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ResuMo. Entropia de grafos é um conceito que surgiu naturalmente como solugao de um
problema proposto por J. Kérner em 1973, que consistia em determinar o quao boa poderia
ser a performance de uma codificagio de palavras de acordo com certas condigSes. Desde
entio, foram encontradas diversas relagbes entre entropia de grafos ¢ conceitos clissicos de
teoria dos grafos ¢ teoria da informagao.

Neste texto, apresentamos a definigio de entropia de grafos, suas duas caracterizagbes
mais conhecidas e algumas propriedades bésicas. Apresentamos também uma caracterizagdo
de grafos perfeitos usando entropia de grafos devida a Csiszdr, Kérner, Lovasz, Marton
e Simonyi, e uma aplicagdo de entropia de grafos ao problema de ordenagdo a partir de
informagéo parcial devida a Kahn e Kim.

1. INTRODUGAO

1.1. Breve histérico. O conceito de entropia de grafos tem suas raizes na teoria da infor-
magao, aparecendo pela primeira vez como solugdo de um problema de codificagido proposto
por Korner [12] em 1973. Considere uma fonte que emite simbolos de acordo com uma distri-
buigdo de probabilidade. Concatenando os simbolos, obtemos palavras. Kérner queria medir
0 quao boa podia ser uma codificagio de palavras de tamanho fixo emitidas pela fonte, de
acordo com uma certa medida de desempenho.

Uma caracteristica especial é que o conjunto de simbolos é ambiguo, isto é, os simbolos
podem ou nao ser distinguiveis. O mesmo vale para as palavras. Isso permite que vérias
palavras indistinguiveis sejam codificadas da mesma maneira. - O desafio entdo é usar esse
fato de uma forma intcligente para diminuir o tamanho da codificagio.

A definigao de entropia de grafos é justamente a solugao para o problema de Kérner,
ou seja, é uma medida de desempenho da melhor codificagio possivel. No entanto, nio é ficil
trabalhar com essa definigao. O préprio Korner, para mostrar que ela é vdlida, provou sua
equivaléncia com uma fungdo de minimizagao relacionada a entropia de varidveis aleatérias.
Esta é usualmente interpretada como uma medida da quantidade de informagao contida na
varidvel aleatéria.

Uma importante propriedade de entropia de grafos é a subaditividade, isto é, com relagio a
uma distribuicio de probabilidade fixada, a entropia da unido de dois grafos nunca ultrapassa
a soma das entropias desses grafos. A busca por condi¢des em que a soma da entropia de um
grafo e a de seu complemento é exatamente a cntropia do grafo completo mostrou-se um ca-
minho frutifero. Os estudos nessa diregdo foram iniciados por Kérner e Longo [14]. Em 1988,
Kérner e Marton [15] provaram que uma condigao suficiente é que, para qualquer distribui¢io
de probabilidade, os grafos em questao sejam um grafo bipartido e seu complemento.
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Em 1990, Csisz4r, Korner, Lovasz, Marton e Simonyi [2] mostraram uma nova caracteriza-
¢do de entropia de grafos. Essa caracterizagio, além de sua simplicidade, relaciona a entropia
de um grafo com o politopo dos conjuntos estdveis desse grafo, sobre o qual sdo conhecidas
diversas propriedades interessantes. Usando essa caracterizagao, Csiszar, Korner, Lovész,
Marton e Simonyi mostraram que a soma da entropia de um grafo e a de seu complemento é
igual & entropia do grafo completo para toda distribuigio de probabilidade se e somente se o
grafo é perfeito.

Os resultados de Csiszdr, Korner, Lovadsz, Marton e Simonyi foram um grande avan¢o no
estudo da entropia de grafos. Uma das consegiiéncias de seus resultados é que é possivel
calcular em tempo polinomial a entropia de um grafo perfeito. Isso foi muito importante
para algumas aplica¢bes de entropia de grafos.

Kérner, Simonyi e Tuza. [17] apresentaram também condigbes necessarias e suficientes para
que a soma das entropias de grafos cuja unido é um grafo completo seja igual & entropia do
grafo completo para toda distribuigdo de probabilidade.

Dentre as aplicagdes mais conhecidas, destacamos o uso de entropia de grafos para o pro-
blema de ordenagdo a partir de informagdo parcial (Kahn e Kim [8]); para a determinagao
de cotas do tipo Fredman-Komlés para fungoes de espalhamento {hashing) perfeitas e sis-

temas separadores (Kérner [13] e Kérner e Marton [16]); e em complexidade computacional
(Radhakrishnan [20, 21]).

1.2. Organizagao do texto. Este texto é dividido em duas partes.

Na primeira, apresentamos a defini¢io de entropia de grafos, caracterizagdes, algumas pro-
priedades bisicas e uma caracterizagdo de grafos perfeitos usando cntropia de grafos. Defini-
mos também entropia para cantos convexos, que sio conjuntos com algumas caracteristicas
especiais. Apresentamos algumas relagoes entre o politopo dos conjuntos estdveis e o poli-
topo fraciondrio dos conjuntos estiveis. Essas relagoes sao essenciais para a caracterizagao
de grafos perfeitos.

Na segunda parte, apresentamos uma aplicagio de entropia de grafos ao problema de
ordenagio a partir de informagio parcial.

Os principais artigos estudados para o desenvolvimento dessa monografia séo:

(1) as resenhas sobre entropia de grafos de Simonyi [22, 23);

(2) o artigo de Knuth [11] sobre a fungio ¥ de Lovasz;

(3) o artigo de Csiszér, Korner, L6vasz, Marton e Simonyi [2] em que sio apresentadas
a caracterizagio de entropia de grafos usando o politopo fraciondrio dos conjuntos
estdveis e a caracterizacio de grafos perfeitos usando entropia de grafos;

(4) o artigo de Kahn e Kim (8] sobre o problema de ordenagdo a partir de informagao
parcial.

Observamos que algumas das demonstragdes mais ficeis omitidas nos artigos e incluidas
neste texto foram elaboradas pela aluna. Boa parte das demonstragdes originais foram ligei-
ramente modificadas, com o objetivo de facilitar a leitura.

Finalmente, a aluna acredita que a vasta gama de assuntos envolvidos neste estudo torna-o
muito interessante e desafiador, mas igualmente gratificante. Esperamos que este texto possa
transmitir um pouco do entusiasmo com que elaboramos este trabalho.



ENTROPIA DE GRAFOS

Parte 1

Entropia de grafos



4 SATO E KOHAYAKAWA

2. PRELIMINARES E NOTAGAO

Nesta se¢do introduzimos a terminologia e a notagao adotadas neste texto. Assumimos do
leitor alguma familiaridade com teoria de grafos e combinatéria poliédrica.

2.1. Conjuntos e fungdes. Em todo texto, usamos V e U para referirmos a conjuntos
finitos. Denotamos por (‘;) o conjunto {{u,v}: u € V,v € V,u # v} dos pares nio-ordenados
de elementos de V.

Para cada inteiro positivo n, definimos [n] := {1,...,n}.

O conjunto dos niimeros reais é denotado por R. Os simbolos RV (respectivamente, [R.,‘f)
denota o conjunto de todos os vetores indexados por V e com coordenadas reais (respectiva-
mente, reais nio-negativas).

Seja U C V. Definimos o vetor caracteristico de U como o vetor xU € RY tal que

v_ )1 sevel;
e 0, caso contrério.
Abreviamos log; z como lgz. Denotamos o logaritmo natural de z por Inz.
Uma fungdo f: R — R, onde R C R é dita conveza se
FAz+ (1 =-Ny) < Af(z)+ (1 -1 (») (21

para quaisquer z,y € R e qualquer 0 < A < 1. Dizemos que f é céncava se —f é convexa.

Uma fungio f é dita estritamente conveza se a relagao (2.1) é estrita para quaisquer z,y € R

e qualquer 0 < A < 1. Dizemos que f é estritamente céncava se — f é estritamente convexa.
A seguinte desigualdade é bastante conhecida e serd muito usada ao longo do texto:

Lema 2.1 (Desigualdade de Jensen) Seja f: R - R uma fungio convexa e sejam
Z1,...,Tk € R. Entao

k k
f(z Am) <3 Nif(z), 22)
i=1 i=1
sempre que Ef:l Ai=1e0< )\ <1 para todoi.
Sejam z,y € RY. Usamos a notagio = = y para indicar que z, = y, para todo v € V.
Usaremos a mesma notagdo paraz <yez >y e também paraz <yecz > y.
Denotamos o vetor nulo por 0 e o vetor com todas as coordenadas iguais a 1 por 1.
Sejam a,b € RY.. Definimos lga € RV como
(lga)y =lgay.
Definimos a/b € RY como
(a/b)y = ay/by.
Sejam z!,...,z* € R". Sejam Ay, ..., A reais nao-negativos tais que Zf:x A; = 1. Dizemos

que
k .
Z A":ﬁ'
i=1

é uma combinagdo conveza de z!,...,z*.
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Um conjunto A C R" é convezo se
Az+(1-AyeA

para quaisquer z,y € A e qualquer 0 < A < 1. Isto é, A é fechado por combinagdes convexas.
QO fecho convezo de um conjunto A C R é o conjunto formado por todas as combinagdes
convexas dos vetores de A. Denotamos o fecho convexo de A por conv(A).
O seguinte resultado ¢ bem conhecido:

Lema 2.2 (Média geométrica e média aritmética) Sejam z1,...,7x € R Entdo

(f[ Ii)l/k < %z:l:z 23)

=1
2.2, Teoria dos grafos. Um grafo é um par G = (V, E), onde V é um conjunto finito e
E C (;’) Dizemos que G é um grafo sobre V, e que V é o conjunto de vértices e E & o
conjunto de arestas de G. Chamamos os clementos de V' de vértices e os de E, de arestas.

Dado um grafo G, denotamos por V(G) o conjunto de vértices de G e por E(G) o conjunto
de arestas de G.

Uma aresta {u,v} serd abreviada como uv.

Seja uv uma aresta. Dizemos que uv liga os vértices u e v, e que u e v, sdo pontas de uv.
Dizemos também que u e v 530 adjacentes ou ligados.

O complemento de um grafo G é o grafo G := (V, (g) \ E(G)).

Un grafo G ¢ dito completo se E(G) = (%) e vazio se E(G) = 0. Denotamos por Ky
(respectivamente, Ky) o grafo completo (respectivamente, vazio) sobre V. Denotamos por
K, (respectivamente, X,;) qualquer grafo completo (respectivamente, vazio) com n vértices.

Sejam G e F grafos. Dizemos que F é um subgrefo de G se V(F) C V(G) e E(F) C E(G).
Se V(F) = V(G), entdo F é um subgrafo gerador de G. Se V(F)U E(F) ¢ V(G) U BE(G),
dizemos que F é um subgrafo préprio de G. Se E(F) consiste de todas as arestas de G que
tém as duas pontas em V(F), entdo F é um subgrafo induzido de G ou, mais precisamente,
F & o subgrafo de G induzido por V (F). O subgrafo de G induzido por U C V(G) é denctado
por G[U].

Seja G um grafo e U C V(G). Dizemos que U é uma clique de G se G[U] é completo. Se
G[U)] é vazio, dizemos que U é um conjunto estdvel de G. Denotamos por w(G) o tamanho
da maior clique de G.

Denotamos por S(G) a famfilia de conjuntos estiveis de G e por Smax(G) a familia de
conjuntos estdveis maximais de G.

Os componentes de um grafo G sdo os subgrafos induzidos pelas classes de equivaléncia
de V(G) da relagao de equivaléncia ~ dada por: para cada u,v € V(G), temos u ~ v se e
somente se uv € E(G).

Uma fungdo ¢: V(G) = C é uma coloragao dos vértices de G se c(v) # c(u) sempre que v é
adjacente a u. Os elementos de C sao chamados de cores e |C| é 0 nimero de cores. Dizemos
que v recebeu a cor c(v) ou ainda que c(v) é a cor atribuida a v. Note que um conjunto
de vértices que receberam a mesma cor é um conjunto estivel de G. Uma k-coloragio dos
vértices de G é uma coloragao dos vértices de G com k cores. Uma coloragio de vértices é
dita minima sc o nimero de cores é o menor possivel.

O ntimero cromdtico x(G) de um grafo G é o niimero de cores em uma colora¢io minima.
E evidente que

w(G) < x(G).
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Seja G um grafo e U C V(G). Denotamos por G —U o grafo G[V \U]. Abreviamos G — {u}
como G — u. Seja E' C E(G). Denotamos por G — E' o grafo (V(G), E(G) \ E).
Sejam G e F grafos. A unido de G e F ¢ definida como

G UF := (V(G) U V(F), E(G) U E(F)).

2.3. Probabilidade. Um espago de probabilidade finito consiste de um conjunto finito 2 e

de uma fungao P: @ — [0,1] tal que 3~ . P[z] = 1. Um evento & um subconjunto de . A
probabilidade de um evento A & definida como

PlA] == Pla].

z€EA
Seja A, B eventos de Q. Definimos a probabilidade conjunta entre A e B como

P{A, B]:= P[An B].
Se P[B] > 0, definimos a probabilidade condicional de A dado B como

_PANB]
P[A| B] := “FE
Um vetor p é uma distribuicdo de probabilidade sobre V,sep € RY e}y py = 1. Dizemos
que uma distribuigio de probabilidade p sobre V' é uniforme se p, = 1/|V| para todov € V.
Uma varidvel aleatéric € uma fungio X :  — V. Usamos a expressao X = v para denotar
o evento {z € Q: X(z) =v}. A distribuicdo de probabilidade de uma varidvel aleatéria X é
um vetor em RY, denotado por dist(X), tal que

dist(X), := P[X =]
para todo v € V.

3. DEFINIGAO E CARACTERIZAGOES

Nesta segio apresentamos a definicdo de entropia de grafos dada por Kérner em 1973.
Mostramos também duas caracterizagoes com as quais € mais facil trabalhar.

3.1. Codificacéo e entropia de grafos. A entropia de grafos surgiu naturalmente de um
problema proposto por Kérner [12] em 1973. Primeiro, damos uma descrigio informal do
problema, com o intuito de proporcionar uma viséo geral. Em seguida, definimos entropia de
grafos formalmente,

Suponha que tenhamos uma fonte que emite simbolos um apés o outro, de acordo com
uma certa distribuicao de probabilidade. Uma caracteristica especial de nossa fonte é que
nem todos os simbolos emitidos sdo distinguiveis dois-a-dois.

Concatenando simbolos emitidos pela fonte, formamos palavras. Dizemos que duas palavras
de mesmo comprimento sdo distinguiveis se possuem simbolos distingufveis em pelo menos
uma de suas posigoes.

Estamos interessados em codificar todas as palavras de um certo comprimento fixo. Isto &,
queremos associar um codeword a cada palavra de modo que palavras distinguiveis sejam
mapeadas a codewords diferentes. E permitido ndo codificar uma fracio insignificante das
palavras, isto €, wna fragio de palavras com baix{ssima probabilidade de emissio.
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Uma codificagiio ingénua poderia simplesmente associar um codeword diferente a cada pa-
lavra. Mas uma codificagdo mais esperta se aproveitaria do fato de que é permitido codificar
palavras indistinguiveis a um mesmo codeword para diminuir o nimero de codewords neces-
sdrios. Nosso problema central é, de alguma forma, medir o desempenho de uma codificagao
e calcular qual seria o melhor desempenho possivel.

Agora descreveremos o problema mais formalmente. Seja V um conjunto finito e p uma
distribuigio de probabilidade sobre V. Chamamos os elementos de V de simboles. Suponha
que a fonte emite simbolos de V. Em um dado instante, 2 probabilidade de um simbolo
v € V ser emitido é p,. Como ja foi dito, nem todos os simbolos emitidos pela fonte sdo
distinguiveis dois-a-dois. Podemos considerar distinguibilidade como uma relagio bindria,
simétrica e arbitrdria (mas conhecida e fixa) que nos diz, para cada par de simbolos, se estes
sdo distinguiveis ou nao. A relagdo de distinguibilidade entre os simbolos pode ser descrita
através de um grafo sobre V', no qual dois vértices sio adjacentes se sio distinguiveis. Tal
grafo é chamado de grafo dos stmbolos de V.

Fixe ¢ um inteiro ndo-negativo. Seja. U um conjunto finito. Denotamos por U* o conjunto
de todas as t-uplas (uy,...,u), onde u; € U para todo i. Uma palavra de comprimento ¢
(emitida pela fonte) é uma f-upla (¥1,...,v:) € V! de simbolos emitidos consecutivamente
pela fonte. Duas palavras £ = (1,...,%:) e ¥y = (Y1,...,Y:) s30 distinguiveis se z; e y; 530
distinguiveis para algum z.

Considere um grafo cujo conjunto de vértices é o conjunto de todas as palavras de compri-
mento £, onde vértices sio adjacentes se sao distinguiveis. Tal grafo é chamado de grafo das
palavras de V*. A seguinte construgdo mostra como obter o grafo das palavras de V* a partir
do grafo dos simbolos de V.

Seja G um grafo. A i-ésima poléncia co-normal G' de G é o grafo com sobre V(G)! com
conjunio de arestas

B(G') = {{z,y}: {zi,vi} € E(G) para algum 1 < i < t}.

Note que o grafo das palavras de V! é a {-ésima poténcia co-normal do grafo dos simbolos
de V.

Defina a probabilidade de uma palavra u = (uq,...,u;} como p(u) := [T, p(w;). A pro-
babilidade de um subconjunto U C V* & definida como p(U) := 3,y p(u).

Seja U C V(G'). Uma codificacdo das palavras de U é uma funcdo que associa a cada
vértice de U um codeword de modo que vértices adjacentes sdo associados a codewords
diferentes, Fixe 0 < ¢ < 1. Lembrando que é permitido que uma fragdo de palavras de
baixissima probabilidade deixe de ser codificada, definimos uma codificacdo das palavras de
comprimento t como uma codificagdo das palavras de um conjunto U C V(G*) tal que p(U) >
l1—e.

O desempenho de uma codificagdo é medida pela razio

IgM

N E
onde M é o nimero de codewords diferentes que a codificagdo utiliza. Essa razao indica
o nimero de bits necessirios pela codificagdo para descrever cada simbolo de uma palavra.
Assim, quanto menor a razao, melhor é o desempenho da codificagio. Estamos interessados
em medir ¢ qudo boa pode ser uma codificagdo para palavras muito longas. A entropia de
grafos serd a resposta para essa questdo.

Observe que um conjunto estivel em G* é um conjunto de palavras duas-a-duas nio-
distinguiveis e que, portanto, podem ser mapeadas para um mesmo codeword. Assim, o
nimero de codewords necessdrios para uma codificar as palavras de I/ C V! é o ntimero de
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conjuntos estiveis de G* necessdrios para cobrir U. Isto é, o nimero de codewords necessa-
rios para codificar U é o nimero cromitico x(G*[U]). Portanto, o desempenho da melhor
codificagdo de U é
lgx(G'U])
t

Finalmente, podemos apresentar a defini¢do de entropia de grafos dada originalmente por
Kérner [12]. Seja G um grafo e p uma distribuigdo de probabilidade sobre V(G). A entropia
de G com relagdo a p ¢ definida como

H(G,p) = Jim min {% g x(GHU)): U C V(GY),p(U) > 1 — e}.

Para mostrar que essa é uma férmula valida, é necessirio provar que o limite existe e é
independente de £ € (0,1). Korner fez isso mostrando que a expressdo acima € equivalente a
uma férmula computdvel que serd apresentada na subsegio seguinte.

Uma idéia intuitiva para a entropia de grafos é a seguinte: suponha que G é o grafo de
simbolos de um conjunto finito V e que p é uma distribuigio de probabilidade sobre V.
Entdo, o nitmero médio de bits necessirios em uma codificagio 6tima para as palavras em V'*
étH(G,p).

3.2. Uma caracterizacio alternativa. Nesta subse¢do apresentamos uma caracterizagao
de entropia de grafos dada por Kérner [12). Para isso, revisamos alguns conceitos basicos de
entropia de varidveis aleatdrias.

Vamos definir um conceito bastante usado em teoria da informagio: a entropia de uma
varidvel aleatéria, que é um valor diretamente relacionado & quantidade de informagéo contida
na varidvel aleatéria em questao.

Seja p uma distribuigdo de probabilidade sobre um conjunto V. A entropia de p é definida
como s

H(p) := Zpulg oy
vev Py

Consideramos 0lg 1 = 0lg0 =0e zlg} = co para todo z > 0.

Definimos a entropic de uma varidvel aleatéria X como H(X) := H(dist(X)). Podemos
dizer que a entropia de X é uma medida da incerteza de X. Em outras palavras, a entropia
de X pode ser interpretada como a quantidade de informacao contida em X.

Sejam X e Y varidveis aleat6rias que tomam seus valores em conjuntos V' e U, respectiva-
mente. A entropia conjunta enire X e Y é definida como

HX,Y):=Y)_ pylg

1
T
2V yeU Pzy

onde p;y :=P[X =z,Y =1y).
A entropia condicional de X dado Y é definida como
H(X|Y):=)" ) PlY =ylH(X,),
zeV yeU

onde X, := (X | Y =y). A entropia condicional de X dado Y pode ser interpretada como
a quantidade de informacao contida em X mas ndo em Y. A seguir provamos uma relagao
natural entre a entropia conjunta e a entropia condicional.

Lema 3.1 Sejam X eY varidveis aleatérias. Entao
H(X,Y)=H(X)+ H(Y | X).
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Prova: Suponha que X e Y tomam seus valores nos conjuntos V e U, respectivamente.
Abrevie p(z) :=P[X =z] paracadaz € V,ep(z,y) =P[X =z,Y =y]ep(y|z):=PY =
y | X = z] para cada (z,y) € V x U. Temos que

HX,Y)=-3_ 3 plz,y)lgp(z,y)

zeV yelU
=-3"3 p(z,y)lg (plz)ply | )
zeVyel
== 3 pzv)igp) - Y. Y plz.0)lgply | 2)
eV yel zeV yelU
=- Y pl)lgp(@) - Y p2) Y_ply | )lgp(y | 2)
zeV zeV yeu
= H(X)+ H(Y | X).
o
Sejam p e g distribui¢Ges de probabilidade sobre um conjunto V. A entropia de p relativa
a g é definida como
D(p,9) = po lg—
vev

A entropia relativa é uma medida da distancia entre duas distribuigoes de probabilidade.
Pode-se provar que a entropia relativa entre duas distribuigdes de probabilidade nunca é
negativa.

Lema 3.2 Sejam p e g distribui¢des de probabilidade sobre um conjunto V. Entao

D(p,q) 20,
com igualdade se e somente se p = q.

Prova: Tome A := {v € V: p, > 0}. Entao
-D(p,g) =~ _pal g;— = Zpalg

a
a€A a€A (3'1 )
<lg) pa <lgl=0,
aEA
onde a primeira desigualdade segue da desigualdade (2.2) de Jensen. Como lgz é uma fungdo
estritamente cdncava, entdo (3.1) vale com igualdade se e somente se p = q. (]

Sejam X e Y varidveis aleatérias que tomam seus valores em conjuntos V e U, respectiva-
mente. A informagdo mitua entre X e Y é definida como
PX =z,Y =4
:= P = = '_"—-'
xny)=>% Y PX=gY vl prg — PV = 4]
z€EV yelU
A informagdo miitua entre X e Y pode ser interpretada como a quantidade de informagao
de X contida em Y. E a redugio da incerteza de uma variével aleatéria dado que conhecemos
a outra. Essa interpretagao é reforgada pelo lema a seguir.
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Lema 3.3 Sejam X e Y varidveis aleatérias. Entio
HXNY)=H(X)-H(X|Y)
=H(X)+H(Y)- H(X,Y).
Prova: Pelo lema 3.1, basta provarmos a primeira igualdade. Suponha que X e Y tomam
seus valores em V ¢ U, respectivamente. Usamos as abreviagdes: p(z) := P[X = z] para cada

z € V e p(y) := P[Y = y] para cada y € U. Abreviamos também p(z,y) := P[X = z,Y =y]
ep(z|y):=PX =z|Y =y para cada (z,y) € V x U. Vale que

IX0Y) = 3 3 pla,y) lg 220

&5 p(z)p(y)
=Y Y plzpig? (I)y)
eV yelU
==Y nzv)lgpx) + Y 3 plz,v) lgp(z | v)
zeV yelU z€V yeU
==Y p(=)lgp(x)+ >_pv) Y plz|v)lgp(= | v)
z€V yevU zeV

H(X) - H(X | Y).
u]

Finalmente podemos enunciar uma caracterizagao de entropia de grafos apresentada por
Kérner [12). Omitimos a demonstragao.

Teorema 3.4 Seja G um grafo e p uma distribui¢do de probabilidade sobre V(G). Seja A(G)
o conjunto de todos os pares ordenados de varidveis aleatérias (X,Y) que satisfazem as
seguintes condigoes:

(i) X é uma varidvel aleatéria tomando seus valores em V(G) e dist(X) =

(ii) Y é uma varidvel aleatéria tomando seus valores em S(G);

(ili) dado X = z, vale que Y toma seus valores em {S € S(G): = € S}.
Entao

H(G,P)= _min _I(XNY). (3.2)
(X,Y)EA(G)

3.3. O politopo dos conjuntos estdveis. Nesta subsegio apresentamos uma caracteriza-
¢ao de entropia de grafos provada por Csiszar, Kérner, Lovasz, Marton e Simonyi [2] em 1990.
O politopo dos conjuntos estdveis de um grafo G é definido como

STAB(G) := conv ({x*: S € S(G)}).
Teorema 3.5 Scja G um grafo e p uma distribuigdo de probabilidade sobre V(G). Entao
H(G,p) = min {— Zvev(c)Pvlgay: 6 € STAB(G)}. (3.3)
Prova: Tome V := V(G). Primeiro vamos provar que

H(G,p) > min {— YeevPulgay:ac€ STAB(G)}.
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Sejam X e Y varidveis aleatérias tomando valores em V(G) e S(G), respectivamente, que
atingem o minimo na caracterizacio (3.2) de H(G,p). Abreviamos r(S) := P[¥Y = §] para
cada S € S(G) er(S|z):=PY = 5| X = z] para cada (S5,z) € S(G) x V. Note que

()= pur(S|v),
veEV
para todo S € §(G). Assim,
H(G,p)=I(XNnY)=H(Y)-HY | X)

== 3 r(8)krS)+Y o Y. r(S|v)igr(S|v)

5eS(G) veV  Se€S(G)

==Yp, > r(SIv)Igr(S)+ > pu Y. r(S|v)lgr(S|v)
vEV  SeS(G) veV  5€S(G)

- _r(S)

= ‘gpuZ{r(Slv)lg I Rk Ses(c)}

S Zpung{r(S): S3v, SES(G)},
veV

onde a ultima passagem segue da desigualdade (2.2) de Jensen. Tome b € lR!;,' definido como
b= {r(S): S3v,Se€ S(G)},
para cada v € V. E fécil ver que b € STAB(G). Portanto,

H(G,p) 2 Ep., Igb, > mm{ Tuevi)Pulgav:a € STAB(G)}.
veV

Resta provarmos que
H(G,p) £ min {— Tievic)Pvlgas: a € STAB(G’)}-
Seja d uma distribuigdo de probabilidade sobre S(G). Tome a € RY definido como
Oy = Z{ds: S3v, SeS@)}.
Para cada (v, S) € V x §(G), defina

q(S | v) =={

Para cada $ € §(G), tome ¢(S) := 3,y Pug(S | v). Assim,

HEASY ¥ pals0is il

veV SES(G)

ds/ay, v€ES
0, caso contrario.

Pelo lema 3.2,
Y a)el zo
ds

S€S(G)
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Portanto
- Y a8 gaS)<- Y q(S)lgds.
5eS(G) 5€S(G)
Concluimos que

HGp <Y Y puq(Siv)ng(Slu) -3 polgay,

vEV SES(G) vev
como queriamos. g

4. PROPRIEDADES BASICAS

Nesta segdo, apresentamos algumas propriedades basicas de entropia de grafos.

Uma propriedade simples e pouco surpreendente é a monotonicidade:
Lema 4.1 Scjam G ¢ F gralos tais que V = V(G) = V(F) e E(F) C E(G). Para qualquer
distribuigdo de probabilidade p sobre V, vale que

H(F,p) < H(G,p). (4.1)
Prova: Segue imediatamente do seguinte fato ébvio: STAB(G) C STAB(F). a

Levando em consideragdo a defini¢do de entropia de grafos a equacao (4.1) da monotoni-
cidade faz perfeito sentido. Basta lembrar que arestas no grafo das palavras ligam palavras
distinguiveis, e portanto grafos com menos arestas tém menos palavras distinguiveis. Assim,
530 necessarios menos bits na codificagao.

A propriedade seguinte também ¢ ficil de ser provada: vértices com probabilidade nula
nao influenciam na entropia do grafo.

Denotamos por p|;, a restrigio de p a U para qualquer distribui¢do de probabilidade p
sobre um conjunto V' e qualquer U C V.

Lema 4.2 Seja G um grafo e p uma distribui¢ao de probabilidade sobre V(G). Seja U um
subconjunto de V(G) tal que p(U) = 1. Entio

H(G,p) = H(G[U],ply)-
Prova: E ébvio que H(G,p) < H(G[U],p|y), pois todo conjunto estdvel de G[U] é um
conjunto estdvel de G. Para provarmos o outro lado, basta mostrarmos que, se p, = 0 para
algum u € V(G), entdo H(G,p) = H(G — u,p'), onde p' é a restrigio de p a V(G) \ {u}.
Seja a € STAB(G) um vetor que atinge 0 minimo na caracterizagio (3.3) de H(G,p). Entdo
=3 s5e5(6) Asx5, onde > ses(c)As = 1. Para cada §' € S(G — u), defina

Nor:=Y {As: S€S8(G), §' =5\ {u}}.
Tome a' := Zs'e.s‘(c.‘—u) AsxS € 8(G - u). Note que a, = a, para todo v # u. Logo,

HG»= Y s)lsr= Y #dW)lgs 2 HG-up).

vev(C) Y eviGMu) v
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4.1. Subaditividade. Sejam a,b € IRZ Definimos o vetor a o b como
(a0 b)y := ayby,

paracadav € V.

O seguinte lema segue facilmente de propriedades basicas da fungdo lgz ¢ de conjuntos
estdveis:
Lema 4.3 Sejam G e F grafos sobre um mesmo conjunto de vértices V' e seja p uma distri-
buigdo de probabilidade sobre V. Entdo

H(GU F,p) < H(G,p) + H(F,p). (4.2)

Prova: Sejam a € STAB(G) e b € STAB(F) vetores que atingem o minimo na caracteriza-
¢do (3.3) para H(G,p) e H(F,p), respectivamente.

O vetor a é combinagio convexa de elementos de {x5: S € S(G)}. Seja @ = Yoy Mix™
uma tal combinagio. Da mesma forma, o vetor b é combinagdo convexa de elementos de
{x%: S € S(F)}. Seja b= 3¢ ;vx" ura tal combinagéo.

Note que
aob=23"3 Nyj- (x* ox¥)
i€l jeJ

e que x4 o xB = x*N5Bi, Além disso, vale que 3 ;¢; Yies Mivi = L. Isto & podemos
escrever a o b como combinagdo convexa de intersecgdes de conjuntos estiveis de G e F.
Como a intersecgio de um conjunto estivel de G com um conjunto estivel de F é um conjunto
estdvel em GU F, entao a o b € STAB(GU F).

Assim,

1 1 1
HGUFRP)S 3 ple—p= D mle+ ) mlgy
veV(G) v wev(G) Y veV(G) Y

= H(G,p) + H(F,p)

Uma conseqiiéncia imediata do lema anterior é que
H(G,p} + H(G,p) 2 H(Ka,p). (43)
Na segdo 7, vamos mostrar quais grafos satisfazem (4.3) com igualdade.
4.2. A entropia do grafo completo e a do grafo vazio.
Lema 4.4 Para todo inteiro positivo n,
H(Kn,p) = H(p),
onde p é uma distribuicdo de probabilidade sobre os vértices de K,.

Prova: Como toda distribuigdo de probabilidade sobre V(K,) estd em STAB(K,), entao
p € STAB(K,). Seja ¢ € STAB(K,). Usando a desigualdade (2.2) de Jensen, temos que

Zpulspl—Zpulgq%=ZpulggfslsZpug—:ﬁngusﬁ,

vev v owev vev vev vev
ou seja, p atinge o minimo na caracterizagdo (3.3) de entropia de grafos. |
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Calcular a entropia do grafo vazio também é muito ficil:

Lema 4.5 Para todo inteiro positivo n,

H(Kn,p) =0,
onde p ¢ uma distribuigdo de probabilidade sobre os vértices de Ky.
Prova: E 6bvio que

STAB(Ky) = {re RZF). 0 <z < 1).

E evidente que

2 P lg% =0,

veV (Kn)

ou seja, 1 atinge o minimo na caracterizagio (3.3) de entropia de grafos. ]

5. CANTOS CONVEXO0S

5.1. Entropia de cantos convexos. Um conjunto A C RK é um canto convezo se é fechado,
limitado, convexo, tem interior nao-vazio e satisfaz a propriedade de que o’ € A para todo
o’ € RY tal que 0 < o’ < a para algum a € A.

Seja 4 C RY um canto convexo e p uma distribuigao de probabilidade sobre V. A entropia
de A com relagdo a p é definida como

, 1
Halp) = gg};%pulg—- (6.1)
v

Gy

E evidente que STAB(G) ¢ um canto convexo para todo grafo G. Além disso, é 6bvio que
H(G,p) = Hstap(c)(p)-
Defina A(A) := {-Iga: a € A}. Note que

Ha(p) = mi = mi ] 5.2
alp) zg\l&)uevmxu i g (6.2)

Lema 5.1 Seja A C RY um canto convexo. Entio A(A) é convexo e z' € A(A) para todo
z’ € RY tal que #' > z para algum z € A(A).

Prova: A convexidade de A(A) segue diretamente da convexidade da fungéo —lgy.
Seja z € A(A) e seja 2’ € RY tal que ' > z. Como z € A(A), entdo z = — Ig e para algum
a € A. Sejaa’ € RY tal que —lga’ = z'. Como &’ > z, entdo a’ < a. Logo, @’ € A. O

A seguir, provamos um lema simples, mas muito poderoso, sobre entropia de cantos con-
VEXOS.

Lema 5.2 Seja V' um conjunto finito e sejam A, B C R‘( cantos convexos. Entao

Ha(p) 2 Ha(p)
para toda distribui¢do de probabilidade p sobre V' se e somente se A C B.
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Prova: E ébvio que Ha(p) > Hp(p) sempre que A C B.

Suponha que Ha(p) > Hp(p). Seja b € A(B) um vetor que atinge o minimo na equa-
cao (5.2) de Hp(p). Seja a € A(A). Entao, pb < pa.

Sejam p*, u € V, distribuigdes de probabilidade sobre V definidas como

Ly )1, seu=w;
i 0, caso contrério.

Aplicando a desigualdade pb < pe para cada p = p“, segue que a, > b, para todo v, isto
é, a > b. Portanto, a € A(B) pelo lema 5.1. Concluimos assim que A(A4) C A(B), de onde
segue que A C B. a

Corolédrio 5.2.1 Seja A C R} um canto convexo. Entdo 0 < Hu(p) < H(p) para toda
distribui¢do de probabilidade p € R se e somente se A esté contido no n-cubo e contém o
n-simplex.

Prova: Segue imediatamente do lema 5.2 e dos lemas 4.4 e 4.5. a

5.2. Pares geradores e antibloqueadores. Sejam A4,B C R‘{ cantos convexos. Estamos
interessados em saber quando podemos escrever qualquer distribuigdo de probabilidade p
sobre V comop=cob,ondeac Aebe B.

Dizemos que um par de conjuntos A,B C R} é um par gerador se toda distribuicdo de
probabilidade p pode ser escrita como

p=aob, paraalgum a € A e algum b € B.

Queremos saber quando dois cantos convexos A e B formam um par gerador. Para isso
vamos precisar dos lemas a seguir.

Lema 5.3 Sejam A,B C R‘,{: cantos convexos e p € R‘;{ uma distribuigdo de probabilidade.
Sep=aob para algum a € A e algum b € B, entao

H(p) > Halp) + Hp(p),

com igualdade se e somente se a atinge o minimo na defini¢do (5.1) de Ha(p) e b atinge o
minimo na definigao (5.1) de Hg(p).

Prova: Como p = acb, entdao

H(p)=-) pylgasby=— pylgay— ) pulghy > Ha(p) + Ha(p).  (5.3)
vev veV veV

E 6bvio que (5.3) vale com igualdade se e somente se a atinge o minimo na definigio (5.1)
de H4(p) e b atinge o minimo na defini¢do (5.1) de Hg(p). (®]

Seja A C IRK Definimos o antibloqueador de A como o conjunto
ab(A) := {z € RY : za < 1 para todo a € A}.

Lema 5.4 Seja V um conjunto finito. Sejam A,B C RY cantos convexos e p € RY uma
distribui¢do de probabilidade. Se ab(A) C B, entao

H(p) < Ha(p) + Hp(p),
com igualdade se e somente se p=ao b para alguma € A e algum b € B.
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Prova: Sejam a € A e b € B vetores que atingem o minimo na definigio (5.1) de Ha(p) e de
Hg(p), respectivamente. Usando a desigualdade 2.2 de Jensen e o fato de que ba < 1, temos

> =g ( E aub,,) >0. (6.4)

veV

Halp) + Ho(p) — Hp) = - 3 po g 22
veV Py

Usando o lema 5.3, é fécil ver que (5.4) vale com igualdade se e somente se p = a o b para
algum a € A e algum b € B.

O teorema que provamos a seguir ¢ um dos principais resultados sobre pares geradores do
artigo de Csiszar, Kérner, Lovasz, Marton e Simonyi [2].

Teorema 5.5 Sejam A, B C Rﬁf cantos convexos. As trés condigbes a seguir sdo equivalentes:
(i) ab(4) C B;
(i) (A, B) ¢ um par gerador;
(iii) H(p) > Ha(p) + Hp(p) para toda distribuigdo de probabilidade p sobre V.

Prova: Primeiro vamos mostrar que (i) = (ii). Seja p uma distribui¢io de probabilidade
sobre V e a € A um vetor que atinge o minimo na defini¢do (5.1) de Ha(p). Se py > 0, entdo
é claro que a, > 0. Entdo podemos definir um vetor b € RY como

b = Pu/ay, sep,>0
b 0, caso contrario.

Basta mostrarmos agora que b € B. Tome

flz) :=—Zp,,1g::., e Ii={zeRY: f(z) < f(a)}.

veV

Note que A e I sao convexos ¢ disjuntos. Portanto, existe um hiperplano que os separa.
Como A e I se tocam em a ¢ I é suave nesse ponto, entao o hiperplano que os separa deve
ser tangente a I e passa por a. O gradiente de —f em a é (1/In2)(p/a) = (1/In2)b. Assim,
o hiperplano separador é (b/1In2)z = 1/1n2, isto é, bz = 1. Logo, bz < 1 para todo = € A,
ou seja, b € ab(A) C B. Provamos assim que (i) = (ii).

Segue dirctamente do lema 5.3 que (ii) = (iii).

Agora vamos provar que (iii) = (i). Usando o fato j4 provado de que (i) = (iii) em conjunto
com o lema 5.4, sabemos que

H(p) = Ha(p) + Han(a) (),

para toda distribuigio p € RY . Assim, supondo que vale {iii), entdo H,yay(p) 2 Hp(p). Pelo
lema 5.2, temos que ab(A) C B. o

Sejam A, B C RY. Dizemos que o par (4, B) é um par antiblogueador se B = ab(A).

E facil provar que, se A é um canto convexo, entio ab(ab(4)) = A. Portanto, se (A, B) é
um par antibloqueador, entdo (B, A) também o é.

O teorema 5.5 e os lemas 5.3 e 5.4 implicam na seguinte caracterizagdo de pares antiblo-
queadores:
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Corolério 5.5.1 Sejam A,B C RK cantos convexos. Entdo (A, B) é um par antibloqueador

se e somente se
H(p) = Ha(p) + Hp(p),
para toda distribuigao de probabilidade p € RY .
A prova do seguinte coroldrio é imediata das demonstragGes anteriores:
Corolério 5.5.2 Seja A C RY um canto convexo e p € RY uma distribuicdo de probabilidade.

Entao, vale que
H(p) = Ha(p) + Hap4)(p)-
6. O POLITOPO FRACIONARIO DOS CONJUNTOS ESTAVEIS

Seja G um grafo sobre V. Definimos o politopo fraciondrio dos conjuntos estdveis de G
como
QSTAB(G) := {b €RY: 3 b, <1 para toda clique K de G}. (6.1)

veEX

E ébvio que QSTAB(G) é um canto convexo.

Note que todo vetor inteiro de QSTAB(G) é vetor caracteristico de um conjunto estdvel,
e portanto estd em STAB(G). O lema a seguir relaciona de um modo interessante STAB(G)
com QSTAB(G).

Teorema 6.1 Seja G um grafo. Entio
STAB(G) = ab(QSTAB(G)) e
QSTAB(G) = ab(STAB(G)).
Prove: Primeiro vamos mostrar que
_ ab(X) = ab(conv(X)) (6.2)
para todo X C RY. E 6bvio que ab(conv(X)) C ab(X). Vamos mostrar que ab(X ) €
ab(conv(X)).

Seja y € ab(X) e seja z € conv(X). O vetor z é combinagio convexa de elementos de
X. Sejaz =3 ; Aiz' uma tal combinagdo. E claro que \;z'y < A; para todo i. Portanto,
zy = Tier Miz'y € Tier A = 1. Isso implica que y € ab(conv(X)). Assim, temos que
ab{X) C ab(conv(X)).

Agora usamos (6.2) para concluir que

QSTAB(G) = {b e R/ 3" b, <1 para toda clique K de G}
veX ®
=ab({x": K é uma clique de G})
=ab({x: § é um conjunto estdvel de G})
= ab(STAB(G)).
Como STAB(G) é um canto convexo, entdo ab(ab(STAB(G))) = STAB(G). Logo,
STAB(G) = ab(QSTAB(G)).
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Corolério 6.1.1 Seja G um grafo. Vale que
STAB(G) = QSTAB(G) sse STAB(G) = QSTAB(G).

Prova: Segue diretamente do lema 6.1. o

7. GRAFOS PERFEITOS

7.1. Grafos perfeitos e cantos convexos. Nesta subsegdo apresentamos uma caracteriza-
¢do de grafos perfeitos usando cantos convexos, ou, mais especificamente, usando o politopo
dos conjuntos estaveis e o politopo fraciondrio dos conjuntos estiveis de um grafo.

Nosso objetivo nessa subsegao é mostrar que um grafo G ¢ perfeito precisamente quando
QSTAB(G) = STAB(G).

Seja G um grafo. Dizemos que G é um perfeito se, para todo subgrafo induzido G’ de G,
vale que

w(G") = x(G").

Existem vérias definigdes equivalentes para grafos perfeitos. A defini¢do que apresentamos
acima foi introduzida por Berge em 1961.

Primeiro vamos provar que, se G é um grafo perfeito, entdo QSTAB(G) = STAB(G). Mas
antes precisamos do seguinte lema.

Lema 7.1 (Lema da replicagéo) Seja G um grafo perfeito e v € V(G). Seja G* o grafo
obtido a partir de G através da replicagao de v, isto é, adicionamos um novo vértice v* ligado
a v e a todos os vizinhos de v. Entdo G* é perfeito.

Prova: A prova é por indugio em |V(G)|. Se G = K), entdo Gt = K é perfeito. Suponha
que G é um grafo perfeito com mais de um vértice. Basta provar que x(G*) < w(G), j& que
todo subgrafo induzido préprio G' de G* ou é isomorfo a algum subgrafo induzido de G ou é
obtido pela replicagdo de um vértice de algum subgrafo induzido préprio de G. Por hipétese
de indugao, G’ é perfeito.
Abrevie w := w(G). E claro que w(G*) € {w,w+1}. Se w(G*) = w + 1, entdo
x(G*) Lw+1=w(G*).

Entido podemos supor que w(Gt) = w. Neste caso, v ndo pertence a nenhuma clique mé-
xima de G, pois caso contrario, sua replicagao criaria uma clique de tamanho maior que w.
Considere uma coloragdo de G com w cores. Seja C o conjunto de vértices que recebeu a
mesma cor que v. Tome G' := G \ (C\ {v}). Como w = x(G), entdo toda clique méxima
de G tem um vértice em C, de modo que w(G’') < w. Podemos colorir G’ com w — 1 cores, j&
que G é perfeito. E ficil ver que C — v + 1’ é um conjunto estavel em G*. Assim, podcmos
estender a (w — 1)-coloragdo de G’ para uma w-coloragio de G*: basta atribuir a v’ a mesma
cor atribuida aos vértices de C e atribuir uma nova cor a v. O

Teorema 7.2 Seja G um grafo perfeito. Entio
STAB(G) = QSTAB(G).

Prova: E facil ver que STAB(F) C QSTAB(F) para todo grafo F. Entio basta provarmos que
STAB(G) 2 QSTAB(G). Como QSTAB(G) é um poliedro racional, entdo scus vértices tém
coordenadas racionais. Assim, é suficiente provar que todo z € QSTAB(G) com coordenadas
racionais estd em STAB(G).

Seja z € QSTAB(G) e suponha que ar tem coordenadas inteiras para algum a > 0 inteiro.
Seja G* o grafo obtido a partir de G da seguinte forma. Para cada v € V(G) com az, =0,
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remova v; para cada v € V(G) com az, > 0, replique az, — 1 vezes o vértice v. Os vértices
criados na replicagao de v formam, junto com v, uma clique de tamanho az,. Chamaremos
os vértices dessa clique de clones de v. Note que, pelo lema 7.1 da replicagao, o grafo G* é
perfeito.

Pela definicdo de QSTAB(G), se K é uma clique de G entdo ) . 2, < 1. Cada clique
K% de G* est4 contida em uma clique de G* de tamanho 37, . @z, para alguma clique K
de G. Assim, vale que w(G*) < a. Por ser perfeito, G* pode ser colorido com o cores.

Seja ¢: V(G) = [a] uma coloragio dos vértices de G* que utiliza a cores. Para cada cor
k € [a] e cada vértice v de G, defina

P { 1, se existe um clone v’ de v tal que c(v') = k;
Yy = 0 ;
, caso contrério.

Note que cada y* = x5* para algum Si € §(G). Assim,

= > " v* € STAB(G).
. k=1

Além disso, como cada vértice de G* foi colorido, entdo

a

k
E Yy = ATy
k=1

para todo v. Logo,

e estamos feitos. O
Para provar a conversa, precisamos de um resultado poliédrico.

Lema 7.3 Seja P := ab(Z) para algum conjunto finito Z C R} . Se ab(P) = §, tome Q := 0.
Caso contrério, defina
Q:={zeP:zy=1}
para algum y € ab(P). Entdo ou
QC{z:zz=1}
para algum z € Z, ou os conjuntos @) e Z sdo ambos vazios.

Prova: A prova é por indugdo em |Z|. Para a base, tome |Z| = 0. Neste caso, Z = 0.
Portanto P = ab(Z) ={z: 220} e Q =0.
Para o passo, tome |Z| > 0. Suponha que z é um elemento de Z tal que, para algum
z€ P, temoszz# lezy=1. Eclaroquea:z< 1.
Tome 2' := Z \ {z} ¢ P' = ab(Z'). E fécil ver que P C P'. Seja ' € P'. Suponha que
z'y > 1. Tomando z" := (1 — €)z + ez’ para ¢ > 0 suficientemente pequeno, vale que
2"z = (1 - €)(zz) + e(z’2) < 1,

isto é, z"” € P. Mas
'y=(1-e)(zy) +e(z’y) >1—-e+e=1,
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o que é um absurdo, ja que z” € P e y € ab(P). Portanto, temos que z'y < 1. Assim, pela
hipétese de indugdo, vale que @ := {z' € P': 2’y = 1} C {z: £z’ = 1} para algum z' € Z".
Note que 2’ € Z. Como P C P', entio Q C Q'. Assim, Q C Q' C {z: zz' =1}, como
querfamos. O

Finalmente podemos provar a conversa do teorema 7.2.
Teorema 7.4 Seja G um grafo. Se STAB(G) = QSTAB(G), entdo G € perfeito.

Prova: Abrevie V := V(G). Seja X C RY. Denotaremos por X[U] o conjunto de vetores
indexados por U obtidos de X pela supressio dos componentes relativos a vértices de V \ U.
E fcil ver que
QSTAB(G[U]) = QSTAB(G){U]
e que
STAB(G[U]) = STAB(G)(U].

Assim, STAB(G) = QSTAB(G) se e somente se STAB(G') = QSTAB(G') para todo subgrafo
induzido G’ de G. A prova ¢ por indugdo em |[V(G)|. A base é trivial. Entdo, pela hipétese
de indugdo, basta mostrar que, se STAB(G) = QSTAB(G), entdo G pode ser colorido com
w := w(G) cores.

Suponha que STAB(G) = QSTAB(G). Pelo corolério 6.1.1, vale que

STAB(G) = QSTAB(G).

Tome P := QSTAB(G) e y ;= 1/w. Se x é vetor caracteristico de uma clique de G, entdo é
claro que zy < 1 e, portanto, temos que y € ab(P).

Tome 2 :=_{x‘g: S € S(G)}, ou seja, temos que Z = {x¥: K é uma clique de G}. Entdo
P = QSTAB(G) = ab(Z) e Z # 0. Assim, pelo lema 7.3,

Q:={zeP:izy=1}C{zeP:zz=1}

para algum z € Z. Note que z € Q se ¢ somente se = é vetor caracteristico de alguma clique
maxima de G. Logo, cada clique méxima intersecta o conjunto estdvel S tal que z = x°.
Portanto, vale que w(G’) = w(G) -1, onde G’ := G[V'\ 5]. Pela hipétese de indugio, podemos
colorir G’ com w(G’) cores. Usando uma nova cor para colorir os vértices de S, obtemos uma
coloragio dos vértices de G com w(G) cores. o

Podemos agora enunciar uma caracterizagao poliédrica para grafos perfeitos:
Teorema 7.5 Seja G um grafo. Entao
G é perfeito sse STAB(G) = QSTAB(G).

Prova: Imediato dos teoremas 7.2 e 7.4. a

7.2. Grafos perfeitos e entropia de grafos. Nesta subsegio apresentamos uma caracte-
rizagdo de perfei¢ao usando entropia de grafos.
Dizemos que um grafo G é fortemente separador se

H(p) = H(G,p) + H(G,p),
para toda distribui¢do de probabilidade p sobre V(G).



ENTROPIA DE GRAFOS 21
Teorema 7.6 Seja G um grafo. Entdo
H(p) = H(G,p) + H(G,p)
para toda distribui¢do de probabilidade p sobre V(G) se e somente se
STAB(G) = QSTAB(G).
Prova: Pelo lema 6.1 e pelo coroldrio 5.5.1, temos que

H(G,p) + H(G,p) — H(p) = Hstap(c)(P) + Hsran(g)(P) — H(P)
= Hstap(6)(P) — Hapisran(@y (P)
= Hstan(g)(P) — HosTas(c)(P)-

]
Mostramos a seguir uma caracterizacdo de grafos perfeitos usando entropia de grafos.
Teorema 7.7 Um grafo G é perfeito se e somente se ¢ fortemente separador.
Prova: Segue diretamente do teorema 7.6, do lema 5.2 e do teorema 7.5. a

Lovész [19] provou a conjectura fraca dos grafos perfeitos, que diz que um grafo é perfeito
se e somente se seu complemento também o é.

Corolério 7.7.1 (Teorema fraco dos grafos perfeitos) Um grafo G é perfeito se e
somente se G é perfeito.

Prova: Segue diretamente do teorema 7.5 e do coroldrio 6.1.1. a

E fécil provar o seguinte coroldrio.

Coroldrio 7.7.2 Um grafo G é perfeito se e somente se a(G')w(G') > |V(G')| para todo
subgrafo induzido G’ de G.

Assim todo grafo imperfeito minimal G satisfaz a(G)w(G) < |V(G).
Mostramos que um grafo é perfeito se e somente se é fortemente separador. Entao se G é
um grafo imperfeito, existe uma distribuigdo de probabilidade p tal que

H(G.p) + HT,p) > H(p). (7.1)

A proposicdo a seguir mostra que se G é um grafo imperfeito minimal, entdo a distribuicio
de probabilidade uniforme satisfaz (7.1).

Proposigio 7.8 Seja G um grafo imperfeito minimal e p a distribui¢do de probabilidade
uniforme sobre os vértices de G. Entio

H(G,p) + H(G,p) > H(p).
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Prova: Sejam a e b vetores de STAB(G) e STAB(G) que atingem H(G,p) e H(G,p) na
caracterizagao (3.3), respectivamente. Tome V := V(G). Entdo,

el 1. 1 1.1
veV 4 veV v

=lg (1/((HV€V aIJ)Un (nuEV b")l’u))

2 1g (1/(a(G)(G)/n?))
> lgn = H(p).
A primeira desigualdade segue do lema 2.2; a segunda, do coroldrio 7.7.2. O
A proposigao 7.8 implica que grafos imperfeitos nao sao fortemente separadores, jé que

podemos concentrar a distribuigao de probabilidade nos vértices de um subgrafo induzido
imperfeito minimal.

De acordo com a recente prova da conjectura forte dos grafos perfeitos obtida por Chud-
novsky, Robertson, Seymour e Thomas (1], os grafos imperfeitos minimais sao os circuitos
impares de comprimento maior ou igual a 5 e os complementos de tais circuitos.
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8. PRELIMINARES E NOTAGAO

Seja V um conjunto finito. Uma ordem parcial sobre V é uma relagio <, sobre V que é
reflexiva, anti-simétrica e transitiva. Abusando da notagio, chamamos P = (V, <) de ordem
parcial. Dizemos que u,v € V sio compardveis em Pse u <, vouv <, u. Seu,v € V nao
sa0 comparaveis, eles sdo incompardveis em P.

Uma ordem total sobre V é uma ordem parcial <, tal que, para quaisquer u,v € V, vale
que # <, v ou v <, u. Abusando da notagdo, chamamos @ = (V, <p) de ordem total.
Uma ordem total Q = (V,<,) é uma eztensdo linear de uma ordem parcial P = (V, <,) se,
para quaisquer u,v € V, temos que u <, v implica u <, v. Denote por ¢(P) o nimero de
extensodes lineares de P.

Seja P = (V,<,) uma ordem parcial. Uma cadeia de P é um subconjunto de V' cujos
elementos sdo dois-a-dois compardveis. Uma anticadeie de P é um subconjunto de V' cujos
elementos sao dois-a-dois incompariveis. Para anticadeias X,Y de P, dizemos que X <, Y
se, para todo z € X, existe y € Y tal que z <, y. Quando ndo houver diividas quanto a
ordem parcial em questdo usaremos apenas X < Y.

O grafo de comperabilidade de P é definido como o grafo sobre V' no qual dois vértices sdo
adjacentes se sio comparaveis em P. Denotamos o grafo de comparabilidade de uma ordem
parcial P por Gp.

Seja U C V. Definimos o conjunto minimal de U com relagdo a P como

minp(U) := {u € U: u £, v ou u é incompardvel com v, para todo v € U}.
Definimos o conjunto mazimal de U com relagdo ¢ P como

maxp(U) := {u € U: v <, u ou u é incomparével com v, para todo v € U}.

Seja {v1,...,vm} C V tal que 1} < -+ < vy, sdo relagdes compativeis com P, isto 6,
v; < -++ < vy vale em alguma extensdo linear de P. Denotamos por P(v) < -+ < vp)
a menor ordem parcial compativel com P que contém as relagdes v; < -+ < vy, Mais

formalmente, P(v1 < -++ < m) ¢ a ordem parcial P’ = (V, <), onde u <, w se e somente
se u <p wou, s¢ existem 1 <1 < j < m, tais que u <, vi e v <pw.

No restante do texto, P = (V,<,) sempre denotar4 uma ordem parcial, e n := |V|.
Algumas vezes serd conveniente confundirmos o conjunto V' com o par ordenado P; por
exemplo, podemos dizer que z estd em P quando, na verdade, £ é um elemento de V.
Além disso, abreviamos H(P) := H(Gp,p) e H(P) := H(Gp,p), onde p é a distribuigdo de
probabilidade uniforme sobre V. Denotamos por anin{P) o vetor a € STAB(Gp) que atinge
0 minimo na caracterizagio (3.3) de H(P). Denotamos por byia(P) o vetor b € STAB(Gp)

que atinge o minimo na caracterizagio (3.3) de H(P).

9. ORDENAGAO A PARTIR DE INFORMAGAO PARCIAL

Seja Q@ = (V,<,) uma ordem total. Um ordculo para Q é um orculo capaz de responder
a perguntas do tipo “u <, v 7", para quaisquer u,v € V.
O problema de ordenagdo a partir de informagdo parcial consiste em:
dados um conjunto V', uma ordem parcial P = (V,<,) e um ordculo para
uma extensao linear Q de P, encontrar Q.
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Chamamos esse problema de ordenar .

Uma possivel dificuldade para esse problema é que o oriculo pode ser considerado um
adversario que tenta, a todo custo, for¢ar um algoritmo candidato para o problema a fazer
um grande nimero de consultas. Por exemplo, o ordculo nado precisa ter uma extensio
lincar pré-fixada: ele pode construir a extensao linear de acordo com as consultas feitas pelo
algoritmo.

E claro que todo algoritmo que resolve o problema acima far4 pelo menos Ige(P) com-
paragdes no pior caso. Esse fato é conhecido como limite inferior da teoria da informacdo.
Fredman (6} mostrou que o problema pode ser resolvido com lge(P) + 2n comparages. No
entanto, a dificuldade encontra-se em como descobrir quais comparagbes devem ser feitas.

Uma conjectura famosa de Fredman é que, se P nao é uma ordem total, entao existem z
e y elementos incomparaveis em P tais que

1_ e(Plz<y)
3~ e(P)
Essa conjectura continua em aberto. No entanto, usando o teorema de Brunn-Minkowski

ou as desigualdades de Aleksandrov-Fenchel, j4 se provou que, se P n&o ¢ uma ordem total,
entdo existem z e y elementos incomparéveis de P tais que

e(P(z <y))
'——em— <1-4

para valores de & menores do que 1/3, como por exemplo 3/11 (vide [9, 10]). Isso jd é o
suficiente para mostrar que, se um algoritmo encontra z e y adequadamente, entdo podemos
ordenar P com O(lg e(P)) comparagdes. Novamente, a dificuldade se encontra em descobrir
tais comparagdes. Vamos mostrar uma aplicagao de entropia de grafos para esse problema,
proposta por Kahn e Kim [8].

<2
-3

6 <

10. UMA VISAO GERAL

Os principais resultados de Kahn e Kim [8] sao os seguintes:

e existe um algoritmo que resolve o problema de ordenar a partir de uma ordem par-
cial P com O(lge(P)) comparagdes e que encontra as comparagdes em tempo polino-
mial no tamanho de P;

e existe um algoritmo que computa respostas para consultas ao ordculo e roda em
tempo polinomial no tamanho de P para cada consulta, que forga todo algoritmo que
ordena P (deterministico ou nio) a usar Q(lge(P)) comparagGes.

Para provi-los, Kahn e Kim usaram uma abordagem nao-convencional. Eles primeiro
relacionaram o numero de extensdes lineares de P com a entropia de Gp de acordo com a
distribui¢do de probabilidade uniforme. Para mostrar o primeiro resultado, eles mostraram
que, s¢ P nado ¢ uma ordem total, entao existem z e y tais que, incorporando em P a resposta
do ordculo relativa & consulta “z < 7", a entropia de Gp aumenta em pelo menos ¢/n, onde
¢ = (,2. Para o segundo resultado, eles mostraram que, para quaisquer z e y incompardveis
em P, pode-se responder a pergunta “z < y?” de forma que a entropia de Gp nao aumenta
em mais que 2/n.
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Na se¢do 11, mostramos que os grafos de comparabilidade sdo perfeitos e apresentamos
algumas conseqiiéncias desse fato. Na se¢do 13, relacionamos e(P) e H(P). Nas duas outras
secdes, mostramos a existéncia dos algoritmos citados acima.

11. GRAFOS DE COMPARABILIDADE

Nesta segdo, mostramos que os grafos de comparabilidade sdo perfeitos e apresentamos
algumas conseqiiéncias importantes desse fato.

Lema 11.1 Grafos de comparabilidade sao perfeitos.

Prova: Seja G o grafo de comparabilidade de uma ordem parcial (V, <) qualquer. Eviden-
temente todo subgrafo induzido de um grafo de comparabilidade também é um grafo de
comparabilidade. Logo, basta mostrarmos que x(G) € w(G). Para cada vértice v construa
uma cadeia de tamanho méximo C, := {uy,...,ux} comu; =vewu; <+ < ug. Scjalota-
manho da maior cadeia assim construfda. Paracadal <i < ¢, tome A; 1= {v e V: |G| =i}
Note que dois vértices distintos pertencentes a um mesmo conjunto A; ndo podem ser com-
pardveis. Portanto, cada A; é um conjunto estivel. Note também que Uf=1 A;=V. Assim,
x(G) £ £ =w(G), j& que cada cadeia é uma clique. 0

Lema 11.2 Para toda ordem parcial P sobre V,
H(P)+H(P)=1g|v|,
onde p é a distribuicdo de probabilidade uniforme sobre V.
Prova: Segue imediatamente do lema 11.1 e do teorema 7.7. 0

Usaremos também o seguinte resultado:

Lema 11.3 Existe um algoritmo polinomial para calcular H(P).

Omitimos a demonstra¢do. A idéia principal é a seguinte: como os grafos de comparabili-
dade sao perfeitos, entdo o politopo dos conjuntos estdveis de um grafo de comparabilidade
é separdvel. Isso permite que apliquemos o método dos elipséides para calcular a entropia
de grafos de comparabilidade com relagao a qualquer distribui¢io de probabilidade. Reco-
mendamos o artigo de Knuth [11] sobre a fungio ¥ de Lovasz e o livro sobre o método dos
elipsdides de Grétschel, Lovész e Schrijver [7].

12. DECOMPOSIGCAO LAMINAR

Nesta segdo, apresentamos alguns lemas que serdo muito 1teis. Em particular, mostramos
que podemos decompor amis () de uma maneira especial e 1inica, chamada de decomposigao
laminar de api(P).

Lema 12.1 Seja a € STAB(Gp) e seja b€ STAB(Gp). Entdo ab < 1.
Prova: Pela demonstragao do lema 4.3 da subaditividade, podemos ver que o vetor a o b,
definido como

(acb), := ayby,
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para todo v € V, pertence a STAB(Gp U Gp) = STAB(Kv). Como grafos completos sio
perfeitos, entdo pelo teorema 7.2, STAB(Kv) = QSTAB(Kvy). Assim, como V é uma clique
em Ky, entdo, pela definigio 6.1 de QSTAB(Kv), temos que ab= 3 .y ayb, < 1. o

Lema 12.2 Para todov € P,

(amin( P (ain(P))o = = (12,1

Prova: Tome a := @min(P) e b := bpin(P). Pelo lema 11.2, temos que H(P) + H(P) = Ign.
Portanto, — }_,cp(lg(avby))/n = Ign. Isto é, o vetor a o b (cuja defini¢do pode ser vista no
lema anterior) atinge o minimo na caracteriza¢io (3.3) de H(Kvy,p), onde p é a distribuicao
de probabilidade uniforme sobre V. Ademais, pela demonstragao do lema 4.3, podemos ver
que a o b € STAB(Ky). Assim, pelo lema 3.2 e pela demonstracao do lema 4.4, é facil ver
queaob=p. (m]

Lema 12.3 Seja a € RY. Suponha que a pode ser escrito como
r
a=Y x™, (12.2)
i=1

onde \; é um real positivo para todo i e A; < --- < A, sdo anticadeias maximais distintas.
Entio, a representagdo (12.2) é unica.

Prova: Seja P* := {z € P: a; > 0}. Seja A := minp(P*) e a := min{e;: z € A}. Vamos
provar que A = A, e @ = A;. Note que isso prova o lema.

E 6bvio que A D A;. Suponha que A € A;. Entdo existe z em A \ A;. Portanto, z estd
em algum A; com i > 1. Se z é comparédvel com algum elemento de A,_,, isso contradiz a
hipdtese de que A;_; < A;. Se z é incomparavel com todo elemento de A;_,, isso contradiz
a maximalidade de A;_;. Portanto, 4 = A;.

Agora vamos provar que a = A;. E 6bvio que a > )\;. Suponha que & > A;. Ser < 2,
entdo isso é um absurdo. Se r > 2, isso implica que todo z € A estd em mais algum A; com
i > 2. Como A, <--+ < Ay, entdo A C A;. Isso contradiz a hipbtese de que A4, e A; sdo
anticadeias maximais distintas. 0

Chamamos a representagdo de a na equagio (12.2) de decomnposigao laminar de a.

A demonstragio do lema a seguir utiliza uma técnica muito conhecida e poderosa: a técnica
do descruzamento. Ela tem sido utilizada para a demonstragdo de muito resultados célebres,
como o modelo de Auxos submodulares de Edmonds e Giles [4] e um resultado de cobertura
bi-supermodular de Frank e Jordan [5], usado para aumento de conexidade.

Lema 12.4 Existe uma tnica decomposi¢do laminar de ami, (P).

Prova: Pelo lema 12.3, basta mostrar que existe uma decomposi¢ao laminar de @, (P)-

Fixe uma extensdo linear ox da relagio <. Abrevie Smax := Smax(Gp). Dados vetores
pYD U= JRf_"‘“, dizemos que A é lezicograficamente maior que N sec As > Ag para o menor
S € Smax (sob a ordem total ) tal que Ag # X,



28 SATO E KOHAYAKAWA

Podemos escrever amin(P) como combinagdo convexa de todos os elementos do conjunto
{x%: § € Smax}- Scia amin(P) = S {Asx®: S € Smax} uma tal combinagdo com A lexicogra-
ficamente maximal. E ficil provar que tal combinagao existe através de técnicas padrdes de
compacidade.

Se {A € Smax: A4 > 0} é uma cadeia sob <, nada temos a demonstrar. Suponha entao
que existem A, A’ € Smax, incomparaveis sob < e tais que 0 < Aq < Aq. Tome

B := minp(AUA') e B':=maxp(AUA4’)
e defina X' € R3™ como

As—Ma, seS=Aoul =4,
Ns:=<¢As+Xs, seS=BouS=DBH,
As, caso contrario.
E facil ver que B e B’ sio anticadeias maximais e que

XZ+xE =xt+xt

e= 2 xS
SESmax
No entanto, ¢ ficil ver que A’ é lexicograficamente maior do A, pois B < A' e B < A, o que é
um absurdo. a

para todo z € AU A'. Logo,

13. LIMITANTES

Nesta se¢do relacionamos e(P) com H(P). Queremos provar que
n(lgn — H(P)) 2 lge(P) > max{lg(r!) — nH(P),Cn(lgn — H(P))},
ond;z C := (1 + 7lge)~!. Primeiro, usando volumes de poliedros, provamos que
g-nH(P) ¢ &P) "o nn(p)
- al Tl
Essa ¢ uma demonstragdo bem simples. J4 a prova de que
lge(P) 2 Cn(lgn ~ H(P))
é um pouco mais trabalhosa e ocupa a maior parte desta secio.
Definimos o politopo da ordem P como
O(P) :={y € [0,1)”: yu <y Vu,v € P com u <, v}.
O volume de um poliedro A € RY, &
vol(A) := dz.
z€EA

Linial (18] observou que vol(O(P)) = e(P)/(n!). Stanley (24] provou que STAB(Gp) ¢ O(P)
tém o mesmo volume. Portanto,

vol(STAB(Gp)) =

e(P)
= (13.1)
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Lema 13.1 Vale que
27"H(P) < yol(STAB(Gp)) < 2-'*”(")

Prova: Como STAB(Gp) € um canto convexo e amin(P) € STAB(Gp), entao

VOI(STAB(GP)) 2 H amin(P)u = Z_HH(P).
veP

Resta provarmos que vol(STAB(Gp)) < (n"/n!)2"H(P). Tome

L:= {s € Rf: ZueP Submin(P)y < l}.

Pelo lema 12.1, vale que STAB(Gp) € L. Portanto, pelo lema 12.2,
1 1 n" n"
1(STAB <volll)==J] ——— = = " _ N o-nH(P)
vo (S A (GP)) = VO( ) al uIEIp bmin(-P)v 7l “I;amm(P)v al 2 .

)
Corolério 13.1.1 Seja ¢ uma constante positiva. Se e(P) > cn, entdo
nH(P) < £1 8¢ °+'5° 1ge(P).
Prova: Pelo lema 13.1 e pela equagao (13.1),
Ige(P) - Ig(n!) > —nH(P).
Pelo lema 11.2,
lge(P) - lg(n') +nlgn > nH(P).
Suponha que lge(P) > cn. Entao
216 1ge(P) > Ige(P) +Ige" > lge(P) +1g o

onde a tltima desigualda.de segue do fato que k! > (k/e)* para todo k >1. ]

Seja {z1,...,7¢} uma cadeia de comprimento maximo em P, com z; <, --- <p T¢. Seja

C:={z1,...,2¢} e T := {y1,...,4} = P\ C. Escrevemos z ~ y para dizer que z e y sao
comparéveis em P, e z » y caso contririo. Para cada j € [t], defina

K@) ={i€[q: zi = y;}, k;j=|K;l|;
f(j) := min{i € [f): y; <p z;}, considerando min@ :=£+1;
9(7) ;== max{i € [f]: z; <p y;}, considerando max @ :=0.

Para cada 1 € [{], defina
UG):={iet]: () =i}, wi:=]Uif;
2(i):={j €lt): 9G) =1}, =z :=|Zil

E fécil provar que
e(P) > 24 (13.2)
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Dizemos que = € P é um ponto de corte de P se z ¢ compardvel a todos os elementos de P.
Lema 13.2 Set < n/7 e P nio tem um ponto de corte, ento existe j € [t] tal que
Y (wi+n) <k e k23
€K ()

Prova: Suponha que nao existe tal 5. Seja 7' C T minimal tal que
UtkG): el vy e T} =4 (13.3)

Note que tal T existe, pois | J{K;: j € T} = [{]. Podemos supor sem perda de generalidade
que T = {1,...,y}. Portanto,

Z (uit+z)2ki—2
€K ()
para 1 < 3 <r. Logo,
r r
SN itz 2> k-2 (13.4)
i=lieK(j) j=1
Pela equagio (13.3) e usando o fato de que r <, temos que

.
> oki-2r>t-2t (13.5)
=

Por outro lado, como a minimalidade de 7" implica que todo ¢ € [£] pode estar em, no méximo,

dois K (j) distintos, entao

T 4
S5 tw+zm) € 2ui+z) <2+ 2t =4t (13.6)

i=liek () i=1
Assim, usando as equagdes (13.4)-(13.6), temos que 4t > £ — 2¢. Logo, 6t > € =n~—¢, 0 que
contradiz a hipétese de que ¢ < n/7. 0

Dizemos que P é mazimal com relagéo & entropia se o incorporagio de qualquer relagio a
P aumenta a entropia, isto se, se H(P(z < y)) > H(P) para quaisquer z e y incomparaveis
em P.

Lema 13.3 Suponha que P é maximal com relagio 4 entropia e nio tem ponto de corte. Se
t < n/7, entio existem j € [t] e i € [£] tais que P' := P(z; < yj < zi41) satisfaz
e(P)

e(P) < s e nH(P) < nH(F) + 21g(2k; + 1).
;-

Prova: Seja j como no lema 13.2 ¢ K(j) = {zp,...,Tm} cOM &) <p *++ <p Trm. Escolha i
em {h,...,m} que minimize
e(P(z; < yj < Zit1))
e(P)

(13.7)
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Tome P’ := P(x; < y; < zi11). Note que as extensoes lincares de P em que y; < z; ou
Ti41 < yj nao sao extensoes lineares de P'. Portanto, como escolhemnos i que minimiza (13.7),

P)
g P
e(P) < kji—1
Agora vamos provar que nH(P) < nH(P") +2 lg(2k; + 1). Para isso, vamos provar que
v <p Y = U <p Tigl- (13.8)

Seja v € P. Suponha que v <, y;- Seja 34 4 Aax? uma decomposicio laminar de amin(P).
Pela maximalidade de P com relagdo A entropia, existe A € A tal que z;,5; € A. Seja
A A" € Ataisquev € A' e zi4) € A”. Como v <, y;, entdo A' < A. Como z; <, T4,
entio A < A". Portanto, A’ < A" e sdo anticadeias distintas. Novamente pela maximalidade
de P com relagdo a entropia, vale que v < 41, completando a prova da implicagao (13.8).
Similarmente, pode-se provar que

Yi <pv =T <p 0. (13.9)
Note que decorre das implicagdes (13.8) e (13.9) que, se a = b em P, entio a ~ b em P’
somente se a = y; ou b = y;. Por outro lado, y; s6 se tornaréd comparéavel a elementos de
Y= K5 U (U, o, V) U Z(5)

Pelo lema 13.2, é facil ver que

g:=|Y| < kj + k; = 2k;.
Seja G’ o grafo sobre V com E(G') := E(Gp)\ E(Gp:). Seja p a distribuigio de probabilidade
uniforme sobre v. Temos que

1
nH(G,p) <lglg+1)+ T 1g T2

yeyYy
3.10
=lg(g+1) +qlglg +1) - glg(e) (e

< 21g(g+1) < 21g(2k; +1).
Pelo lema 4.3 da subaditividade e pela desigualdade (13.10),
nH(P) < nH(P) + nH(G',p) < nH(P) + 21g(2k; +1)

e estamos feitos. a

Lema 13.4 Vale que _
nH(P) < (1+7lge)lg(e(P)). (13.11)

Prova: A prova é por indugdo em n +t. Sen =1 ou t = 0 é claro que a inequagao (13.11) é
verdadeira.
Se P tem um ponto de corte, digamos z, é facil ver que

nH(P)=(n-1)H(P\{z}) e e(P)=e(P\{z})
Logo, por hipétese de indugdo
nH(P)=(n—-1)H(P\{z}) < (1+7lge)lge(P\ {z}) = (1 + 7Ige) lge(P).
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Suponha entdo que P ndo tem ponto de corte. Se t > n/7, pela inequagao (13.2) e pelo coro-
ldrio 13.1.1, a inequagdo (13.11) é vélida. Portanto, podemos supor que t < n/7. Ademais,
podemos supor que P é maximal com relagio & entropia. Sejam i e j e P’ como no lema 13.3.
Temos que
nH(P) < nH(P") + 21g(2k; + 1)

<(1+7lge)lge(P) +4lg(k; +1)

<(1+7lge)lge(P)+ (8- (1+Tlge))lg(k; — 1)

<(1+7lge)lge(P).

Teorema 13.5 Vale que
n(lgn — H(P)) 2 lge(P)
> max{lg(n!) — nH(P),Cn(lgn — H(P))},
onde C:=(1+7lge)”L.
Prova: Segue diretamente do lema 11.2, do lema 13.1 e da equagdo (13.1), e do lema 13.4. O

14. ENCONTRANDO UMA BOA COMPARAGAO

Nesta segdo mostramos um algoritmo que ordena uma ordem parcial P com O(lge(P))
comparagoes e encontra as comparagdes em tempo polinomial no tamanho de P.
Basicamente, mostramos que se, P ndo é uma ordem total, entdo existem z e y em P
tais que
; c
min{H (P(z <y)), H(P(z <y))} 2 H(P) + ~, (14.1)

onde ¢ := 1+ 17/112. Isso significa que ac descobrirmos a relagao entre z e y através de uma
consulta ao ordculo, a entropia do grafo de comparabilidade da nova ordem parcial serd pelo
menos a soma entre a entropia do grafo de comparabilidade da ordem parcial anterior e ¢/n.
Assim, com, no méximo, (n/c)(lgn — H(P)) comparagdes atingiremos a entropia do grafo
completo, isto é, encontraremos a ordem total do oraculo.

Scja a := 37_; lix* uma decomposicdo laminar de amin(P) com A} < -+ < A,. Defina

a(z) :=min{i € [r]: z € 4} e PB(z):= max{i € [r]: z € 4;}.

Lema 14.1 Suponha que P ndo é uma cadeia. Sejam z,y incompardveisem P e seja p € [0, 1].
Seja P' := P(z < y) e suponha que ay > 0. Entao

B(z) % a(y)-1 A
nH(P') >nH(P)+lg (1 +uza—;) +1g (1+u. Z é)

i=1 i=1

Prova: Seja b := bmin(P). O vetor b pode ser escrito como combinago convexa de elementos
de {x?: B é uma cadeia de P}. Seja 371, &x P uma tal combinagdo. Podemos supor que
Y € Biseesomentese 1 <i<m,ondem:=|{Bj:i€ B;, 1<j<s}l.
Tome
dlv):=) {&:veBiel<i<m)
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Para cada 1 < i < m, defina C; := B;\ {v€ P:v <, y}.
Fixe C = {vy,...,w} com v; <, -++ <, ¥y uma cadeia maximal tal que v, = z. Note que
t B(z)

D ew =3 M (14.2)
i=1 i=1

Defina as seguintes cadeias de P’
B{:=DB;, sel<i<s
B{,,:=CUC; sel<i<m.
Defina também
L:=¢&, sem+1<i<s
Givs i =pbiy &i=(1—-p) sel<il<m.

Tome
a+m

b= eix™.

i=1
E f4cil ver que ¥ € STAB(Gp). Scja z € P. Se z € C, entdo
b = b, — d(z) + (1 — p)d(2) + pby = by + p(by — d(2)).
Sez¢ Cez<,y,entdo b, = b, — ud(z). Finalmente, se z ¢ C, e z é incomparavel com y
ou y <, z, entdo b, = b,.
Usaremos as seguintes desigualdades,

lg(1 +u—v) > lg(l+u)+1g(l —v) (14.3)
para quaisquer u,v € Ry e
) lg(1+u) +1g(1 +v) 2 1g(1 +u+v) (14.4)

para quaisquer u,v € R com uw > 0.
Pelo lema 11.2 e pelas desigualdades (14.3) e (14.4), temos que

nH(P') - nH(P) = nH(P) - nH(P")
2;@%:2{@:—&:ueC}+Z{lg§%:ueP\C,v<,,y}
=£{1g(1+p:—:—udé:’)) vec)+ {ig(1-n2 die )) ve P\C, v<,y}
22{1g(1+,u§!):v€C}+E{lg(l—p—(—)):vEP,v(,y}
2[g(1+,u.by2{b— vEC})+lg(1—uZ{ tvEP v <))

Pelo lema 12.2 e pela equagdo (14.2),
B(=)

Z{_-UEC} Z{na., vEC}—nZ»\:
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Além disso,

z %”)_ =R Z ayd(v) =n Z Z{A.‘d(’u): v € A;}

v

v<py v<py v<py
a(y)-1 a(y)-1
=n Z A,-Z{d(u): vE A} Ln Z Aiby,
i=1 i=1

onde a 1ltima desigualdade segue do fato de que A; é uma anticadeia para todo i. Assim,
nH(P') — nH(P)

21g(1+pb,2{b—lv:vEC})qu(l—uZ{‘-i%:veP, v<,y})

B(z) a(y)-1
>lg (1 + pn Z ,\,-by) +lg (1 - un Z '\ibyl)
i=1 i=1
B(z) o a(y)-1
=lg(1+p§:—;)+lg(l—p g %)

0

Antes de provar a desigualdade (14.1), precisamos de um lema f4cil.

Lema 14.2 Dados 0 < &) <1 e0 < €2 < 1, escolha z com a; tio grande quanto possivel de
forma que

a(z)-1
Z A" S €10z.
i=1

Seja s o menor inteiro para o qual

i Ai 2 €205

i=a(z)

Entdo, para todo y € 4, \ {z},

& + &2
ay < —a;.
€1

Prova: Se ay < az, ndo hé nada a provar. Suponha que e, > a;. Entdo, pcla escolha de z e
pelo fato de que s > a(y), temos que

a(y)-1 a(z)-1 ay)=1

gi1ay < Z Ai = Z Ai + 2 Ai € €105 + €205,

i=1 i=1 i=a(z)

Finalmente provamos a desigualdade (14.1).



ENTROPIA DE GRAFOS 35
Teorema 14.3 Se P nido é uma cadeia, entdo existem z,y incompardveis em P tais que
min{H(P(z < y)), H(P(y <))} 2 H(P) + —, (14.5)

onde ¢:= (1+17/112).

Prove: Suponha P possui um ponto de corte z. Entdo, a prova segue por indugio em n.
Para n < 3, ¢ ficil ver que a desigualdade (14.5) é valida. Suponha que n > 3. Seja p a
distribuigao de probabilidade uniforme sobre os elementos de P e seja p' a distribuicio de
probabilidade uniforme sobre os elementos de P’ := P\ {z}. Por hipétese de indugio, existem
z,y € P’ tais que min(H(P'(z < y)), H(P'(y < z))) 2 H(P') + ¢/(n — 1). Usando o fato de
que nH(P) = (n — 1)H(P’), temos que
nH(P) —nH(p) = (n—1)H(P") - (n — 1)H(p"}

< (n - 1) min(H(P'(z < y)), H(P'(y < 2))) - (n ~ DHP) +¢

= —(n—-1)min(H(P'(z < y)), H(P{y <)) +¢

= -nmin(H(P(z <y)), H(P(y <z))) +¢

=nmin(H(P(z <y)), H(P(y < 7))} - nH(p) +c.

Suponha que P ndo tem um ponto de corte. Tome & := 1/4 e g2 := 1/3. Sejam z e y de
acordo com o lema 14.2. Tome § := (1/az) Y {Mi: 1 <1 € az) — 1}. Note que § < ¢,. Pelo
lema 14.2,

v 10y
= (e1 + e2)az —

Tome P’ := P(z < y). Pelo lema 14.1 e pelas escolhas de z e y,

Blz) | afy)-1
H(P’)—nH(P)2lg(1+ngl)+lg(l+u > )‘)

i=1 oy

a@l, 8 ap)-1
=lg(1+ﬂ > —+ 3 )+lg(l+p 5 @)

i=1 1—a(a:) i=1

a(y)-1
Ai
(1+p&+p )+lg(1+,u ¥ ‘)
i=1 Gy
a(y)-1,
(a0 g (1,5 )
-1 ay
a(z)l a(y)-1 ,
]g(l+p(6+1)az) (l-i-p E —+# ﬁ)
iz1 % ;-a(z)au
>lg (1_'_“(6"'1)“:) S(1+IJ az 52“:)
lg(1+p 5+1)a,) g(1+u(6+£2 )
e -eae—cp—¢f 17
>lg(1
g( * €1+ &2 ) 1g(l+112)
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Por outro lado, tome P” := P(y < 7). Tome 7 := 1. Pelo lema 14.1,

By) A a(z)-1 N
nH(P")—nH(P)Z]g(]-i—nEEl)+lg(1+n Z a——)
i=1 = =1 z
>lg(l +6 +&5) +1g(1 — 8) = lg(1 + €2 — £26 — &%)
3
iy —iR) s =)
2 1g(1 + &2 — €261 — €7) lg(1+16)
O

Vamos mostrar agora que, do teorema 14.3, segue facilmente a existéncia do algoritmo
desejado.

Corolério 14.3.1 Existe um algoritmo que resolve o problema de ordenar a partir de uma
ordem parcial com O(lg e(P)) comparagoes e encontra as comparagdes em tempo polinomial
no tamanho de P.

Prova: Considere o seguinte algoritmo.

Algoritmo
1 P+P
2  enquanto H(P') < lgn faga
3 encontre z,y tais que

min{H(P'(z < y)), H(P'(y < z))} 2 H(P') +¢/n,
onde c = 1+17/112
4 pergunte ao oraculo: “z < y?”
5 se o ordculo responder “SIM”
6 entdo P/ ¢ P'(z < y)
7 sendo P’ + P'(y < z)
8 devolva P
Pelo teorema 14.3, se P’ ndo é uma cadeia, tais z e y existem. Além disso, pelo lema 11.3
podemos calcular H(P'), H(P'(z <y)) e H(P'(z < y)) em tempo polinomial. Note que o
algoritmo s6 termina quando encontra uma ordem total, pois pelo lema 4.4, a entropia de um
grafo completo com n vértice com relagdo & distribuigao uniforme é Ign.
Como em cada iteragao a entropia cresce pelo menos ¢/n, temos que o algoritmo fard no
méximo (n/c)(lgn — H(P))comparagdes. Pelo teorema 13.5, vale que lg(e(P)) > Cn(logn —
H(P)), onde C := (1 + 7lge)~1. Assim, o algoritmo faz O(lg e(P)) comparagdes. ]

15. COMPUTANDO RESPOSTAS

Nesta se¢io mostramos um algoritmo que computa respostas a consultas a um oréculo que
obriga todo algoritmo que ordena uma ordem parcial P a fazer {(e(P)) comparagdes.

Basicamente, mostramos que, se P, nio é uma ordem total, para quaisquer z,y incompa-
rdveis em P,

min{H(P(z <)), H(Ply < )} < H(P) + 2.
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A pergunta “z < y?" serd respondida de modo a minimizar a entropia da nova ordem parcial.
Isso, significa que a cada comparacio, a entropia da nova ordem parcial serd, no maximo,
a soma entre entropia da ordem parcial anterior e 2/n. Assim, precisaremos de pelo menos
(n/2)(lgn — H(P)) comparagées para atingir a entropia do grafo completo, isto é, encontrar
a ordem total do oréculo.

Teorema 15.1 Se P ndo é uma cadeia e x,y sido incompardveis em P, entio
2
min{H (P(z <y)), H(P(y <z))} SH(P) + _,

Prova: Tome a := apin(P). Defina
U:={veP:v<,z} e R:i={veP:z<,v};
W:={veP:iv<,y} e Z:={veP:y<,v}.
Para toda cadeia C em P, defina w(C) := ) . 6:. Seja uma cadeia K C U que maximiza
w(K). Escolha L C R, M C W e N C Z similarmente. Pelo lema 11.1 e pelo teorema 7.5,
vale que QSTAB(Gp) = STAB(Gp). Logo, pela defini¢ao (6.1) de QSTAB(Gp),
w(K)+w(L) +az £1,
w(M) +w(N)+aq, <1.
Portanto,

w(K) +w(N) + %ﬁ <1 ou (15.1)
w(M) + w(L) + “‘2& <1 (15.2)

Suponha sem perda de gencralidade que a inequagdo (15.1) é verdadeira. Defina o' € R’;
como
, o a, /2, sev=zouv=y;
et Gy, caso contrdrio.
Tome P' := P(z < y). Vamos mostrar que a’ € QSTAB(Gpr), pelo teorema 7.5, isso implica
que a' € STAB(Gpr). Para toda cadeia C de P', defina w'(C) := 3 .- 6;. Seja @ uma
cadeia maximal de P’. Se {z,y} € Q, entdo ¢ ficil ver que Q é uma cadeia em P. Portanto,

como a’ < a,
W)= e, <) ac<l
veQ veEQ

Logo, a’' € QSTAB(Gp:). Se {z,y} C @, entdo tome

K:i={veQ:v<uz} ¢ N:i={veQ:y< v}
Note que K" C U e N' C Z. Note também que K' e N' sdo cadeias de P. Ademais,
Q= K'UN'U{z,y}. Assim,

W(Q) = w(K) + w(N) + 27 = (k') + (V) + 2T
< w(K) + w(N) + i’_';ﬁ <1
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Portanto, o' € QSTAB(Gp:) = STAB(Gp:). Assim, como a} = az/2 e a;, = ay/2,

1
HP)<-=3 kg,
veP!
-l 1% 1%
T on z lga,,—-nlgz 283
vEP\{z.y}
1 1 1
=—-;Zlga,,+;]g2+;lg2
vEP
1 2 2
——;Zlgav+;=H(P)+;
veEP
O

Corolério 15.1.1 Existe um algoritmo que computa respostas para perguntas ao ordculo e
roda em tempo polinomial no tamanho de P, que forga todo algoritmo que ordena P a usar
Q(lge(P)) comparagées.

Prova: O algoritmo que computa as respostas do ordculo deve conhecer a ordem parcial P.

O oréculo devera consultar esse algoritmo para responder as consultas de um algoritmo can-
didato a ordenar P.

Considere o seguinte algoritmo.
Algoritmo
1 P+P
2 enquanto o oriculo faz uma pergunta “z < y?” faca
3 se T,y sao comparavcis cm P’
4 entao se T <, Y
5 entao devolva “SIM”
6 senio devolva “NAO”
7 sendo se H(P'(z < y)) < H(P'(y < z))
8 entdo P' + P'(z < y) e devolva “SIM”
9 sendo P' « P'(y < z) e devolva “NAO”
Pelo teorema 15.1, se z e y sdo incomparaveis em P, entdo H(P'(z < y)) < H(P')+2/n ou
H(P'(y < z)) £ H(P') +2/n, Assim, a cada comparacio a entropia de Gp+ aumentara no

méximo 2/n. Pelo teorema 13.5, lge(P’) < n(lgn — H(P')). Isso significa, que o algoritmo
que ordena P fard Q(e(P)) comparagoes. u]
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