





Our aim in this work is to study one of the first questions that arises when you treat
long time dynamics, stabilization and control. Are the solutions asymptotic to the set of
equilibria as t tends to infinity?

In order to address this question we first have to check if it makes sense, that is, are
the solutions of (1) globally defined and unique?

The method we will use to study (1) is semigroup theory, that is, to treat (1) as an
evolution equation in a Banach space X, specifically, we will write (1), at least formally,
in the abstract form

u(t) + Au(t) = H(u,), t>0
()
u(t) = Sa(t)v te [—ra 0]

where A will be an operator in X associated to the linear part of (1), u, : [-r,0] = X
denotes the function u:(f) = u(t +0),—~r < 8 < 0 and H : C(|-r,0], X) — X will be a
nonlinear term related to f and g.

Once (2) is defined, we will make use of abstract results to show existence and unique-
ness of solutions of (2). Then we will apply elliptic regularity to recover the solutions of
(1).

Such theory has been widely used to get well posedness of equations like (1}). Most
of them are based on the general results obtained by Henry [8] and applied to these
problems. We will use the ideas of Amann [1, 2], combined with these general results, to
get well posedness for (1). This strategy has been used successfully to study the undelayed
counterpart of (1) in Oliva and Pereira [13], and in Carvalho, Oliva, Pereira and Rodriguez-
Bernal [3] (without using Amann’s results). The abstract results of Henry [8] have to be
adapted to the case of delay equations, but this has been done by Oliveira [14].

Before we proceed, let us mention that a lot of work has been done if g(u,v) = g(u)
and if we introduce an interior delay that is, f(u;). Among others we can mention: Martin
and Smith {12] - for existence using comparison results for equations with discrete delays;
Ruan and Wu [17] - for the extension of the results of Martin and Smith [12] for equations
with infinite delays; Travis and Webb [18, 19] - for existence results imposing that the
nonlinearity be globally Lipschitz. In the case of boundary delay, most of the work deals
with the case where the delay term is linear.

a

Once we have established global existence and uniqueness of (1), we can focus our
attention on the main question, mentioned before. In this direction it is well-known and
not hard to prove (see Hale [6], Henry [8] and Matano [15]) that for scalar reaction-diffusion
equations,

—Au= f(u) (z€ 2 CR") (3)

subject to homogeneous boundary conditions, all globally defined bounded solutions must
approach the set of equilibria as ¢ tends to infinity. This is a consequence of the fact that
(3) is a gradient system (makes use of Lyapunov function) and can be easily generalized
to equations with nonlinear boundary conditions.



Later on Friesecke [4] used the Lyapunov function of (3) to prove that for dissipative
scalar reaction-diffusion equations, with sufficiently small delays,

4= Au = f(u(t),u(t-r)) (€ R C R (4)

subject to homogeneous boundary conditions, all globally defined bounded solutions must
approach the set of equilibria as ¢ tends to infinity.

We want to extend this result when the delay appears on the boundary, that is to

equation (1). We will do that following the ideas of Friesecke (4], but we do not use the
Lyapunov function of (3).

As in Friesecke (4], we will assume that (1) is dissipative, without assuming any growth
conditions on the undelayed part.

(H1) Let us assume that the nonlinearity f : R - R is C" and satisfy the dissipative
condition
f(s)

lim sup = < ¢y, (5)
|#]—s o0
where ¢; € R.
The nonlinearity g : R? — R is assumed to be C? and to salisfy the dissipative
condition .
timsup 229 < ) (6)
fof—soo

for some continuous function c,, and all t € RR.

With this, we will show a decay estimate that will be enough to prove the convergence
to the set of equilibria. This decay will be obtained just using the variation of constants
formula and the exponential estimates of the semigroup generated by the linear part of

2).

The paper will proceed as follows: In Section 2 we will define the abstract equation
equivalent to (1); In Section 3 we show existence and uniqueness of the solutions of the
abstract equations, this will be done by applying the abstract results, that are stated
in Subsection 3.1, to our specific equation (Subsection 3.2). After establishing global
existence and uniqueness for the abstract equation, we show a smoothing property and
the relation between the solution of the abstract equation and (1) in Subsection 3.2.1.
Finally in Section 4 we show that all bounded solutions approach the set of equilibria as
t tends to infinity, if the delay is small enough.

2 Abstract Setting

In order to define the operator in (1) we will need to extend the definition of fractional
power to include negative powers. These negative fractional powers can be define using



the ideas of Amann (1}, [2] as done in Oliva and Pereira [13], where they consider semilin-

ear reaction-diffusion equations with nonlinear boundary conditions, with no delays, and
define the abstract equation.

We will start by defining the spaces that will be used through out this work, namely
the so called Lebesgue Spaces (we refer to Triebel [20] for all the results related to these
spaces). Let S = S(IR") be the set of all complex-valued rapidly decreasing infinitely
differentiable functions defined on the n-dimensional real Euclidean space R*. As usual,

§" = S'(IR") denotes the space of tempered distributions, which is the dual of 5. We
denote by

(F8)(©) = (2)°F [ e €04(a)dz, g€,

{z,€) = T}, zi¢;, the Fourier transformation, and

(F9)€) = 2n)2 [ eX0(2)dz, g€ 5,

the inverse Fourier transformation.
With this we can define the Lebesgue Spaces in IR™, as follows

Definition 2.1 Let —co < s< oo andl < p < co0. Then

Hy(R") = {f € SR flng = 17~ (1 + |2} F flfz» < o0}
Now let us define the Lebesgue Spaces in a domain 0 C IR™.

Definition 2.2 Let @ C IR™ be an arbitrary (bounded or unbounded) domain. Further,
let —co <s<ooandl <p<oco. Then H () is the restriction of Hi(R™) to Q,

WA zemy = inf lgllarzm)-
gla=f
g € H}(R")
Here gla denotes the restriction of g to Q.
Remark 2.1 H}(Q) is a Banach Space for any s (see Triebel [20]).

Now, let us define our spaces taking into account the boundary condition B. To do

this, we first define the admissible boundary conditions, the so called

“Normal System”
of boundary conditions.

Definition 2.3 Let O C IR* be a bounded C> dorzmin. Further let
Bif(z)= 3 ba(z)Df, b;a(z) € C*(09),

la|gm,

]if: 1,---,k, be differential operators on 9. Then {B:‘},’,"=1 is said to be @ normal system
f

0<m<my<---<my
and if for any normal vector v, with respect to I and the point z € ON it holds that
Z bja(z)vg #0, j=1,---,k

lal=m,



Definition 2.4 Let 2 C R™ be a bounded C*® domain. Further, let {B,}:_, be a normal
system. For s > 0 and 1 < p < o0, we have

1. Ifs— i- < my, then
Hy.(5,()) = H(@)

2. If for somel, m; < s — % < My, then

Hp (5,,() = {fIf € H;(),B;flaa = 0. for j <1}

Remark 2.2 In our case, that is in (1), we have thatk =1, m; =1, Byju = Bu = Bani

The definition takes into account the boundary condition B,f = 0, as long as il makes
sense, that is, as long as the m; derivatives have trace.

Now let us define the operator. Consider A the operator in LP(; €) defined by

D(A) = H} 5)(?)

Au = -Div(aVu) + Y B,-(x)% + Au
2

=1
where B is the boundary operator Bu = % Let A’ (the dual operator) be the operator
in L7 (£; €), where 1y ;‘7 =1, defined by
.D(A') = H:,'(C)(Q)
A'v = —Div(aVv) - div(vB) + Av,

where C is the boundary operator Cv = fnl +vB-n.
We have that (see Triebel [20], pag. 401):

e A’is an isomorphism from H:,'(c}(ﬂ; €) onto L*'(%; CT);

e Denote by A” the dual operator of A. Then A” is an isomorphism from LP(%2; T)
onto (H}, (1(?; €)'

o« A"z A, in H (% C).
With this, let us define the operator Ay in (H2 (}(2; €))' by

D(A_,) = L*{(Q; T)
A_ju = A"y, for all u € LP(; T).



Consider the following diagram

(;0) (. (0 ©))
A I ALy
r@0) —— (H00)

If u € LP(2;C) then A""'u € H} (5,(0;C). Thus A”0 Ao A" 'u=A"0A"0 A" 'u =
A"u = A_ju. It is also easy to check that D(A_;) = D(A" 0 Ao A""'). Therefore, the

diagram commutes.

Proposition 2.1 A_, is a sectorial operator, with p(A) = p(A-1). Moreover, given
8 >0, if we define
Xﬁl = D(A'-l)

then A_, is also a sectorial operator in X%, which we denote by Ay_,.
Proof: See Oliva and Pereira [13].
Let us assume the following.

(H2) We will fiz X in such a way that A is a positive operator (as defined in Triebel [20]).
This will imply that A_, is also a positive operator.

Remark 2.3 If B =0, then A can be any positive value.

Applying Proposition 2.1 and interpolation results, we have that, if (H2) holds, then
for 20 #1+ 1,
X!, = D(AL) [(H3,4c) (R ©)), (L7 (R; ©))']s o
(2 ()(®; ©), L7 (@ O = (HJ () (2 €)Y

P

It

If we define X® = D(A®), then we have the following result.
Theorem 2.1 /f0 <8 <1 arnd (H2) holds, then
é
X_Tl = X‘ = H:.‘(B)

Proof: See Oliva and Pereira [13].

Notation 2.1 Having this result in mind we will define, for all0 < s < 1,

X—a = 1—1--
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Notation 2.2 For a given v € R we will define C, = C([—r,0], X") the Banach space

of all continuous functions p:[—r,0) — X7 with the sup-norm.

We observe that we can always consider the Lebesgue spaces as real Banach spaces,
even though our functions are taking complex values. With this in mind, if (H2) holds
then it follows from Proposition 2.1 and the results of Henry [8] that A.; generates an
analytic semigroup in X~ for 0 < 8 < 1 which satisfies, for A <a <1 -j

“e—"“uo"X° < Me™ugllx=, t>0
(8)

"e°‘“"'Uoﬂx, < Me™t7 @ Nyg| x-0, t > 0.

for some ¢ > 0, M > 0.
We want to choose a, # and p in such a way that

L. X*c C();

2. X178 = H2-2)(Q)), in other words X'~? does not incorporate the boundary con-
dition;

Jat+f<l.

So we will take p, a and 8 satisfying

+ -L (9)

n 1
D oca<l-f<l-—
gp <o <1-4 2 %

RO | =

Notice that
e 1. follows from Theorem 2.1 and embedding theorems (see Triebel [20]);

e 2. follows from Definition 2.4 and Theorem 2.1.

Remark 2.4 [t is easy to check that (9) can be realized if p is big enough (for instance
p=n is enough).

Using Definition 2.4, Theorem 2.1 and duality theorems for interpolation spaces (see
Triebel [20]), one can also check the following result.

Corollary 2.1 Ifa, 3 and p satisfy (9) and (H2) holds, then

X = H?(Q) and X~° = (H(9))

Since we are going to use the linear operator A with homogeneous boundary conditions
to define the abstract problem, we need to include the nonlinear boundary conditions in
the equation. Furthermore since we are working with complex valued functions, we will
need to complexify f and g. This is done as follows.
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Notation 2.3 We denote by
fc€—-C guCxC—-C
the complezifications of f and g, respectively, that is,
Q) = f(Cr) +if(C1), (=(rtiQi€R+IR=C,
9ol ¢?) = g(Ch CB) +ig(Ch (D), ¢ =Ch+if e R+iR=C, forj=1.2

Nouw, let us consider the map g,: X® x X® — X~# defined by

(9n(u,0),8) = [ (gc(u,0))1(e), for all ¢ € HF(R),

where v denotes the trace operator.

Similarly, we define fq: X2 — X~° by
(falu), 9) == /ﬂfc(u)ds, for all $ € H(Q).
We will also denote by H:C, — X~? the function defined by,

¢ € Ca — fa(p(0)) + g+(#(0), p(—1)). (10)

It is easy to show that fq and g, are well defined.
Thus the abstract equation (2) will take the form

{ (t) + A_pu(t) = H(u), t>0
(11)
u(t) = p(t), t€[-r0]

3 Existence and Uniqueness of Solutions

We want to establish the existence and uniqueness of the solutions of (11). In order to

to this, we are going to recall the abstract existence results that are going to be applied
to (1).

3.1 Abstract Results

All the abstract results can be found in Oliveira [14], the adaptation to X is straight
forward.



In this paragraph, X7 (for any y € IR) are the Banach spaces defined in the previous
section, r 2 0 a real number and C, = C([-r,0], X*) the Banach space of the contin-
uous functions ¢ : [-r,0] — X with the sup-norm. {e~4-#* : t > 0} always means
the analytic semigroup generated by the closed linear operator A_g in X~9, satisfying
lle=A-#*l x-#) < M, for all ¢ > 0 and some constant M > 1.

Let us consider the abstract equation

u(t)+ A_gu(t) = F(t,u), t>0 (12)
where F: R x C, — X~? be continuous.

Definition 3.1 By a solution of (12) with initial condition ug = ¢ € C, we mean a
continuous function u : [—r,T)— X, with T > r , such thal

(1) u(t) = ¢(t), for -r <t <0,

(ii) for 0 <t <r, u is a solution of the integral equation

u(t) = e~ 4-2'p(0) + /o‘ e A-0t= ) (s, u,)ds,

(iti) forr <t < T, the function u is C', has u(t) € D(A_p) and u(t) — A_pu(t) =
F(t,u), for allt € (r,T).

Remark 3.1 1. As we will show bellow (cf. Theorem 3.3) if, besides continuity in
[-r,0], we suppose ¢ is locally Holder continuous on (—r,0], then a continuous
function u: [-r,T) —» X*, with T > 0, satisfying (i) on [—r,0] and (ii) on [0,T) is
a C' function on (0,T). In this case, our definition of solution coincides with the
usual one in the evolution equations theory.

2. The assumption T > r is not too restrictive for the problem we study because, as
we will see later, the hypotheses in f and g will imply that solutions are defined on
arbitrarily large interval of times.

Theorem 3.1 Suppose F : IR x C, — X~# is continuous and locally Lipschitzian in the
second argument. Given (s,¢) € IR x C,, there ezist a real number p = p(s,¢) > 0 and
a unique continuous function u : [s — r,s + p] = X such that u, = ¢ and

t
u(t) = e=A-s(t=2),(0) + / e A-0= F(g u.)do. (13)
foralls<t<s+p.

The proof is a rather simple application of the Contraction Mapping Theorem, which
the reader can supply. It is easy to see that, if u,v : [s —r,s 4 1] - X*(any 7 > 0)
are continuous solutions of (13) such that u, = v, = ¢, then u = v on [s — r,s + F].
This result allows us to consider the mazimal solution u(s,y) of (13) through (s, ) : for

each (s, ), we define p>(s,) = sup{p > s : (13) has a continuous solution on [s — r,al}
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and u(s,p) : [s — r,p°(s,)) = X® by u(s,¢)(t) = p(t —s),if s—r <t < s and, if
s < t < p*(s, ), then u(s,@)(t)= the value at t of a solution of (13) satisfying u, = ¢,
defined on [s — r, p], with ¢ < p. By the previous result, u is a well-defined continuous
function on [s —r, p°(s,)) and is a solution of (13) satisfying u, = ¢. Any other solution
v of (13) satisfying the same initial condition is a restriction of u(s,¢). Of course, the
interval of existence of a maximal solution of (13) must be open to the right and the case
£°(8,) = 0o is not excluded.

Lemma 3.1 Suppose the solution u = u(s,) of (13) with u, = ¢ is defined on s —r, p),
for some p > s, and let T be a real number such that s < T < p. Then, there is a
number § > 0 such that any solution v = v(s, ) of (13), with v, = ¢ and ||p — ¢¥|| < §,
is defined at least on [s — r,T]. Moreover, for a fized t, s <t < T, the map ¢ — u(s, )
is continuous.

Proof: See Oliveira [14].

Lemma 3.2 Let (s,p) € R x C, and u ; [s —r,p") — X* be the mazimal solution of
(13) satisfying u, = ¢. If p* < 0o, then limsup |F(¢,u,)|/(1 + |lu|) = oo.
t—p®—

Proof: See Oliveira [14].

Corollary 3.1 In addition to the assumptions of Theorem 8.1, suppose F satisfies the
following hypothesis: F(B) is a bounded set in X~°, for all bounded set B contained
in R x C,. Let u(s,p) and p*(s,p) be as above and assume p~(s,p) < oo. Then,
lim sup {ju(s. @)|| = oo.

t—p®(s,0)-

Proof: See Oliveira [14].

Theorem 3.2 Suppose F : R x C, — X~P is C'. Let (s,p) € R x C, , u(s,¢) :
[s = r,p7(s,)) = X* be the solution of (13) through (s,y) and s < T < p*(s,p). Then,
there ezists a neighborhood U of v such that, for all € U, the solution u(s,y) of (13)
with u,(s,9) = ¢ is defined at least on [s — r,T] and, for each s < t < T, the map
Y € U u(s,P)(t) € X° is C! and its derivative (g—:(.s,gp) -£)(t) = v(t) at (s,) applied
to £ is the solution of

u(t) = e 4-olt=20¢(0) 4 /" e““’("")—gg(a, U, (5, ) v.do (14)

on (s,T] and v(t) = £(t — s) on [s — r,s].

Proof: See Oliveira [14].

3.1.1 The Autonomous Case

10



Suppose the equation (13) is autonomous, that is, F(t,¢) = H() does not depend
on t. If u:[~r,p"(p)) = X is the maximal solution of (13) such that up(p) = v and
s € [0, p°(p)), then the function v(t) = u(p)(t + s), defined on [—s — r, p°(v) — s) is the
solution of (13) satisfying vo = u,(y), so v(t) = u(u,(p))(t), for all ¢ € [—r, p"(us(0))).
This implies p*() - s < p*(u,(10)) and u(p)(t + s) = u(u,(¢))(t) for all ¢, s > 0 such that
s—r <t+s < p*(p). Therefore, if —r < 8 < 0, then uw,(@)(0) = u(p)(t + s + 0) =
u(u,(@))(t + 0) = u(u,())(9), and 50, uees() = u(u,(w)) for all t,s > 0 such that
t+3 < p*(p). From these considerations and the previous results we conclude that, if
(13) is autonomous and the solutions u(y) are defined on [-r, 00) for all p € C,,, then, the
map U(t) : C, — C, given by U(t)e = u,(p) defines a (non-linear) strongly continuous
semigroup {U(t): ¢t > 0} on C,.

Now, we will describe the relationship between {U(t) : t > 0} and {e~#-2* ;¢ > 0}.
Let {T'(t) : t > 0} be the strongly continuous semigroup defined on C, by the operator
A_g, that is,

e~ A-l+900), i t4+0>0
(T(t)e)(6) =
w(t +0) yif—r<t+6<0.

If u(p) is the mild solution of () + A_gu(t) = H(w,) such that up = ¢, then
e~4-25(0) + foeA-2t=H(u,)ds ,if t>0
u(t) =
w(t) yif—r<t<o
Ift>0and —r < 9 <0, we have
(T(t))(8) + g+’ e A-sU+- H(u (o))ds . if L4+6>0
u(p)(0) =
(T(t)»)(0) Wif—r<t+6<0

Letting Xo : [~r,0] — L(X~9) be defined by Xo(8) =0, if —r < 6 < 0 and Xo(0) = 1,
the above integral can be written as

[ Aot B o ))as = L1~ )Xol 0) H (s (0)ds,

which justifies the equality

() = T(E)e) + [ [T (¢ — )Xol H(us())ds
for t > 0. Here, we define
emA-sl+) - if 48>0
[T(8)X:)(0) = { ‘
0 if t40<0

which is (formally) the former definition.
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3.1.2 Differentiability with respect to ¢

In this section, we will obtain sufficient conditions for a solution of (13) to be a solution
of (12). We will assume that F : R x C([-r,0}, X*) — X8 is locally Holder continuous
in t and locally Lipschitzian in @. The next result is basic and the reader can find the
corresponding proof in Henry (8].

Lemma 3.3 Suppose {eA* : t > 0} is an analytic semigroup in a Banach space X and let
f:(0,T) = X be locally Holder continuous with f§ lf(s)llds < oo for some p > 0. For
0<t<T, define F(t) = [3e***) f(s)ds. Then, F is continuous on [0,T), continuously
differentiable on (0,T), with F(t) € D(A) for0 <t < T, F(t) = AF(t) + f(t) on (0,T)
and F(t) > 0in X ast — 0+.

In the next results the function u : [~r, T} — X° will be a solution of (13) on [0, T]
with initial condition up = ¢.

Theorem 3.3 Suppose ¢ : [—r,0] — X* is continuous and locally Holder continuous on

(-r,0). Then t — u(t) : (-r,T] - X* and t — F(t,u) : (0,T] — X8 are locally

u
Hélder continuous and therefore, t — u(t) is C' on 0 < t < T, moreover — € X", for

dt

o= <y< £ + &
z 2p =g 2p°

Proof. See Oliveira [14] and Henry [8].

Theorem 3.4 Suppose @ : [~r,0] = X© is continuous and u is defined on [—r,T], for
some T > r. Then, u is locally Holder continuous on (0,r], and therefore, u is C' on
r<t<T.

Proof. See Oliveira {14].

3.2 Applying the Abstract Results

We want to apply the previous abstract results to establish existence of solutions of
(11). The first thing to do is to establish the following lemma in order to get local existence
for the abstract equation.

Lemma 3.4 If f,g are Lipschitz then H is Lipschitz continuous in bounded sets of C,.

Proof:

12



Let u,v € V C C,, where V is bounded. Then we have that,
lg+(u(0), u(~r)) = ¢5(v(0), v(—1))l| x -0

= s gy (u(0),u(=r)) = g4(u(0), (=), ).
{ I:I::‘;:;()n-)l } i

Since ¥* C C(f) and g is C?, we have that,

Hox(w(0), u(=r)) = g5(0(0), o(r)), 4)
< [l ac(u(0), u(=r)) = gc(v(0), o(=r))(@)]
< Ih(actu(0), u(~r) = g(v(0), o(=r)lsiearll (Bl om
< K(J}(w(0) = v(0)lleqay + ll(u(-r) - v(=rNleapll7(8)llraqy
S K'||lu— U"Ca||¢"H:f(n)

Similarly we prove that fq is Lipschitz.
|

Thus, we can apply the abstract results establish in the previous sections to get the
following result.

Theorem 3.5 Suppose that (H1) and (H2) hold, and that a, B and p satisfy (9). Then,
given @ € C,, there erists a unique continuous solution u : [-7,00) = X® of the abstract
cquation (11), which is C* fort > r.

Proof: Applying Theorem 3.1, we have that there exist p* > 0 such that there exist an
unique solution u of (11) (with the nonlinearity being H defined by (10)), whose maximal
interval of existence is [—r, p*]. Therefore, we are left to prove that p* = oco.

But, from (5) and (6) we get that there exist ¢ € IR, such that

f(s) g(s,s) "
— < —_— <
3+1_coand S < al(s),

for all s with |s| > ¢, and s’ € IR, where ¢, is a continuous function.

Let us begin by assuming that 0 < p* < r. Thus we get that H is such that, for all ¢
with 0 <t < p°,

H(udll-s =i fa(ue(0) + g5(e(0), ue(—r))]|-s
= || fa(ue(0)) + g4(u(0), p(t — r))[|-p

< Clp)lluelca + 1)

Thus, applying Corollary 3.2 we get a contradiction and §* > r, moreover from the
continuity of u, we get that [[u|lc, < K(e,r), for all ¢ € [0, r].
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Therefore, if we assume that jr < p* < (j + 1)r, for some integer j > 1, following the

same estimates above, we get again a contradiction and p* = oo.
]

With this, we get that the solution is defined for all times (and in particular is defined
for t > r), and we know from Theorem 3.4 that after time t = r the solution is C', so
without loss of generality, from now on we will assume that ¢ is Hélder continuous and

that the solution is C' for ¢ > 0.
Now we need to establish a relation between the weak solution we have and solution

to the original PDE.

3.2.1 Regularity Result

In this section, we want to show that the local solution is in C**(f}), for some € > 0,
for any t > 0 and is, in fact, a classical solution.

Theorem 3.6 Suppose that (H1) and (H2) hold, and that a, B end p satisfy (9). Let
¢ € C, be Hilder continuous and let u be the solution of (11). Then, there ezists € > 0
such that u(t,-) € C***(Q), for all t > 0. Moreover, Re(u(t,-)) is a classical solution of
(1), for any t > 0.

d
Proof: Applying the previous results, we know that, for t > 0 u,d—zt‘ e C,, for all

1 1
i 4 < =+ —. Therefore, using the characterization of X7, we have that u, L €
2p 2 2p dt

C([-r,0]; H}(92)), for all % <s<l+ % Thus using the embedding results, we obtain
d 2
that, for each ¢ > 0, :i%(t) € C*(Q) for all § < L. Furthermore u, € C([-, 0}, H)(?)) =

C([-r,0],W}(f2)) and thus, using the regularity of f and g; fo(u(t)) — %(t) € LP(§1),
ge{u(t), u(t — r)) € WH(Q), for all t > 0 So, by the trace theorem (see Triebel [20]),

Hgelu(t), ult - r))) € W'™+7(39).
If we fix u, ¢ > 0 and consider the elliptic problem,

—Div(aVy) + 2": B,-(z)% ko =flu(t)) = ‘;—'t‘(t), in 0,
1=1 bl
(15)

A = gfu(t)u(t=r)),  on IR

we can apply elliptic regularity results (see Lions and Magenes [11]), to conclude that
v € WHP(Q) = H2(Q).

14



Now, we want to show that v = u(t). From the Green’s Formula, if follows that for
all w € H} and ¢ € H2 ()

[w@ ez = - [ e

| (4w)(=)é(z)ds

-+

fo0s) | o) + 80 0]
(1)

[~ BOAE@N) + (o)) CHw)y

,[,n —(Bw)(y)(v())(y)dy.

Applying (16) to v and having in mind that (from (15))

(A0)(2) = fedu(t))(z) - 24)
(Bv)(y) = (v(g{u(t), u(t — r))))(y),

for all z € 2 and y € 99 it follows that v satisfies

/n [fl:(u(t))(-'c) = j—l:(t)] $(z)dz — /"(1)(A'¢)(.r)d1;
(17)

= [ ~Crlactu(t), u(t = r))E())(w)dy.

Therefore, since H2 () is dense in H:F(Q), it follows that v satisfies, in X7, the
equation

Acgr= =24 fo(w) + g,(u)

But u is the unique solution of (12), so u(t) =v € HX(Q).

Applying the embedding results once more we get that u(t) € C'*¢(€) (and thus u(t) €
C'*%(99)). Now applying regularity and existence theorems for (15) (see Ladyzenskaja
and Ural’ceva [9], pag.128) we conclude that u(t) € C*+(Q).

Moreover, since u(t) = v satisfies (15) and from the way we complexified f and g, we
get that Re(u) is a classical solution of (1).

|

Remark 3.2 Now that we have ezistence for (11) and since all functions and coefficients
in the equation are real, we can take the real part of the solution, and we still have a
solution. Thus from now on we will suppose that X is the real part of functions in

H2(Q).
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4 Convergence to Equilibrium

In this section we will show the main result of this work, namely the convergence to
the set of equilibria, which in our case will take the form of the following Theorem.

Theorem 4.1 Suppose that (H1) end (H2) hold, and that a, 8 and p satisfy (9). Given
K > 0 there ezists ro such that for r < ro all trajectories u of (1) with lim supl|u(t)||x« <
t—00

K satisfy
distxa(u(t),E) = 0

as t tends to infinity.

To prove this theorem we will need some auxiliary lemmas. Our first goal is to obtain
appropriate decay estimates of u,. To this end, we could not consider the Lyapunov
function for the undelayed counterpart of (1), as it is done in Friesecke [4], on the other
hand we will estimate directly the decay. More precisely, we get that,

Lemma 4.1 Suppose that (H1) and (H2) hold, and that a, B and p satisfy (9). Given
K >0, there ezists ro such that for r < ro, all trajectories u of (1) with lim sup|lu(t)|la <
t—o0

K satisfy P
T du P
» =
(o k) —o, (18)

as T — oo.

Proof: Let T, > 6r, and consider T\ > Ty and 0 < h < r, let us estimate

T 1/p
(/7 e+ 0= o) (19
To

For this, consider Tp < t < T}, and H(s) = H(u(s),u(s —)). Using the variation of
constants formula, we get

h
u(t + h) = Aoyt =) + F -A-slthe9) frig)ds,
t—r

i
u(t) = e~A-s0+ )yt — r — h) 4 e~ A-2= H(s)ds,

t—r—h

t+

h
= e Ay g —r —h)+ [ emA-oHA-T g (r _ R)dr,
t

0

Substituting this in (19) and using the exponential estimates (8) we get,

“ t h ?Pd T —¢(r+h) T P
e+ B - u(elzdt) < Koe (/,o ||u(t—r)—u(t-r—h)u,.dt)

] 1/p
Q

P

1 ¢ 1/p
+Ko (/Tj [/' +"(¢ +h— T)-(u+0)e‘=(t+h-r)“1{(r) — H(r - h)"_‘,d«,-] dt) ,

=

(20)
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where K, is independent of Ty, T} and h.
Let us estimate the terms in (20) separately. In order to do this, if a,b € IR, with
a < b, we will denote by xj, 4} the characteristic function on IR of the interval [a, 8], that

is a function such that
0, ift¢lab
Xaa(t) =

1, ift€|a,b
With this we get,

1/p

T 1p Ty~r—h
(et =)= wtemr =) = (7t - wtots)

g

= l X(To-z'-To)(s)"u(s + h) R u(s)"a + XITo.TII(s)“u(s + h) T "(3)"«: 'LP(To —-2r,Ty)

Ty t/p
-/To-2r “u(s + h) - U(S)”Zdl) = l "u(s + h) - u(‘s)"“ IU'(To—Z'r,Tl)

< Dinanzai()luls + k) = w(s)llalirr - ar. ) + Dimma()u(s + ) = w(s)laleriry - a1y
T 1/p To 1/p
= (7 te e mr —tizar) (7t + 1) - wioizs)

(21)
But using the exponential estimates for the derivative in a bounded interval we get
that there exists K, independent of T} and A, such that

Ts

i/p
(/To-zr lu(s + h) — u(s)l]ﬂds) < Kh (22)

Thus combining (21) and (22) we get that

T lh’
(/T llu(t = ) — u(t —r — h)”:dt) < Kb
(23)
T IIP
k) - u(s)|Pdt] .
# (7 ute 4 10 - i)
Now let us estimate the other term,
T t+h P o\Vp
( / ' [ / (t+h — 1)+ e=dth=n () _ F(r — h)||_gd-r] dt)
To t-vr
(24)

To

Ty r+hA o \/p
= (/ [/o _ ,-(aﬂi)e—u"H(t +h—-s)—H({l- ,)||_ﬁd,] dt)
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Now applying Holder’s inequality in the ds integral we get

l P 1/p

To -r

1/p
T r+h 0 4 ﬁ r+h
< (/ (/o g-Pla+0) -» "d.s) X /; [H(t+h-s)—H(t- s)"t‘,dsdt)

T

1/p
2 [ /;rs_p'(aH?)B—P't, ds] ¥y ( /0'+h /: |H(t+h—s)= H(t-3s)|2 ,,dtds)
< i [[reneroa]” ([ [ puttah- o) - ule- = it
(4] 0 To
Ty 1/p
+/T° lle(t 4 h— s) - u(t - s)||’;dtds)

2, , & [ rrdh (T 1/»
<=} [/ g—P (D) =P z'ds] 2 (/ / ' lu(r + k) — u('r)[l;dtds)
0 () To-3r

2, 1 - 1/p
< Kar [ / Pl =p ..ds] ( / llu(r + k) - u(r)ngdt) ,
0 To-3r

(25)
where K, K3 and K, are independent of T3 and h.

As in (21) and (22) we can use the characteristic functions and the fact that the
derivative is uniformly bounded in a finite interval, which is far away from ¢t = 0, and
the bound depends only on the Lipschitz constant of the nonlinearity, the bound of the
solution and the extremes of the interval, thus there exists K, independent of T} and h,
in such a way that

(/TDT. [/‘-wh(t +ho T)_(a+ﬁ)e—!(l+h—1)"H(T) _ H(r n h)||_gd1-]Pdt) 1/p S

—-r

2r f b 5 T Wp
K, [/u §-P'la48) -p "ds] » ((/T h llu(r + k) - u(r)||f.dt) + Ksh) .

Now, combining (23) with (26) and substituting in (20) we get that

(26)
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T 2 i -
([ tate+ 0 - wtozen) < Kookt
T 1/2
#hae ([ s+ 1) - w(olzer) @)

r h - ¥ £ l/p
+KoKr [ /0 Pt P "ds]f' (( /T lu(r + &) — u(f)u;dt) + [\’sh) :

Thus we get that

2r 1 p
(l = Koe™" — KoK r [/o s—p'(a+B)e—p’uds] ﬁ) (/TT ||u(t + h) - u(t)”Zdt)
(28)

* s 17
(e we e

where K¢ doesn’t depend on T} and h.
Now observe that
lim 1 — Kge™*" _ 1 >
r—0 KoK,r - KoK ¢

0,

and 2
lim [/ s"'("“’)e”'"ds] = 0.
r—=0 { Jo

Thus there exists ro > 0, independent of Ty and h, such that for all r < rg, we have that
2r ! ’ ’%
1 -~ Koe™ — KoK yr [/ s P'latd) —p "ds] ) > 0.
o

So taking r < ro and taking the limit as 7} — oo and k — 0 in (28) we get that

oo du i/p
—_ P
(/1 I dt(t)lladt) < oo,

thus proving the lemma.
|
Having establish this decay, we just need to prove that the w-limit set is nonempty.
To do this we need the following lemma, that follows immediately from the embedding
results.

Lemma 4.2 (Orbit Precompactness) Suppose that (H1) and (H2) hold, and that a,
B and p satisfy (9). Let r > 0 be arbitrary. If limsupflu(t)ll. < oo, then the orbit
t—00

{®(t)p}eza is precompact in C,.
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Now we can follow the same idea of Friesecke [4] to prove convergence to equilibrium.

Proof of Theorem 4.1

Let u be a solution of (1) (or more precisely, of (11)), and assume that ¢ is Holder
continuous, limsuplju(t)]x= < K and r < ro (given by Lemma 4.1). According to
t

Lemma 4.2, the :;socia.ted orbit {®()p}e>0 is precompact and thus possesses a nonempty
w—limit set (w(¢)). Therefore, we need to show only that the set w(ip) consists of equi-
libria. We do not have a Lyapunov function so that the La Salle-Hale invariance prin-
ciple in its standard form cannot be applied, but the estimate in Lemma 4.1 will do
just as well. Take vy € w(yp) and pick ¢; — oo such that ®(ti)p — vo in C,. Since

(%)[Nt.)(cp)](s) — 0 in LP((-r,0),X") by Lemma 4.1, vp lies in W}((-r,0),X*), and
&(t;)ug — vo in W}((-r,0), X*), and therefore

d
Evo(s) =0, s€(-r0).
Thus, since w(yp) is positively invariant we get that ve should be an equilibrium, and this

finishes the proof.
|

5 Final Remarks

1. Let us mentioned that the results obtained here, could also be done if the nonlin-
earity also depends on the delay (with the same delay r).

2. As shown by Friesecke [5], the assumption that the solution is bounded, cannot be
ignored. since he constructs an example where solutions blow up (in infinite time).
We can drop this assumption if we assume in (H1) that c, is constant (as it is done
in Friesecke [4]).

3. Friesecke [4] get, in the case of interior delay, r, (in Theorem 4.1) independent of the
domain Q. In our proof, the dependence on  appears on the exponential estimate
(8), used through out the proof.
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