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Abstract 

We consider dissipative scalar reaction-diffusion equations that include the ones 
of the form u1 - du = /( u(t)), subjected to boundary conditions that include small 
delays, that is, we consider boundary conditions of the form k = g( u( t), u( t - r) ). 

~ 
We show global existence and uniqueness of solutions in a convenient fractional 
power space, and furthermore, we show that, for r sufficiently small, all solutions 
are asymptotic to the set of equilibria as I tends to infinity. 

1 Introduction 

In recent years, there has been considerable effort devoted to the problem of stabi­
lization and control of PDE through the application of forces on the boundary. The 
mathematical theory is very complete when the boundary forces are applied with no de­
lays in time {see, for example, Lions (101). On the other hand when the boundary forces 
are applied with delays in time in a nonlinear way, not much is known. See Hale (7] and 
references there in, for some aspects of delay on dynamics. 

In this work we want to consider the equation 

I 
u1 - Div(aVu) + Lj=l B;(x)::, + µu = /{u), 

#JL = g(u(t), u(t - r)), 
on. 

u =cp, 

in {l X JR+ 

in o{l X JR+ 

in {l X [-r,0] 

where {l is an open bounded domain in lll", r > 0 is the delay, a E C 1 (IT), a( x) > mo > 0, 
z E n, ::_ = (a Vu, n), n is the outward normal, ~ is a positive constant and B, is 

continuous in fi, j = l, · · •, n. Let f: lll-+ lll and g : lll2 -+ lll be smooth functions. 

"Departamento de Mat. Aplicada, lnat.ituto de Matematica e Eatatiatica, USP - Brazil 



Our aim in this work is to study one of the first questions that arises when you treat 
long time dynamics, stabilization and control. Are the solutions asymptotic to the set of 
equilibria as t tends to infinityf 

In order to address this question we first have to check if it makes sense, that is, are 
the solutions of (1) globally defined and unique? 

The method we will use to study (1) is semigroup theory, that is, to treat (1) as an 
evolution equation in a Banach space X, specifically, we will write (1), at least formally, 
in the abstract form 

{ 

u(t) + Au(t) = H(uc), t > O 

u(t) = <p(t), t E [-r,OJ 
(2) 

where A will be an opera.tor in X associated to the linear part of (1), Uc: (-r,O] -- X 0 

denotes the function u1(9) = u(t + 9), -r $ 9 $ 0 and H : C(l-r, O], X) - X will be a 
nonlinear term related to J and g. 

Once (2) is defined, we will make use of abstract results to show existence and unique­
ness of solutions of (2). Then we will apply elliptic regularity to recover the solutions of 
( l ). 

Such theory has been widely used to get well posedness of equations like (1). Most 
of them are based on the general results obtained by Henry (8] and applied to these 
problems. We will use the idea3 of Amann [l, 2), combined with these general results, to 
get well posedness for (I). This strategy has been used successfully to study the undelayed 
counterpart of (1) in Oliva and Pereira (13], and in Carvalho, Oliva, Pereira and Rodriguez­
Bernal (3] (without using Amann's results). The abstract results of Henry (8) have to be 
adapted to the case of delay equations, but this has been done by Oliveira 114). 

Before we proceed, let us mention that a lot of work has been done if g( u, v) = g( u) 
and if we introduce an interior delay that is,/( u,). Among others we can mention: Martin 
and Smith 112) - for existence using comparison results for equations with discrete delays; 
Ruan and Wu ll 7) - for the extension of the results of Martin and Smith 112) for equations 
with infinite delays; Travis and Webb 118, 19] - for existence results imposing that the 
nonlinearity be globally Lipschitz. In the case of boundary delay, most of the work deals 
with the case where the delay term is linear. 

Once we have established global existence and uniqueness of (1), we can focus our 
attention on the main question, mentioned before. In this direction it is well-known and 
not hard to prove (see Hale [6), Henry 18) and Matano [15)) that for scalar reaction-diffusion 
equations, 

u1 - 6.u = /(u) (r E {l C Ill") (3) 

subject to homogeneous boundary conditions, all globally defined bounded solutions must 
approach the set of equilibria as t tends to infinity. This is a consequence of the fact that 
(3) is a gradient system (makes use of Lyapunov function) and can be easily generalized 
to equations with nonlinear boundary conditions. 
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Later on Friesecke (4] used the Lyapunov function of (3) to prove that for dissipative 
scalar reaction-diffusion equations, with sufficiently small delays, 

Uc - .llu = f(u(t), u(t - r)) (x En C IRn) (4) 

subject to homogeneous boundary conditions, all globally defined bounded solutions must 
approach the set of equilibria as t tends to infinity. 

We want to extend this result when the delay appears on the boundary, that is to 
equation (1). We will do that following the ideas of Friesecke (4), hut we do not use the 
Lyapunov function of (3). 

As in Friesecke (4], we will assume tbat (1) is dissipative, without assuming any growth 
conditions on the undelayed part. 

(Hl) Let u., assume that the nonlinearity f : IR. 1-+ IR is C1 and satisfy the dissipative 
condition 

(5) 

where c I E IR.. 
The nonlinearity g m.2 1-+ IR is assumed to be C2 and to satisfy the dissipative 

condition 

limsupg(s,t) ~ c,(t), 
l•l-00 s 

(6) 

for some continuous function c1 , and all t E lll. 

With this, we will show a decay estimate that will be enough to prove the convergence 
to the set of equilibria. This decay will be obtained just using the variation of constants 
formula and the exponential estimates of the semigroup generated by the linear part of 
(2). 

The paper will proceed as follows: In Section 2 we will define the abstract equation 
equivalent to (l); ln Section 3 we show existence and uniqueness of the solutions of the 
abstract equations, this will be done by applying the abstract results, that a.re stated 
in Subsection 3.1, to our specific equation (Subsection 3.2). After establishing global 
existence and uniqueness for the abstract equation, we show a smoothing property and 
the relation between the solution of the abstract equation and (1) in Subsection 3.2.1. 
Finally in Section 4 we show that all bounded solutions approach the set of equilibria as 
t tends to infinity, if the delay is small enough. 

2 Abstract Setting 

In order to define the operator in ( 1) we will need to extend the definition of fractional 
power to include negative powers. These negative fractional powers e&n be define using 
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the ideas of Amann [l], [2) as done in Oliva and Pereira 113), where they consider semilin­
ear reaction-diffusion equations with nonlinear boundary conditions, with no delays, and 
define the abstract equation. 

We will start by defining the spaces that will be used through out this work, namely 
the so called Lebesgue Spaces ( we refer to Triebel (20} for all the results related to these 
spaces). Let S = S(JR") be the set of all complex-valued rapidly decreasing infinitely 
differentiable functions defined on the n-dimensional real Euclidean space JR". As usual, 
S' = S'(R") denotes the space of tempered distributions, which is the dual of S. We 
denote by 

(1'</>){e) = (2,rt! J. e-•<~.<>q,(:c)d:c, </>ES, 
R" 

(:c,{) = Li=I :c;{;, the Fourier transformation, and 

(.r1q,)({) = (2,,y! J. e•<~-<>4>(:c)d:c, </>ES, 
R" 

the inverse Fourier transformation. 
With this we can define the Lebesgue Spaces in Ill", as follows 

Definition 2.1 Let -oo <., < oo and l < p < oo. Then 

n;(JR") = {! E S'(JR")llllllH; = 1l.r1(l + l:cl2)f.rfllv < oo} 
Now let us define the Lebesgue Spaces in a domain OCR". 

Definition 2.2 Let fl C m." be an arbitrary (bounded or unbounded) domain. Further, 
let -oo < s < oo and 1 < p < oo. Then n;(n) is the restriction of H;(m.") to fl, 

11/IIH;(n) = inf IIYIIH;(R")· 
Yin= I 

g E H;(m.") 
Here Yin denotes the restriction of g to fl. 

Remark 2.1 n;(n) is a Banach Space f,;,r any s (see Tridel {20}). 

Now, let us define our spaces taking into account the boundary condition 8. To do 
this, we first define the admissible boundary conditions, the so called "Normal System" 
of boundary conditions. 

Definition 2.3 Let n C lll" be a bounded C 00 domain. Further let .. 
B;J(:c) = E b;, .. (z)D'" f, b;, .. (:c) E C00 (8fl), 

1<>1:Sm, 

j = l, · · ·, k, be differential operators on an. Then {B;}~=l is said to be a normal system if 1 

0 ~ m1 < m 2 < · · · < m1: 

and if for any nonnal vector lls with respect to an and the point z E an it holds that 

L b;, .. (:c)v; ~ 0, j = 1, · · ·, k. 
lalatn, 
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Definition 2.4 Let n C JR" be a bounded C00 domain. Further, let {8;}}=1 be a normal 
system. Fors~ 0 and 1 < p < 00, we have 

1. If .s - 1 < m1, then , 

2. If for some I, m1 < s - 1 < m1+1, then 
p 

Remark 2.2 In our case, that is in (1), we have that k = l. m 1 = I, B1u =Bu= #J:!- . un. 
The definition takes into account the boundary condition 81/ = 0, as long as ii makes 
sense, I.hat is, a.s long a.s the m; derivatives have trace. 

Now let us define the operator. Consider A the operator in LP(fl; (C) defined by 

" au 
Au= -Div(aVu) + ~ B;(x) ax; + Au 

where Bis the boundary operator Bu= {Ju __ Let A' (the dual operator) be the operator ans 
in L''(n; Q;), where 1 +-'; = 1, defined by 

p " 

A'v = -Div(aVv) - div(vB) + .Av, 

where C is the boundary operator Cv = av + vB · ii. ans 
We have that (see Triebel [20), pag. 401): 

• A' is an isomorphism from n;,,{c}(!l; <C) onto L"' (!l; ([); 

• Denote by A" the dual operator of A'. Then A" is an isomorphism from L"(!l; CI:) 
onto (H:,,{C}(!l; CI:))'; 

• A"= A, in n:.{s}(!l; ([) . 

With this, let us define the operator A_, in (H:•.{c}(!l; CI:))' by 

A_1 u = A"u, for all u E L"{!l; <t). 
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Consider the following diagram 

A" 

L'(fl; (C) 
A" 

Ir u E £P({HC) then A11-•u E H1 (O· CI:) Thus A" o Ao A11
-

1u = A" o A" o A11
-

1u = 
I p,{8} I ' 

A"u = A_1u. It is also easy to check that D(A_i) = D(A" o Ao A"-1). Therefore, the 
diagram commutes. 

Proposition 2.1 A_, is a sectorial operator, with p(A) = p(A_i). Moreover, given 
9 ~ 0, if we define 

X~1 = D(A~1 ) 

then A_1 is also a sectorial operator in X~1 , which we denote by A,_1 • 

Proof: See Oliva and Pereira (13]. 

Let us assume the following. 

(H2) We will fix A in such a way that A is a positive operator (as defined in Triebel {20}}. 
This will imply that A_1 is also a positive operator. 

Remark 2.3 If B = 0, then A can be any positive value. 

Applying Proposition 2.1 and interpolation results, we have that, if (H2) holds, then 
for 29 'Fl+}, 

x~I = D(A~.) = [(H;,{c}(n; «:))', (LP'(n; «:))'], 
= [H:,,{c}(n; «:), £P'(n; CI:)];= (H:.'.~cr1(0; CI:))'. 

(7) 

If we define X' = D(A1
), then we have the following result. 

Theorem 2.1 If O :5 0 :5 l and (H2) holds, then 

X l+t - X' - H2' -1 - - p,{8} 

Proof: See Oliva and Pereira [13]. 

Notation 2.1 Having this result in mind we will define, for all O :5 s :5 1, 
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Notation 2.2 For a given 1 E Ill we will define C., = C((-r, OJ, .r) the Banach space 
of all continuous functio~ '(J: 1-r, OJ -+ X., with the sup-norm. 

We observe that we can always consider the Lebesgue spaces as real Banach spaces, 
even though our functions are taking complex values. With this in mind, if (H2) holds 
then it follows from Proposition 2.1 and the results of Henry (8) that A-a generates an 
analytic semigroup in x-8 for O < /J < 1 which satisfies, for -/J < a < 1 - /J 

Re-•4-.c,lu n < Me-dllu II G II 011xG - 0 X , 

(8) 

for some t > 0, M > 0. 
We want to choose o, /J and p in such a way that 

l. X° C C'(!l); 

2. xi-a = H;ti-a)(!l), in other words xi-a does not incorporate the boundary con­
dition; 

3. 0 + /J < 1. 

So we will take p, a and /J satisfying 

n l l l - <a< l - /J < 1 - - = - + -. 
2p 2p' 2 2p 

(9) 

Notice that 

• 1. follows from Theorem 2.1 and embedding theorems (see Triebel 120)); 

• 2. follows from Definition 2.4 and Theorem 2.1. 

Remark 2.4 It is easy to check that (9) can be realized if p is big enough (for instance 
p = n is enough). 

Using Definition 2.4, Theorem 2.1 and duality theorems for interpolation spaces (see 
Triebel 120)), one can also check the following result. 

Corollary 2.1 If o, /J and p satisfy (9) and (H2) holds, then 

Since we are going to use the linear operator A with homogeneous boundary conditions 
to define the abstract problem, we need to include the nonlinear boundary conditions in 
the equation. Furthermore since we are working with complex valued functions, we will 
need to complexify / and g. This is done a.s follows. 
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Notation 2.3 We denote by 

the complexifications of J and g, respectively, that is, 

fc(() := f((R) +if((,), ( = (R + i(, E Hl + illl = <C, 

Now, let us consider the map g.,: xa X xa ..... x-/3 defined by 

(g.,(u,u),ef>) := { ,(gc(u,v)h(ef>), for all 4, E H!f(n), 
lao 

where "f denotes the trace operator. 
Similarly, we define /o: X12 

..... x-o by 

(/o(u), <I>):= k fd.u)<I>, for all <I> E H;f (n). 

We will also denote by II: Ca -t x-0 the function defined by, 

It is easy to show that /o and g1 are well defined. 

Thus the abstract equation (2) will take the form 

{ 

u(t) + A_pu(t) = H(ut), t > 0 

u(t) = ip(t), t E (-r,O] 

3 Existence and Uniqueness of Solutions 

(10) 

(11) 

We want to establish the existence and uniqueness of the solutions of ( 11 ). In order to 
to this, we are going to recall the abstract existence results that are going to be applied 
to ( 1 ). 

3.1 Abstract Results 

All the abstract results can be found in Oliveira (14], the adaptation to X 0 is straight 
forward. 
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In this pa.ragraph, X., (for any -y E lll) are the Banach spaces defined in the previous 
section, r ~ 0 a real number and C 01 = C([-r, 0), X"') the Banach space of the contin­
uous functions rp : (-r,0] - X"' with the sup-norm. {e-"-d1 : t ~ 0} always means 
the analytic semigroup generated by the closed linear operator A_6 in x-/J, satisfying 
ne-A-dlllL(X-11) ~ M, for all t ~ 0 and some constant M ~ 1. 

Let us consider the abstract equation 

u(t) + A_pu(t) = F(t, u1), t > 0 

where F : lll X Ca - x-P be continuous. 

(12) 

Definition 3.1 By a solution of {12} with initial condition u0 = '{) E Ca we mean a 
continuous function u: (-r, T) - X"', with T > r , such that 

(i} u(t) = rp(t), for -r :5 t ~ 0, 
(ii} for O < t ~ r, u is a solution of the integral equation 

u(t) = e-A-d 1rp(0) + { e-A-8 (
1-•l F(s, u,)ds, 

(iii} for r < t < T, the function u is C1, has u(t) E D(A-11) and u(t) - A_au(t) = 
F(t, u1), for all t E (r, T). 

Remark 3.1 1. As we will show bellow (cf. Theorem 3.3) if, besides continuity in 
[-r, O], we suppose rp is locally Holder continuous on ( -r, 01, then a continuou.1 
function u: (-r,T)-+ X 0

, with T > 0, :,atisfying (i) on (- r,O) and (ii) on (O,T) is 
a C 1 function on (0, T). In this cue, our definition of solution roinrides with the 
usual one in the evolution equations theory. 

2. The assumption T > r is not too restrictive for the problem we study because, as 
we will see later, the hypotheses in f and g will imply that solutions are defined on 
arbitrarily large interval of times. 

Theorem 3.1 Suppose F: lll x C 01 -+ x-/J is continuous and locally lipschitzian in the 
second argument. Given (s,rp) E Dl X C 0 , there e:rist a real number p = p(s,rp) > 0 and 
a unique continuous function u : (s - r, s + p) -+ X" such that u. = '{) and 

u(t) = e-,4-.,(l-•l<p(0) + l e-A-8 (1-"1 F(u, u., )da, 

for all s ~ t S s + p. 

(13) 

The proof is a rather simple application of the Contraction Mapping Theorem, which 
the reader can supply. It is easy to see that, if u, v : [s - r, s + T) -+ X 0 (any T > O) 
are continuous solutions of (13) such that u, = v, = rp, then u = v on (s - r, s + /1J. 
This result allows us to consider the mazimal solution u(s,~) of (13) through (s, ~): for 
each (s,rp), we define p•(s,'{)) = sup{p > ! : (13) has a continuous solution on [s - r,ol} 
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and u(.,,cp): [s - r,p"(s,cp)) -+ X0 by u(s,cp)(t) = cp(t - s), ifs - r $ t $sand, if 
s < t < p*(s,ip), then u(s,ip)(t)= the value at t of a solution of (13) satisfying u, = r.p, 
defined on [s - r, p], with t < p. By the previous result, u is a well-defined continuous 
function on [s -r,p*(s,r.p)) and is a solution of (13) satisfying u. = <p. Any other solution 
v of (13) satisfying the same initial condition is a restriction of u(s, r.p). Of course, the 
interval of existence of a maximal solution of (13) must be open to the right and the case 
p"(s, 1,1) = oo is not excluded. 

Lemma 3.1 Suppose the solution u = u(s,r.p) of (13) with u, = ip is defined on [s-r,p), 
for .,ome p > s, and let T be a real number such that s < T < p. Then, there is a 

number 6 > 0 such that any solution v = v(s,IP) of (13), with v, = IP and 11'-P - ¢11 < 6, 
is defined at least on [s - r, T] . .Moreover, for a fixed t, s $ t $ T, the map <p t-t u1( s, 1,1) 
is continuous. 

Proof: See Oliveira [l4J. 

Lemma 3.2 Let (s,ip) E IR x Ca and u: [s - r,p")-+ xa be the maximal solution of 
(13) satisfying u. = ip. If p* < oo, then lim sup IF(t, uc)l/(1 + lludl) = oo. 

t-p•-

Proof: See Oliveira [14J. 

Corollary 3.1 In addition to the assumptions of Theorem 3.1, suppose F satisfies the 
following hypothesis: F( B) is a bounded set in x-13 , for all bounded set B contained 
in IR x Ca. Let u(s,c,:,) and p•(s,cp) be as above and assume p"(s,ip) < oo. Then, 
limsup llu,(s.r.p)II = oo. 

1-,•(•,,p)-

Proof: See Oliveira [l4J. 

Theorem 3.2 Suppose F : IR x Co -+ x- 13 is C 1 • Let ( s, ip) E IR x Ca , u{ s, cp) : 
(s - r,p"(s,cp))-+ X"' be the solution of (13) through (s,ip) ands< T < p"(s,ip). Then, 
there exists a neighborhood U of ip such that, for all 1" E U, the solution u(s, ip) of (13) 
with u.(.s, "1) = IP is defined at least on [s - r, Tl and, for r.ach s $ t $ T, thr. map 
ip EU>--+ u(s,ip)(t) E X 0 is C 1 and its derivative (;;(s,ip) ·{)(t):::: v(t) at (s,cp) applied 
to { is the solution of 

v(t) = e-,Loll-•l~(O) + l e-A-o(l-a):: (a, Ua(s,ip))·vada 

on (.s,T] and v(t) = W - s) on [s - r,sj. 

Proof: See Oliveira [14J. 

3.1.1 The Autonomous Case 
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Suppose the equation (13) is autonomous, that is, F(t,cp) = H(rp) does not depend 
on t. If u : 1-r,p"(cp)) -+ xa is the maximal solution of (13) such that u0 (cp) = C() and 
., E [O,p"(1.p)), then the function v(t) = u(C())(t + s), defined on[-., - r,p"('P)- s) is the 
solution of (13) satisfying v0 = u,(r;:i}, so v(t) = u(u,(ip))(t), for all t E [-r,p"(u,(ip})). 
This implies p•( <p) - s ~ p•( u,( ip)) and u( 'fl)( t + s) = u( u,( cp ))( t) for all t, s ~ 0 such that 
., - r :S t + s < p•(ip). Therefore, if -r :S IJ $ 0, then u1+1 (47)(0) = u(cp)(t +., + 0) = 
u(u,(cp))(t + 0) = u1(u1(47))(0}, and so, Uc+,(4'} = u1(u,('P)} for all t,s ~ 0 such that 
t +., < p•(cp). From these considerations and the previous results we conclude that, if 
(13) is autonomous and the solutions u(cp) are defined on [-r, oo) for all cp E Ca, then, the 
map U(t): C .. __. C,. given by U(t)cp = u1('f') defines a (non-linear) strongly continuous 
semigroup {U(t): t ~ O} on C 0 • 

Now, we will describe the relationship between {U(t): t ~ 0} and {e-A-111 : t ~ 0}. 
Let {T(t) : t ~ O} be the strongly continuous semigroup defined on C 0 by the operator 
A-.o, that is, 

I 
e-"-itll+ll'P(O), if t + (J > 0 

(T(t)ip)(O) = 
cp(t+O) ,if-r:St+O:SO. 

If u(cp) is the mild solution of u(t) + A_ou(t) = H(u,) such that uo = r;;, then 

{ 

e-.A- 191cp(O) + J~ e-A-19 (r-,) H( u,)ds , if t > 0 
u(t) = 

cp(t) ,if-r$t$0 

If t ~ 0 and -r $ (} $ 0, we have 

{ 

(T(t)cp)(O)+f~+•e-A-11(1+l-•IH(u,(cp))ds ,if t+6>0 
u1(cp)(9) = 

(T(t)cp)(9) , if - r $ t + 6 $ 0 

Letting Xo: 1-r,O]-+ L(X- 13 ) be defined by X0 (6) = 0, if -r :S fJ < 0 and Xo(O) = I, 
the above integral can be written as 

{'+' I' lo e _ _._.,(r+'-•I H(u,(cp))d., = lo !T(t - s)X0 ](8)H(u,(r.p))ds, 

which justifies the equality 

for t ~ 0. Here, we define 

{ 

CA-it(c+I) , if t + (} > 0 
!T(t)Xo](9) = 

0 , if t + IJ $ 0 

which is (formally) the former definition. 
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• 
3.1.2 Differentiability with respect to t • 

In this section, we will obtain sufficient conditions for a solution of ( 13) to be a solution 

of (12). We will assume that F: rn. x C([-r,0],X"')-+ x-fJ is locally Holder continuous 

in t and locally Lipschitzian in cp. The next result is basic and the reader can find the 

corresponding proof in Henry (8). 

Lemma 3.3 Suppose {e'11 : t 2: O} is an analytic semigroup in a Banach space X and let 

/: (0, T)-+ X be locally Holder continuous with frf 11/(s)llds < oo for some p > 0. For 

0 :5 t < T, define F(t) = f~eA(HIJ(s)ds. Then, Fis continuous on (0,T), continuously 

differentiable on (0,T), with F(t) E D(A) for 0 < t < T, F(t) = AF(t) + f(t) on (0,T) 

and F(t)-+ 0 in X as t-+ 0+. 

In the next results the function u : [-r, TJ -+ X"' will be a solution of (13) on (0, TJ 

with initial condition u0 = cp. 

Theorem 3.3 Suppo:se cp : [-r, OJ -+ X"' is continuou:s and locally Holder continuous on 

(-r, 0). Then t ,___. u(t) : (-r, T) -+ X0 and t ,___. F(t, ut) : (0, T) -+ x-0 are locally 
du 

on O < t < T, moreover dt E X\ for Holder continuous and thert:fore, t .... u( t) is C 1 

n 1 1 
all - <; < - + -. 

2p 2 2p 

Proof. See Oliveira [14] and Henry (8). 

Theorem 3.4 Suppose cp : (-r, OJ -+ X"' is continuous and u is defined on (-r, TJ, for 

:some T > r. Then, u is locally Holder continuous on (0,r), and therefore, u is C 1 on 

r < t ST. 

Proof. See Oliveira [14). 

3.2 Applying the Abstract Results 

We want to apply the previous abstract results to establish existence of solutions of 

( 11 ). The first thing to do is to establish the following lemma in order to get local existence 

for the abstract equation. 

Lemma 3.4 If f, g are Lipschitz then H is Lipschitz continuous in bounded sets of Ca. 

Proof: 

12 
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Lej, u, v E V C C.,,, where V is bounded. Then we have that, 

llg..,(u(O), u(-r)) - g.,(v(O), v(-r))llx--

= sup j(g.,(u(O),u(-r))-g..,(v(O),v(-r)),,p)I . 

{ 

♦ E H:,"(n) } 
... H3-(0) • I 

P' 

Since.>."' C C(O) and g is C2
, we have that, 

l(g.,{u(O), u(-r)) - g..,(v(O), v(-r)), 4>)1 
:'.Sf l,(gc(u(O),u(-r))-gc(v(O),v(-r))h(<li)I lan 

:'.S 11,(gc(u(O), u(-r)) - gc:( v(O), v(-r))IILP1an1lh( 4> )IILP'1an1 
S K(ll(u(O) - v(O))llc1n1 + ll(u(-r) - v(-r))llc1n1)11,(4>)11v•1ani 

S K'llu - vllcJ4>IIH;~1n1 

Similarly we prove that / n is Lipschitz. 

• Thus, we can apply the abstract results establish in the previous sections to get the 
following result. 

Theorem 3.5 Suppose that (HI) and (H2) hold, and that a, {3 and p satisfy (9). Then, 
given <p E C.,,, there exists a unique continuous solution u : (-r, oo) --+ X"' of the abstract 
equation (11}, which is C1 fort> r. 

Proof: Applying Theorem 3.1, we have that there exist p• > 0 such that there exist an 
unique solution u of (11) (with the nonlinearity being H defined by (10)), whose maximal 
interval of existence is [-r, p"J. Therefore, we are left to prove that p" = oo. 

But, from (5) and (6) we get that there exist ( E Ill, such that 

f(s) < d g(s,s') < ( ') - - r- an -- C1 S .s+l-"" s+l - ' 

for all ., with Isl ~ e, and .,, E Ill, where CJ is a continuous function . 
Let us begin by assuming that O < p" ::5 r. Thus we get that H is such that , for all t 

with O ::5 t < p", 

IIH( u,)ll-11 = llfn( u1(0)) + g..,( u1(0), u1(-r) )ll-11 

= llfn(u,(O)) + g..,(u1(0),cp(t - r))ll-11 

::5 C(cp)(llu1llc. + 1) 

Thus, applying Corollary 3.2 we get a contradiction and 5" > r, moreover from the 
continuity of u, we get that llu,llc. $; K(r,,, r), for all t E (0, r) . 

13 
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Therefore, if we assume that jr < p" $ (j + l)r, for some integer j ~ 1, following the 

same estimates above, we get again a contradiction and p" = oo. 
■ 

With this, we get that the solution is defined for all times (and in particular is defined 

for t > r), and we know from Theorem 3.4 that after time t = r the solution is C1, so 

without loss of generality, from now on we will assume that <p is Holder continuous and 

that the solution is C 1 for t > 0. 

Now we need to establish a relation between the weak solution we have and solution 

to the original PDE. 

3.2.1 Regularity Result 

In this section, we want to show that the local solution is in c 2+•(f!), for some e > 0, 

for any t > 0 and is, in fact, a classical solution. 

Theorem 3.6 Suppose that (Hl) and (H2) hold, and that a, /3 and p satisfy (9). Let 

r.p E Ca be Holder continuous and let u be the solution of {11). Then, there exists e > 0 

such that u(t,•) E C2+•(fi), for all t > 0. Moreover, Re(u(t,-)) is a classical solution of 

(1), for any t > 0. 

du 
Proof: Applying the previous results, we know that, for t > 0 u, dt E C.,, for all 

2
n < 'Y < -

2
1 + 

2
1 

. Therefore, using the characterization of X"', we have that u, du E 
p p & 

C([-r,O]; H;(n)), for all ~ < s < 1 + !_ Thus using the embedding results, we obtain 
p p 

du - 6 
that, for each t > 0, dt (t) EC (!l) for all c < !· Furthermore u1 E C([-r,OJ,H;(n)) = 

C([-r,0], W~(U)) and thus, using the regularity off and g; fc{u(t)) - du(t) E LP(!l), 
dt 

gc{u(t), u(t - r)) E W~(!l), for all t > 0 So, by the trace theorem (see Triebel [20]), 

-y(gc{u(t), u(t - r))) E w1-~·P(o!l). 

If we fix u, t > 0 and consider the elliptic problem, 

{

-Div(aVv)+tB,(x):v +,\v=fc(u(t))- du(t), 
,=t vx; dt 

~ = gc(u(t), u(t - r)), on an. 

in n, 
(15) 

we can apply elliptic regularity results (see Lions and Magenes [111), to conclude that 

v e w2,P(fl) = H:(n). 

14 



Now, we want to show that v = u(t). From the Green's Formula, if follows that for 
all w E H! and <PE H!,,c(fi) 

j w(x)(A'<P)(r)dx = - Ja
0 
!: (y)('Y(<P))(y)dy 

+ fa/-r(w))(y) [::,. (y} + B(y). n(y)] dy 

= ho -(Bw)(y)(-y(t/>}}(y) + (-y(w))(y)(Cip)(y)dy 

= { -(Bw)(y)(-y(t/>))(y)dy. 
lao 

Applying (16) to v and having in mind that (from (15)) 

du 
(Av)(x) = /c,{u(t))(x) - dt(t), 

(Bv)(y) = (-y(gc{u(t),u(t- r))))(y), 

for all X E n and y E an it follows that u satisfies 

lo [fc(u(t))(z)- !:(t)] efi(x)dx - j v(x)(A't/>)(.r)dx 

= f -(-y(gc(u(t), u(t - r))))(y)(-y(<,6))(y)dy. lao 

(16) 

( 17) 

Therefore, since H!,,c(fl) is dense in H;f(!l), it follows that v satisfies, in x-ll, the 
equation 

du 
A-11v =-di"+ /o{u) + g,.{u). 

But u is the unique solution of {12), so u(t) = v E H!{O). _ 
Applying the embedding results once more we get that u{t) E Cl+c(n) {and thus u(t) E 

ci+c(80)). Now applying regularity and existence theorems for (15) (see Ladyzenskaja 
and Ural'ceva [9], pag.128) we conclude that u(t) E CH•(fi). 

Moreover, since u(t) = v satisfies (15) and from the way we complexified f and g, _we 
get that Re(u) is a classical solution of (l). 

■ 

Remark 3.2 Now that we have existence for {11} and since all functions and coefficients 
in the equation are real, we can take the real part of the solution, and we still have a 
solution. Thus from now on we will suppose that X 0 is the real part of functions in 
H!°(!l). 
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4 Convergence to Equilibrium 

In this section we will show the ma.in result of this work, namely the convergence to 

the set of equilibria, which in our case will take the form of the following Theorem. 

Theorem 4.1 Suppose that (HI) and (H2) hold, and that a, /3 and p satisfy (9). Given 

K > 0 there exists r0 such that for r < r0 all trajectories u of {1} with lim supllu(t)llxa < 
1-00 

K satisfy 
distx .. (u(t),E)-+ 0 

as t tends to infinity. 

To prove this theorem we will need some auxiliary lemmas. Our first goal is to obtain 

appropriate decay estimates of u1• To this end, we could not consider the Lya.punov 

function for the undelayed counterpart of (1), as it is done in Friesecke (4J, on the other 

hand we will estimate directly the decay. More precisely, we get that, 

Lemma 4.1 Suppose that (HI) and (H2) hold, and that a, /3 and p satisfy (9). Given 

K > 0, there exists ro such that for r < ro, all trajectories u of (1) with limsupllu(t)ll0 < 
1-+oa 

K satisfy 

( 
T d )''" fi._. II d; (t)ll!dt - 0, (18) 

as T-+ oo. 

Proof: Let To> 6r, and consider T1 > To and O < h < r, let us estimate 

( 19) 

For this, consider T0 < t < Ti, and H(s) = H(u(s),u(s - r)). Using the variation of 

constants formula, we get 

1
1+1o 

u(t + h) = e-.L.,("+•lu(t - r) + e-.L.,(i+lo-•lH(s)ds, 
f-r 

u(t) = e-A_.,(/i+•lu(t - r - h) + i' e-A_.,(t-•J H(s)ds, 
1-r-h 

= e-A_.,(ll+•lu(t - r - h) + ic+h e-A_.,(t+h-•I H(r - h)dr. 
f-r 

Substituting this in ( 19) and using the exponential estimates (8) we get, 

(J:' llu(t + h) - u(t)ll!dt) l/p ~ Koe-•!•+") (l~' llu(t - r) - u(t - r - h)ll!dt) I/p 

(20) 
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where Ko is independent of T0 , T1 and h. 
Let us estimate the terms in (20) separately. In order to do this, if a, b E lll, with 

a < b, we will denote by X(a,b) the characteristic function on lll of the interval (a, bJ, that 
is a function such that 

{ 

0, 
X(•,hJ(t) = 

1, 

if t ¢ [a, b] 

if t E (a, bJ 
With this we get, 

= I X1T0-2,.T0 J(s)llu(s + h) - u(s)llo + X(To,r,1{s)llu(s + h) - u(s)lla ILP(To _2• , Ti) 

$ lx1ro-2r,ToJ(s)llu(s + h) - u(s)llolLP(To -2r,T1) + lx1ro,Ttl(s)llu(s + h) - u(s)llalLP(To -2r, Ti) 

= { 1 

llu(s + h) - u(s)ll:dt + { 
0 

llu(s + h) - u(s)ll:ds ( 

T, ) 1/p ( T, ) 1/p 

lro lro-lr 
(21) 

But using the exponential estimates for the derivative in a bounded interval we get 
that there exists K 1 , independent of T1 and h, such that 

(22) 

Thus combining (21) and (22) we get that 

( 

T, )1/r £
0 

llu(t - r) - u(t - r - h)ll~dt ~ K 1h 

(23) 

Now let us estimate the other term, 

(24) 
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Now applying Holder's inequality in the ds integral we get 

T )1/p 
+ { 

1 

llu(t + h - s) - u(t - s)ll:dtd., 

(25) 

where K 2 , K3 and K 4 are independent of T1 and h. 
As in (21) and (22) we can use the characteristic functions and the fact that the 

derivative is uniformly bounded in a finite interval, which is far away from t = 0, and 

the bound depends only on the Lipschitz constant of the nonlinearity, the bound of the 

solution and the extremes of the interval, thus there exists K5, independent of T1 and h, 

in such a way that 

(26) 

Now, combining (23) with (26) and substituting in (20) we get that 
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Thus we get that 

:5 ( e_., + r [fr s-p'(a.+tlle-p'uds f') K6h, 

where K6 doesn't depend on T1 and h. 
Now observe that 

and 
!~ (l' s-p'(a.+l11e-p'uds] = 0. 

(27) 

(28) 

Thus there exists ro > 0, independent of T1 and h, such that for all r < r0 , we have that 

( 1 - Koe-•r - KoK4r [folr s-p'(a.+tl)e-p'ud..,] ~) > 0. 

So taking r < r0 and taking the limit as T1 -t oo and h -t O in (28) we get that 

thus proving the lemma. 
■ 

Having establish this decay, we just need to prove that the w-limit set is nonempty. 
To do this we need the following lemma, that follows immediately from the embedding 
results. 

Lemma 4.2 (Orbit Precompactness) Suppose that (Hl) and (H2) hold, and that a, 
/3 and p satisfy (9). Let r > 0 be arbitrary. If limsupllu(t)lla. < oo, then the orbit 

1-00 

{+(t)rp}t>o is precompact in C0 • 
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Now we can follow the same idea of Friesecke [4] to prove convergence to equilibrium. 

Proof of Theorem 4.1 

Let u be a solution of (1) (or more precisely, of (11)), and assume that I{) is Holder 

continuous, limsupllu(t)llxa < /( and r < ro (given by Lemma 4.1). According to 
1-00 

Lemma 4.2, the associated orbit { 4>( t )I{) h>o is precompact and thus possesses a nonempty 

w-limit set (w(f{))). Therefore, we need t""o show only that the set w('r') consists of equi­

libria. We do not have a Lyapunov function so that the La Salle-Hale invariance prin­

ciple in its standard form cannot be applied, but the estimate in Lemma 4.1 will do 

just as well. Take v0 E w(<p) and pick ti -+ oo such that 4>(t;)<p -+ Vo in Ca- Since 

(i_)[4>(t;)(cp))(s)-+ 0 in £P((-r,0),X"') by Lemma 4.1, v0 lies in Wi((-r,0),Xa), and 
ds 

4>( t;)u0 -+ v0 in WJ (( -r, 0), xa), and therefore 

d 
dsv0(s):O, sE(-r,0). 

Thus, since w( cp) is positively invariant we get that v0 should be an equilibrium, and this 

finishes the proof. 
■ 

5 Final Remarks 

I. Let us mentioned that the results obtained here, could also be done if the nonlin­

earity also depends on the delay (with the same delay r) . 

2. As shown by Friesecke [5], the assumption that the solution is bounded, cannot be 

ignored. since he constructs an example where solutions blow up (in infinite time). 

We can drop this assumption if we assume in (Ht) that c, is constant (as it is done 

in Friesecke [4]). 

3. Friesecke [4) get, in the case of interior delay, r0 (in Theorem 4.1) independent of the 

domain n. In our proof, the dependence on f! appears on the exponential estimate 

(8), used through out the proof. 
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