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ENTROPIA DE GRAFOS 

CRlSTIANE MARlA SATO 
YOSHIHARU KOHAYAKAWA 

RESUMO. Entropia de grafos é um conceito que surgiu naturalmente como solução de um 
problema proposto por J. Kõrner cm 1973, que consistia em determinar o quão boa poderia 
ser a performance de uma codificação de palavras de acordo com certas condições. Desde 
então, foram encontradas di,•ersas relações entre entropia de grafos e conceitos clássicos de 
teoria dos grafos e teoria da informação. 

Neste texto, apresentamos a definição de entropia de grafos, suas duas caracterizações 
mais conhecidas e algumas propriedades básicas. Apresentamos também uma caracterização 
de grafos perfeitos usando entropia de grafos devida a Csiszár, Kõmer, Lovász, Marton 
e Simonyi, e uma aplicação de entropia de grafos ao problema de ordenação a partir de 
informação parcial devida a Kahn e Kim. 

1. INTRODUÇÃO 

1.1. Breve histórico. O conceito de entropia de grafos tem suas raízes na teoria da infor­
mação, aparecendo pela primeira vez como solução de um problema de codificação proposto 
por Kõrner [12] em 1973. Considere uma fonte que emite símbolos de acordo com uma distri­
buição de probabilidade. Concatenando os símbolos, obtemos palavras. Kõrner queria medir 
o quão boa podia ser uma codificação de palavras de tamanho fixo emitidas pela fonte, de 
acordo com uma certa medida de desempenho. 

Uma característica especial é que o conjunto de símbolos é ambíguo, isto é, os símbolos 
podem ou não ser distinguíveis. O mesmo vale para as palavras. Isso permite que várias 
palavras indistinguíveis sejam codificadas da mesma maneira. - O desafio então é usar esse 
fato de uma forma inteligente para diminuir o tamanho da codificação. 

A definição de entropia de grafos é justamente a solução para o problema de Kõrner, 
ou seja, é uma medida de desempenho da melhor codificação possível. No entanto, não é fácil 
trabalhar com essa definição. O próprio Kõrner, para mostrar que ela é válida, provou sua 
equivalência com uma função de minimização relacionada a entropia de variáveis aleatórias. 
Esta é usualmente interpretada como uma medida da quantidade de informação contida na 
variável aleatória. 

Uma importante propriedade de entropia de grafos é a subaditividade, isto é, com relação a 
uma distribuição de probabilidade fixada, a entropia da união de dois grafos nunca ultrapassa 
a soma das entropias desses grafos. A busca por condições em que a soma da entropia de um 
grafo e a de seu complemento é exatamente a entropia do grafo completo mostrou-se um ca­
minho frutífero. Os estudos nessa direção foram iniciados por Kõrner e Longo [14]. Em 1988, 
Kõrner e Marton [15] provaram que uma condição suficiente é que, para qualquer distribuição 
de probabilidade, os grafos em questão sejam um grafo bipartido e seu complemento. 
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Em 1990, Csiszár, Kõrner, Lovász, Marton e Simonyi [2] mostraram uma nova caracteriza­
ção de entropia de grafos. Essa caracterização, além de sua simplicidade, relaciona a entropia 
de um grafo com o politopo dos conjuntos estáveis desse grafo, sobre o qual são conhecidas 
diversas propriedades interessantes. Usando essa caracterização, Csiszár, Kõrner, Lovász, 
Marton e Simonyi mostraram que a soma da entropia de um grafo e a de seu complemento é 
igual à entropia do grafo completo para toda distribuição de probabilidade se e somente se o 
grafo é perfeito. 

Os resultados de Csiszár, Kõrner, Lovász, Marton e Simonyi foram um grande avanço no 
estudo da entropia de grafos. Uma das conseqüências de seus resultados é que é possível 
calcular em tempo polinomial a entropia de um grafo perfeito. Isso foi muito importante 
para algumas aplicações de entropia de grafos. 

Kõrner, Simonyi e Tuza [17] apresentaram também condições necessárias e suficientes para 
que a soma das entropias de grafos cuja união é um grafo completo seja igual à entropia do 
grafo completo para toda distribuição de probabilidade. 

Dentre as aplicações mais conhecidas, destacamos o uso de entropia de grafos para o pro­
blema de ordenação a partir de informação parcial (Kahn e Kim [B]); para a determinação 
de cotas do tipo Fredman-Komlós para funções de espalhamento (hashing) perfeitas e sis­
temas separadores (Kõrner [13] e Kõrner e Marton [16]); e em complexidade computacional 
(Radhakrishnan [20, 21]). 

1.2. Organização do texto. Este texto é dividido em duas partes. 
Na primeira, apresentamos a definição de entropia de grafos, caracterizações, algumas pro­

priedades básicas e urna caracterização de grafos perfeitos usando entropia de grafos. Defini­
mos também entropia para cantos convexos, que são conjuntos com algumas características 
especiais. Apresentamos algumas relações entre o politopo dos conjuntos estáveis e o poli­
topo fracionário dos conjuntos estáveis. Essas relações são essenciais para a caracterização 
de grafos perfeitos. 

Na segunda parte, apresentamos uma aplicação de entropia. de grafos ao problema de 
ordenação a partir de informação parcial. 

Os principais artigos estudados para o desenvolvimento dessa monografia são: 
(1) as resenhas sobre entropia de grafos de Simonyi [22, 23]; 
(2) o artigo de Knuth [11] sobre a função t'J de Lovász; 
(3) o artigo de Csiszár, Kõrner, Lóvasz, Marton e Sirnonyi [2] em que são apresentadas 

a caracterização de entropia de grafos usando o politopo fracionário dos conjuntos 
estáveis e a caracterização de grafos perfeitos usando entropia de grafos; 

(4) o artigo de Kahn e Kirn [8] sobre o problema de ordenação a partir de informação 
parcial. 

Observamos que algumas das demonstrações mais fáceis omitidas nos artigos e incluídas 
neste texto foram elaboradas pela aluna. Boa parte das demonstrações originais foram ligei­
ramente modificadas, com o objetivo de facilitar a leitura. 

Finalmente, a aluna acredita que a vasta gama de assuntos envolvidos neste estudo torna-o 
muito interessante e desafiador, mas igualmente gratificante. Esperamos que este texto possa 
transmitir um pouco do entusiasmo com que elaboramos este trabalho. 
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2. PRELIMINARES E NOTAÇÃO 

Nesta seção introduzimos a terminologia e a notação adotadas neste texto. Assumimos do 
leitor alguma familiaridade com teoria de grafos e combinatória poliédrica. 

2.1. Conjuntos e funções. Em todo texto, usamos V e U para referirmos a conjuntos 
finitos. Denotamos por (~) o conjunto { { u, 11} : u E V, v E V, u # v} dos pares não-ordenados 
de elementos de V. 

Para cada inteiro positivo n, definimos [n) := {l, ... , n} . 
O conjunto dos números reais é denotado por Ill Os símbolos !Rv (respectivamente, ~) 

denota o conjunto de todos os vetores indexados por V e com coordenadas reais ( respectiva­
mente, reais não-negativas). 

Seja U Ç V. Definimos o vetor característico de U como o vetor xu E IRt tal que 

u {l, se v EU; 
Xv = O t ár" , caso con r 10. 

Abreviamos log2 x como lg x . Denotamos o logaritmo natural de x por ln x . 
Uma função / : R ➔ R, onde R Ç IR é dita convexa se 

/(>.x + (1 - >.)y) :S >.J(x) + (1 - >.)/(y) (2.1) 

para quaisquer x, y E R e qualquer O :S >. :S 1. Dizemos que / é côncava se - / é convexa. 
Uma função/ é dita estritamente convexa se a relação (2.1) é estrita para quaisquer x , y E R 
e qualquer O < >. < 1. Dizemos que / é estritamente côncava se - / é estritamente convexa. 

A seguinte desigualdade é bastante conhecida e será. muito usada ao longo do texto: 

Lema 2.1 (Desigualdade de Jensen) Seja/: R ➔ IR uma função convexa e sejam 
x,, • . • ,xk E R. Então 

/ (t À;x;) :S t >.;f(x;), (2.2) 

sempre que r;t1 À; = 1 e O :S À; :S 1 para todo i. 

Sejam x, y E Rv . Usamos a notação x = y para indicar que xv = Yv para todo 11 E V . 
Usaremos a mesma notação para x < y e x > y e também para x :S v e x ~ y . 

Denotamos o vetor nulo por O e o vetor com todas as coordenadas iguais a 1 por 1 . 
Sejam a, b E ~. Definimos lg a E !Rv como 

(lg a)v = lg a,,. 

Definimos a/b E ~ como 
(a/b)v = av/ bv. 

Sejam x1, . • . , xk E IR". Sejam >.1, . • . , Àk reais não-negativos tais que L~=l À; = 1. Dizemos 
que 

i=l 

é uma combinação convexa de x1, .• • , xk. 
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Um conjunto A Ç IRn é convexo se 

h + (1 - >.)y E A 

para quaisquer x, y E A e qualquer O $ >. $ l. Isto é, A é fechado por combinações convexas. 
O fecho convexo de um conjunto A Ç IRn é o conjunto formado por todas as combinações 

convexas dos vetores de A. Denotamos o fecho convexo de A por conv(A). 
O seguinte resultado é bem conhecido: 

Lema 2.2 (Média geométrica e média aritmética) Sejam x1, • •• , Xk E lll Então 

( 

k ) 1/k l k TI X; $ k ~Xj, (2.3) 

2.2. Teoria dos grafos. Um grofo é um par G = (V, E), onde V é um conjunto finito e 
E Ç (~)- Dizemos que G é um grofo sobre V, e que V é o conjunto de vértices e E é o 
conjunto de arestas de G. Chamamos os elementos de V de vértices e os de E, de aresta.,. 

Dado um grafo G, denotamos por V(G) o conjunto de vértices de G e por E(G) o conjunto 
de arestas de G. 

Uma aresta {u,v} será abreviada como uv. 
Seja uv uma aresta. Dizemos que uv liga os vértices u e v, e que u e v, são pontas de uv. 

Dizemos também que u e v são adjacentes ou ligados. 
O complemento de um grafo G é o grafo G := (V,{~)\ E(G)). 
Um grafo G é dito completo se E(G) = {~) e vazio se E(G) = 0. Denotamos por Kv 

(respectivamente, Kv) o grafo completo (respectivamente, vazio) sobre V. Denotamos por 
Kn (respectiv-J.mente, Kn) qualquer grafo completo {respectivamente, vazio) com n vértices. 

Sejam G e F grafos. Dizemos que Fé um subgrofo de G se V(F) Ç V(G) e E(F) Ç E(G). 
Se V(F) = V(G), então Fé um subgrafo gerador de G. Se V(F) u E(F) Ç V(G) U E(G), 
dizemos que F é um subgrafo próprio de G. Se E(F) consiste de todas as arestas de G que 
têm as duas pontas em V(F), então Fé um subgrafo induzido de G ou, mais precisamente, 
Fé o subgrafo de G induzido por V(F) . O subgrafo de G induzido por U Ç V(G) é denotado 
por G[U]. 

Seja G um grafo e U Ç V(G). Dizemos que Ué uma clique de G se G[U] é completo. Se 
G[U] é vazio, dizemos que Ué um conjunto estável de G. Denotamos por w(G) o tamanho 
da maior clique de G. 

Denotamos por S(G) a família de conjuntos estáveis de G e por Smax{G) a família de 
conjuntos estáveis maximais de G. 

Os componentes de um grafo G são os subgrafos induzidos pelas classes de equivalência 
de V(G) da relação de equivalência~ dada por: para cada u, v E V(G), temos u ~ v se e 
somente se uv E E(G). 

Uma função c: V(G) ➔ C é uma coloração dos vértices de G se c(v) ,j, c(u) sempre que v é 
adjacente a u. Os elementos de C são chamados de cores e ICI é o número de cores. Dizemos 
que v recebeu a cor c(v) ou ainda que c(v) é a cor atribuída a v . Note que um conjunto 
de vértices que receberam a mesma cor é um conjunto estável de G. Uma k-coloração dos 
vértices de G é uma coloração dos vértices de G com k cores. Uma coloração de vértices é 
dita mínima se o número de cores é o menor possível. 

O número cromático x(G) de um grafo G é o número de cores em uma coloração mínima. 
É evidente que 

w(G) $ x(G). 
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Seja G um grafo e U Ç V ( G). Denotamos por G - U o grafo G{V \ U]. Abreviamos G - { u} 
como G - u. Seja E' Ç E(G). Denotamos por G - E' o grafo (V(G), E(G) \ E'). 

Sejam G e F grafos. A união de G e F é definida como 

G U F := (V(G) U V(F), E(G) U E(F)). 

2.3. Probabilidade. Um espaço de probabilidade finito consiste de um conjunto finito n e 
de uma função JP': 11 ➔ [O, l] tal que Lx~n IP[x] = 1. Um evento é um subconjunto de 11. A 
probabilidade de um evento A é definida como 

IP[A] := ~ IP[x]. 
:tEA 

Seja A, B eventos de O. Definimos a probabilidade conjunta entre A e B como 

IP[A, B] := IP[A n B]. 

Se l?[B] > O, definimos a probabilidade condicional de A dado B como 

IP[A I B] ·= IP[A n B] 
. l?[B] . 

Um vetor pé urna distribuição de probabilidade sobre V, se p E~ e Lvev Pv = l. Dizemos 
que uma distribuição de probabilidade p sobre V é uniforme se Pv = 1/IVI para todo v E V• 

Uma variável aleatória é uma função X: O ➔ V. Usamos a expressão X = v para denotar 
o evento {x E O: X(x) = v}. A distribuição de probabilidade de uma variável aleatória X é 
um vetor em ~, denotado por dist(X), tal que 

dist(X)0 := P[X = v] 

para todo v E V. 

3. DEFINIÇÃO E CARACTERIZAÇÕES 

Nesta seção apresentamos a definição de entropia de grafos dada por Kõrner em 1973. 
Mostramos também duas caracterizações com as quais é mais fácil trabalhar. 

3.1. Codificação e entropia de grafos. A entropia de grafos surgiu naturalmente de um 
problema proposto por Kõrner [12] em 1973. Primeiro, damos uma descrição informal do 
problema, com o intuito de proporcionar uma visão geral. Em seguida, definimos entropia de 
grafos formalmente. 

Suponha que tenhamos uma fonte que emite símbolos um após o outro, de acordo com 
uma certa distribuição de probabilidade. Uma característica especial de nossa fonte é que 
nem todos os símbolos emitidos são distinguíveis dois-a-dois. 

Concatenando símbolos emitidos pela fonte, formamos palavras. Dizemos que duas palavras 
de mesmo comprimento são distinguíveis se possuem símbolos distinguíveis em pelo menos 
uma de suas posições. 

Estamos interessados em codificar todas as palavras de um certo comprimento fixo. Isto é, 
queremos associar um codeword a cada palavra de modo que palavras distinguíveis sejam 
mapeadas a codewords diferentes. É permitido não codificar uma fração insignificante das 
palavras, isto é, uma fração de palavras com baixíssima probabilidade de emissão. 



ENTROPIA DE GRAFOS 7 

Uma codificação ingênua poderia simplesmente associar um codeword diferente a cada pa­
lavra. Mas uma codificação mais esperta se aproveitaria do fato de que é permitido codificar 
palavras indistinguíveis a um mesmo codeword para. diminuir o número de codewords neces­
sários. Nosso problema central é, de alguma fonna, medir o desempenho de uma codificação 
e calcular qual seria o melhor desempenho possível. 

Agora descreveremos o problema mais formalmente. Seja V um conjunto finito e p uma 
distribuição de probabilidade sobre V. Chamamos os elementos de V de símbolos. Suponha 
que a fonte emite símbolos de V. Em um dado instante, a probabilidade de um símbolo 
v E V ser emitido é Pv• Como já foi dito, nem todos os símbolos emitidos pela fonte são 
distinguíveis dois-a-dois. Podemos considerar distinguibilidade como uma relação binária, 
simétrica e arbitrária (mas conhecida e fixa) que nos diz, para cada par de símbolos, se estes 
são distinguíveis ou não. A relação de distinguibilidade entre os símbolos pode ser descrita 
através de um grafo sobre V, no qual dois vértices são adjacentes se são distinguíveis. Tal 
grafo é chamado de grafo dos símbolos de V. 

Fixe t um inteiro não-negativo. Seja U um conjunto finito. Denotamos por U1 o conjunto 
de todas as t-uplas (ui, ... , u1) , onde u; E U para todo i. Uma palavra de comprimento t 
(emitida pela fonte) é uma t-upla (v1 , • •• , v1) E V1 de símbolos emitidos consecutivamente 
pela fonte. Duas palavras x = (x1, . .. , x1) e y = (Y1, ... , Yt) são distinguíveis se x; e y; são 
distinguíveis para algum i. 

Considere um grafo cujo conjunto de vértices é o conjunto de todas as palavras de compri­
mento t, onde vértices são adjacentes se são distinguíveis. Tal grafo é chamado de grafo das 
palavras de V 1

• A seguinte construção mostra como obter o grafo das palavras de V 1 a partir 
do grafo dos símbolos de V. 

Seja G um grafo. A t-ésima potência co-nonnal G1 de G é o grafo com sobre V(G)1 com 
conjunto de arestas 

E(G1
) := {{x,y}: {x;,y;} E E(G) para algum 1 :5 i :5 t}. 

Note que o grafo das palavras de V1 é a t-ésima potência co-normal do grafo dos símbolos 
de V. 

Defina a probabilidade de uma palavra u = {u1, .. . , u1) como p(u) := IT:=1p(u;). A pro­
babilidade de um subconjunto U Ç V1 é definida como p(U) := LuEU p(u). 

Seja U Ç V(G1) . Uma codificação das palavras de U é uma função que associa a cada 
vértice de U um codeword de modo que vértices adjacentes são associados a codewords 
diferentes. Fixe O < e < l. Lembrando que é permitido que uma fração de palavras de 
baixíssima probabilidade deixe de ser codificada, definimos uma codificação das palavras de 
comprimento t como uma codificação das palavras de um conjunto U Ç V(G1) tal que p(U) > 
l-e. 

O desempenho de uma codificação é medida pela razão 

lgM 
-t-· 

onde M é o número de codewords diferentes que a codificação utiliza. Essa razão indica 
o número de bits necessários pela codificação para descrever cada símbolo de uma palavra. 
Assim, quanto menor a razão, melhor é o desempenho da codificação. Estamos interessados 
em medir o quão boa pode ser uma codificação para palavras muito longas. A entropia de 
grafos será a resposta para essa questão. 

Observe que um conjunto estável em GI é um conjunto de palavras duas-a-duas não­
distinguíveis e que, portanto, podem ser mapeadas para um mesmo codeword. Assim, o 
número de codewords necessários para uma codificar as palavras de U Ç V1 é o número de 
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conjuntos estáveis de Gt necessários para cobrir U. Isto é, o número de codewords necessá­
rios para codificar U é o número cromático x(Gt[UJ). Portanto, o desempenho da melhor 
codificação de U é 

lgx(G1[U)) 
t 

Finalmente, podemos apresentar a definição de entropia de grafos dada originalmente por 
Kõrner [12]. Seja G um grafo e puma distribuição de probabilidade sobre V(G). A entropia 
de G com relação a p é definida como 

H(G,p) := lim min {t lgx(G1[U)): U Ç V(G1),p(U) > 1- t:}. 
t➔oo 

Para mostrar que essa é uma fórmula válida, é necessário provar que o limite existe e é 
independente de E E (O, 1). Korner fez isso mostrando que a expressão acima é equivalente a 
uma fórmula computável que será apresentada na subseção seguinte. 

Uma idéia intuitiva para a entropia de grafos é a seguinte: suponha que G é o grafo de 
símbolos de um conjunto finito V e que p é uma distribuição de probabilidade sobre V. 
Então, o número médio de bits necessários em uma codificação ótima para as palavras em V 1 

é tH(G,p). 

3.2. Uma caracterização alternativa. Nesta subseção apresentamos uma caracterização 
de entropia de grafos dada por Korner (12]. Para isso, revisamos alguns conceitos básicos de 
entropia de variáveis aleatórias. 

Vamos definir um conceito bastante usado em teoria da informação: a entropia de uma 
variável aleatória, que é um valor diretamente relacionado à quantidade de informação contida 
na variável aleatória cm questão. 

Seja puma distribuição de probabilidade sobre um conjunto V. A entropia de pé definida 
como 

1 
H(p) := LPvlg-. 

vEV Pv 

Consideramos O lg à = O lg O = O e x lg à = oo para todo x > O. 
Definimos a entropia de uma variável aleatória X como H(X) := H(dist(X)) . Podemos 

dizer que a entropia de X é uma medida da incerteza de X . Em outras palavras, a entropia 
de X pode ser interpretada como a quantidade de informação contida em X. 

Sejam X e Y variáveis aleatórias que tomam seus valores em conjuntos V e U, respectiva­
mente. A entropia conjunta entre X e Y é definida como 

H(X,Y) := L LP:rylg...!..., 
:reVyeU Pxy 

onde P:ry := IP(X = x, Y = y]. 
A entropia condicional de X dado Y é definida como 

H(X I Y) := L L IP[Y = y]H(Xy), 
xEVyEU 

onde Xy := (X I Y = y). A entropia condicional de X dado Y pode ser interpretada como 
a quantidade de informação contida em X mas não em Y . A seguir provamos uma relação 
natural entre a entropia conjunta e a entropia condicional. 

Lema 3.1 Sejam X e Y variáveis aleatória.9. Então 

H(X, Y) = H(X) + H(Y IX). 
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Prova: Suponha que X e Y tomam seus valores nos conjuntos V e U, respectivamente. 
Abrevie p(x) := ll'[X = x] para cada x E V, e p(x, 11) := ll'(X = x, Y = y] e p(y I x) := IP(Y = 
y I X= x] para cada (x , y) E V x U. Temos que 

H(X, Y) = - L LP(x,y)Jgp(x,y) 

= - L LP{x,y)Jg (p(x)p(y I x)) 

= - L LP(x,y)lgp(x)- L LP(x,y)lgp(y I x) 
%€V 11EU %EV yEU 

= - LP(x)lgp(x)- LP(x) LP(I/ 1 x)lgp{y I x) 
%EV %EV veu 

= H{X) +H{Y IX). 

o 
Sejam p e q distribuições de probabilidade sobre um conjunto V . A entropia de p relativa 

a q é definida como 
D{p,q) := LPvlgPv _ 

vEV Qv 

A entropia relativa é uma medida da distância entre duas distribuições de probabilidade. 
Pode-se provar que a entropia relativa entre duas distribuições de probabilidade nunca é 
negativa. 

Lema 3.2 Sejam p e q distribuições de probabilidade sobre um conjunto V . Então 

D{p,q) ~ O, 

coni igualdade se e somente se p = q. 

Prova: Tome A:= {v E V: Pv > O}. Então 

-D{p,q) = - LPolgPo = LPolgqº 
oEA Qo oEA Po 

~JgLPoQo ~)gl=O, 
oEA Po 

(3.1) 

onde a primeira desigualdade segue da desigualdade (2.2) de Jensen. Como lgx é uma função 
estritamente côncava, então (3.1) vale com igualdade se e somente se p = q. □ 

Sejam X e Y variáveis aleatórias que tomam seus valores em conjuntos V e U, respectiva­
mente. A informação mútua entre X e Y é definida como 

'°''°' IP(X=x,Y=yJ 
J{X n Y) := L, L, ll'(X = x, Y = y] lg P(X = x]ll'(Y = 1. •V~U y 

A informação mútua entre X e Y pode ser interpretada como a quantidade de informação 
de X contida. em Y. É a. redução da incerteza de uma. variável aleatória dado que conhecemos 
a outra.. Essa interpretação é reforçada pelo lema. a seguir. 
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Lema 3.3 Sejam X e Y variáveis aleatórias. Então 

I(X n Y) = H(X) - H(X I Y) 

= H(X) + H(Y) - H(X, Y). 

Prova: Pelo lema 3.1, basta provarmos a primeira igualdade. Suponha que X e Y tomam 
seus valores cm V e U, respectivamente. Usamos as abreviações: p(x) := P[X = x) para cada 
x E V e p(y) := l?[Y = y) para cada y E U. Abreviamos também p(x, y) := IP[X = x, Y = y) 
e p(x I y) := ll'[X = x I Y = y) para cada (x, y) E V x U. Vale que 

l(X nY) = L LP(x,y)lg P(~x),y()) 
zeVveu p p y 

= L LP(x,y)lgp(~~t 
zeVveU p 

= - L LP(x,y) lgp(x) + L LP(x,y)lgp(x I y) 
zev veU zev veu 

= - L p(x) lgp(x) + L p(y) L p(x I y) lgp(x I y) 
:i:ev veu zev 

= H(X) - H(X I Y). 

o 
Finalmente podemos enunciar uma caracterização de entropia de grafos apresentada por 

Kõrner [12). Omitimos a demonstração. 

Teorema 3.4 Seja G um grafo ep uma distribuição de probabilidade sobre V(G). Seja A(G) 
o conjunto de todos os pares ordenados de variáveis aleatórias (X, Y) que satisfazem as 
seguintes condições: 

Então 

(i) X é uma variável aleatória tomando seus valores em V(G) e dist(X) = Pi 
(ii) Y é uma variável aleatória tomando seus valores em S(G); 
(iii) dado X= x, vale que Y toma seus valores em {SE S(G): x E S}. 

H(G, P) = min I(X n Y). 
{X,Y)EA{G) 

(3.2) 

3.3. O politopo dos conjuntos estáveis. Nesta subseção apresentamos uma caracteriza­
ção de entropia de grafos provada por Csiszár, Kõrner, Lovász, Marton e Simonyi [2) em 1990. 

O po/itopo dos conjunloa ealávei., de um grafo G é definido como 

STAB(G) := conv ( {x5 : SE S(G)}). 

Teorema 3.5 Seja G um grafo e p uma distribuição de probabilidade sobre V(G) . Então 

H(G,p) = min { - EveV(G)P• lga. : a E STAB(G) }· (3.3) 

Prova: Tome V := V(G). Primeiro vamos provar que 

H(G,p) ~ min { - Evev Pv lga. : a E STAB(G) }. 
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Sejam X e Y variáveis aleatórias tomando valores em V(G) e S(G), respectivamente, que 
atingem o mínimo na caracterização (3.2) de H(G,p). Abreviamos r(S) := IP[Y = S] para 
cada SE S(G) e r(S I x) := ll'[Y =SI X= x) para cada (S,x) E S(G) x V. Note que 

r(S) = L Pur(S I v), 
uEV 

para todo SE S(G). Assim, 

H(G,p) = I(X n Y) = H{Y) - H(Y IX) 

=- L r(S)lgr(S)+LP• L r{Slv)lgr(Slv) 
SeS(G) vEV SES(G) 

= - LP• L r(S I v)lgr(S) + LP• L r(S I v)lgr(S I v) 
vev ses(G) veV ses(G) 

= - LP• L {r(S I v)lgr[1~~) : S 3 v, SE S(G)} 
vev 

;?: - LPulgL {r(S) : S 3 v, SE S(G) }, 
uEV 

onde a última passagem segue da desigualdade {2.2) de Jensen. Tome b E ~ definido como 

b. := L {r(S): S 3 v, SE S(G) }, 

para cada v E V. É fácil ver que b E STAB{G). Portanto, 

H(G,p);?: - LP• 1gb.;?: mio {- EueV(GJPulga. : a E STAB{G) } · 
uEV 

Resta provarmos que 

H(G,p) $ min {- EueV(G)P• lga. : a E STAD(G) } · 

Seja d uma distribuição de probabilidade sobre S(G). Tome a E~ definido como 

a,, := L {ds : S 3 v, SE S(G)}. 

Para cada (v, S) E V x S(G), defina 

q(S I v) := {ds/av, v E S _ . 
O, caso contrario. 

Para cada SE S(G), tome q(S) := Euev p.q(S I v). Assim, 

'°"' '°"' q(S I v) H(G,p) $ L.J L.J p.q(S I v) lg -(S). 
uEV SES(G) q 

Pelo lema 3.2, 

L q(S) lg qf) ;?: o. 
SES(G) S 
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Portanto 

Concluímos que 

como queríamos. 

SATO E KOHAYAKAWA 

- L q(S) lg q(S) $ - L q(S) lg d5 . 

SES(G) SES(G) 

H(G,p)$Í: L p,q(Slv)lgq(~lv)=-Í:Pvlga. , 
vEV SES(G) S vEV 

4. PROPRIEDADES BÁSICAS 

Nesta seção, apresentamos algumas propriedades básicas de entropia de grafos. 
Uma propriedade simples e pouco surpreendente é a monotonicidade: 

D 

Lema 4 .1 Sejam G e F grafos tais que V = V(G) = V(F) e E(F) Ç E(G) . Para qualquer 
distribuição de probabilidade p sobre V, vale que 

H(F,p) $ H(G,p). 

Prova: Segue imediatamente do seguinte fato óbvio: STAB(G) Ç STAB(F). 

(4.1) 

o 
Levando cm consideração a definição de entropia de grafos a equação (4.1) da monotoni­

cidade faz perfeito sentido. Basta lembrar que arestas no grafo das palavras ligam palavras 
distinguíveis, e portanto grafos com menos arestas têm menos palavras distinguíveis. Assim, 
são necessários menos bits na codificação. 

A propriedade seguinte também é fácil de ser provada: vérlices com probabilidade nula 
não influenciam na entropia do grafo. 

Denotamos por Plv a restrição de p a U para qualquer distribuição de probabilidade p 
sobre um conjunto V e qualquer U Ç V. 

Lema 4.2 Seja G um grafo e p uma distribuição de probabilidade sobre V(G) . Seja U um 
subco.qjunto de V(G) tal que p(U) = 1. Então 

H(G,p) = H(G[U],Plv)-

Prova: É óbvio que H(G,p) $ H(G[U),Plu ), pois todo conjunto estável de G[U) é um 
conjunto estável de G. Para provarmos o outro lado, basta mostrarmos que, se Pu = O para 
algum u E V(G) , então H(G,p) = H(G - u,p'), onde p' é a restrição de p a V (G) \ {u}. 
Seja a E STAB(G) um vetor que atinge o mínimo na caracterização (3.3) de H(G,p). Então 
a = Lses(G) >-sx5 , onde Lses(G) Às= 1. Para cada S' E S(G - u), defina 

>-s, := Í:{>.s : SE S(G), S' = S\ {u}}. 

Tome a' := Ls•eS(G-u) Às•x5
' E S(G - u). Note queª•= a~ para todo u /a u. Logo, 

1 1 
H(G,p) = L p(v) lg - = L p1(v) lg, ;;::: H(G - u,p'). 

veV(G) ª• veV(G)\{u} ª• 
D 
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4.1. Subaditividade. Sejam a, b E JR.\:'.. Definimos o vetor a o b como 

(a o b)v := avbv, 

para cada v E V . 

13 

O seguinte lema segue facilmente de propriedades básicas da função lg x e de conjuntos 
estáveis: 

Lema 4.3 Sejam G e F grafos sobre um mesmo conjunto de vértices V e seja p uma distri­
buição de probabilidade sobre V. Então 

H(G u F,p) :S H(G,p) + H(F,p). (4.2) 

Prova: Sejam a E STAB(G) e b E STAB(F) vetores que atingem o mínimo na caracteriza­
ção (3.3) para H(G,p) e H(F,p), respectivamente. 

O vetor a é combinação convexa de elementos de {x5 : SE S(G)}. Seja a= LieI >.;x-4• 
uma tal combinação. Da mesma forma, o vetor b é combinação convexa de elementos de 
{x5 : SE S(F)}. Seja b = LjeJ 'YiXB; uma tal combinação. 

Note que 
a o b = L L À.-,Yj • (xA' o XB;) 

iEI jEJ 

e que x"• o xB; = xA,nB;. Além disso, vale que LieI LjeJ >.ni = 1. Isto é, podemos 
escrever a o b como combinação convexa de intersecções de conjuntos estáveis de G e F. 
Como a intersecção de um conjunto estável de G com um conjunto estável de Fé um conjunto 
estável em G U F, então a o b E S'l'AB(G U F) . 

Assim, 

H(G u F,p) :s L 
vEV(G) 

1 1 1 
Pvlg-b = L Pvlg-+ L Pvlg~ 

0v v vEV(G) av vEV(G) 

= H(G,p) + H(F,p) 

Uma conseqüência imediata do lema anterior é que 

H(G,p) + H(G,p) ~ H(Kn,P)-

Na seção 7, vamos mostrar quais grafos satisfazem (4.3) com igualdade. 

4.2. A entropia do grafo completo e a do grafo vazio. 

Lema 4.4 Para todo inteiro positivo n, 

H(Kn,P) = H(p), 

onde p é uma distribuição de probabilidade sobre os vértices de Kn. 

o 

(4.3) 

Prova: Como toda distribuição de probabilidade sobre V(Kn) está em STAB(Kn), então 
p E STAB(Kn), Seja q E STAB(Kn)- Usando a desigualdade (2.2) de Jensen, temos que 

~ 1 ~ 1 ~ qv ~ qv ~ 
L.,Pv lg- - L.,Pv lg- = L.,Pv lg- :S lg L., Pv- = lg L., qv :S O, 
vEV Pv vEV qv vev Pv veV Pv veV 

ou seja, p atinge o mínimo na caracterização (3.3) de entropia de grafos. o 
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Calcular a entropia do grafo vazio também é muito fácil: 

Lema 4.5 Para todo inteiro positivo n, 

H(Kn,P) = O, 

onde pé uma distribuição de probabilidade sobre os vértices de Kn­

Prova: É óbvio que 
-) { V(K.) } STAB(Kn = x E IR+ : O ~ x ~ 1 . 

É evidente que 
1 L p.lgl = o, 

vEV(Kn) 

ou seja, 1 atinge o mínimo na caracterização (3.3) de entropia de grafos. 

5. CANTOS CONVEXOS 

o 

5.1. Entropia de cantos convexos. Um conjunto A Ç ~ é um canto convexo se é fechado, 
limitado, convexo, tem interior não-vazio e satisfaz a propriedade de que a' E A para todo 
a' E ~ tal que O ~ a' ~ a para algum a E A. 

Seja A Ç ~ um canto convexo e p uma distribuição de probabilidade sobre V. A entropia 
de A com relação a p é definida como 

IIA(p) := nún L Pv lg ..!... (5.1) 
aEA vEV av 

É evidente que STAB(G) é um canto convexo para todo grafo G. Além disso, é óbvio que 
J/(G,p) = HsTAB(G)(p). 

Defina A(A) := {-lga: a E A}. Note que 

HA(p) = min LPvXv = min px. (5.2) 
zEA(A) vEV :tEA(A) 

Lema 5.1 Seja A Ç ~ um canto convexo. Então A(A) é convexo ex' E A(A) para todo 
z' E !Rv tal que x' ~ x para algum x E A(A). 

Prova: A convexidade de A(A) segue diretamente da convexidade da função - lgy. 
Seja x E A(A) e seja x' E ~ tal que x' ~ x. Como x E A(A), então x = - lg a para algum 

a E A. Seja a' E~ tal que - lga' = x'. Como x' ~ x, então a'~ a. Logo, a' E A. □ 

A seguir, provamos um lema simples, mas muito poderoso, sobre entropia de cantos con­
vexos. 

Lema 5.2 Seja V um conjunto finito e sejam A, B Ç ~ cantos convexos. Então 

HA(p) ~ Ho(p) 

para toda distribuição de probabilidade p sobre V se e somente se A Ç B . 
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Prova: É óbvio que HA(p) 2'. HB(p) sempre que A Ç B. 
Suponha que H,1(p) 2: HB(p). Seja b E A(B) um vetor que atinge o mínimo na equa­

ção (5.2) de HB(p). Seja a E A(A). Então, pb ~ pa. 
Sejam pu, u E V, distribuições de probabilidade sobre V definidas como 

u {1, seu=v; 
Pv = O, caso contrário. 

Aplicando a desigualdade pb ~ pa para cada p = pu, segue que av ~ bu para todo v, isto 
é, a ~ b. Portanto, a E A(B) pelo lema 5.1. Concluímos assim que A(A) Ç A(B), de onde 
segue que A Ç B. □ 

Corolário 5.2.1 Seja A Ç ~ um canto convexo. Então O ~ HA(p) $ H(p) para toda 
distribuição de probabilidade p E ~ se e somente se A está contido no n-cubo e contém o 
n-simplcx. 

Prova: Segue imediatamente do lema 5.2 e dos lemas 4.4 e 4.5. o 

5.2. Pares geradores e antibloqueadores. Sejam A, B Ç ~ cantos convexos. Estamos 
interessados em saber quando podemos escrever qualquer distribuição de probabilidade p 
sobre V como p = a o b, onde a E A e b E B. 

Dizemos que um par de conjuntos A, B Ç ~ é um par gerador se toda distribuição de 
probabilidade p pode ser escrita como 

p =ao b, para algum a E A e algum b E B. 

Queremos saber quando dois cantos convexos A e B formam um par gerador. Para isso 
vamos precisar dos lemas a seguir. 

Lema 5.3 Sejam A, B Ç ~ cantos convexos e p E ~ uma distribuição de probabilidade. 
Se p = a o b para algum a E A e algum b E B, então 

H(p) ~ HA(p) + HB(p), 

com igualdade se e somente se a atinge o mínimo na definição (5.1) de HA(p) e b atinge o 
mínimo na definição (5.1) de HB(p) . 

Prova: Como p = a o b, então 

H(p) = - LPu lgavbv = - LPulgav - LPv lgbv 2: HA(p) + HB(p). (5.3) 
veV veV vEV 

É óbvio que (5.3) vale com igualdade se e somente se a atinge o mínimo na definição (5.1) 
de HA(p) e b atinge o mínimo na definição (5.1) de HB(p) . O 

Seja A Ç IR'+'. . Definimos o antibloqueador de A como o conjunto 

ab(A) := {x E IR.';: xa $ l para todo a E A}. 

Lema 5.4 Seja V um conjunto finito. Sejam A, B Ç ~ cantos convexos e p E ~ uma 
distribuição de probabilidade. Se ab(A) Ç B, então 

H(p) $ HA(p) + HB(p), 

com igualdade se e somente se p =ao b para algum a E A e algum b E B. 
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Prova: Sejam a E A e 1, E B vetores que atingem o mínimo na definição (5.1) de HA(p) e de 
Hs(p), respectivamente. Usando a desigualdade 2.2 de Jenscn e o fato de que ba $ 1, temos 

Usando o lema 5.3, é fácil ver que (5.4) vale com igualdade se e somente se p = a o b para 
algum a E A e algum b E B. □ 

O teorema que provamos a seguir é um dos principais resultados sobre pares geradores do 
artigo de Csiszár, Kiirner, Lovász, Marton e Simonyi [2]. 

Teorema 5.5 Sejam A , B Ç ~ cantos convexos. As três condições a seguir são equivalentes: 

(i) ab(A) Ç B; 
(ii) (A, B) é um par gerador; 
(iii) H(p) :2: HA(p) + Hs(p) para toda distribuição de probabilidadep sobre V. 

Prova: Primeiro vamos mostrar que (i) =} (ii). Seja p uma distribuição de probabilidade 
sobre V e a E A um vetor que atinge o mínimo na definição (5.1) de HA(p). Se Pv > O, então 
é claro que a,, > O. Então podemos definir um vetor b E ~ como 

bv = {Pv/Ov, 
o, 

Basta mostrarmos agora que b E B. Tome 

se Pv > O 
caso contrário. 

J(x) := - LPv lgx. e l := {x E~: J(x) < J(a)} . 
vEV 

Note que A e / são convexos e disjuntos. Portanto, existe um hiperplano que os separa. 
Como A e J se tocam em a e J é suave nesse ponto, então o hiperplano que os separa deve 
ser tangente a J e passa por a. O gradiente de - J em a é (1/ ln 2)(p/a) = (1/ ln 2)b. Assim, 
o hiperplano separador é (b/ ln 2)x = 1/ ln 2, isto é, bx = l. Logo, bx :<:,; 1 para todo x E A, 
ou seja, b E ab(A) Ç B. Provamos assim que (i) =} (ii). 

Segue diretamente do lema 5.3 que (ii) =} (iii). 
Agora vamos provar que (iii) =} (i). Usando o fato já provado de que (i) =} (iii) em conjunto 

com o lema 5.4, sabemos que 

H(p) = HA(p) + Hab(A)(p), 

para toda distribuição p E~. Assim, supondo que vale (iii), então Hab(A)(p) :2: Hy(p). Pelo 
lema 5.2, temos que ab(A) Ç B. D 

Sejam A, B Ç ~. Dizemos que o par (A, B) é um par antibloqueador se B = ab(A). 
É fácil provar que, se A é um canto convexo, então ab(ab(A)) = A. Portanto, se (A, B) é 

um par antibloqueador, então (B, A) também o é. 
O teorema 5.5 e os lemas 5.3 e 5.4 implicam na seguinte caracterização de pares ant iblo­

queadores: 
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Corolário 5.5.1 Sejam A, B Ç ~ cantos convexos. Então (A, B) é um par antibloqueador 
se e somente se 

H(p) = HA(p) + Hs(p), 
para toda distribuição de probabilidade p E ~. 

A prova do seguinte corolário é imediata das demonstrações anteriores: 

Corolário 5.5.2 Seja A Ç ~ um canto convexo e p E ~ uma distribuição de probabilidade. 
Então, vale que 

6. Ü POLITOPO FRACIONÁRIO DOS CONJUNTOS ESTÁVEIS 

Seja G um grafo sobre V. Definimos o po/itopo fracionário dos conjuntos estáveis de G 
como 

QSTAB(G) := { b E~: L bu ~ 1 para toda clique K de G }- (6.1) 
uEK 

É óbvio que QSTAB(G) é um canto convexo. 
Note que todo vetor inteiro de QSTAB(G) é vetor característico de um conjunto estável, 

e portanto está em STAB(G). O lema a. seguir relaciona. de um modo interessante STAB(G) 
com QSTAB(G). 

Teorema 6.1 Seja G um grafo. Então 

STAB(G) = ab(QSTAB(G)) e 

QSTAB(G) = ab(STAB(G)). 

Prova: Primeiro vamos mostrar que 

ab(X) = ab{conv(X)) (6.2) 

para todo X Ç ~- É óbvio que ab(conv(X)) Ç ab(X). Vamos mostrar que ab(X) Ç 
ab(conv(X)). 

Seja y E ab(X) e seja x E conv(X). O vetor x é combinação convexa. de elementos de 
X . Seja x = Lief Àixi uma tal combinação. É claro que Àixiy ~ Ài para todo i. Portanto, 
xy = L;er >.;xiy $ Lie/ Ài = 1. Isso implica que y E ab(conv(X)). Assim, temos que 
ab(X) Ç ab(conv(X)). 

Agora usa.mos (6.2) para concluir que 

QSTAB(G) = { b E ~(G) : L bv ~ 1 para toda clique K de G} 
uEK · 

= ab({xK : K é uma clique de G}) 

= ab({x5 : Sé um conjunto estável de G}) 

= ab(STAB(G)). 

Como STAB(G) é um canto convexo, então ab(ab(STAB(G))) = STAB(G). Logo, 

STAB(G) = ab(QSTAD(G)). 

o 
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Corolário 6.1.l Seja G um grafo. Vale que 

STAB(G) = QSTAB(G) sse STAB(G) = QST.4B(G). 

Prova: Segue diretamente do lema 6.1. O 

7. GRAFOS PERFEITOS 

7.1. Grafos perfeitos e cantos convexos. Nesta subseção apresentamos uma caracteriza­
ção de grafos perfeitos usando cantos convexos, ou, mais especificamente, usando o politopo 
dos conjuntos está.veis e o politopo fracioná.rio dos conjuntos estáveis de um grafo. 

Nosso objetivo nessa subseção é mostrar que um grafo G é perfeito precisamente quando 
QSTAB(G) = STAB(G). 

Seja G um grafo. Dizemos que G é um perfeito se, para todo subgrafo induzido G' de G, 
vale que 

w(G') = x(G'). 
Existem várias definições equivalentes para grafos perfeitos. A definição que apresentamos 

acima foi introduzida por Berge em 1961. 
Primeiro vamos provar que, se G é um grafo perfeito, então QSTAB(G) = STAB(G). Mas 

antes precisamos do seguinte lema. 

Lema 7.1 (Lema da replicação) Seja G um grafo perfeito e v E V(G) . Seja a+ o grafo 
obtido a partir de G através da replicação de v, isto é, adicionamos um novo vértice v+ ligado 
ave a todos os vizinhos de v. Então a+ é perfeito. 

Prova: A prova é por indução em IV(G)j. Se G = K1, então a+ = K2 é perfeito. Suponha 
que G é um grafo perfeito com mais de um vértice. Basta provar que x(G+) ~ w(G+), já. que 
todo subgrafo induzido próprio G' de a+ ou é isomorfo a algum subgrafo induzido de G ou é 
obtido pela replicação de um vértice de algum subgrafo induzido próprio de G. Por hipótese 
de indução, G' é perfeito. 

Abrevie w := w(G). É claro que w(G+) E {w,w + l}. Se w(G+) = w + 1, então 

x(G+) ~ w + 1 = w(G+). 

Então podemos supor que w(G+) = w. Neste caso, v não pertence a nenhuma clique má­
xima de G, pois caso contrário, sua replicação criaria uma clique de tamanho maior que w. 
Considere urna coloração de G com w cores. Seja C o conjunto de vértices que recebeu a 
mesma cor que v . Tome G' := G \ (C\ {v}). Como w = x(G), então toda clique máxima 
de G tem um vértice em C, de modo que w(G') < w. Podemos colorir G' com w -1 cores, já. 
que G é perfeito. É fácil ver que C - v + v' é um conjunto estável em e+. Assim, podemos 
estender a (w - !)-coloração de G' para uma w-coloração de G+: basta atribuir a v' a mesma 
cor atribuída aos vértices de C e atribuir uma nova cor a v. O 

Teorema 7.2 Seja G um grafo perfeito. Então 

STAB(G) = QSTAB(G). 

Prova: É fácil ver que STAB(F) Ç QSTAB(F) para todo grafo F. Então basta provarmos que 
STAB(G) ;;? QSTAB(G). Como QSTAB(G) é um poliedro racional, então seus vértices têm 
coordenada., racionais. Assim, é suficiente provar que todo x e QSTAB(G) com coordenadas 
racionais está. em STAB(G). 

Seja x E QSTAB(G) e suponha que ax tem coordenadas inteiras para algum a> O inteiro. 
Seja G+ o grafo obtido a partir de G da seguinte forma. Para cada v e V ( G) co;;; axv = O, 
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remova v; para cada v E V(G) com crxv > O, replique crxv - 1 vezes o vértice v. Os vértices 
criados na replicação de v formam, junto com v, uma clique de tamanho crx •. Chamaremos 
os vértices dessa clique de clones de v . Note que, pelo lema 7.1 da replicação, o grafo e+ é 
perfeito. 

Pela definição de QSTAB(G), se K é uma clique de G então LveK Xv :5 1. Cada clique 
K+ de e+ está contida cm uma clique de e+ de tamanho LveK crxv para alguma clique K 
de G. Assim, vale que w(G+) :5 cr. Por ser perfeito, e+ pode ser colorido com cr cores. 

Seja c : V(G) ➔ {cr] uma coloração dos vértices de a+ que utiliza cr cores. Para cada cor 
k E [cr] e cada vértice v de G, defina 

k _ { l, se existe um clone v' de v tal que e( v') = k; 
Yv - O, caso contrário. 

Note que cada yk = x 5• para algum Sk E S(G). Assim, 

.!. tl E STAB(G). 
°' k=I 

Além disso, como cada vértice de a+ foi colorido, então 
Q 

LY~ = OXv 
k=I 

para todo v. Logo, 

e estamos feitos. 

Para provar a conversa, precisamos de um resultado poliédrico. 

o 

Lema 7.3 Seja P := ab(Z) para algum conjunto finito Z Ç IR+. Se ab(P) = 0, tome Q := 0. 
Caso contrário, defina 

Q := {x E P: xy = l} 

para algum y E ab(P). Então ou 
Q Ç {x: xz = l} 

para algum z E Z, ou os conjuntos Q e Z são ambos vazios. 

Prova: A prova é por indução em IZJ. Para a base, tome IZI = O. Neste caso, Z = 0. 
Portanto P = ab(Z) = {x: x ~ O} e Q = 0. 

Para o passo, tome IZI > O. Suponha que z é um elemento de Z tal que, para algum 
x E P, temos xz f. 1 e xy = 1. É claro que xz < 1. 

Tome Z' := Z \ {z} e P' = ab(Z'). É fácil ver que P Ç P'. Seja. x' E P'. Suponha que 
x'y > 1. Tomando x" := (l - e)x + ex' para e> O suficientemente pequeno, vale que 

x" z = (l - e)(xz) + e(x' z) :5 1, 

isto é, x" E P . Mas 
x"y = (l - e)(xy) + e(x'y) > l - e+ e= 1, 
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o que é um absurdo, já que x" E P e y E ab{P). Portanto, temos que x'y ~ 1. Assim, pela 
hipótese de indução, vale que Q' := { x' E P' : x'y = 1} Ç { x : xz' = 1} para algum z' E Z'. 
Note que z' E Z. Como P Ç P', então Q Ç Q'. Assim, Q Ç Q' Ç {x: xz' = l}, como 
queríamos. O 

Finalmente podemos provar a conversa do teorema 7.2. 

Teorema 7.4 Seja G um grafo. Se STAD(G) = QSTAD(G), então G é perfeito. 

Prova: Abrevie V := V(G) . Seja X Ç !Rr. Denotaremos por X[U] o conjunto de vetores 
indexados por U obtidos de X pela supressão dos componentes relativos a vértices de V\ U. 
É fácil ver que 

QSTAB(G(U]) = QSTAB(G)(U) 

e que 
STAB(G[U]) = STAB(G)(U). 

Assim, STAB{G) = QSTAB(G) se e somente se STAB{G') = QSTAB{G') para todo subgrafo 
induzido G' de G. A prova é por indução em IV(G)I. A base é trivial. Então, pela hipótese 
de indução, ba.~ta mostrar que, se STAB(G) = QSTAB(G), então G pode ser colorido com 
w := w(G) cores. 

Suponha que STAB(G) = QSTAB(G). Pelo corolário 6.1.1, vale que 

STAB(G) = QSTAB(G). 

Tome P := QSTAB(G) e y := 1/w. Se x é vetor característico de uma clique de G, então é 
claro que xy ~ 1 e, portanto, lemos que y E ab(P). 

Tome Z := {x5 : SE S(G)} , ou seja, temos que Z = {xK: K é uma clique de G} . Então 
P = QSTAB(G) = ab(Z) e Z # 0. Assim, pelo lema 7.3, 

Q := {x E P: xy = l} Ç {x E P: xz = l} 

para algum z E Z . Note que x E Q se e somente se x é vetor característico de alguma clique 
máxima de G. Logo, cada clique máxima intersecta o conjunto estável S tal que z = x5 . 

Portanto, vale que w{G') = w(G)-1, onde G' := G[V\S). Pela hipótese de indução, podemos 
colorir G' com w(G') cores. Usando uma nova cor para colorir os vértices de S, obtemos urna 
coloração dos vértices de G com w(G) cores. O 

Podemos agora enunciar uma caracterização poliédrica para grafos perfeitos: 

Teorema 7.5 Seja G um grafo. Então 

G é perfeito sse STAB(G) = QSTAB(G) . 

Prova: Imediato dos teoremas 7.2 e 7.4. o 

7.2. Grafos perfeitos e entropia de grafos. Nesta subseção apresentamos uma caracte­
rização de perfeição usando entropia de grafos. 

Dizemos que um grafo G é fortemente separador se 

H(p) = H(G,p) + H(G,p), 

para toda distribuição de probabilidade p sobre V(G). 
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Teorema 7.6 Seja G um grafo. Então 

H(p) = H(G,p) + H(G,p) 

para toda distribuição de probabilidade p sobre V(G) se e somente se 

STAB(G) = QSTAB(G). 

Prova: Pelo lema 6.1 e pelo corolário 5.5.1, temos que 

H(G,p) + H(G,p) - H(p) = HsTAB(G)(p) + HsTAB(G)(p) - H(p) 

= HsTAB(G)(p) - Hab(STAB(G))(p) 

= HsTAB(G)(p) - HQSTAB(G)(p). 

21 

o 

Mostramos a seguir uma caracterização de grafos perfeitos usando entropia de grafos. 

Teorema 7. 7 Um grafo G é perfeito se e somente se é fortemente separador. 

Prova: Segue diretamente do teorema 7.6, do lema 5.2 e do teorema 7.5. o 

Lovász (19] provou a conjectura fraca dos grafos perfeitos, que diz que um grafo é perfeito 
se e somente se seu complemento também o é. 

Corolário 7.7.1 (Teorema fraco dos grafos perfeitos) Um grafo G é perfeito se e 
somente se G é perfeito. 

Prova: Segue diretamente do teorema 7.5 e do corolário 6.1.1. o 

É fácil provar o seguinte corolário. 

Corolário 7.7.2 Um grafo G é perfeito se e somente se o(G')w(G') ~ IV(G')I para todo 
subgrafo induzido G' de G. 

Assim todo grafo imperfeito minimal G satisfaz o(G)w(G) < IV(G)I. 
Mostramos que um grafo é perfeito se e somente se é fortemente separador. Então se G é 

um grafo imperfeito, existe uma distribuição de probabilidade p tal que 

H(G,p) + H(G,p) > H(p). (7.1) 

A proposição a seguir mostra que se G é um grafo imperfeito minimal, então a distribuição 
de probabilidade uniforme satisfaz (7.1). 

Proposição 7.8 Seja G um grafo imperfeito minimal e p a distribuição de probabilidade 
uniforme sobre os vértices de G. Então 

H(G,p) + H(G,p) > H(p). 
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Prova: Sejam a e b vetores de STAB(G) e STAB(G) que atingem H(G,p) e H(G,p) na 
caracterização (3.3), respectivamente. Tome V := V(G). Então, 

- 1 1 1 1 
H(G,p) +H(G,p) = 1::-lg- + 1::-lgb 

veV n Ou vEV n u 

= lg ( 1/ ( mveV a,,)11" (IlveV bv) l/n)) 
~ lg ( 1/(a(G)w(G)/n2

)) 

> lgn = H(p). 

A primeira desigualdade segue do lema 2.2; a segunda, do corolário 7.7.2. D 

A proposição 7.8 implica que grafos imperfeitos não são fortemente separadores, já que 
podemos concentrar a distribuição de probabilidade nos vértices de um subgrafo induzido 
imperfeito minimal. 

De acordo com a recente prova da conjectura forte dos grafos perfeitos obtida por Chud­
novsky, Robertson, Seymour e Thomas [l), os grafos imperfeitos minimais são os circuitos 
ímpares de comprimento maior ou igual a 5 e os complementos de tais circuitos. 
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Parte II 

Uma aplicação à ordenação 
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8. PRELIMINARES E NOTAÇÃO 

Seja V um conjunto finito. Uma ordem parcial sobre V é uma relação $p sobre V que é 
reflexiva, anti-simétrica e transitiva. Abusando da notação, chamamos P = (V, $p) de ordem 
parcial. Dizemos que u, v E V são comparáveis em P se u $p v ou v $p u. Se u, v E V não 
são comparáveis, eles são incomparáveis em P. 

Uma ordem total sobre V é uma ordem parcial $q tal que, para quaisquer u, v E V, vale 
que u $q v ou v $q u. Abusando da notação, chamamos Q = (V, $q) de ordem total. 
Uma ordem total Q = (V, $q) é uma extensão linear de uma ordem parcial P = (V,$,.) se, 
para quaisquer u, v E V, temos que u $ P v implica u $q v. Denote por e(P) o número de 
extensões lineares de P. 

Seja P = (V, $p) uma ordem parcial. Uma cadeia de P é um subconjunto de V cujos 
elementos são dois-a-dois comparáveis. Uma anticadeia de P é um subconjunto de V cujos 
elementos são dois-a-dois incomparáveis. Para anticadeias X, Y de P, dizemos que X -<p Y 
se, para todo x E X, existe y E Y tal que x $p y. Quando não houver dúvidas quanto a 
ordem parcial em questão usaremos apenas X -< Y. 

O grafo de comparabilidade de P é definido como o grafo sobre V no qual dois vértices são 
adjacentes se são comparáveis em P. Denotamos o grafo de comparabilidade de uma ordem 
parcial P por Gp. 

Seja U Ç V. Definimos o conjunto minimal de U com relação a P como 

minp(U) := {u EU: u $p vou ué incomparável com v, para todo v EU}. 

Definimos o conjunto maximal de U com relação a P como 

maxp(U) := {u. EU: v $p u ou ué incomparável com 11, para todo v EU}. 

Seja {v,, ... ,vm} Ç V tal que v, < ·· · < Vm são relações compatíveis com P, isto é, v, < · · · < Vm vale em alguma extensão linear de P. Denotamos por P(v1 < · · · < Vm) 

a menor ordem parcial compatível com P que contém as relações v1 < • • • < Vm. Mais 
formalmente, P(v1 < · • • < vm) é a ordem parcial P' = (V, $p,), onde u $p, w se e somente 
se u $p w ou, se existem l $ i $ j $ m, tais que u $p v; e v; $p w. 

No restante do texto, P = (V, $p) sempre denotará uma ordem parcial, e n := JVI­
Algumas vezes será conveniente confundirmos o conjunto V com o par ordenado P; por 
exemplo, podemos dizer que x está em P quando, na verdade, x é um elemento de V . 
Além disso, abreviamos H(P) := H(Gp,p) e H(P) := H(Gp,p), onde pé a distribuição de 
probabilidade uniforme sobre V. Denotamos por am10 (P) o vetor a E STAB(Gp) que atinge 
o mínimo na caracterização (3.3) de H(P). Denotamos por bm1n(P) o vetor b E STAB(Gp) 
que atinge o mínimo na caracterização (3.3) de H(P). 

9. ÜRDENAÇÃO A PARTIR DE INFORMAÇÃO PARCIAL 

Seja Q = (V, $q) uma ordem total. Um oráculo para Q é um oráculo capaz de responder 
a perguntas do tipo "u <q v ?", para quaisquer u, v E V. 

O problema de ordenação a partir de infonnação parcial consiste em: 

dados um conjunto V, uma ordem parcial P = (V, $p) e um oráculo para 
uma extensão linear Q de P, encontrar Q. 
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Chamamos esse problema de ordenar P. 
Uma possível dificuldade para esse problema é que o oráculo pode ser considerado um 

adversário que tenta, a todo custo, forçar um algoritmo candidato para o problema a fazer 
um grande número de consultas. Por exemplo, o oráculo não precisa ter uma extensão 
linear pré-fixada: ele pode construir a extensão linear de acordo com as consultas feitas pelo 
algoritmo. 

É claro que todo algoritmo que resolve o problema acima fará pelo menos lge(P) com­
parações no pior caso. Esse fato é conhecido como limite inferior da teoria da informação. 
Fredrnan [6] mostrou que o problema pode ser resolvido com lg e(P) + 2n comparações. No 
entanto, a dificuldade encontra-se em como descobrir quais comparações devem ser feita.s. 

Uma conjectura famosa de Fredrnan é que, se P oão é uma ordem total, então existem x 
e y elementos incomparáveis em P tais que 

1 e(P(x < y)) 2 
3 :5 e(P) :5 3· 

Essa conjectura continua em aberto. No entanto, usando o teorema de Brunn-Minkowski 
ou as desigualdades de Aleksandrov-Fenchel, já se provou que, se P não é uma ordem tota.J, 
então existem x e y elementos incomparáveis de P tais que 

ó < e(P(x < y)) < 1 - ó 
- e(P) -

para valores de ó menores do que 1/3, corno por exemplo 3/11 (vide [9, lOj). Isso já é o 
suficiente para mostrar que, se um algoritmo encontra x e y adequadamente, então podemos 
ordenar P com O(lg e(P)) comparações. Novamente, a dificuldade se encontra em descobrir 
tais comparações. Vamos mostrar uma aplicação de entropia de grafos para esse problema, 
proposta por Kahn e Kirn [8]. 

10. UMA VISÃO GERAL 

Os principais resultados de Kahn e I<irn (8] são os seguintes: 

• existe um algoritmo que resolve o problema de ordenar a partir de uma ordem par­
cial P com O(lge(P)) comparações e que encontra as comparações em tempo polino­
mial no tamanho de P; 

• existe um algoritmo que computa respostas para consultas ao oráculo e roda em 
tempo polinomial no tamanho de P para cada consulta, que força todo algoritmo que 
ordena P (determinístico ou não) a usar n(Ige(P)) comparações. 

Para prová-los, Kahn e Kim usaram uma abordagem não-convencional. Eles primeiro 
relacionaram o número de extensões lineares de P com a entropia de Gp de acordo com a 
distribuição de probabilidade uniforme. Para mostrar o primeiro resultado, eles mostraram 
que, se P não é urna ordem total, então existem x e y tais que, incorporando em P a resposta 
do oráculo relativa à consulta "x < y?", a entropia de Gp aumenta em pelo menos c/n, onde 
e :::: 0,2. Para o segundo resultado, eles mostraram que, para quaisquer x e y incomparáveis 
em P, pode-se responder a pergunta "x < y?" de forma que a entropia de Gp não aumenta 
em mais que 2/n. 
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Na seção 11, mostramos que os grafos de comparabilidade são perfeitos e apresentamos 
algumas conseqüêncil\S desse fato. Na seção 13, relacionamos e(P) e H(P). Nas duas outras 
seções, mostramos a existência dos algoritmos citados acima. 

11. GRAFOS DE COMPARABILIDADE 

Nesta seção, mostramos que os grafos de comparabilidade são perfeitos e apresentamos 
algumas conseqüências importantes desse fato. 

Lema 11.1 Grafos de comparabilidade são perfeitos. 

Prova: Seja G o grafo de comparabilidade de uma ordem parcial {V, S) qualquer. Eviden­
temente todo subgrafo induzido de um grafo de comparabilidade também é um grafo de 
comparabilidade. Logo, basta mostrarmos que x(G) S w(G). Para cada vértice v construa 
uma cadeia de tamanho máximo Cv := {ui, ... , uk} com u1 = v e u1 < • • · < Uk, Seja to ta­
manho da maior cadeia assim construída. Para cada 1 Si S t, tome A; := { v E V: ICvl = i}. 
Note que dois vértices distintos pertencentes a um mesmo conjunto A; não podem ser com­
paráveis. Portanto, cada A; é um conjunto estável. Note também que Uf=1 A; = V. Assim, 
x(G) S t = w(G), já que cada cadeia é uma clique. D 

Lema 11.2 Para toda ordem parcial P sobre V, 

H(P) + H(P) = lg IVI, 
onde p é a distribuição de probabilidade uniforme sobre V. 

Prova: Segue imediatamente do lema 11.1 e do teorema 7.7. o 
Usaremos também o seguinte resultado: 

Lema 11.3 Existe um algoritmo polinomial para calcular H(P). 

Omitimos a demonstração. A idéia principal é a seguinte: como os grafos de comparabili­
dade são perfeitos, então o politopo dos conjuntos estáveis de um grafo de comparabilidade 
é separável. Isso permite que apliquemos o método dos elipsóides para calcular a entropia 
de grafos de comparabilidade com relação a qualquer distribuição de probabilidade. Reco­
mendamos o artigo de Knuth [11] sobre a função {J de Lovász e o livro sobre o método dos 
elipsóides de Grõtschel, Lovász e Schrijver [7]. 

12. DECOMPOSIÇÃO LAMINAR 

Nesta seção, apresentamos alguns lemas que serão muito úteis. Em particular, mostramos 
que podemos decompor amin(P) de uma maneira especial e única, chamada de decomposição 
laminar de amin(P). 

Lema 12.1 Seja a E STAB(Gp) e seja b E STAB(Gp). Então ab S 1. 

Prova: Pela demonstração do lema 4.3 da subaditividade, podemos ver que o vetor a o b, 
definido como 
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para todo v E V, pertence a STAB(Gp U Gp) = STAB(Kv). Como grafos completos são 
perfeitos, então pelo teorema 7.2, STAB(Kv) = QSTAB(Kv). Assim, como V é uma clique 
cm Kv, então, pela definição 6.1 de QSTAD(Kv ), temos que ab = Lvev avbv !:> 1. O 

Lema 12.2 Para todo v E P, 

1 
(amin(P))v(bmin(P))v = -. 

n 
(12.1) 

Prova: Tome a:= am;n(P) e b := bm;n(P). Pelo lema 11.2, temos que H(P) + H(P) = lgn. 
Portanto, - LveP(Jg(avbv))/n = lgn. Isto é, o vetor a o b (cuja definição pode ser vista no 
lema anterior) atinge o mínimo na caracterização (3.3) de H(Kv,p), onde pé a distribuição 
de probabilidade uniforme sobre V. Ademais, pela demonstração do lema 4.3, podemos ver 
que a o b E STAB(Kv). Assim, pelo lema 3.2 e pela demonstração do lema 4.4, é fácil ver 
que aob=p. O 

Lema 12.3 Seja a E ~. Suponha que a pode ser escrito como 

r 

a= LÀiXA;, 

i=l 

(12.2) 

onde Ài é um real positivo para todo i e A1 -< • · · -< A, são anticadeias maximais distintas. 
Então, a representação (12.2) é única. 

Prova: Seja p+ := {x E P: a:,:> O}. Seja A:= minp(P+) e a:= min{a:,:: x E A}. Vamos 
provar que A= A1 e a= À1. Note que isso prova o lema. 

É óbvio que A 2 A1. Suponha que A q; A1. Então existe x em A\ A1. Portanto, x está 
em algum Ai com i > 1. Se x é comparável com algum elemento de A;-1, isso contradiz a 
hipótese de que Ai-1 -< Âi- Se x é incomparável com todo elemento de Âi-1, isso contradiz 
a maximalidade de Âi-1• Portanto, A= A1. 

Agora vamos provar que a= À1• É óbvio que a ~ À1- Suponha que a > À1. Ser < 2, 
então isso é um absurdo. Se r ~ 2, isso implica que todo x E A1 está em mais algum Ai com 
i ~ 2. Como A1 -< · • · -< A,, então A1 Ç A2. Isso contradiz a hipótese de que A1 e A2 são 
anticadeias maximais distintas. D 

Chamamos a representação de a na equação (12.2) de decomposição laminar de a. 
A demonstração <lo lema a seguir utiliza uma técnica muito conhecida e poderosa: a técnica 

do descruzamento. Ela tem sido utilizada para a demonstração de muito resultados célebres, 
como o modelo de fluxos submodulares de Edmonds e Giles [4] e um resultado de cobertura 
bi-supermodular de Frank e Jordan [5], usado para aumento de conexidade. 

Lema 12.4 Existe uma única decomposição laminar de amin(P). 

Prova: Pelo lema 12.3, basta mostrar que existe uma decomposição laminar de amin(P). 
Fixe uma extensão linear <X da relação -<. Abrevie Smax := Smax(Gp) . Dados vetores 

À, À1 E JR{mu, dizemos que À é lexicograficamente maior que À1 se Às > Às para o menor 
S E Smax (sob a ordem total <x:) tal que Às 'f' À5. 
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Podemos escrever am;n(P) como combinação convexa de todos os elementos do conjunto 
{xs: SE Smax}- Seja am;n(P) = EP,sxs: SE Smax} uma tal combinação com À lexicogra­
ficamente maximal. É fácil provar que tal combinação existe através de técnicas padrões de 
compacidade. 

Se {A E Smax : ÀA > O} é uma cadeia sob -<, nada temos a demonstrar. Suponha então 
que existem A, A' E Smax, incomparáveis sob -< e tais que O< ÀA :::, ÀA'• Tome 

B := minp(A U A') e B' := maxp(A U A') 

e defina À1 E JR!mu como 

!Às - ÀA, se S = A ou S = A'; 
Às := Às+ ÀA, se S = B ou S = B'; 

Às, caso contrário. 

É fácil ver que B e B' são anticadeias maximais e que 

X:+xt=x:+x:' 
para todo x E A U A'. Logo, 

a= I: Àsx5-
sesmu 

No entanto, é fácil ver que À1 é lexicograficamente maior do À, pois B -< A' e B -< A, o que é 
um absurdo. O 

13. LIMITANTES 

Nesta seção relacionamos e(P) com H(P). Queremos provar que 

n(lgn - H(P)) ~ lge(P) ~ max{lg(n!) - nH(P), Cn(lgn - H(P))}, 

onde C := (1 + 7 lg e)-1• Primeiro, usando volumes de poliedros, provamos que 

2 - nH(P) < e(P) < n" rnH(P) _ 
- n! - n! 

Essa é uma demonstração bem simples. Já a prova de que 

lge(P) ~ Cn(lgn - H(P)) 

é um pouco mais trabalhosa e ocupa a maior parte desta seção. 
Definimos o politopo da ordem P como 

O(P) := {y E [O,lt: Yu $ Yu Vu, v E P com u <,. v}. 

O volume de um poliedro A E ~ é 

vol(A) := f dx. 
lxeA 

Linial [18) observou que vol(O(P)) = e(P)/(n!). Stanley [24] provou que STAB(Gp) e O(P) 
têm o mesmo volume. Portanto, 

vol(STAB(Gp)) =e(~). 
n. 

(13.1) 
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Lema 13.1 Vale que 

n" 
rnH(P) ~ vol(STAB(Gp)) ~ -

1 
2-nH(P) _ 

n. 

Prova: Como STAB(Gp) é um canto convexo e 4min{P) E STAB(Gp) , então 

vol(STAB(Gp)) ~ II 4mio(P)v = 2-nll(P) _ 

vEP 

Resta provarmos que vol(STAB(Gp)) ~ (n"/n!)2-nH(P)_ Tome 

L := {SE~ : LveP Svbm;n(P)v ~ 1 } · 

Pelo lema 12.1, vale que STAB(Gp) Ç L. Portanto, pelo lema 12.2, 
1 1 n" n" 

vol(STAB(Gp)) ~ vol(L) = 1 II b,,,· (P) = 1 II 4mio{P)v = 1 rnll(P)_ 
n. vEP ,n V n. vEP n. 

Corolário 13.1.1 Seja c uma constante positiva. Se e(P) ~ cn, então 

nH(P) ~ c+lgelge(P}. 
c 

Prova: Pelo lema 13.1 e pela equação (13.1), 

lge(P) - lg(n!} ~ -nH(P). 

Pelo lema 11.2, 
lge(P}- lg(n!) +nlgn ~ nH(P). 

Suponha que lg e{P) ~ cn. Então 

c+ lge n" 
--lge{P) ~ lge{P) + lge" ~ lge(P) + lg 1 , 

c n. 
onde a última desigualdade segue do fato que k! ~ (k/e)k para todo k ~ 1. 

29 

o 

o 
Seja {x1, ... ,xt} uma cadeia de comprimento máximo em P, com x, <,. · · · <,. x,. Seja 

C := {x1, •• • ,xi} e T := {y1, ••• ,Yt} := P \ C. Escrevemos x ~ y para dizer que x e y são 
comparáveis em P, e x .,., y caso contrário. Para cada j E [t], defina 

K(j) := { i E [t): Xi ... Yi }, kj := IKili 
f(j) := min{ i E [l]: Yi <,. Xi}, considerando min 0 := l + 1; 

g(j) := max{i E [l) : Xi<,. yj}, considerando max0 := O. 

Para cada i E [t), defina 

É fácil provar que 

U(i) := {j E [t) : J(j) = i}, u; := IU;I; 
Z(i) := {j E (t] : g(j) = i}, Zi := IZil• 

(13.2) 



30 SATO E KOHAYAKAWA 

Dizemos que :i; E Pé um ponto de corte de P se :i; é comparável a todos os elementos de P. 

Lema 13.2 Se t < n/7 e P não tem um ponto de corte, então existe j E [t] tal que 

L (u; + z;) S k; e k; ~ 3. 
iEKü} 

Prova: Suponha que não existe tal j . Seja T' Ç T mirúmal tal que 

LJ{K(j): j E [t], Yi E T'} = [l). (13.3) 

Note que tal T' existe, pois U{ K; : j E T} = [l). Podemos supor sem perda de generalidade 
que T' = {Y1, . . . , Yr }. Portanto, 

para 1 S j Sr. Logo, 

L (u; + z;) ~ k; - 2 
iEKü} 

r r 

L L (U;+z;) ~ Lk;-2r. 
i=I iEKü) j=l 

Pela equação (13.3) e usando o fato de quer S t, temos que 

r 

L k; - 2r ~ l - 2t. 
j=l 

(13.4) 

(13.5) 

Por outro lado, como a minimalidade de T' implica que todo i E [i) pode estar em, no máximo, 
dois K (j) distintos, então 

r t 
L L (u; + z;) S L 2(u; + z;) S 2t + 2t = 4t. (13.6) 
j=l iEKü) i=I 

Assim, usando as equações (13.4)-(13.6), temos que 4t ~ l- 2t. Logo, 6t ~ i = n - t, o que 
contradiz a hipótese de que t < n/7. □ 

Dizemos que P é mazimal com relação à entropia se o incorporação de qualquer relação a 
P aumenta a entropia, isto se, se H(P(:i; < y)) > H(P) para quaisquer :i; e y incomparáveis 
em P. 

Lema 13.3 Suponha que P é maximal com relação à entropia e não tem ponto de corte. Se 
t < n/7, então existem j E [t] e i E [l) tais que P' := P(:i:; < Yi < :i:;+tl satisfaz 

e(P') < e(P) e nH(P) S nH(P') + 21g(2k; + 1). 
- k; - l 

Prova: Seja j como no lema 13.2 e K(j) = {:i:h, ... , :i:m} com :&h <p • • • <p Zm, Escolha i 
em { h, . .. , m} que minimize 

e(P(:i:; < Yi < :i:;+1)) 

e(P) 
(13.7) 
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Tome P' := P(x; < Y; < X;+1). Note que as extensões lineares de P em que y; < Xi ou 
Xi+l < Yi não são extensões lineares de P'. Portanto, como escolhemos i que minimiza (13.7), 

e(P') < e(P) . 
- k; -1 

Agora vamos provar que nH(P) $ nH(P') + 2 lg(2k; + 1). Para isso, vamos provar que 

V<,. Y; ~V<,. Xi+l· (13.8) 

Seja v E P. Suponha que v <,. Y;• Seja EAeA >-AXA uma decomposição laminar de Om1n(P). 
Pela maximalidade de P com relação à entropia, existe A E A tal que x;, Yi E A. Seja 
A',A" E A tais que v E A' e Xi+! E A". Como v <,. Y;, então A'-< A. Como x; <,. Xi+1, 

então A -< A". Portanto, A' -< A" e são anticadeias distintas. Novamente pela maximalidade 
de P com relação à entropia, vale que v <,. Xi+!, completando a prova da implicação (13.8). 
Similarmente, pode-se provar que 

Yi <,. v ~ x; <,. v. (13.9) 

Note que decorre das implicações (13.8) e (13.9) que, se a,,,, bem P, então a~ bem P' 
somente se a= 11; ou b = Y;• Por outro lado, 11; só se tornará comparável a elementos de 

Y := K; U ( LJ,eK; U(s) U Z(s)) 

Pelo lema 13.2, é fácil ver que 

q := IYI $ k; + k; = 2k;. 

Seja G' o grafo sobre V com E(G') := E(Gp)\E(Gp, ). Sejap a distribuição de probabilidade 
uniforme sobre v. Temos que 

nH(G',p) $ Ig(q + 1) + L Ig q + 1 

~EY q 

= lg(q+ 1) +qlg(q+ 1)-qlg(q) 

$ 21g(q + 1) $ 2lg(2k; + 1). 

Pelo lema 4.3 da subaditividade e pela desigualdade (13.10), 

nH(P) $ nH(P') + nH(G',p) $ nH(P') + 2 lg(2k; + 1) 

e estamos feitos. 

Lema 13.4 Vale que 
nH(P) $ (1 + 7 lg e) lg(e(P)). 

(13.10) 

o 

(13.11) 

Prova: A prova é por indução em n + t. Se n = 1 ou t = O é claro que a inequação (13.11) é 
verdadeira. 

Se P tem um ponto de corte, digamos x, é fácil ver que 

nH(P)=(n-l)H(P\{x}) e e(P)=e(P\{x}). 

Logo, por hipótese de indução 

nH(P) = (n - l)H(P \ {x}) $ (1 + 71ge) lge(P \ {x}) = (1 + 71ge)lge(P). 
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Suponha então que P não tem ponto de corte. Se t ~ n/7, pela inequação {13.2) e pelo coro­
lário 13.1.1, a inequação (13.11) é válida. Portanto, podemos supor que t < n/7. Ademais, 
podemos supor que P é maximal com relação à entropia. Sejam i e j e P' como no lema 13.3. 
Temos que 

nH(P) $ nH(P') + 2 lg(2k; + 1) 

Teorema 13.5 Vale que 

$ (1 + 71ge) lge(P') + 4lg(k; + 1) 

$ (1 + 71ge) lge(P) + (8 - (1 + 71ge)) lg(k; -1) 

$ (1 + 7lge) lge(P). 

n{lgn - H(P)) ~ lge(P) 

~ max{lg(n!) - nH(P), Cn(lgn - H(P))}, 

onde C := (1 + 7lge)-1• 

D 

Prova: Segue diretamente do lema 11.2, do lema 13.1 e da equação (13.1), e do lema 13.4. D 

14. ENCONTRANDO UMA BOA COMPARAÇÃO 

Nesta seção mostramos um algoritmo que ordena uma ordem parcial P com O(Jgc(P)) 
comparações e encontra as comparações em tempo polinomial no tamanho de P. 

Basicamente, mostramos que se, P não é uma ordem total, então existem x e y cm P 
tais que 

min{H(P(x < y)), H(P(x < y))} > H(P) + .:., 
- n 

(14.1) 

onde e := 1 + 17 /112. Isso significa que ao descobrirmos a relação entre x e y através de uma 
consulta ao oráculo, a entropia do grafo de comparabilidade da nova ordem parcial será pelo 
menos a soma entre a entropia do grafo de comparabilidade da ordem parcial anterior e c/n. 
Assim, com, no máximo, (n/c)(lgn - H(P)) comparações atingiremos a entropia do grafo 
completo, isto é, encontraremos a ordem total do oráculo. 

Seja a:=~~=! À;XA; uma decomposição laminar de Omin(P) com A1 -< · · · -< A,. Defina 

a(x) := min{i E (r]: x E A;} e fJ(x) := max{i E {r] : x E A;}. 

Lema 14.1 SuponhaqueP não é uma cadeia. Sejam x,y incomparáveis em P e sejaµ E [O, l]. 
Seja P' := P(x < y) e suponha que ay > O. Então 

P(z) À o(y)-1 À 

nH(P')~nH(P)+lg(1+µ~~)+1g(1+µ ~ ~)-

Prova: Seja b := bmin{P). O vetor b pode ser escrito como combinação convexa de elementos 
de {x8

: B é uma cadeia de P}. Seja ~:=1 {;x8 • uma tal combinação. Podemos supor que 
yE B; se e somente se 1 $i $ m, onde m:= l{B;: i E B;, l Sj S s}I, 

Tome 
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Para cada 1 $ i $ m, defina C; := B; \ {v E P: v <P y}. 
Fixe C = { v1, • .. , vi} com v; < P · • · <p v1 uma cadeia maximal tal que Vt = x. Note que 

t P(:r) 

:Eª•, = :E>-;. (14.2) 
i=I i=I 

Defina as seguintes cadeias de P' 

Defina também 

Tome 

B/ := B;, se 1 $ i $ s 

B/+.:=CUC;, sel::,i$m. 

ç/ := ç;, sem+ 1 $ i $ s 

Ç;+a := µç;, ç; := (1 - µ)ç;, se 1 $ i $ m . 

•+m 
b' := L {:xBí. 

i=l 

É fácil ver que b' E STAB(G,,, ). Seja z E P. Se z E C, então 

b~ = b, - d(z) + (1 - µ)d(z) + µbu = bu + µ(bu - d(z)). 

Se z rf_ C e z <p y, então b~ = b, - µd(z). Finalmente, se z r/. C, e zé incomparável com y 
ou y <P z, então b: = b,. 

Usaremos as seguintes desigualdades, 

Jg(l + u - v) 2'. lg(l + u) + Jg(l - v) 

para quaisquer u, v E IR+ e 

lg(l+u) +Jg(l +v) 2'. Jg(l +u+v) 

para quaisquer u, t1 E IR com uw ~ O. 
Pelo lema 11.2 e pelas desigualdades (14.3) e (14.4), temos que 

nH(P') - nH(P) = nH(P) - nH(P') 
y y y 

2'. :E Ig f = :E { Jg f : ti E e}+ I: {1g f : ti E P \ e, v <p y} 
vEP u V V 

(14.3) 

(14.4) 

= :E { Jg ( 1 + µ~ - µ dt)) : v E e} + L { 1g ( 1 - µ t l) : v e P \ e, ti <p y} 
2'. :E { lg ( 1 + µ~) : 11 e e} + :E { Ig ( 1 - µ dt)): ti e P, v <p y} 

~ lg(1 +µbuL {t= v E e}) +lg(1-µ:E {dt): v e P, t1 <p y}) 
Pelo lema 12.2 e pela equação (14.2), 

1 ,8(:r) 

L h-= t1 E e}= :E{na.: v E C} = n :E>.;. 
V i=l 
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Além disso, 

L div) = n L avd(v) = n L L{>,;d(v): v E Ai} 
v<pY v v<pll v<rU 

0(11)-1 o(y)-1 

= n L À; L{d(v): v E A;} :5 n L >.;b11 , 

onde a última desigualdade segue do fato de que A; é uma anticadeia para todo i. Assim, 

nH(P') - nH(P) 

~ lg ( 1 + µbll L { k: v E C}) + lg ( 1 - µ L { dt): v E P, v <r y}) 
tl(z) 0(11)-I 

~lg(l+µnLÀ;b11)+lg(t-µn L >.;b11,) 

i=l i=l 

tl(z) ).- o(y)-1 À· 

=lg (1+µí:...!)+1g(1 -µ L ..2.). 
i=I ª11 i=I 0v 

Antes de provar a desigualdade (14.1}, precisamos de um lema fácil. 

D 

Lema 14.2 Dados O < e1 < 1 e O < E2 < 1, escolha x com ª"' tão grande quanto possível de 
forma que 

Seja s o menor inteiro para o qual 

Então, para todo y E A,\ {x}, 

o(z)-1 

L À; :5 E10z, 

i=I 

• L À; ~E20r­

i=o(r) 

E1 +E2 
ªv<--ar. 

E1 

Prova: Se ¾ :5 Oz, não há nada a provar. Suponha que a11 > Oz- Então, pela escolha de x e 
pelo fato de que s ~ o(y), temos que 

0(11)-l o(z)-1 o(y)-1 

E1a11 :5 L À;= L À;+ L À;< E1ar +e2az. 
i=l i=l i=o(r) 

D 

Finalmente provamos a desigualdade (14.1). 
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Teorema 14.3 Se P não é uma cadeia, então existem x, y incomparáveis em P tais que 

min{H(P(x < y)),H(P(y < x))};?: H(P) + .:., 
n 

(14.5) 

onde e:= (1 + 17 /112). 

Prova: Suponha P possui um ponto de corte z. Então, a prova segue por indução em n. 
Para n ~ 3, é fácil ver que a desigualdade (14.5) é válida. Suponha que n > 3. Seja p a 
distribuição de probabilidade uniforme sobre os elementos de P e seja p' a distribuição de 
probabilidade uniforme sobre os elementos de P' := P\ { z}. Por hipótese de indução, existem 
x, y E P' tais que min(H(P'(x < y)), H(P'(y < x))) ;?: H(P') + c/(n - 1). Usando o fato de 
que nH(P) = (n - l)H(P'), temos que 

nll(P) - nH(p) = (n - l)H(P') - (n - l)H(p') 

~ (n - 1) min(H(P'(x < y)), H(P'(y < x))) - (n - l)H(p') + e 

= -(n - 1) min(H(P'(x < y)),H(P'(y < x))) + e 

= -nmin(H(P(x < y)),H(P(y < x))) + e 

= nmin(H(P(x < y)), H(P(y < x))) - nH(p) + e. 

Suponha que P não tem um ponto de corte. Tome E1 := 1/4 e E2 := 1/3. Sejam x e y de 
acordo com o lema 14.2. Tome ó:= (1/a,,) I;P;: 1 ~ i ~ cr(x) -1}. Note que ó~ e,. Pelo 
lema 14.2, 

µ := e,ay > 1. 
(e,+ e2)a,, -

Tome P' := P(x < y). Pelo lema 14.1 e pelas escolhas de x e y, 

( 

/J(,:) À·) ( o(y)-1 À·) 
nH(P') - nH(P) ;?: lg 1 +µLa• + lg 1 + µ L ....!. 

a=l Y a=l 0y 

( 

o(x)-1 À· /J(,:) À·) ( o(y)-1 À·) 
=lg 1+µ L -;j-+µ L-;;- +lg l+µ ~ ....!. 

•=l li i=o(,:) y •=1 0y 

( 
óa,, O,:) ( o(y)-l À;) 

=lg 1+µ-+µ- +lg 1+µ L -
0y Oy i=l Oy 

o(y)-1 

1 ( 1 (ó+l)a,,) I (l '°' À;) = g + µ-'---'-- + g + µ L., -
0y i=l 0y 

( 
(ó l) ) ( o(z)-1 À 0(11)-l À ) 

= lg 1 + µ : a,, + lg 1 + µ L ai + µ L _i. 
Y a=l li j=o(:r) 0y 

> 1 ( 1 (ó+ l)a,,) 1 (l Óa:r e2a:r) - g +µ-'---'-- + g +µ-+µ-
ªu ªv Oy 

1 ( 1 (ó+l)a,:) 1 (i (ó+e2)a,:) = g + µ-'------''---"- + g + µ----
Oy ª11 

;?: lg (1 + éJ - E:1E2 - e~ -ef) = lg (1 + ..!2..). 
éJ +E2 112 
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Por outro lado, tome P" := P(y < x). Tome T/ := 1. Pelo lema 14.1, 

( 

/l(y) À) ( o(z)-1 À·) 
nH(P")-nH(P)~lg l+r1~a: +lg l+r, ~ a: 

~ lg(l +Ó+ E2) + lg(l - ó)= lg(l + E2 - E2Ó - ó2
) 

~ lg(l + E2 - E2E1 - E:~)= lg ( 1 + :6)-

0 

Vamos mostrar agora que, do teorema 14.3, segue facilmente a existência do algoritmo 
desejado. 

Corolário 14.3.1 Existe um algoritmo que resolve o problema de ordenar a partir de uma 
ordem parcial com O(lg e(P)) comparações e encontra as comparações em tempo polinomial 
no tamanho de P. 

Prova: Considere o seguinte algoritmo. 

Algoritmo 
1 P'+-P 
2 enquanto H(P') < lgn faça 
3 encontre x, y tais que 

min{H(P'(x < y)), H(P'(y < x))} ~ H(P') + c/n, 
onde c = 1 + 17/112 

4 pergunte ao oráculo: "x < y?" 

5 se o oráculo responder "SIM" 
6 então P' +- P'(x < y) 
7 senão P' +- P'(y < x) 
8 devolva P' 

Pelo teorema 14.3, se P' não é uma cadeia, tais x e y existem. Além disso, pelo lema 11.3 
podemos calcular H(P'), H(P'(x < y)) e H(P'(x < y)) em tempo polinomial. Note que o 
algoritmo só termina quando encontra uma ordem total, pois pelo lema 4.4, a entropia de um 
grafo completo com n vértice com relação à distribuição uniforme é lgn. 

Como em cada iteração a entropia cresce pelo menos c/n, temos que o algoritmo fará no 
máximo (n/c)(lgn - H(P))comparações. Pelo teorema 13.5, vale que Jg(e(P)) ~ Cn(logn -
H(P)), onde C := (1 + 7lge)-1• Assim, o algoritmo faz O(lgc(P)) comparações. O 

15. COMPUTANDO RESPOSTAS 

Nesta seção mostramos um algoritmo que computa respostas a consultas a um oráculo que 
obriga todo algoritmo que ordena uma ordem parcial P a fazer n(e(P)) comparações. 

Basicamente, mostramos que, se P, não é uma ordem total, para quaisquer x, y iucompa,­
ráveis em P, 

min{H(P(x < v)),H(P(v < x))} ~ H(P) + ! . 
n 
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A pergunta "x < y?" será respondida de modo a minimizar a entropia da nova ordem parcial. 
Isso, significa que a cada comparação, a entropia da nova ordem parcial será, no máximo, 
a soma entre entropia da ordem parcial anterior e 2/n. Assim, precisaremos de pelo menos 
(n/2)(lg n - ll(P)) comparações para atingir a entropia do grafo completo, isto é, encontrar 
a ordem total do oráculo. 

Teorema 15.1 Se P não é uma cadeia ex, y são incomparáveis em P, então 

min{H(P(x < y)),H(P(y < x))} S H(P) + ~. 
n 

Prova: Tome a:= amin(P). Defina 

U := {t1 E P: t1 <p x} e R := {t1 E P: x <p t1}; 

W := {t1 E P: t1 <p y} e Z := {t1 E P: y <P t1}. 

Para toda cadeia Cem P, defina w(C) := E2:ec a,,. Seja uma cadeia K Ç U que maximiza 
w(K). Escolha L Ç R, M Ç W e N Ç Z similarmente. Pelo lema 11.1 e pelo teorema 7.5, 
vale que QSTAB(Gp) = STAB(Gp). Logo, pela definição (6.1) de QSTAB(Gp), 

Portanto, 

w(K) + w(L) + a,, S 1, 

w(M) + w(N) + ay S l. 

w(K) + w(N) + ªx; ay S 1 ou 

w(M) + w(L) + ª"'; ay S l. 

(15.1) 

(15.2) 

Suponha sem perda de generalidade que a inequação (15.1) é verdadeira. Defina a' E ~ 
como , {ª•/2, se t1 = x ou t1 = y; av := 

au, caso contrário. 

Tome P' := P(x < y). Vamos mostrar que a' E QSTAB(Gp,), pelo teorema 7.5, isso implica 
que a' E STAB(Gp,). Para toda cadeia C de P', defina w'(C) := E,,ecª~- Seja Q uma 
cadeia maximal de P'. Se {x, y} q; Q, então é fácil ver que Q é uma cadeia em P. Portanto, 
como a' S a, 

w'(Q) = I>~ s I>· s 1. 
ueQ ueQ 

Logo, a' E QSTAB(Gp,). Se {x,y} Ç Q, então tome 

K' := {t1 E Q: t1 <P, x} e N' := {t1 E Q: y <p, v}. 

Note que K' Ç U e N' Ç Z. Note também que K' e N' são cadeias de P . Ademais, 
Q = K' U N' U {x,y}. Assim, 

w'(Q) = w'(K') +w'(N') + ªz +ay = w(K') +w(N1) + a:r: +ay 
2 2 

S w(K) + w(N) + ª"'; ay S l. 
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Portanto, a' E QSTAB(Gp,) = STAD(Gp,). Assim, como a~= a,:/2 e a~= av/2, 

1 
H(P') $ -~ L lga~ 

vEP' 

= _.!, °'"' lga - .!, lg ª% - .!, lg ay 
n~ vn2n2 

vEP\{z,v} 

1 1 1 = -- °'"' lgav + - lg2 + - lg2 n~ n n 
vEP 

1 2 2 = -- °'"' lgav + - = H(P) + -n~ n n 
11EP 

D 

Corolário 15.1.1 Existe um algoritmo que computa respostas para perguntas ao oráculo e 
roda em tempo polinomial no tamanho de P, que força todo algoritmo que ordena Pausar 
íl(lg e(P)) comparações. 

Prova: O algoritmo que computa as respostas do oráculo deve conhecer a ordem parcial P . 
O oráculo deverá consultar esse algoritmo para responder as consultas de um algoritmo can­
didato a ordenar P . 

Considere o seguinte algoritmo. 
Algoritmo 

1 P'+-P 
2 enquanto o oráculo faz uma pergunta "x < y?" faça 
3 se x, y são comparáveis cm P' 

. 4 então se x <,., y 

5 então devolva "SIM" 
6 senão devolva "NÃO" 
7 senão se H(P'(x < y)) $ H(P'(y < x)) 
8 então P' +- P'(x < y) e devolva "SIM" 

9 senão P' +- P'(y < x) e devolva "NÃO" 
Pelo teorema 15.1, se x e y são incomparáveis em P', então H(P'(x < y)) $ H(P') + 2/n ou 
H(P'(y < x)) $ H(P') + 2/n, Assim, a cada comparação a entropia de GP' aumentará no 
máximo 2/n. Pelo teorema 13.5, lge(P') $ n(lgn - H(P')). Isso significa, que o algoritmo 
que ordena P fará íl(e(P)) comparações. D 
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