta)rr(1+ ) =1,
for some integers ki,!1,...,kr,l.. By eventually exchanging the role of a and b if
necessary, we may clearly assume that 1 < ky,l;,..., k- < p— 1. Moreover, by

eventually multiplying by (1 ta)’* on the left and by (1+¢a)?~*: on the right, we
may also assume that 1 <!l <p-1.
By expanding the left hand side of (1) we obtain a relation of the form
fit+ fat? + o+ fort™ =0

where fi,..., far are elements of the subalgebra generated by @ and b and f5r =

kidy - - kel (ab)”. Since t is an indeterminate, it follows that fi = --- = far = 0
and, 50, kily---k.dx(ab)” = 0. Since 1 < ky,ly,...k I < p— 1, we obtain that
(ad)™ = 0, contrary to the assumption. o

We also recall the following result of Salwa.
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Lemma b ([15]). Let R be an F-algebra, charF = 0. If a,b € R are such that
a® = b% = 0 and ab is not nilpotent, then there exists a positive integer n such that
1+ na and 1+ nb generate a free group of rank two.

The following result is an immediate consequence of [13, Theorem 2.3.4].

Lemma 6. Let G be a group such that G has no p-elements in case charF =p > 0.
Then FG has no non-zero nil one-sided ideals.

Proof. Let tr : FG — F be the trace function defined by
tr(z ayg) = ai.

9€G
Let p be a nil right ideal of FG and let a = } g ag9 € p. For h € G, we have
Ygeq aggh™! = ah™! € p and tr(ah™') = ay. Since p is nil, ah~! is nilpotent.
Hence, by [13, Lemma 2.3.3] and by our hypothesis, a = tr(ah™!) = 0. Thus
a=10. O

We are now in a position to prove the main result of this note. For a group G
let T(G) denote the set of its torsion elements.

Theorem 7. Let F be a non-absolute field of characteristic different from two and
let G be a group. In case charF = p > 2, suppose that G has no p-elements. If
U2(FG) does not contain a free group of rank two, then T(G) is an abelian or a
Hamiltonian group and every subgroup of T(G) is normal in G. The Hamilionian
case can occur only if charF = 0.

Proof. Suppose that char F = p > 2, let P be the prime subfield of F and let t € F
be transcendental over P. For g € T(G) of order o(g), let § =14 g +-- -+ g°@)-1
and set § = ;{B—ﬁ. The element § is an idempotent and, for every z,y € FG, also
the elements
§+t(l-g)zg and §+tgy(l - g)

are idempotents of FG. Thus, by the correspondence between units of order two
and idempotents, the elements

u=1-27 v=1-2(G+¢1~-§)zg) and w=1-2(7+1tGy(l —§))
are units of order two of FG. Notice that in case char F = 0, by specializing t to
any integer, we still obtain that the above u, v and w are units of order two.

Now, uv = 1 — 2t(1 — §)zg and ww = 1+ 2tgy(1 — §) lie in Uz = U(FG). Since
a=—2(1—§)z§ and b = 2jy(1 — §) are square-zero elements, by Lemma 4, either
uv and uw generate the free product Z, * Z, or ab is nilpotent. Since by hypothesis
U, does not contain a free group of rank two, ab must be nilpotent.

Notice that in case char F = 0, we can invoke Lemma 5 by specializing ¢ to the
integer n in that lemma and uv and uw will generate a free group of rank two unless
ab is nilpotent. Thus we conclude that in any case, ab must be nilpotent.

Since char F # 2, this is the same as to say that

(1 - 9)zggy(1 - 3) = (1 - §)=5¥(1 - §)
is nilpotent. Thus ((1—§)zjy(1—§))* = 0 for some k, and recalling that 1~ § is also

an idempotent, by multiplying by z§y on the left, we obtain that (zjy(1—§))*+* =
0, for all z,y € FG. This says that FGgy(1 — §) is a nil left ideal of FG.
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In view of our hypothesis on G, Lemma 6 implies that
FGiy(1 -5) =0,

Hence gy(1 — §) = 0, for all y € FG. We have proved that jy = §yg and, by
exchanging the role of § and 1 — §, we obtain that also y§ = §yg holds, for all
y € FG. Thus § is central in FG. This says that (g}, the cyclic subgroup generated
by g, is normal in G. In particular T(G) is a subgroup and all subgroups of T'(G)
are normal in G. Also T(G), being torsion, must be abelian or a Hamiltonian group.
As we have seen in the proof of Lemma 2, the Hamiltonian case can occur only in
case char F = (0. 0
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