





transitive on the homogeneous space G/L if for every z,y € G/L there exists g € S
such that y = gz. We look here at the possibilities for L in order that S is transitive
on G/L. The main results are stated in Theorems 1.1 and 1.2 below.

We work here in the context of [4]. So we use freely the concepts and notations
of that paper. In particular. let g be the Lie algebra of G and g = k @ s one of its
Cartan decompositions with k standing for a maximal embedded subalgebra. Select
a maximal abelian a C s, let IT be the set of roots of the pair (g,a) and ZC Il a
simple system of roots. Denote by II* the corresponding set of positive roots. Let
m be the centralizer of a in k. The standard minimal parabollc subalgebra of g is
given by p = m & a® n where

n= 3 g

acllt
is the direct sum of the root spaces associated to the positive roots. The normalizer
P of p in G is a minimal parabolic subgroup and B = G/P is a maximal flag
manifold of G. It is well known that p is the Lie algebra of P. Given a subset
O C L, let n~ (8) be the subalgebra generated by ¥, g-o with the sum extended
to o € 8. We denote by pe the parabolic subalgebra

pe=n (8)®p.

Its normalizer Py in G is a parabolic subgroup whose Lie algebra is pg. We put
Bg = G/ Pg for the corresponding flag manifold.

Denote by 1V the Weyl group for (g, a), and by Wg the subgroup of W generated
by the reflections with respect to the roots in ® C X. In [4, Section 4] it was
associated with a semigroup S C G with intS # 0 a subgroup W (S) C W which
accounts for the number of S-control sets on B. It was shown that WV (5) = Wg,
for some subset O of the simple system of roots. We use the notation B (S) = Bay,.
The main property of B(S) which will be used here is that if C C B(S) stands
for the invariant control set for S then C is contained in the stable manifold of the
attractor in B (S) of any h € intS which is split regular. In particular, there are
b € B (S) and a split regular element H in the Lie algebra g such thatexp (tH)x — b
ast — +oo for all z € C.

The statement of the main result requires the notion of contracting sequences (see
[2]): Let gx be a sequence in G, and write the polar decomposition of its elements
as g = vpheuy with v, up € K and hy € ¢lA*. Here K is the compact subgroup
appearing in a Cartan decomposition of G and AT = expa*, where a* C aisa
Weyl chamber. For a root a € I1 and & € expa, put ¢, (h) = exp (a (logh)). The
sequence g is said to be contracting if ¢, () = 0 as k£ — +oo for all negative root
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a. Moreover, the sequence is said to be contracting with respect to a flag manifold
Be if ¢, (hi) — 0 for all negative root a which is not in the subset (©) of roots
spanned by ©. It is known that if g, is contracting with respect to Bg then there
are a subsequence g;,, and by € Bg such that . — by for  in an open and dense
subset of Bg (see Proposition 2.5 below).

The action of a group L on the topological space .\ is said to be topologically
transitive if every orbit Lz, z € X is dense in .\".

Theorem 1.1 Let S C G a semigroup withint S # @ and L C G a closed subgroup.
In order that S is transitive on G/L it is necessary that

1. L is topologically transitive on B (S) and

2. L admits a contractive sequence with respect to B (S).

It was claimed by the authors that in case G is simple a necessary condition
for a proper semigroup to be trausitive on G/L is that either dimL =0or L = G
(see Theorem 6.4 in [4]). This result is wrong: As we show in Section 3 below
there are proper semigroups which are transitive on the quotient of S{(2n,R) by
the symplectic group.

Despite that example, Theorem 6.4 in [4] holds with the additional assumption
that G/L is compact. \We have

Theorem 1.2 Suppose that G is simple and that 0 < dim L < dim G. Suppose also
that G/L is compact. Then S is not transitive on G/L unless S =G.

2 Proofs

We start with the following useful criterion for deciding the transitivity of a semi-
group.

Proposition 2.1 Let G be a topological group, L C G a closed subgroup and S C G
a semigroup with int S # (. If S is transitive on G/L then int SNgLg™" # @ for all
g € G. Reciprocally, assume that G/L is connected. Then S is transitive on G/L if
intSNgLg=' #0 for all g € G.



Proof: Suppose that S is transitive on G/L and take z € G/L and g € intS.
Then there exists A € S such that hgz = z. Since hg € int S. this shows that int S
intercepts any conjugate of L.

As to the converse, the condition ensures that int S intercepts the isotropy at
any z € G/L. This implies that = € (intS)z C int (Sz) which shows that Sz is
open for all z € G/L. The same statement holds with S~ instead of S. Fixing z,
set

0= U S7'y.
véSz
We have that O U Sz = G/L. If y ¢ Sz then S™'y N Sz = 0 which shows that
OnN Sz = 0. Since G/L is connected, this shows that @ =0, and we conclude that
Sz = G/L and S is transitive. O

This proposition can be stated as:
Corollary 2.2 With the same notations and assumptions,
1. if S is transitive on G/L then int (9Sg~')NL # 0 for allg € G.

2. If G/L is connected and int (gSg~")NL # @ for all g € G then § is transitive
on G/L.

We shall nced the following fact which is also of a general nature.

Proposition 2.3 Suppose S is transitive on G/L. Then for every h € G there
ezists g € L such that hg € S.

Proof: Let zg be the origin in G/L. Then there exists s € S such that szo = hxo.
This implics that s~ 'hze = zo and hence that s~'h € L. Putting g = h™'s, we get
the result. (]

In order to start the proof of Theorem 1.1 let S be a semigroup transitive on
G/L. Let also C C B(S) be the invariant control set for S on B (S5) and denote by
Cp C C its set of transitivity. This is an open an dense subset of C. Moreover, for
any z € Cy there exists a split regular element H € g such that z is the attractor of
exp (tH), t > 0, and C is contained in its stable manifold (see [4, Prop.4.8]). Since
C is compact, this implies that for any neighborhood U 3 z there exists to > 0 such
that exp (tH)C C U for all t > ty. These contractions will be exploited to show
that the L-orbits on B (S) are dense. We check first the density of the orbits inside
the invariant control set. :



Lemma 2.4 Given z,y € C there exists a sequence g, € L such that gyy — o as
k= 0.

Proof: Take z € Cy and U a neighborhood of z. By the above comments there
exists b € G such that hC C U. Apply Proposition 2.3 to 4~ to get g € L such
that h™'g € S. Then ' '¢C' C C because C is S-invariant. This implies that
gC C hC C U. This ensures the existence of a sequence converging to any z € Cy,.
Using the density of Cy in C' we get the lemma. O

We can show now the density of the L-orbits on B3 (S). The lemma above still
holds with ¢C, g € G in place of C because gC' is the invariant control set for
9Sg™" and this semigroup is also transitive on G/L if S is transitive. Now, the
family int (gC), g € G covers B (S) so by compactuess there exists a finite unmber
Ci=g¢C,i=1,...,k such that

B(S)=intC,U---Uint .

Given z,y € B(S) we can find 1 < oo Sk withz € intCy, and y € int Cis
and such that intC;, Nint 1, 7 O for otherwise B(S) would not be connected.
This being so, pick z; € int G, Nint G, j=1,...,0 and a ncighborhood V" 3 .
By the lemma above, there exists h, € L such that hpz € V. Hence V; = W'V is
a neighborhood of z. Applying again the lemma, there exists 911 € L such that
Gi-1z21-1 € V; and thus we get the neighborhood Vi = g,‘_', Vi of . Applying
successively the lemma, we get neighborhoods Vi of z such that Vi, = ¢V} with
gi € L. Since V, is a neighborhood of z;, there exists hy € L with hyx € 1. This
way,
hagi---gihuz € V

which shows that there exists a sequence hy € L with hyz — y concluding the proof
that L is topologically transitive on B (S).

Now, we check that L satisfies the second condition of Theorem 1.1. For this we
reproduce here the following well known description of the action on a flag manifold
Beg of sequences g; € G (see [2]).

Let gr = vihyuy, v, u € K, by € A" be the polar decomposition of the
sequence. Denote by 8y € By the attractor of the clements in .1+ and et g = N by
the corresponding open Bruhat component (stable manifold). Substituting g; by a
subsequence we can assume that v — v and u; — «. This being so, take x € u~'a.
Then wx — ux € o so that y = wex belongs o for large &, and y — y = uzx.
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We can write . = nebp with e = exp (Xg). and X, € n™ (0). The same way,
y =exp(X)by, X € n~ (O), and we have that Xy — X.
With this notation, the action of h on y; is

hyye = heexp (Xi) bg = exp (Ad (hx) Xi) bo -

We decompose X as

J\.’k - Z .\’f
with X € g,, and « running over the negative roots which are not in (©). A
similar decomposition exists for X' with components .X®. We have that

Ad () X = ) 9o (hi) X§

where ¢, (h) = exp (a (log Iy.)). Since 0 < ¢, () < 1, we can take subsequences
again and assume that lim ¢, (hy) = a, € [0, 1] exists for all negative root a. As-
suming this, we have that the restriction of Ad (/) to n™ (©) converges to a linear
mapping, say 7 of n~ (©). This 7 is diagonal and its eigenvalues are a,. Clearly,
Ad (he) X = 7.X, and since X, = X we have also that Ad (he) Xe = 7.X. We get
thus the

Proposition 2.5 Tuke a sequence g, € G. Then there are

1. a subsequence gy,

2. elements v,u € I, and

3. a linear mapping 7 of n~ (0)
such that for every Y € n™ (©),

Gatt™" exp (Y) by = pexp (1) by

as n — 0o. The subsequence is contracting if and only if 7 = 0. a
Corollary 2.6 Lt g € G be « scquence, and suppose that for an open subset

U € Be, grx = by for all v € U, where by € Bg is fited. Then g; admits a
subsequence which is contracting with respect to Be.



Proof: Take the polar decomposition in such a way that by is the attractor of the
elements in the Weyl chamber A* and apply the proposition to the sequence. The
subset

V={Yen (0):u'exp(})b € U}

is open and not empty in n~ (8). For ' € V', we have by the proposition that
g ulexp(Y) by o v exp(r}) .
and since u~texp (Y) by € U we have also that
g, exp (Y) by = by .

Comparing these limits we get that ¢ = 1 and 7Y = 0 for }" € V. The fact that
V # 0 is open implics then that 1 = 0 and the subsequence is contracting with
respect to Bg. a

With this corollary it becomes easy to get a contracting sequence in L. In fact,
take z in Cy and a sequence Uy of neighborhoods of z whose iutersection is {z}.
Take also a sequence hy of split regular clements in G such that h,C C U,. By
Proposition 2.3 there exists. for cach k. g € L such that hi'ge € S. Therefore
hi'gC C C so that

aC C hC C Uy

and gry — x for every y € C. Since intC # @ the above corollary implies that
gx admits a contracting subsequence. Therefore L contains a sequence which is
contracting with respect to B (S) concluding the proof of Theorem 1.1.

Let us consider now Theorem 1.2. The proof of Theorem 6.4 in [4] works with
the assumption that G/L is compact. Here is a modification of that proof which
is based in Theorem 1.1: Let I be the Lic algebra of L and put J = N (1) for its
normalizer in G. The assumption on the dimension of L and the fact that g is simple
imply that 0 < dimJ < dimG. \Ve have that G/.J is the orbit under G of I in the
Grassmannian of k = dim1 subspaces of g. This orbit is compact because L C .J.
Therefore, the result is a consequence of the following lemma.

Lemma 2.7 Suppose that G is simple and let G/.J be a compact projective orbit for
some finite dimensional representation of G. Then J is not topologically transitive
on any flag manifold unless J = C.
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Proof: Let G = KAN be an Iwasawa decomposition. In any finite dimensional
representation of G the clements of T = AN are represented by upper triangular
matrices. Therefore, the fact that G/J is compact implies that there exists € G/J
which is fixed by T (sce [5]). Hence we can assume without loss of generality that
T c J. This being so, put U = JN K. Then U is compact and J = UT. Now,
suppose that J is topologically transitive on some boundary B = G/Q with @
parabolic. We can assume that T C Q hence the density of the orbit under J of the
origin by € B implics that the U-orbit of bg is also dense. I'rom the compactness of
U we then have that U is transitive on B.

Now we rcalize B as an adjoint orbit under A": let k be the Lie algebra of K and
g = k@ s the corresponding Cartan decomposition. We have that the Lie algebra a
of A is contained in s, and there exists H € a such that Ad (K) H coincides with B
as a homogencous space. Since g is simple the adjoint action of K on s is irreducible
and hence the subspace spanned by the orbit Ad (K) H coincides with s. Now, H
belongs to the Lie algebra j of J so that Ad (U) H C j. However, Ad (U) H coincides
with Ad (K') H because U is transitive on B. This shows that s is contained in j

and since the Lie algebra generated by s is g we conclude that j = g and hence that
J=G. m]

3 Counterexamples
Let 1} be a pointed gcuvmtiné cone in R? and define
Sw={g€ SL(2n,R):gl} C '},
This is a subsemigroup with nonempty interior of G = S{(2n,R) for which B (S)

is the projective space RP?~!. Let L be the symplectic group Sp(n,R). Its Lie
algebra sp (7, R) is the algebra of matrices which are written in blocks n X n as

A B
c -A
with B and C symmetric.
We shall prove that Sy is transitive on G/L.

Lemma 3.1 Tuke v € R*™ with || = 1 and put V" = v* for the orthogonal com-
plement of v. Then there exists H € sp (n,R) which is diagonalizable and has a
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principal eigenvalue A, of multiplicity one, that iS, Am > j for any other eigen-
value, and moreover,

1. v spans the eigenspace associated with }A,,, and

2. the other eigenspaces are contained in V.
Proof: If v = ¢, the first basic vector, take
Ho =diag{,\|,...,,\,.,—A[ ..... —/\n}

with Ay > .-+ > Ay > 0. This Hy satisfics the requircments.

On the other hand. let &" be the compact component of a Cartan decomposition
of Sp(n, R) contained in the orthogonal group. It is well known that I is transitive
on the sphere 5?*~! (see e.g. [1]). Therefore for an arbitrary v € §2"~!, there exists
k € K such that ke, = v. Then H = kHok™' is the required element in sp (m, R)
because its eigenspaces are the images under & of the eigenspaces of H. o

Lemma 3.2 Let IV € R? be a pointed generating cone and consider its dual
W' ={veR*: (v,w) >0 for allwe '}
Then int W Nint IV* # 0.

Proof: By induction on d. For d = 1 or 2 the result is trivial. Before proving the
induction step, let P : R? — R? be an orthogonal projection. Then P! = P and
since WV is generating, P (11") is gencrating in the image of P. Moreover, the dual
(P (W))" in the image of P is contained in 1¥"". In fact, take y € (P (1¥))". Then

(y,x) = (Plyi:’:) = (y,Pz) >0

forallz e W.

This fact will be used in the following situation: If int 11* C IV there is nothing to
prove. Otherwise, let z € (int 11"*) — 1V, and denote by P the orthogonal projection
onto zt. We claim that P (IV") is a pointed cone. In fact, suppose 0 # +y € P (IV).
Then there are ay € R such that :; = £y +a.r € IV, Since z € intWW*, a, > 0.
However,

vtz =(ay+a’)z
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with a; + a- > 0 which implies that z € 1V contradicting the choice of z.
The induction hypothesis applies then to P (1V) so that

intP(W)Nine P(IV)" #0
with the interior taken in x—. By the previous comment, 1V'* contains the wedge
V=R"z+(PV)),

and it is clear that Az +int (P (1))" is contained in the interior of V' if A > 0. This
being so, pick
et P(W)Nint P (117)".

Then Az + = € int}" C int 11’ for all A > 0. Morcover, there exists a € R such
that az + = € IV because z € P (IV). Since z € int1V*, a > 0. This shows that
W Nnint1V* # @ concluding the proof of the lemma because if two pointed and
generating wedges are such that one of them itercepts the interior of the other than
they have a common interior point. (]

We can show now that S\ is transitive on Si(2n,R) /Sp(n,R). According to
Corollary 2.2 we must show that Sp(n,R) meets the interior of gSwg~! for all g.
Now, gSwg~' = S,w, and of course, g1’ is pointed and generating if and only
if the same happens to 11", Also, g € int Sy if and only if g C int1V. Hence
the transitivity of Sy follows if we show that there exists g € Sp(n, R) such that
gW C int 1V, For this, take

v €int IV Nint 117,

We have that v+ NIV = 0 because v € int1V*. Let H € sp (n,R) be as in Lemma
3.1 with v a principal eigenvector. Then v is an attractor for the spherical action
of exp (tH), t > 0 with the stable manifold given by (v,-) > 0. From this we have
that exp (tH) IV C int iV for t > 0 big enough. This shows that Sp(n, R) meets the
interior of any Sy so that these semigroups are transitive on Sl (2n,R) /Sp (n, R).

The transitivity of Sy on S{(2n.R)/Sp(2n.R) shows that Theorem 1.2 does
not hold without the assumption that G/L is compact as was claimed in [4, Thm.
6.4).

The flaw in the proof offered in [1] for this fact comes from Lemma 1 in [3] which
is wrong. That lemma claims that if a subsemigroup S, with nonvoid interior, of a
linear group G is trausitive in a projective orbit @ of G then it is also transitive on
the orbits which are in the closure of O.
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In order to provide a counterexemple for this statement we use again the semi-
groups Sw C Sl{2n,R) and the symplectic group

Sp(n.R)={g € St(2n.R) : gJg"' = J}

0 “'lnxn
s ( lwn O ) '
Let V = A? (R’"). be the space of skew-symmetric bilinear forms on R?".
Si(2n, R) represents in 1" by
(98) (w,v) = B (97'u,g7") .

Taking the symplectic form w € 1", whose matrix is J, the isotropy of the action
of Sl (2n,R) is exactly the symplectic group. Therefore. S is transitive on the orbit
of w and thus in its projective orbit. On the other hand, on the closure of this
projective orbit there is a Grassmannian. In fact, the matrix of gw, g € SI(2n,R)

] (o) 55"

so that if h=! = diag{A...., Asa} with A, > -+ > Ayn > 0 then the matrix of h*w,

k>1is
0 -\
A¥ 0

with A = diag{AAns1,-. .. And2n}. The eigenvalue A A, of A is strictly bigger
than any other eigenvalue. This implies that

where

I s
F/\%h W —E1AEps
as k — oo. Heree¢;, i = 1,...,2n is the basis of (Rz")' dual to the basis of R*".
This shows that the orbit of the decomposable vector €, A €, is in the closure of

the orbit of w. Now it is easily seen that the isotropy at €, A £,4, is the subgroup
Q of matrices of the form

r 0

* x

with z being a 2 x 2 matrix. In other words. the orbit of £, A¢,,, is the Grassman-
nian of 2n — 2 subspaces of R?. None of the semigroups Sy is transitive on this
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Grassmannian. This can be seen either by Theorem 6.2 in [4], or by Theorem 1.1
above (the isotropy Q is not transitive on the projective space) or even directly: The
(2n — 2)-subspaces which meet W is a proper subset of the Grassmannian which is
invariant under S,y.
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