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Significance

 Agriculture plays a key role in 
global food security, intricately 
tied to water resources for crop 
growth. However, navigating the 
interplay between agriculture 
and water availability poses 
challenges, especially during the 
﻿Anthropocene , where traditional 
perspectives often overlook 
agriculture’s impacts on the 
water cycle. Understanding and 
integrating agriculture’s influence 
on water dynamics becomes 
imperative in addressing 
contemporary challenges. Our 
study highlights the contrasting 
impacts of agricultural activities 
across temperate and snowy 
climates. In temperate 
catchments, agriculture weakens 
the precipitation-streamflow 
(P-Q) relationship, contributing to 
precipitation-driven deviations 
from the water–energy balance, 
while in snowy catchments, 
agricultural activities strengthen 
the P-Q relationship. These 
findings offer insights for shaping 
effective water management 
strategies, ensuring food security, 
and promoting sustainable 
development globally.
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Agriculture is a cornerstone of global food production, accounting for a substan-
tial portion of water withdrawals worldwide. As the world’s population grows, so 
does the demand for water in agriculture, leading to alterations in regional water–
energy balances. We present an approach to identify the influence of agriculture on 
the water–energy balance using empirical data. We explore the departure from the 
Budyko curve for catchments with agricultural expansion and their associations with 
changes in the water–energy balance using a causal discovery algorithm. Analyzing 
data from 1,342 catchments across three Köppen-Geiger climate classes—temperate, 
snowy, and others—from 1980 to 2014, we show that temperate and snowy catch-
ments, which account for over 90% of stations, exhibit distinct patterns. Cropland 
percentage (CL%) emerges as the dominant factor, explaining 47 and 37% of the 
variance in deviations from the Budyko curve in temperate and snowy catchments, 
respectively. In temperate catchments, CL% shows a strong negative correlation with 
precipitation-streamflow (P-Q) causal strength (Spearman � = −0.75 ), suggesting that 
cropland exacerbates precipitation-driven deviations. A moderate negative correlation 
with aridity-streamflow (AR-Q) causal strength ( � = −0.42 ) indicates additional influ-
ences of cropland through aridity-driven interactions. In snowy catchments, CL% is 
similarly influential, with a positive correlation with P-Q causal strength ( � = 0.51 ). 
However, the negative correlation with AR-Q causal strength ( � = −0.45 ) underscores 
the role of aridity as a secondary driver. While vegetation and precipitation seasonality 
also contribute to the deviations, their impacts are comparatively lower. These findings 
underscore the need for inclusion of agricultural activities in changing water–energy 
balance to secure future water supplies.

agriculture | water balance | irrigation | Budyko water balance

1.1.  Context. Agriculture is crucial for meeting the world’s growing food demands and 
accounts for approximately 72% of global water withdrawals (1–4). Global estimates of 
water utilized for crops span from 2,217 to 3,185 km3 per year (5–8), while additional 
crop evapotranspiration encompasses a range of 927 to 1,530 km3 per year (6, 8, 9). As 
the global population continues to increase, the need for water in agriculture has surged, 
resulting in often unknown consequences for the hydrological cycle. To sustain increasing 
food demand resulting from population growth and elevated living standards, global water 
withdrawals have surged nearly sixfold, escalating from approximately 500 km3 per year 
in 1,900 to nearly 3,000 km3 per year in 2000. During this period, crop yields have also 
substantially increased, reflecting significant advances in agricultural productivity (10); 
however, improved water use efficiency does not necessarily reduce total water consumption 
(11). Consequently, agriculture remains a predominant water user globally (8, 12, 13). While 
agricultural expansion sustains food security, at the same time, it has triggered severe water 
scarcity issues at regional to global levels (14, 15). For instance, the agriculture region in and 
around the Ogallala Aquifer, located in the Great Plains region of the United States, witnessed 
a dramatic increase in agricultural area, surging from 8,500 km2 in 1949 to 63,000 km2 
by 2005 (16). Sustaining such a level of agricultural productivity, however, hinged on the 
ongoing extraction of water from the Ogallala Aquifer (17, 18).

 Crop water needs can be fulfilled through three distinct sources: ( 1 ) green water, derived 
from local precipitation and temporarily stored in the soil, ( 2 ) blue water, encompassing 
surface water from local/nonlocal rivers, lakes, reservoirs, and renewable groundwater, 
and ( 3 ) nonrenewable groundwater, extracted from aquifers ( 19 ,  20 ). The term “nonre­
newable groundwater abstraction” is used to underscore water extracted beyond recharge 
levels for a prolonged period, i.e., physically unsustainable groundwater use ( 21 ) that is 
unlikely to be replenished in years ( 22 ,  23 ).
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 Surface water is the primary source of freshwater for human 
use, with around 70% of the available surface resource used in 
agriculture ( 24 ). However, blue water alone does not fully repre­
sent the water needed for crop production ( 25   – 27 ), as rainfed 
crops primarily rely on rainfall infiltration, which constitutes a 
significant portion of water for agricultural croplands ( 28 ,  29 ). 
Additionally, actual agricultural water consumption is better 
measured as the difference between crop water use and what 
would be required by the natural vegetation that was replaced 
( 30 ). As surface water sources become less reliable and predictable 
( 31 ,  32 ), the importance of groundwater for agriculture is on the 
rise. In regions with limited access to surface water, groundwater 
can emerge as the primary source of agricultural water ( 33 ). 
However, unsustainable groundwater depletion can easily arise 
when extraction surpasses recharge over prolonged periods, result­
ing in declining groundwater levels and consequently reduced 
baseflow ( 20 ,  23 ,  33           – 39 ). Groundwater recovery can be gradual, 
with residence times spanning from several months in shallow 
aquifers to millions of years in deep aquifers. Hence, it is crucial 
to recognize unsustainable agricultural practices and their far-
reaching consequences in altering the hydrological cycle.

 A comprehensive understanding of the water cycle enhances 
our evaluation of freshwater resources and enables us to understand 
global water security threats more effectively. Also, on a global 
scale, climate change has been identified as a primary driver of 
hydrological cycle changes ( 40   – 42 ). Nonetheless, the hydrological 
cycle is not solely shaped by climate dynamics ( 43 ); it is also influ­
enced by human activities like agriculture and groundwater extrac­
tion at the regional scale ( 44   – 46 ). Understanding the agricultural 
practices by source and their interplay with other drivers of changes 
in streamflow is imperative for advancing hydrological science at 
regional and global scales. For instance, surface water plays a piv­
otal role in flood dynamics ( 47   – 49 ), whereas groundwater is closely 
tied to baseflow changes and bears immense significance for envi­
ronmental flow management and water supply in arid and semiarid 
regions ( 50   – 52 ). Two notable examples of groundwater use for 
agriculture in the United States are the Ogallala aquifer in High 
Plains and the aquifer system in California’s Central Valley. These 
aquifers are extensively studied, with depletion estimates drawn 
from numerous well water level measurements and GRACE sat­
ellite data ( 36 ,  53 ,  54 ).  

1.2.  Combining the Budyko Curve with Causal Analysis Is a Way 
to Provide Insight Into How Agriculture Affects the Water Cycle. 
Despite the important role of agriculture and other anthropogenic 
water uses in shaping the hydrological cycle, assessing their global 
impact remains challenging due to uncertainties associated with 
factors such as agricultural area delineation, hydrological modeling, 
and critical local parameters such as soil hydraulic characteristics, 
the timing of the growing season, and its relation to water 
availability (3, 55).

 By applying the Budyko water balance framework ( 56 ) and a 
causal discovery algorithm ( 57 ,  58 ), we explore the effect of agri­
cultural water use on the hydrological cycle. The interplay of com­
ponents of terrestrial freshwater ecosystems is uncertain in an era 
of human modifications and rapid global climate change. Although 
previous methods employed modeled streamflow data to identify 
causal connections between human-induced forcing and observed 
river flow patterns globally, uncertainties remain regarding the 
complex interactions between human activity, climate variables, 
and catchment-scale hydrological processes that impact water flow 
dynamics. Building on previous findings, we have used a large, 
measured dataset to better understand watershed responses to 
human changes in land surface caused by agricultural expansion.

 The Budyko hypothesis offers a valuable tool for comparing nor­
malized observations across a wide spectrum of climatic conditions, 
enabling the identification of secondary controls on a catchment’s 
water balance ( 45 ,  59 ,  60 ). According to the Budyko curve, the ratio 
of mean annual evapotranspiration to mean annual precipitation 
(E/P, the evaporative fraction) is primarily influenced by the ratio of 
mean annual potential evapotranspiration to mean annual precipi­
tation (Ep/P, the dryness index). Hereafter, the term water–energy 
balance refers to the streamflow-precipitation-aridity equilibrium 
described by the Budyko curve. Using this framework, we study the 
impact of agriculture by source on the water–energy balance at the 
country scale. Additionally, it is important to consider the role of 
precipitation seasonality and vegetation in influencing deviations 
from the Budyko curve. Studies have shown that seasonality of pre­
cipitation and potential evapotranspiration can substantially alter 
the timing and efficiency of water inputs to ecosystems, affecting 
evapotranspiration and runoff patterns ( 61 ,  62 ). Variations in veg­
etation type and density can further complicate these interactions, 
as they influence the partitioning of water between evapotranspira­
tion and runoff ( 63 ,  64 ). Understanding these relationships is crucial 
for accurately interpreting the Budyko curve and the hydrological 
responses of different catchments.

 It is essential to acknowledge that the Budyko curve, while 
highly informative, does not represent the complexity of natural 
hydrological processes. However, the Budyko curve follows a well-
known characteristic curve when estimated for a series of natural 
basins. The spatial differences in the water balance between catch­
ments can result from various factors beyond just agricultural 
water use. In addition, it is essential to acknowledge that a direct 
symmetry might not always exist in the temporal partitioning of 
precipitation into streamflow and evaporation within a catch­
ment, in contrast to the observed spatial variations among catch­
ments ( 65   – 67 ).

 Because of these limitations, we also analyzed the interplay 
between main components of water–energy balance and their rela­
tionship with the cropland percentage (CL%; as an agriculture 
proxy), thus shedding light on the effect of agriculture on altering 
water–energy balance. Many Budyko studies often focus solely on 
spatial patterns of long-term averages ( 45 ,  66 ,  68 ,  69 ). Nevertheless, 
this methodology frequently omits a substantial amount of hydro­
logical information and the interplay of various factors that could 
influence water balance at finer temporal scales ( 68 ). To address 
this challenge and gain insight into the intricate interplay of factors 
at finer time scales, we analyzed the control of agriculture on tem­
poral changes of individual responses at the seasonal time scale ( 67 , 
 69 ) using the PCMCI+ causal discovery method recently devel­
oped and applied in Earth system sciences ( 57 ,  58 ). By integrating 
the Budyko framework with the PCMCI+ causal discovery algo­
rithm, we offer an approach to quantifying the equilibrium 
between water and energy balance in catchments. Our examination 
focuses on three key factors influencing streamflow (Q): precipi­
tation (P), aridity (AR), and snow fraction (SF) ( 67 ,  70 ,  71 ). For 
calculating the SF, we assumed that precipitation falls as snow when 
the temperature is below 1 °C (see the Materials and Methods  for 
further information on calculating the SF). We establish causal 
relationships between these drivers and streamflow and measure 
their strengths using the causal discovery method ( 58 ).

 Here, we study the role of agriculture by source in altering the 
water–energy balance using 1,342 Catchment Attributes and 
Meteorology for Large-sample Studies (CAMELS) catchments 
located across the contiguous United States and Great Britain 
(GB) from 1980 to 2014. The role of agriculture is studied by a 
spatial (between-catchment) comparison of the long-term parti­
tioning of precipitation into evapotranspiration and streamflow D
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due to the lack of CL% time series. These long-term observations 
are then conceptualized within the Budyko framework ( 56 ).   

2.  Results

 We first evaluate the causal strength between main components 
of water–energy balance including streamflow, precipitation, and 
AR, as depicted in  Fig. 1 . This analysis provides insights into the 
water–energy dynamics from the causal perspective. Causal link 
strength is quantified based on the momentary conditional inde­
pendence (MCI) test statistic value ( 57 ,  58 ,  72 ,  73 ). The MCI 
test statistics yield a well-interpretable notion of a normalized 
causal strength (MCI test statistics value) that allows to measure 
the strength of causal links between variables ( 74 ,  75 ). An MCI 
value of +1 denotes the strongest positive link, while -1 represents 

the strongest link with a negative impact. We acknowledge that 
the hydrological components are inherently interconnected 
through the principle of mass conservation, and deviations in one 
component are necessarily reflected in another. However, our 
analysis focuses on the temporal interactions and perturbations 
that drive catchments toward particular long-term balances, 
including deviations from the Budyko curve. These deviations are 
not a violation of mass balance but rather an indication of how 
external factors influence the partitioning and distribution of 
water–energy components.        

 Panels (A ) and (C ) of  Fig. 1  present the results for precipitation- 
streamflow (P-Q) and aridity-streamflow (AR-Q) links in the United 
States, respectively, while Panels (B ) and (D ) showcase corresponding 
results for GB. In the United States, precipitation emerges as the 
predominant factor influencing streamflow, demonstrating an 

Fig. 1.   Quantifying the causal link strength between main components of water–energy balance including streamflow, precipitation, and AR. The strength 
of these causal links is assessed through the MCI test statistic, where MCI values range from –1 to 1. Panels (A) and (B) illustrate the strength of causal links 
between streamflow-precipitation (P-Q) in the United States and Great Britain (GB), respectively. Panels (C) and (D) depict the strength of causal links between 
streamflow-aridity (AR-Q) in the United States and GB, respectively. White dots indicate catchments where the causal link strengths are not statistically significant.
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expected MCI value of 0.43. AR also exerts control over streamflow, 
particularly in catchments located in Central and Coastal Plains; 
however, the expected MCI value of −0.12 for all catchments in the 
United States is not statistically significant. In GB, similar to the US 
findings, precipitation predominantly control streamflow, with an 
expected MCI value of 0.41. AR also plays a significant role in 
streamflow, particularly evident in East England, with an expected 
MCI value stands at −0.31 across all catchments. The results related 
to SF-Q can be found in SI Appendix, Fig. S1 . 

2.1.  The Percentage of Cropland May Explain Deviations from 
the Budyko Curve. The long-term observations of the 671 
CAMELS-US catchments in the context of the Budyko hypothesis 
are shown in Fig. 2A, stratified by the long-term percentage of 
cropland (CL%). Overall, the observed pattern in the United States 
aligns with the Budyko curve, with an average exceedance of the 
normalized mean streamflow ratio (Q/P) by 0.02. Additionally, the 
analysis reveals that higher CL% corresponds to a higher evaporative 
fraction (E/P) and decreased runoff ratio (Q/P). The CL% in the 
US catchments is significantly (P-value < 0.05) correlated with the 
normalized streamflow anomaly, as shown in Fig. 2B (Spearman 
� = 0.56 ), showing that the agricultural expansion is associated 
with higher streamflow anomalies. Hereafter, when we use the 
term “significant,” it specifically refers to P-value < 0.05. The 
reduction in variability of anomalies in Fig. 2B may be attributed 
to the moderating influence of agricultural practices in catchments 
with higher cropland coverage, where hydrological processes are 
more strongly governed by agricultural activities than by other 
natural mechanisms.

  Fig. 2C   shows the results for the 671 CAMELS-GB catchments 
in GB. The pattern of observations deviates further from the 
Budyko curve compared to the US catchments with a mean 
exceedance of the normalized Q/P of 0.04. Like the US catch­
ments, the CL% is associated with normalized Q/P anomaly 
(Spearman  � = 0.51 ), as shown in  Fig. 2D  . The analyses in both 
the United States and GB show that agricultural activities con­
tribute to deviations from the Budyko curve.

 However, spatial variations in the water balance can also be influ­
enced by other factors, such as vegetation dynamics ( 61 ,  63 ,  76 ) 
and precipitation seasonality ( 62 ,  64 ). To investigate how these 
factors, alongside agricultural activities, contribute to deviations 
from the Budyko curve, we conducted a Random Forest (RF) anal­
ysis across hydrologically significant divisions, specifically three 
Köppen-Geiger climate classes: temperate, snow, and others—Please 
see SI Appendix, Fig. S2 . In the analysis by climate class, temperate 
and snowy catchments—which together constitute over 90% of the 
stations (75.6% temperate and 15.2% snowy)—dominate the find­
ings. These catchments are particularly relevant as they represent 
the majority of agricultural catchments in the studied regions. 
Conversely, the others have far fewer stations (9.2%), making their 
contribution to the overall patterns less significant.  Fig. 3  presents 
the RF analysis, highlighting the contributions of cropland percent­
age (CL%), vegetation, and precipitation seasonality to deviations 
from the Budyko curve. The RF models were run with 1,000 trees, 
with the Out-of-Bag (OOB) error stabilizing after approximately 
400 trees in all cases.        

 The analysis shows that CL% dominates vegetation and pre­
cipitation seasonality in its influence. In the temperate climate, 

Fig. 2.   The long-term observed streamflow and precipitation data are analyzed within the framework of the Budyko hypothesis (56). Panels (A) and (B) depict 
data for the United States, with (A) showing Budyko framework results and (B) illustrating the Spearman rank correlation between the percentage of cropland and 
the anomaly from the Budyko curve. Panels (C) and (D) present the corresponding results for Great Britain (GB), with (C) showing Budyko framework results and 
(D) illustrating the Spearman correlation. The colors indicate the percentage of cropland in each catchment. Spearman � s between the CL% and the normalized 
streamflow anomaly in the United States and GB are 0.56 and 0.51, respectively. The normalized streamflow anomaly is calculated as the difference between the 
simulated (i.e., Budyko-based) and actual streamflow divided by the long-term precipitation (simulated-actual Q)/P . These anomalies indicate how agricultural 
activities alter the natural partitioning of water between evaporation and runoff (See Materials and Methods for further information on the equations that were used).D
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CL% demonstrates the highest importance (importance score = 
0.47), notably exceeding the contributions of vegetation (impor­
tance score = 0.18) and precipitation seasonality (importance 
score = 0.35). In snow-dominated climates, CL% (importance 
score = 0.37) remains the most influential, although vegetation 
(importance score = 0.33) and precipitation seasonality (impor­
tance score = 0.3) show relatively higher contributions compared 
to temperate regions. In the others, which comprise less than 
10% of the studied catchments, CL% (importance score = 0.45) 
again exhibits the greatest influence compared to vegetation 
(importance score = 0.34) and precipitation seasonality (impor­
tance score = 0.22).

 Overall, CL% exhibits the highest importance (normalized 
importance score = 0.43), significantly exceeding the importance 
of vegetation (normalized importance score = 0.28) and precipita­
tion seasonality (normalized importance score = 0.29). These results 
are consistent with the analysis presented in SI Appendix, Fig. S3  
for US and GB catchments, where CL% emerged as the most dom­
inant factor, reinforcing the significant role of agricultural activities 
in driving hydrological deviations across diverse climatic settings. 
While vegetation and precipitation seasonality are important, CL% 
stands out as the primary driver, particularly in temperate climate.  

2.2.  Causal Relationships Between Climatic Drivers and 
Streamflow Suggest Different Impacts of Agricultural Practices 
Across Diverse Climatic Settings. To specifically investigate the 
influence of agriculture on the water–energy balance, hereafter we 
focus on the connection between CL% and the causal relationship 
between observed P-Q and AR-Q across climate classes as shown 
in Fig. 4 and the two countries in SI Appendix, Fig. S4. This dual 
focus provides insights into how agricultural intensity interacts 
with water–energy balance components to shape hydrological 
behavior over different climates and regions.

 For temperate catchments, we found a strong negative correlation 
between CL% and P-Q causal strength (Spearman  � = − 0.75 ), 
highlighting the role of cropland in exacerbating precipitation-
driven deviations from the Budyko curve. In contrast, the relation­
ship between CL% and AR-Q causality in temperate catchments 
was weaker but still significant ( � = − 0.42 ), suggesting that 
cropland influences water–energy balance through complex inter­
actions with precipitation and AR. However, snowy catchments 
exhibited a positive correlation between CL% and P-Q causality 
( � = 0.51 ), indicating a stronger dependence on precipitation. 

Snowy catchments showed a negative correlation between CL% and 
AR-Q causal strength ( � = − 0.45 ), reinforcing the role of AR 
as a secondary driver.  Fig. 4  further demonstrates that the relation­
ships between P-Q and AR-Q are not independent but rather vary 
in their interactions across climate regions and external factors.

 The analysis across countries in SI Appendix, Fig. S4  supports 
these class-specific findings while revealing regional nuances. In the 
United States where stations span a wide range of climates, the 
CL% was significantly negatively associated with AR-Q causal 
strength (Spearman  � = − 0.53 ), consistent with the patterns 
observed in temperate catchments. However, the relationship 
between CL% and P-Q causality in the United States was weak 
( � = 0.12 ), reflecting the variability in hydrological responses 
across diverse climates. In GB, a contrasting pattern emerged: CL% 
had a strong negative correlation with P-Q causality (Spearman 
﻿� = − 0.89 ), suggesting an increased reliance on precipitation 
for streamflow in agricultural regions. The relationship between 
CL% and AR-Q causality in GB was weakly negative ( � = − 0.26 ), 
aligning with its temperate climate, where AR plays a less dominant 
role in water–energy interactions.  

2.3.  Causal Relationships Suggest That Agriculture in the 
Temperate and Snow Catchments Relies on Different Water 
Sources. The preceding analysis implies different impacts of 
agriculture on the interplay among streamflow, precipitation, and 
AR. In temperate catchments, causal analysis reveals a direct impact 
of agriculture on P-Q relationships, indicating that the P-Q causal 
relationship weakens as CL% increases in a catchment. That is, in 
crop catchments, P tends to exert a lower influence on Q. However, 
this is not observed in snowy catchments, where the impact of 
agriculture on the water balance differs significantly. To further 
investigate the sources of water for agriculture particularly in the 
snowy catchments, we partition streamflow into two components: 
direct flow (Qd; immediate runoff-fed component) and baseflow 
[Qb; groundwater-fed component (77, 78) utilizing a one-
parameter low-pass filter (79–84) (See Materials and Methods for 
details). We examine the relationship between the rate of change 
in the annual baseflow and CL% to better understand the impact 
of CL% on the changes in the groundwater-fed component of 
streamflow (i.e., baseflow). We calculate the linear regression trend 
of normalized annual baseflows (TNB) over the study period and 
examine its relationship with the percentage of crop cover in the 
agricultural catchments.

Fig. 3.   RF model analysis of the relative importance of cropland percentage (CL%), vegetation, and precipitation seasonality in explaining deviations from the 
Budyko curve for catchments classified by the Köppen-Geiger climate classification. Panel (A) presents the factor importance for three climate classes. Panel (B) 
shows the OOB Error against the number of trees for each class. The analysis highlights that CL% consistently demonstrates the highest importance in temperate 
and snowy climates, surpassing the influence of vegetation and precipitation seasonality.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
sc

ol
a 

Su
p 

A
gr

ic
ul

tu
ra

 -
 U

SP
 o

n 
Ja

nu
ar

y 
8,

 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
14

3.
10

7.
22

7.
85

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2410521122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2410521122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2410521122#supplementary-materials


6 of 12   https://doi.org/10.1073/pnas.2410521122� pnas.org

2.4.  Agricultural Catchments in a Snowy Climate in the United 
States Experience Decreases in Baseflow, Suggesting That 
Streams Are Increasingly Disconnected from Groundwater. 
Fig. 5 summarizes findings of regression analysis of TNB, with 
the y-axis representing TNBs and the x-axis denoting CL%. 
Panels (A) and (B) display the results for the temperate and snowy 
catchments, respectively. The TNBs are determined through a 
simple linear regression trend, with dashed lines indicating the 
significance level (i.e., regression trend) at P-value = 0.05.

 In the snowy catchments, a significant association is observed 
between the rate of baseflow change and crop cover, as evidenced 
by a Spearman rank correlation coefficient of −0.48 (95% CIs span­
ning from −0.55 to −0.41). Remarkably, 38% of snowy catchments 
exhibit negative trends in baseflow, and among them, 10.3% dis­
play statistically significant changes. In contrast, the relationship 
between TNB and crop cover in temperate catchments appears 
comparatively weak, indicated by a Spearman correlation coefficient 
of −0.19. The 95% CI extends from −0.29 to −0.1, underscoring 
the modest nature of this association. This difference can be attrib­
uted to the reliable availability of precipitation in temperate cli­
mates, making agriculture primarily dependent on precipitation 
rather than groundwater. Consequently, the correlation between 
baseflow changes and CL% is not as pronounced as it is in snowy 

catchments. In temperate catchments, 13.6% of agricultural catch­
ments demonstrate negative trends in baseflow, and among them, 
a mere 2.3% exhibit statistically significant changes unrelated to 
agricultural practices.   

3.  Discussion

 The future of terrestrial freshwater ecosystems is uncertain in 
an era of human interventions and rapid global climate change 
( 85   – 87 ). Although previous methods employed modeled 
streamflow data to identify causal connections between human-
induced forcing and observed river flow patterns globally 
( 88   – 90 ), uncertainties remain regarding the complex interac­
tions between human activity, climate variables, and catchment-
scale hydrological processes that impact water flow dynamics. 
These uncertainties increase the likelihood of unexpected out­
comes as catchment modifications continue at the global scale, 
including urbanization ( 91 ,  92 ), increased water use ( 93 ), and 
alterations in the structure of land cover such as agricultural 
expansions ( 94 ,  95 ). Building on previous findings, we have 
used a large, measured dataset to better understand watershed 
responses to changes in land surface characteristics caused by 
agricultural expansion.

Fig. 4.   The scatter plots illustrate the correlation between changes in the causal link for P-Q, AR-Q, and cropland percentages (CL%) across temperate and snowy 
catchments. Panels (A) and (B) present the P-Q results for temperate and snowy catchments, respectively. Temperate catchments exhibit a strong negative 
correlation between CL% and P-Q causal strength (Spearman � = − 0.75 ), suggesting that cropland exacerbates precipitation-driven deviations from the Budyko 
curve. Conversely, snowy catchments show a positive strong dependence on precipitation in these regions ( � = 0.51 ). Panels (C) and (D) depict AR-Q results 
for temperate and snowy catchments, respectively. In temperate catchments, a moderate negative correlation ( � = − 0.42 ) highlights the role of cropland in 
influencing streamflow through AR-driven evaporative demand. Similarly, snowy catchments show a negative correlation ( � = − 0.45 ), underscoring AR’s role 
as a secondary driver. These results reinforce the varying impacts of agricultural intensity on the water–energy balance components across climatic conditions.
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 To advance our understanding of the water–energy balance and 
its association with human activities, it is imperative to identify 
driving forces. Earlier research primarily utilized the Budyko frame­
work to evaluate the sensitivity of streamflow to certain variables. 
However, this framework, while effective in explaining spatial dif­
ferences in streamflow across natural catchments, proves less adept 
at elucidating temporal changes within catchments, particularly 
concerning climate and human intervention. The intrinsic space-
time asymmetry of the Budyko framework raises questions about 
its suitability for exploring water availability sensitivity at finer 
temporal scales ( 68 ,  69 ). To address this, we use empirical data and 
the PCMCI+ causal discovery method ( 57 ,  58 ) to shed light on 
how agriculture affects the long-term water–energy balance.

 Our findings underscore that agricultural expansions induce 
alterations to the water–energy balance in catchments, contributing 
to deviations from the Budyko curve.  Fig. 4  shows a significant 
association between agricultural expansion and the AR-Q causal 
relationship within these areas, indicating that more crop cover 
exacerbates the negative link between streamflow and AR in these 
areas. In catchments that rely primarily on groundwater for their 
water supply, this phenomenon is linked to increased crop cover, 
which increases evapotranspiration and, in turn, reduces surface 
runoff and streamflow ( 96     – 99 ) ( Fig. 4 ). This finding is consistent 
with previous research that highlights the significant effects of 
groundwater-fed irrigation on evapotranspiration and alterations in 
the water–energy balance in the US High Plains ( 17 ,  33 ,  94 ,  100 ).

 In particular, studies show that groundwater plays a critical role 
in sustaining agricultural activity in US locations with limited 
water availability. Groundwater-fed irrigation in the US High 
Plains increases evapotranspiration, which changes the water–
energy balance ( 100 ). Other studies showed that groundwater 
levels are widely declined, especially in regions with extensive crop 
cover ( 101 ,  102 ). Our research supports these conclusions by 

showing how groundwater-fed agriculture affects departures from 
the Budyko water–energy balance, reflecting the need of ground­
water to meet the crop evapotranspiration ( 103 ,  104 ). This implies 
that groundwater gains or losses are more likely to have an impact 
on the theoretical relationship between dryness and the evaporative 
index ( 105 ,  106 ). Moreover, evapotranspiration and streamflow 
in the United States are significantly impacted by groundwater 
losses ( 94 ), with changes in evapotranspiration closely linked to 
crop development. This highlights the disruptive impact of irriga­
tion expansion on the water–energy balance dynamics ( 107   – 109 ). 
While our spatial analysis offers valuable insights into the role of 
agriculture in shaping the water–energy balance, it is important 
to recognize that factors such as the length of the growing season, 
crop types, and vegetation replacement ( 110 ) can further influence 
temporal evapotranspiration dynamics, introducing complex inter­
actions that may not be fully captured by our approach. Addit­
ionally, cropland greatly affects evapotranspiration and energy 
fluxes, further altering energy balance ( 106 ,  109 ). However, the 
P-Q relationship does not show a significant association with CL% 
in US agricultural catchments. This could be because groundwater 
is typically used instead of direct precipitation to meet agricultural 
water needs.

 On the other hand, in GB, which is characterized by catch­
ments with limited energy in which precipitation is the main 
source of water for agriculture, changes in the water–energy bal­
ance are primarily characterized by variations in the strength of 
causal relationships between streamflow and precipitation (P-Q). 
Results show a significant association between the agricultural 
expansion in temperate catchments and the P-Q relationship, 
which is not the case in the snowy catchments. As the percentage 
of CL% rises, the P-Q relationship decreases, suggesting that 
higher crop cover may result in a lower streamflow ratio as a 
consequence of changes in the P-Q dynamics. This phenomenon, 

Fig. 5.   Analysis of normalized baseflow changes in catchments across the temperature and snowy catchments, where cropland constitutes at least 1% of the 
total basin area, as depicted in Panels (A) and (B), respectively. Dashed lines represent the significance level (i.e., the threshold for regression trend) with a P-value 
of 0.05. The y-axis depicts the linear regression trend of normalized baseflow, while the x-axis represents the percentage of the catchment covered by crops. In 
the snowy catchments, the baseflow’s regression trend strongly correlates with CL%, indicated by a Spearman correlation coefficient of −0.48. In temperature 
catchments, conversely, the linear regression trend in baseflow demonstrates a low correlation with CL% (Spearman ρ = −0.19).
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which is particularly apparent in areas where agriculture signifi­
cantly depends on precipitation, can be explained by enhanced 
evapotranspiration and plant uptake of water ( 106 ,  107 ). The 
absence of correlation between CL% and the AR-Q relationship 
in temperate catchments can be ascribed to its relatively humid 
climate, where AR exerts less constraint on streamflow ( 111 ,  112 ). 
Studies conducted in GB suggest that elevated water usage by 
crops may result in a decreased distribution of precipitation, favor­
ing evapotranspiration over runoff ( 111   – 113 ), which affects, in 
turn, the P-Q relationship. The reduction of the discrepancy 
between actual and potential evapotranspiration is largely depend­
ent on the interplay between soil water storage and crop responses 
to water availability. This leads to a linear relationship between 
the evaporative ratio and AR ( 106 ,  107 ,  114 ) in these areas.

 These distinct patterns underscore the nuanced interplay 
between agriculture and the water–energy balance, further empha­
sizing the impact of human activities as well as geographical and 
climatic variations on catchment dynamics. Understanding these 
intricacies is essential for effective water resource management, 
especially considering the potential implications of climate change 
and agricultural practices on streamflow patterns in energy-limited 
catchments like those in GB.

 In conclusion, our study emphasizes the intricate relationship 
between agriculture by water source, the water–energy balance in 
a catchment, and deviations from the Budyko curve. A more pro­
found understanding of these dynamics equips us to navigate water 
resource management adeptly, advocate for sustainable agricultural 
practices, and progress toward attaining global sustainable devel­
opment goals. While our primary analysis centered on deviations 
from the Budyko curve due to alterations in the water–energy bal­
ance induced by agricultural practices, it is crucial to acknowledge 
additional influential factors shaping regional and global hydrolog­
ical patterns. These factors encompass climatic variables such as 
climate variability and change ( 40 ,  115 ), human activities like 
drainage and groundwater extraction for domestic and industrial 
purposes, as well as catchment characteristics ( 37 ,  116 ,  117 ). For 
instance, in the Southeast region of GB, where extensive agricultural 
activities happen, rainfall-runoff events exhibit low runoff coeffi­
cient values. This is mainly due to the presence of chalk catchments 
characterized by high permeability ( 118 ). The occurrence of lateral 
subsurface flow in these catchments warrants consideration; how­
ever, its impact on the arguments presented in this paper is minimal, 

as the water involved typically travel the saturated zone swiftly and 
contributes to flow over the course of months ( 119 ,  120 ).

 In attributing the change in the hydrological cycle to CL% as a 
proxy for agriculture, there is an opportunity for further research into 
the interplay of human and natural hydrological dynamics. For 
instance, a more comprehensive investigation of P-Q dynamic in GB 
can provide insights into the relationship between changes in the 
water–energy balance, CL%, and the implementation of field drain­
age in the 1970s and early 1980s ( 117 ). This, in turn, can unveil how 
agricultural practices aimed at reducing waterlogged conditions have 
impacted crop yield, transpiration, and water storage capacity within 
the upper soil profile, leading to changes in runoff changes ( 121   – 123 ). 
These multifaceted interactions warrant continued exploration and 
consideration in our ongoing efforts to address water-related chal­
lenges and secure a more sustainable future.  

4.  Materials and Methods

4.1.  Data. The research focuses on analyzing watershed data from two comprehen-
sive datasets, one from the United States and the other from GB, to understand hydro-
logical variations across these regions. The US data are derived from the CAMELS 
dataset (124), which includes detailed information on 671 catchments across the 
contiguous United States. These catchments vary significantly in size, from 4 to 
25,817 square kilometers, and provide a rich source of data including discharge, 
meteorological information, and various other attributes from 1980 to 2015. Key 
variables such as precipitation, temperature, potential evaporation, and streamflow 
are included, with streamflow data specifically sourced from the HCDN-2009 net-
work (125). Additionally, the dataset incorporates information on cropland extent, 
calculated using a global cropland map (126), and groundwater-level data from the 
US Geological Survey (https://waterdata.usgs.gov/nwis/inventory).

In contrast, CAMELS-GB dataset (127), encompasses hydrometeorological and 
attribute data for 671 catchments across GB. These catchments also display a wide 
range of sizes, from 1.6 to 9,930 square kilometers, and include daily time series 
data for variables such as temperature, precipitation, potential evapotranspira-
tion, and streamflow, covering the period from 1970 to 2015. The creation of 
the CAMELS-GB dataset aimed to synthesize existing data into a consistent, up-
to-date collection that facilitates the comparability and reproducibility of hydro-
logical studies across GB. This dataset represents a significant effort to provide a 
comprehensive view of the hydrological and meteorological characteristics of GB 
catchments, including aspects such as land cover, with crops and grassland being 
predominant in different regions, and the distribution of large reservoir capacities, 
especially in the more mountainous areas. Fig. 6 shows the spatial distribution of 
CAMELS catchments across the United States and GB, stratified with CL%.

Fig. 6.   Geographical distribution of studied catchments. Panels (A) and (B) display the locations of CAMELS catchments in the United States and GB, respectively. 
The shades of red color represent the percentage of cropland. The size of dots is proportional to the magnitude of the percentage of cropland.D
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Both datasets cover a wide range of climatic, hydrological, landscape, and 
human management characteristics, underscores the complexity of watershed 
dynamics and the importance of large-sample studies in advancing our under-
standing of hydrological systems.

They serve as invaluable resources for researchers aiming to analyze regional 
variability in hydrologic model performance, assess the impact of climatic and 
land-use changes on water resources, and develop strategies for sustainable 
water management.

4.2.  Snow Estimation. To employ the causal discovery algorithm and enhance 
our comprehension of the influences on water balance, it is imperative to pinpoint 
the primary drivers shaping variations in streamflow. Within this framework, our 
focus centers on three pivotal factors impacting streamflow (Q): precipitation (P), 
AR, and SF. Directly extracted from the CAMELS datasets, precipitation and AR data 
serve as foundational components. For the determination of the proportion of pre-
cipitation designated as snow (SF), a straightforward temperature-based thresh-
old was applied. Specifically, when the average daily temperature dipped below 
1 °C, all precipitation was categorized as snowfall (66, 128). Conversely, if tem-
peratures surpassed 1 °C, the precipitation was classified as rainfall. Additionally, 
an alternative threshold of 0 °C (70) was explored, yielding consistent outcomes 
regardless of the chosen method for estimating snowfall.

4.3.  Budyko Framework. Here, we employ the Budyko framework, a well-
known approach to examine the complex relationships between streamflow 
elements, meteorological conditions, and catchment features in relation to the 
long-term water balance (41, 52, 73). Based on AR index ( �  ), this framework for-
malizes the partitioning of precipitation (P) into evapotranspiration (ET) and runoff 
(Q). The framework aids to evaluate the main variables affecting the components 
of water balance. Through an examination of the ways in which catchments with 
certain characteristics deviate from the Budyko curve, we may assess how much 
and how these features affect the components of the water balance beyond the AR 
index (66, 68). The Budyko curve is represented by the following equation (56):

1 − Q∕P

P
=

√

√

√

√

Ep

P
tanh

(

P

Ep

)(

1−exp

(

−

Ep

P

))

,

where Q , P , and Ep denote the long-term mean values for streamflow, precipita-
tion, and potential evaporation.

4.4.  RF for Analysis of Attribution. To identify the factors contributing to devi-
ations from the Budyko curve, it is essential to quantify the relative importance of 
each variable. Traditional approaches, such as linear or logistic regression models, 
can be used to evaluate the influence of explanatory variables on a response 
variable (129). However, multiple regression method is only applicable when 
there is a linear relationship between predictors and the response variable, and 
when the assumptions of normally distributed residuals, homoscedasticity, and 
independence are met (130).

Given the nonlinear interactions between deviations from the Budyko curve 
and contributing factors, we employed the RF algorithm. RF is well suited for 
handling complex, nonlinear relationships and interactions, offering robust 
performance in high-dimensional settings which enables the relative impor-
tance of influencing factors (131, 132). It uses an ensemble of Classification and 
Regression Trees (CARTs), enhancing predictive accuracy and reducing variance 
compared to single decision trees (133). The model employs bootstrap aggre-
gation (“bagging”) to create multiple subsets of the original data via random 
resampling with replacement, allowing each tree to train on unique subsets. Data 
points not selected in these samples form “OOB” samples, which are critical for 
assessing variable importance.

To evaluate the importance of a variable, RF permutes the variable in the 
OOB samples while keeping others constant and reruns the model. The varia-
ble’s importance is calculated as the average difference in prediction accuracy 
between the original and permuted OOB samples. Mathematically, the variable 
importance (VI) of an explanatory variable x is defined as

VI(x) =
1

ntree

ntree
∑

i=1

(

∼

y
i−yi

)

,

where y is the prediction with the original OOB sample, ỹ i is the prediction with 
the permuted OOB sample, and ntree denotes the total number of trees in the 
forest. A larger value of VI indicates a higher importance of the variable.

In this study, RF was used to evaluate the relative importance of cropland 
percentage (CL%), vegetation, and precipitation seasonality in explaining devia-
tions from the Budyko curve, offering insights into the key drivers of hydrological 
behavior across different catchments.

4.5.  Causal Discovery Algorithm. In our study, we aim to understand the 
impact of agriculture on the water cycle across various catchments in the United 
States and GB by examining causal relationships between climate variables and 
streamflow. Traditional approaches, like the Budyko hypothesis, provide valuable 
insights into the spatial influence of agriculture on the water cycle; however, they 
fall short in explaining the causal mechanisms behind observed deviations in 
water balance. Most statistical attribution studies rely on qualitative reasoning, 
sensitivity-based analysis, or correlation-based techniques, which often focus 
on a single driver and do not adequately quantify causal relationships among 
multiple interacting factors (66, 69, 134, 135).

To address these limitations, we employ a causal discovery approach using the 
Peter-Clark MCI Plus (PCMCI+) algorithm. This algorithm allows us to explore the 
temporal interactions among hydrological components that shape deviations from 
the Budyko curve, without violating the principle of mass conservation (P - ET = 
Q). The focus is on understanding how specific drivers, such as SF or cropland per-
centage (CL%), perturb these relationships over time, leading to deviations in long-
term averages. PCMCI+ is specifically designed to detect both contemporaneous 
(simultaneous) and time-lagged causal relationships in high-dimensional time 
series data, which is common in environmental studies (136, 137). The PCMCI+ 
algorithm identifies causal connections among variables. It starts by constructing 
a Directed Acyclic Graph (DAG), which represents the system’s causal structure (58, 
138). In a DAG, variables are represented as nodes, and directed edges (arrows) 
illustrate causal relationships between them as shown in Fig. 7.

The PCMCI+ algorithm operates in two main stages (139). The first stage, 
known as the PC Stage (Conditional Independence Testing), uses the PC1 algo-
rithm, a variant of the original Peter-Clark (PC) algorithm, to identify a set of 
variables that best explains the dependencies of that variable. This stage begins 
with a fully connected graph as shown in Fig. 7A and tests conditional independ-
ence between variables by incrementally increasing the number of variables in 
the conditioning set. By applying linear partial correlation tests, the algorithm 
determines which connections between variables can be removed while preserv-
ing the graph’s validity. The process continues iteratively, aiming to converge 
on a subset of essential links at a significance level of 0.05, ensuring that only 
significant causal links remain as shown in Fig. 7B.

In the second stage, known as the MCI Stage (Causal Inference), the MCI test lev-
erages the estimated conditions identified during the PC stage to infer causal rela-
tionships between variables. This stage assigns a causal strength value, measured by 
MCI partial correlation, to each detected causal link (74, 75) (Fig. 7C). The MCI test can 
capture both linear and nonlinear dependencies, providing a deeper understand-
ing of causal interactions. Together, these two stages allow the PCMCI+ algorithm 
to effectively distinguish direct causal influences from indirect or spurious connec-
tions, enhancing the reliability of the resulting causal graph. The Python software for 
estimating the causal network is available at https://jakobrunge.github.io/tigramite.

4.6.  Decomposition of Streamflow. To further explore the analysis of water 
sources for agriculture, we utilized a one-parameter low-pass filter method 
developed by Lyne and Hollick (79–84), commonly used in the literature (82, 
84, 140, 141) to effectively decompose streamflow into its constituent com-
ponents, namely baseflow and direct flow. This method relies on temporal fil-
tering principles, wherein the streamflow hydrograph undergoes convolution 
with a smoothing function defined by a filter parameter, often referred to as 
the recession constant (α). We applied the recursive filter iteratively three times 
(forward-back-forward) to filter off flood peaks from the original streamflow time 
series, configuring the filter parameter [set as 0.925; a widely accepted value in 
hydrological studies (79, 80, 140, 142–144). The resulting separation let us to 
discern the slow, groundwater-derived baseflow from the rapid, rainfall-induced 
direct flow. To account for the inherent uncertainty of streamflow partitioning (81), 
we repeated our analysis using the Lyne Holick one-pass configuration, which 
yielded quite similar results.

[1]

[2]
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To calculate baseflow, we used Lyne and Hollick’s (79–84) one-parameter 
low-pass filter approach, which is a well-known method in the literature (82, 
84, 140, 141). By applying temporal filtering principles, this approach effec-
tively partitions streamflow into its two main components: baseflow and direct 
flow. Recession constant (α), a filter parameter, is used to build a smoothing 
function that is used to convolve the streamflow hydrograph. We applied the 
recursive filter three times (forward-back-forward), using a filter parameter 
set to 0.925, a widely accepted value in hydrological studies (79, 80, 140, 
142–144). The original streamflow time series’ flood peaks were effectively 
removed by this iterative procedure, making it possible to distinguish between 
rapid, rainfall-induced direct flow and slow, groundwater-derived baseflow. 
To account for the inherent uncertainty of streamflow partitioning (81), we 
repeated our analysis using the Lyne Holick one-pass configuration, which 
led to similar results.

Data, Materials, and Software Availability. Catchments in Great Britain 
(CAMELS-GB), daily hydro-meteorological time series and landscape features; 
data for the US (CAMELS); causal network estimation code data have been depos-
ited in Environmental Information Data Centre; Geoscience Data Exchange Centre 

of the NSF; Potsdam Institute for Climate Impact Research (PIK) (https://cata-
logue.ceh.ac.uk/documents/8344e4f3-d2ea-44f5-8afa-86d2987543a9; https://
dx.doi.org/10.5065/D6MW2F4D; and https://tocsy.pik-potsdam.de/tigramite.
php). Previously published data were used for this work (124, 127).
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