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Abstract
The correct identification of plants is a common necessity not only to researchers but also to

the lay public. Recently, computational methods have been employed to facilitate this task,

however, there are few studies front of the wide diversity of plants occurring in the world.

This study proposes to analyse images obtained from cross-sections of leaf midrib using

fractal descriptors. These descriptors are obtained from the fractal dimension of the object

computed at a range of scales. In this way, they provide rich information regarding the spa-

tial distribution of the analysed structure and, as a consequence, they measure the multi-

scale morphology of the object of interest. In Biology, such morphology is of great

importance because it is related to evolutionary aspects and is successfully employed to

characterize and discriminate among different biological structures. Here, the fractal de-

scriptors are used to identify the species of plants based on the image of their leaves. A

large number of samples are examined, being 606 leaf samples of 50 species from Brazilian

flora. The results are compared to other imaging methods in the literature and demonstrate

that fractal descriptors are precise and reliable in the taxonomic process of plant species

identification.

Introduction
A series of methodologies and approaches have been performed in the task of understanding
and description of the natural world surrounding us [1]. All major areas of scientific knowl-
edge, as geology, physics, biology and medical sciences have been searching for patterns that
may help in the understanding of natural phenomena [1–3]. In Biology, such aspects started in
the ancient Greece, where philosophers tried to describe, identify and classify natural entities
(species) based on identifiable traits [4]. The Greek philosopher Theoprasthus performed the
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most famous case, where he proposed a classification system of plant species according to their
external morphology, adopting as a classifier their distinct growth forms [5]. Since these an-
cient times, scientists have proposed a series of manners to perform classification [6–8] and to
identify species. Yet, in plants, the older and most adopted methodology used to infer and pro-
duce classification system is the observation and description of internal and external plant
traits [9, 10], associated, in recent times, with the information stored at molecular level [11].

The most common aspects used by specialists to categorize and identify species concern the
use of external traits of plants, in where such specialists access information stored in the form,
ontogeny and number of elements forming reproductive organs (flowers) and dispersion enti-
ties (fruits) [12, 13]. The use of such elements produced both good tools to identify species and
important classification systems to understand the evolution of groups of species [8, 14]. De-
spite the importance and significance of such aspects, the analysis of such structures cannot be
always employed, as these elements appear only in specific times of year, when plants are re-
producing or dispersing their descendants [15]. In such cases, specialists also recur and extract
information stored in vegetative parts of plants, especially the leaves, which are available for
sampling throughout the year [16].

When assessing vegetative organs as the leaves, there is a chance to confound certain infor-
mation provided by their morphological and anatomical analysis [17, 18], as leaves are one of
the most diverse plant organs in terms of morphology and anatomy [19, 20] and such morpho-
anatomical traits can vary drastically according to environmental conditions [21]. However,
some studies have provided good evidence that the analysis of certain external and internal leaf
structures could be of substantial information to aid species classification [22–24]. Until re-
cently, information stored on vegetative traits of plants were only extracted by the human eye,
which is capable of extracting low amounts of information such as shape, types, divisions,
among others. Nowadays, a series of computational methodologies are available to search and
extract information to discriminate plant species [21, 25], assessing properties such as texture
and color, which were not possible to be inferred by conventional analysis. The use of such ap-
proaches has been explored with great success, using both external [26–29] and some internal
[25] aspects of leaves.

Among the computational analysis of leaf internal structures, only color and texture infor-
mation of photosynthetic and protection tissues have been explored with success to discrimi-
nate plant species [25]. Nevertheless, leaves have a great diversity of other internal structures
that can potentially store information for discrimination patterns [13, 30]. One of them is the
midrib, which drastically differs between species in its shape and composition of vascular and
fundamental tissues [20]. Anatomically, leaf midrib is composed by a set of highly specialized
tissues (pholem and xylem) and other cells, which are normally very similar between individu-
als of the same species [31], as this region is less plastic than other regions of the leaf blade, as
the mesophyll for example [32]. Additionally, the midrib is considered as a stable region re-
garding the conservation of its structures when submitted to the image acquisition process.
The use of midrib anatomy to discriminate plant species has been recently explored as a new
tool to assist plant classification [33, 34]. Such studies indicate the great potential of the compu-
tational methodologies to explore the patterns of composition and arrangement of tissues and
structures in the midrib, which may provide a great additional source of information to the dis-
crimination of plant species. In fact, a preliminary approach using only 10 species provided evi-
dence for the robustness of such kind of methodology [35].

Considering the several methodologies used to discriminate plant species, many of them
successfully made use of latest and advanced methods of image analysis. Most of such methods
analyze only the external shape of the leaf; although this can be sufficient in some situations,
the addition of internal traits, such as that from midrib, may provide the creation of robust
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descriptors, able to synthesize all this informational richness in a feature vector, making the
discrimination of plants a more feasible task. The efficiency of this kind of analysis turns state-
of-the-art texture-based methods, like LBP and Gabor-wavelets, into potentially good methods
for the automatic identification of species studied here. For instance, Casanova et al. [36] ob-
tained good results by extracting texture features from the leaf surface using Gabor wavelet fil-
ters. Still among the texture-based imaging methods in plant leaves, fractal descriptors have
demonstrated to be a promising approach mainly to identify species based on the digital repre-
sentation of the leaf [26, 37, 38]. This is a consequence of the complex nature intrinsic to frac-
tals, which makes them quite similar to much structures found in the nature and, particularly,
in the plant leaves.

Based on the context exposed above, in our study we have applied a combination between
two advanced computational methods (fractal-based descriptors, that is, Bouligand-Minkowski
[38] and Fourier [39]) to extract and provide species discrimination based on information
stored in leaf midribs. The results obtained using 606 leaf samples of 50 species from Brazilian
flora demonstrated the robustness of applying this methodology.

Materials and Methods

Image Acquisition
Samples of leaves were collected from 50 species in the Cerrado biome in central Brazil, at
IBGE Ecological Reserve (Table 1). IBGE (Brazilian Institute of Geography and Statistics) al-
lows the use of samples for scientific research purposes. At least four leaves (one per individual)
were sampled for each species. All samples were obtained from fully expanded leaves collected
from the third and fourth nodes from the branch tip. Middle regions of the leaf, including the
midrib, were fixed in FAA 70 (Formalin, Acetic acid, 70% Alcohol) for 48 hours [40]. These
were dehydrated in an ethanol series and embedded in paraffin. The thickness of the cross sec-
tions was 8μm. The sections were stained with astra blue 1% and basic fuchsin 1%, both from
Sigma, and mounted with Entellan1. The images of midribs were captured in 10x objective
lens, using a trinocular microscope Axio Lab A1 coupled to a digital camera Axiocam ICc 1.

The image was pre-processed to remove the background by manually segmenting the region
of interest, so that only the region of the midrib was analyzed by the fractal descriptors, as
shown in Fig 1. In the following, the combination of Bouligand-Minkowski/Fourier fractal de-
scriptors proposed in this study was used to obtain the meaningful features of each sample. Fi-
nally, these features are employed in the input of a supervised classifier, which predicts the
species of each sample. The classification scheme divides the samples into a training and a test-
ing set, using a 10-fold cross-validation procedure, as described in [41]. The classifier was the
Linear Discriminant Analysis (LDA) [41], which has demonstrated to be a suitable method for
plant image analysis [38]. The results were compared to other state-of-the-art and classical de-
scriptors, that is, Local Binary Patterns [42] and Gabor-wavelets Descriptors [43].

Fractal Geometry
A fractal is a geometric structure characterized by two main properties: infinite self-similarity,
that is, at any scale, the object is composed by copies of itself, and infinite complexity, that is,
there are different details to be observed at any scale.

The most important measure of a fractal is its fractal dimension. This measures how the
structure changes (in terms of self-similar patterns) according to the scale. In this sense, it also
measures the spatial occupation of the object. Given a geometrical object X, one can always
measure its length N using a rule with length u. Although intuitively the length should scale
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Table 1. Family, species and number of samples (n) per species used in the experiments.

Family Species n

Anacardiaceae Anacardium humile A. St.-Hil. 11

Myracrodruon urundeuva Allemão 14

Tapirira guianensis Aubl. 11

Annonaceae Annona crassiflora Mart. 12

Cardiopetalum calophyllum Schltdl. 11

Duguetia furfuracea (A.St.-Hill.) Saff. 10

Apocynaceae Aspidosperma subincanum Mart. 12

Araliaceae Schefflera macrocarpa (Cham. & Schltdl.) Frodin 11

Aristolochiaceae Aristolochia galeata Mart. & Zucc. 12

Asteraceae Baccharis salzmannii DC. 12

Eremanthus glomerulatus Less. 12

Lepidaploa aurea (Mart. ex DC.) H.Rob. 11

Bignoniaceae Arrabidaea brachypoda Bur 10

Jacaranda ulei Bureau & K. Schum. 20

Handroanthus impetiginosus (Mart. ex DC.) Mattos 10

Zeyheria montana Mart. 11

Calophyllaceae Calophyllum brasiliense Cambess. 12

Kielmeyera abdita Saddi 12

Combretaceae Combretum duarteanum Cambess. 11

Dilleniaceae Davilla elliptica A. St.-Hil. 12

Euphorbiaceae Cnidoscolus vitifolius (Mill.) Pohl 11

Maprounea brasiliensis A.St.-Hill. 11

Maprounea guianensis A.St.-Hil. 12

Fabaceae Bauhinia pulchella Benth. 20

Bauhinia ungulata L. 20

Piptadenia gonoacantha (Mart.) J.F.Macbr. 20

Malpighiaceae Byrsonima laxiflora Griseb. 12

Byrsonima subterranea Brade & Markgr. 11

Byrsonima verbascifolia (L.) Rich. ex A. L. Juss. 12

Banisteriopsis stellaris (Griseb.) B.Gates 15

Malvaceae Cavanillesia arborea (Willd.) K.Schum. 12

Eriotheca pubescens (Mart. & Zucc.) Schott & Endl. 12

Guazuma ulmifolia Lam. 11

Sterculia striata A.St.-Hil. & Naud. 10

Melastomataceae Ossaea congestiflora (Naudin) Cogn. 12

Nyctaginaceae Guapira areolata (Heimer) Lundell 10

Guapira noxia (Netto) Lundell 10

Passifloraceae Passiflora clathrata Mast. 11

Primulaceae Myrsine ferruginea R.B. ex Roem. & Schult 11

Rubiaceae Cordiera macrophylla (K. Schum.) Kuntze 13

Sabicea brasiliensis Wernham 11

Tocoyena formosa (Cham. & Schltdl.) K.Schum. 11

Rutaceae Esenbeckia pumila Pohl. 11

Sapindaceae Cupania vernalis Cambess. 11

Dilodendron bipinnatum Radlk. 11

Serjania lethalis A.St.-Hill. 12

Smilacaceae Smilax campestris Griseb. 12

Solanaceae Solanum lycocarpum A.St.-Hill. 11

Symplocaceae Symplocos mosenii Brand. 11

Vitaceae Cissus erosa Rich. 12

doi:10.1371/journal.pone.0130014.t001
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linearly with u, in fractals this relation is exponential and the fractal dimension DX of X is
given by:

DX / lim
u!0

logN
logu

:

In the real-world there is no fractal structure, in the strict sense of the word, even because
the range of scales is always finite. However, it is quite common to find objects with high com-
plexity and self-similarity at particular ranges of scales. Based on such observation, several
methods have been proposed to obtain meaningful information about an object based on a

Fig 1. Histological samples of some leaves midrib cross-section used in the experiments. (a) Banisteriopsis stellaris, (b)Cardiopetalum calophyllum,
(c) Cordiera macrophylla, (d) Dilodendron bipinnatum, (e)Guapira noxia, (f)Myrsine ferruginea, (g) Sabicea brasiliensis, (h) Tapirira guianensis and (i)
Lepidaploa aurea.

doi:10.1371/journal.pone.0130014.g001
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fractal geometry modeling [44–46]. Most of these studies employ the fractal dimension, alone
or associated to other traditional measures. There are a number of methods to estimate the
fractal dimension DR of real-world objects. Each one may result in a different value and is more
useful for a particular application, but all of them are based in the following bilogarithmic ex-
pression:

DR / lim
�!0

Mð�Þ
log �;

whereM is the fractality measure and is specific for each method and � is the scale parameter.
Even though the fractal dimension is a powerful descriptor and enough to model some com-

plex systems, it has some outstanding drawbacks. First, it is a unique real value and cannot ex-
press all the richness of a structure at all scales. Besides, unlike the case of mathematical
fractals, the fractal dimension of real-world objects changes depending on the scale range con-
sidered. To make possible a more robust analysis based on fractal geometry, some methods
that extend the fractal dimension concept have been proposed, such as the multifractals [47,
48], the multiscale fractal dimension [26, 49] and the fractal descriptors [50, 51]. This study
focus on fractal descriptors, given the remarkable results achieved by this approach in previous
studies on plant image analysis [26, 29, 37, 38].

Fractal Descriptors. Fractal descriptors [37, 50, 51] extend the fractal dimension concept
by using all the values in the fractality function. In this way, the set of features (descriptors) d
are given by:

D : log � ! logMð�Þ:

The values of this function can be used directly [38] or after a transform to highlight some
particular characteristic of the features [51]. They also can be extracted from the entire image
[50] or using a recursive decomposition [51]. In any case, they quantify the morphology of the
object of interest and its spatial distribution.

Proposed Methodology
The structural morphology quantified by fractal descriptors is of great importance in the analy-
sis of any natural structure and particularly to describe the shape and visual textures of plant
leaves, since the leaf morphology is directly affected by its biological structure and evolutionary
history. These are key elements to determine the species to which each sample belongs. A num-
ber of studies proposed in the literature confirms the efficiency of fractal descriptors in the
analysis of leaves. For example, in [37] and [26], fractal descriptors were employed to identify
plant species based on the leaf shape with a good accuracy, whereas in [38] the visual texture of
the leaf was quantified by means of fractal descriptors and the results confirmed the precision
of fractal descriptors as well.

Here, we propose to employ fractal descriptors to identify species from a tropical savanna of
Brazil called “Cerrado” using microscope images from cross-sections of the leaf. Better than
scanned or photographed images of entire leaves, the histological sections are capable of pro-
viding details of biological structures of the plant. The histological images are pre-processed
with the aim of segmenting the midrib removing the background and then they are analyzed
both in terms of their shapes and of their visual texture. Then, two different approaches of frac-
tal descriptors, that is, Bouligand-Minkowski [38] and Fourier [39], are extracted from the im-
ages and all the descriptors are combined using a Karhunen-Loève representation [41]. These
steps are better detailed in the next sections.
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Bouligand-Minkowski Fractal Descriptors
Proposed in [37], the Bouligand-Minkowski fractal descriptors of a gray-level image are ob-
tained from the values of dilation volumes used to compute the Bouligand-Minkowski fractal
dimension [38]. These descriptors have demonstrated to be a powerful method to analyze
plant structures [38].

Let I:[1:M] × [1:N]!< be a function representing the gray-level image. The first step is to
map such image onto a three-dimensional surface S, where each pixel in the coordinate (x, y) is
mapped onto a point with coordinates (x, y, I(x, y)):

S ¼ fðx; y; zÞjðx; yÞ 2 ½1 : M� � ½1 : N�; z ¼ Iðx; yÞg:
In the following, the surface is dilated by a sphere with radius r, that is, each point with coordi-
nates (x, y, z) is replaced by a sphere with center at (x, y, z) and radius r and the dilated struc-
ture corresponds to the points pertaining to the union of such spheres. The radius is increased
up to a pre-defined maximum rmax and the volume of the dilated surface V(r) is given by:

VðrÞ ¼ P
wDðrÞ½ðx; y; zÞ�;

where χ is the indicator function andS(r) is the set of points in the dilated structure:

S > ðrÞ ¼ fðx; y; zÞj½ðx � PxÞ2 þ ðy � PyÞ2 þ ðz � PzÞ2�1=2 � rg;

where (Px, Py, Pz) 2 S.
The Bouligand-Minkowski descriptorsDBM are obtained by

DBM ¼ logVðrÞjrmax
r¼0 :

Fourier Fractal Descriptors
Fourier fractal descriptors [39] are named after the Fourier fractal dimension. This is computed
from the logarithmic relation between the Fourier power spectrum and the frequency (Fig 2).
At first, the Fourier transform I of the image is obtained by:

Iðu; vÞ ¼
Z þ1

�1

Z þ1

�1
Iðx; yÞej2pðuxþvyÞdxdy; ð1Þ

Fig 2. Fourier method to estimate the fractal dimension. (a) A texture image. (b) Fourier spectrum P(f). (c) Plot of log(P(f)) × log(f). This curve provides the
descriptors of the texture.

doi:10.1371/journal.pone.0130014.g002

Plant Identification Using Fractal Descriptors

PLOS ONE | DOI:10.1371/journal.pone.0130014 June 19, 2015 7 / 14



where j is the imaginary number and u and v are the orthogonal components of the frequency

f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. The resulting data is composed by complex numbers without any physical

meaning, suggesting to use other measures obtained from the transform, like the power spec-
trum P, given by:

P ¼ R2 þ J2; ð2Þ
where R and J are, respectively, the real and imaginary parts of the transform. As stated in [39],
the following empirical law is observed for any fractal-like structure:

log ðPÞ / log ðf Þa;
where α is a non-negative real-valued exponent used to estimate the fractal dimension.

The Fourier fractal descriptors, within an empirically determined range of frequencies [fmin,
fmax], are given by

DF ¼ logPðf Þjfmax
fmin

:

Karhunen-Loève Transform
Let the Bouligand-Minkowski descriptors be represented by a vector with n1 components,
~DBM ¼ fx1; x2; :::; xn1g, and the Fourier descriptors by a vector with n2 components,

~DF ¼ fy1; y2; :::; yn2g. The feature matrix of a database ofm texture images contains in each

row the descriptors of each image. For the above descriptors, we haveMð1Þ
m�n1

for the Bouligand-

Minkowski descriptors andMð2Þ
m�n2

for the Fourier descriptors.

For each feature matrix, covariance matrix S is provided by:

Sði; jÞ ¼
Pn

i¼1ðMð:; iÞ �Mð:; iÞÞðMð:; jÞ �Mð:; jÞÞ
n� 1

; ð3Þ

where n is the number of columns in the feature matrix,M(., i) represents the column i ofM

andMð:; iÞ is the average column-vector.
The next step is to compute the eigenvalues and eigenvectors of S. A non-null vector e is an

eigenvector of S if:

Se ¼ le; ð4Þ
for any real value λ. λ is an eigenvalue of the matrix.

The eigenvalues of S are sorted decreasingly λ1 � λ2 � . . .λn and the respective eigen-vec-
tors e1, e2, . . ., en are the columns of a linear transform matrix U.

The descriptor matricesM(1) andM(2) are horizontally concatenated intoM(C), such that
each row ofM(C) is given by x1, x2, xn1, y1, y2, . . ., yn2. In the following, the combined matrix is
multiplied by the transpose of U giving rise to the transformed matrix:

DðCÞ ¼ UTMðCÞ: ð5Þ

Finally, the row-vectors of D(C) are the fractal descriptors used in this study for the analysis
of the leaves. The combination of a spatial and a frequency fractal approach allows for rich and
precise descriptors, as they give information concerning the spatial distribution of the midrib
as well as how the energy scales with each frequency in the image representation and giving a
signature of the distribution of details in multiple scales.
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Results and Discussion
Table 2 shows the performance of different texture descriptors in the identification of the ana-
lyzed plant species. Besides the ratio of samples correctly classified (Success Rate) and the re-
spective cross-validation error, the table also shows three other statistical metrics regarding the
robustness of the result, i.e, κ-index, success reliability (SR) and error reliability (ER). The κ-
index quantifies (in statistical terms) how better the classifier is than a random classification.
Reliability refers to consistency, it measures the degree of reality and stability of a measure-
ment, evaluating if the measure will be the same in every execution. Success and error reliability
are metrics derived from the a posteriori probabilities of the classifier, being the average a poste-
riori probability for samples correctly and incorrectly classified, respectively. For each sample,
classifiers like LDA output one probability score for each possible class and the class assigned
to the sample is that having the highest probability. A reliable method is expected to have this
highest probability significantly larger than the sum of all the other probabilities and this is
what is assessed by the reliability metric. Generally speaking, the proposed method achieved
the greatest rate of plants classified correctly, with a substantial advantage over other classical
and state-of-the-art approaches, like LBP for instance. It also presented the highest κ index and
a more robust reliability (Gabor presented the same SR, but much smaller ER, while LBP pre-
sented smaller values for both SR and ER).

Fig 3 shows the confusion matrices for the main compared approaches (LBP, Gabor, Bouli-
gand-Minkowski and the proposed method). Confirming its higher success rate value, the
combined fractal descriptors provided the most accurate identification of the analyzed species.
When compared to LBP and Gabor, the best performance of the proposed method is evidenced
by the much smaller number of gray points outside the diagonal. When compared to Bouli-
gand-Minkowski, the greater precision of the proposal is not so obvious, but it is observed for
some classes, like 3 and 10. These are species where the cross-sections show more periodic pat-
terns and where the frequency analysis gives relevant information.

To verify how successful is the use of midrib in identifying species from the same family, the
average success rate of the species belonging to the same family was calculated and presented at
Fig 4. When the identification is performed considering the species, the proposed method
achieved 83.67% of success rate, however, when the success rate of each family is calculated,
the proposed method achieves 87.29% of correct identification. This means that at least 4% of
the error is inside the family level, what is expected since the species belonging to the same fam-
ily have substantial similarities.

The results above confirm what was expected from the theory background of each method
concerning the perspective that each one shows from the image. Unlike Gabor, LBP and other
approaches, fractal descriptors are conceived to model the natural composition law of

Table 2. Success rates and other statistical measures of the proposedmethod compared to other literature approaches to classify the same set of
plant species.

Method Success Rate (error) (%) κ-index SR ER

LBP 49.12(± 0.6) 0.4641 0.4511 0.6182

Gabor descriptors 42.04(± 0.7) 0.4062 1.0000 0.2809

Fourier fractal descriptors 45.31(± 0.5) 0.4500 0.9651 0.6979

Bouligand-Minkowski fractal descriptors 72.81(± 0.5) 0.7189 1.0000 0.9541

Combined fractal descriptors 83.67(± 0.7) 0.8248 1.0000 0.9693

doi:10.1371/journal.pone.0130014.t002
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biological structures. Such law is based on the self-replication of elements at different scales
whereas this replication is also inherent to the self-similar nature of fractals. Particularly, the
method proposed here combines two complementary ways of extracting fractal features. While
the dilation volumes in Bouligand-Minkowski express the spatial morphology of the midrib,
the Fourier method analyses the complexity of the frequency distribution. The combination by
the KL transform results in a solution capable of identifying species using a simple and inex-
pensive setup and using a material that can be collected in most cases effortlessly at any time.

The identification of plant species using leaves is naturally a very challenging problem due
to the high intra-species dissimilarity and inter-species similarity. Leaf variation occurs at
every hierarchical level: within and among plants, populations, and species. In some species
subject to different environmental conditions, marked phenotypic differences in leaves can
occur during the development. Leaf variation within individuals may also occur regardless of
environmental conditions, as part of the normal developmental pattern and seasonal changes,
even among sequential leaf position on a stem. Nevertheless, the midrib proved to be a promis-
ing structure in the task of identifying plants.

Fig 3. Confusion matrices of the main compared approaches. (a) Gabor descriptors. (b) Local Binary Pattern. (c) Bouligand-Minkowski fractal
descriptors. (d) Combined fractal descriptors.

doi:10.1371/journal.pone.0130014.g003
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In this context, the midrib of a leaf contains vascular bundles, associated fundamental tis-
sues (parenchyma and/or collenchyma and/or sclerenchyma) and epidermis. Vascular tissues
(xylem and phloem), which compose the midrib bundles vary in quantity and in their spatial
disposal. In addition, the vascular system may be formed by a single bundle or be formed by a
continuous or an interrupted arch, depending on species [19]. The characteristics of the funda-
mental tissues such as cell wall thickness, the presence of secretory cells or structures, and their
distribution within the midrib also vary with the species. Similarly, depending on the species,
the epidermis can vary depending on the presence or absence of trichomes and their type, the
shape and size of its cells, cuticular thickness, etc [52]. Thus, anatomical studies that address
the taxonomic aspect traditionally describe these tissues seeking some feature that can distin-
guish the species. The qualitative description of these features is a laborious task, however,
quantitative data from midrib would be complicated to be obtained by methods which are
commonly used in Botany. In this sense, the computational method proposed here obtained
very informative measures of texture from the median ribs, being able to differentiate between
species. For these reasons, this method is very promising for the present and forthcoming sci-
ence, which has sought the automatic identification of species, facilitating studies across the
wide diversity of plants occurring in the world.

Conclusions
This study proposed to identify plant species of a tropical savanna of Brazil by extracting fractal
descriptors of leaf midrib histological cross-sections. The proposed solution combines Bouli-
gand-Minkowski and Fourier fractal descriptors to provide features for the leaf images. These
features are categorized by a state-of-the-art classifier method, making possible the correct
identification of the species.

Fig 4. Averaged success rate of the species belonging to the same family considering the main compared approaches.

doi:10.1371/journal.pone.0130014.g004
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The results confirmed what was expected from the fractal descriptors theory, thus the pro-
posed method achieved a great precision in the species identification, outperforming other im-
aging techniques and making possible to obtain an automatic and precise categorization using
basic biological procedures. We can also conclude that the midrib is a region of the leaf that
can provide relevant information in the process of identification of plant species. Therefore, fu-
ture studies should take into account both the characteristics of the median vein and of the me-
sophyll, which would increase the rate of discrimination among species.
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