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Abstract 
Let G be a connected semi-simple Lie group with finite center and S C 

G a semigroup with interior points. It is proved that S is transitive on a 
homogeneous space G / L only if the a.ctiou of L on B is topologically transitive 
and contracting, where B = G / P is the flag manifold of G associated with S. 
In [4, Thm.6.4) the authors claimed another t1L'CC88al·y condition in case G is 
simple, namely, that L is discrete. It is shown by means of an example that 
this condition is wrong without the fmther assumption that G / L is compact. 

1 Introduction 

Let G be a connected semi-simple Lie group with finite center and S C G a sub­
semigroup with nonvoid interior. Gh·eu a dosed subgroup L C G, S is said to be 
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transitive on the homogeneous space G / L if for every x, y E G / L there exists g E S 
such that y = gx. We look here at the possibilities for Lin order that Sis transitive 
on G / L. The main results are stated in Theorems 1.1 and 1.2 below. 

We work here in the context of [,t]. So we use freely the concepts and notations 
of that paper. In particular. let g be the Lie algebra of G and g = k EB s one of its 
Cartan decompositions with k standing for a ma.ximal embedded subalgebra. Select 
a ma.ximal abelian a C s, let [1 be the set of roots of the pair (g, a) and E C II a 
simple system of roots. Denote by n+ the corresponding set of positive roots. Let 
m be the centralizer of a in k. The standard minimal parabolic subalgebra of g is 
given by p = m EB a EB n where 

n= Lg,. 
oEfl+ 

is the direct snm of the root spaces associated to the positive roots. The normalizer 
P of p in G is a minimal parabolic subgroup and B = G / P is a ma.ximal flag 
manifold of G. It is \\'Cl! known that p is the Lie algebra of P. Given a subset 
0 C E, let n - (6) be the subalgebra generated by Lo g_o with the sum extended 
to a E e. We denote by Pa the parabolic subalgebra 

Its normalizer P0 in G is a parabolic subgroup whose Lie algebra is Pe- We put 
Ba = G / Pa for the corresponding flag manifold. 

Denote by tv the Wey! group for (g, a), and by We the subgroup of W generated 
by the reflections with respect to the roots in 0 C E. In [4, Section 4] it was 
associated with a semigroup S C G with int S =/:- 0 a subgroup W (S) C W which 
accounts for the number of S-control sets on B. It was shown that JV (S) = Was 
for some subset 6s of the simple system of roots. We use the notation B (S) = Bis• 
The main property of B (S) which will be used here is that if C C B (S) stands 
for the invariant control set for S then C is contained in the stable manifold of the 
attractor in B (S) of any h E int S which is split regular. In particular, there are 
b EB (S) and a split regular element Hin the Lie algebra g such that exp (tH) x ➔ b 
as t ➔ +oo for all x E C. 

The statement of the maiu r<'.sult requires the notion of contracting sequences (see 
[21): Let 9k he a sequence in C, and write the polar decomposition of its elements 
as Yk = vkhk u1., with Vk, ILk E K an<l h1., E cl ..1 +. Here I{ is the compact subgroup 
appearing in a Cartan <leco111positio11 of G and .-l + = exp a+, where a ... C a is a 
Weyl chamber. For a root o E 11 and h E exp a, put ¢0 (h) = exp (a (log h)). The 
sequence 9k is said to be contracting if <1>0 (hi.) ➔ 0 as k ➔ +oo for all negative root 
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a. Moreover, the sequence is said to be contracting with respect to a flag manifold 
Be if ,J,0 (h1:) ➔ 0 for all negative root o which is not in the subset (0) of roots 
spanned by 0. It is known that if 91. is contracting with respect to Be then there 
are a subsequence 91.n and bo E Be such that 91.:n :i: ➔ b0 for i· in an open and dense 
subset of Be (see Proposition 2.5 below). 

The action of a group L on the topological space X is sai<l to be topologically 
transitive if every orbit Lx. x E Xis dense in X. 

Theorem 1.1 Let S C G cL semigroup with int S =I 0 and L C G a closed subgroup. 
In order that S is transitive on G / L it is necessanJ that 

1. L is topologically transitive on B (S) a111.i 

2. L admits a contractive sequence with respect to B (S). 

It was claimed by the authors that in ca:.c G' is simple a necessary condition 
for a proper semigroup to be transitive on G / L is that either dim L = 0 or L = G 
(see Theorem 6.4 in [4]). This result is wrong: As we show in Section 3 below 
there are proper semigroups which arc transitive on the quotient of Sl (2n, R) by 
the symplectic group. 

Despite that example, Theorem 6A in [-lj holds with the a<l<litional assumption 
that G / L is compact. We have 

Theorem 1.2 Su71pose that G is simple and that O < Jim L < dim G. Su7,pose also 
that G / L is compact. Then S is not transitiv,~ on G / L unless S = G. 

2 Proofs 

We start with the following useful criterion for deciding the transitivity of a scmi­
group. 

Proposition 2.1 Let G be a topological gro1q,, L C G a closed subgro117, and S C G 
a semigroup with int S =I- 0. If S is transitive on G / L then int Sn gLy - 1 =I- 0 for all 
g E G. Reciprocally, assume that C / L is connected. 11,en S is tmnsitive on G / l if 
intSngLg- 1 f 0 for all g EC. 
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Proof: Suppose that Sis transitive on G/L and take x E G/L and g E intS. 

Then there exists h ES such that hgx = x. Since hg E intS, this shows that intS 

intercepts any conjugate of L. 
As to the converse, the condition ensures that int S intercepts the isotropy at 

any x E G/L. This implies that x E (iutS)x C int(Sx) which shows that Sx is 

open for all x E G / L. The same statement holds with s- 1 instead of S. Fixing x, 

set 
o = U s-1y. 

11flS2: 

We have that OU Sx = G/L. If y (/. Sx then s-1y n Sx = 0 which shows that 

0 n Sx = 0. Since G / L is connected, this shows that O = 0, and we conclude that 

Sx = G / L and S is transith·c. 0 

This proposition mu _be stated as: 

Corollary 2.2 With the srune notations and assumptions, 

1. if Sis transitive 011 G/l then int(gSg- 1) n L ::/- 0 for all g E G. 

2. If G / L is connected ,md int (gS g- 1) n L :f:. 0 for all g E G then S is transitive 

on G/L. 

We shall need the following fact which is also of a general nature. 

Proposition 2.3 Suppose S is transitive on G / L. Then for every h E G there 

exists g E L such that hg E S. 

Proof: Let xo bci the origin in G / L. Then there exists s E S such that sx0 = hx0 • 

This implies that s - 1hxo = x0 and hence that s- 1h EL. Putting g = h- 1s, we get 
the result. 0 

In order to start the proof of Theorem 1.1 let S be a semigroup transitive on 
G/ L. Let also CC B (S) be the invariant control set for Son B (S) and denote by 
Co C C its set of transith·ity. This is an open an dense subset of C. Moreover, for 

any x E Co there exists a split regular element H E g such that x is the attractor of 

exp (tH), t > 0, and C is contained iu its stable manifold (see 14, Prop.4.8)). Since 
C is compact, this implies that for any neighborhood U 3 x there exists to > 0 such 

that c.xp (tH) C C U for all t > t0 • These rnntractions will be exploited to show 

that the L-orl>its on B (S) are dense. \\'e check first the density of the orbits inside 

the invariant control set. 



Lemma 2.4 Given x, y E C there exists a scq1wucc !/k E L .rnch that !/k·Y ➔ x as 
k ➔ oo. 

Proof: Take x E C0 and U a neighborhood of x. By the above comments there 
exists h E G such that hC C U. Apply Proposition 2.3 to 1i- 1 to get g E L such 
that h-1g E S. Then 1i- 1yC C C because C is S-invariant. This implies that 
gC C hC C U. This ensures the existence of a sequence converging to any x E C0• 
Using the density of C0 in C we get the lemma. □ 

We cau show now the density of the L-orhits 011 B (S). The lemma aLove still 
holds with gC, g E G in place of C because 9C is the inrnriaut control set for 
gSg-• and this semigroup is also trausiti\'e 011 G/ L if S is transitive. :\"ow, the 
family int (gC), g E G co\'ers B (S) so by compactness there exists a finite 11111ub1'r 
C, = g;C, i = l, ... ,k such that 

B (S) = int C1 u · · · u int Ci.. 

Given x, y E B (S) we can find 1 :5 i1, ••• , i1 :5 k with x E int C,1 and y E int C111 
and such that int Ci, n int C,,_, / 0 for otherwise B (S) would not be connected. 
This being so, pick z; E int C,, n int C,,.,., , j = l, . . . , l and a neighborhood \'" 3 y. 
By the lemma above, there exists h2 E L such that h1 :;1 E \' . Hence \ 1 = Ji:; 1 V is 
a neighborhood of z1• a\pplyiug again the lemma, there exists y1 _1 E L such that 
Y1-1Z1-1 E V, and thus we get the neighborhood \, _, = 91-_\ Vi of z1 - , .• .\pplying 
successively the lemma, we get neighborhoods Vi of :;i such that Vi+t = 9i Vi with 
g, E L. Since Vi is a neighborhood of :;1, there exists h1 E L with h1x E 1 ·1. This 
way, 

h2g, · · · 9,h1x E \I 

which shows that there exists a sequence hi. E L with h,.x ➔ y concluding the proof 
that L is topologically transitiYe on B (S). 

Now, we check that L satisfies the sl'Cond condition of Theorem 1.1. For this we 
reproduce here the following well known description of the action 011 a flag manifold 
Be of sequences g4: E G (see [2]). 

Let g,. = vi.hkuk, 1•i" uk E J<, h,. E cl .-l .. be the polar decomposition of the 
sequence. Denote by ho E Be the attractor of the clemeuts in . l +- and let a = _v - bo 
the corresponding open Bruhar component (stable manifold) . Substituting Yk by a 
subsequence we can assume that vi. ---t 11 and -u1,; ➔ u. This being so, take :L' E u - •a. 
Then u,.x ➔ ux E a so that Yi. = 1t1.:1· belongs a for large k. and Yi. -+ y = 1tX. 
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We ca11 writ!' 1/k = 11.1.J>o with 11k = ,~xp (Xk). a11d .\1, E n - (0) . The same way. 
y =exp(X)bo, .\En- (0), and we ha,·e that Xk-+ X. 

With this notation, the action of h,. on y1,; is 

We decompose X1,; as 

with Xi; E g 0 , and n running over the negative roots which are not in (0). A 
similar decomposition exists for X with components X 0

• We have that 

where ¢ 0 (hk) = exp (a (log hk)). Since O < ¢>0 (h1,;) :5 1, we can take subsequences 
again and assume that lim90 (h.k) = n0 E [O, l] exists for all negative root o. As­
suming this, we have that the restriction of Ad (hk) to n- (0) converges to a linear 
mapping, say r of n - (0). This r is diagonal and its eigenvalues are a0 • Clearly, 
Ad (hi.,) X-+ rX, and since Xk-+ X we have also that Ad (hk) X1c-+ r.X.. We get 
thus the 

Proposition 2.5 Take u sequence g,. EC. Then there are 

1. a Sil bsN111ence 9k., 

2. elements t•, n E /{, and 

3. a linear mapping r of n - ( 0) 

such that for <'H'Q' }"En- (0), 

!Ji..u - • exp (Y) b0 -+ 1•exp (rl") ho 

as n -+ ()() . The snbseq11r11ce is contracting if an<l only if r = 0. D 

Corollary 2.6 let g1,; E C be ri sequence, ancl suppose that for an open subset 
U E Be, 91,;x -+ l,o J or all :i: E U, where b0 E Be is fixed. Then g,._ admits a 
-~ttbsequence which i.~ contractiu_q with respect to B0 . 

G 



Proof: Take the polar <ll'<"omposition in such a way that bu is the attractor of the 
elements in the Wey} chamber .-l + and appl~· the proposition to the sequence. The 
subset 

V = {l' En . (0): u- 1 exp(}') ho EU} 

is open and not empty in n- (0). For 1· E F, we have by the proposition that 

and since u - 1 exp (l'J 60 E U we have also that 

Yknu - • exp (l'J bo ➔ bo. 

Comparing these limits we get that v = 1 and rl · = 0 for } · E I'. The fact that 
V '# 0 is open implies theu that r = 0 and the subscqucnn:i is rnutracting with 
respect to B0 . D 

With this corollary it becomes easy to get a contracting sequence in L. In fact, 
take x in Co and a sequence U1.: of neighborhoods of x whose iutC'rsection is {:r}. 
Take also a sequence l11.: of split regular t•lemcnts in C such that h1.:C C U1.:. By 
Proposition 2.3 there exists. for Pach I.:. 91.: E L such that /, z I g,. E S. Therefore 

· h't 191;C C C so that 
g,.C C h1.:C CU,., 

and 91.:Y -+ x for every y E C. Since int C =I- 0 the abo,·e corollary implies that 
91c admits a contracting suhseqtwnce. Therefore L contains a sequence which is 
contracting with respect to B (S) concluding the proof of Theorem 1.1. 

Let us consider now Theorem 1.2. The proof of Theorem GA in [,l] works with 
the assumption that C/ L is l'Ompact. Here is a modifirntion of that proof which 
is based in Theorem 1.1: Let I be tht> Lie algebra of L and put J = .\' (I) for its 
normalizer in C. The assumption on the dimension of Land the fact that g is simple 
imply that O < dim J < dim C. \\'e hm·e that C / ./ is the orbit under C of I in the 
Grassmannian of k = dim I subspaces of g. This orbit is compact because LC ./. 
Therefore, the result is a conseqnf'ncf' of the following lemma. 

Lemma 2. 7 St'7>J>0sc that C is -~im7,le ,md let C /./ be a compact projective orbit for 
some finite dimensional rc11resentation of G. Then ./ is not to11olo_qically tmmiitive 
on any flag man if old unless .I = C. 



Proof: Let G = K.\N be au lwasawa dct:omposition. In anr finite dimensional 
representation of G the elements of T = .·1.'\I' are represented by upper triangular 
matrices. Therefore, the fact that G J J is compact implies that there exists x E G / J 
which is fixed by T (sec 15]). Hence we rnn assume without loss of generality that 
T C J. This being so, put U = J n K. Then U is compact and J = UT. Now, 
suppose that J is topologically transiti,·e on some boundary B = G /Q with Q 
parabolic. We can assume that TC Q hence the density of the orbit under J of the 
origin b0 E B implies that the U-orbit of b0 is also dense. From the compactness of 
U we then have that U is transitive on B. 

Now we realize Bas an adjoint orbit under K: let k be the Lie algebra of/{ and 
g = k EB s the corresponding Cartan decomposition. \Ve have that the Lie algebra a 
of A is contained in s, and there t!xists H E a such that Ad (K) H coincides with B 
as a homogcnco11s space. Since g is simple the adjoint action of I( on s is irreducible 
and hence the ~nbspace spanned by the orbit :\d (I{) H t:oiucides with s. Now, H 
belongs to the Lie algebraj of./ so tli:at a\d (U) H C j. Howe,·er, Ad (U) H coincides 
with Ad (I() H because U is trnnsith·e on B. This shows that s is contained in j 
and since the Lie algebra generated by sis g we conclude that j = g and hence that 
J=G. o 

3 Counterexamples 

Let IV be a poiutcd gc11nating cone in R2
" aud define 

Sw = {g E Sl(2n,R): yll' C 11"}. 

This is a s11usemigro11p \\"ith nonempty interior of G = SL (2n., R) for which B (S) 
is the projective space RP2

n -
1• Let L be the symplectic group Sp(n, R). Its Lie 

algebra sp (u, R) is the algebra of matrices \\'hich arc written in blocks n x n as 

( 
A B ) 
C -.-11 

with B anti C symmetric. 
We shall prove that 5 11 · is trnnsitiw 011 G / L. 

Lemma 3.1 1't!k1! tt E R'lt~ with lvl = 1 awl fJlLl \ · = ,,.:. for the orthogonal com­
plement oft'. Thrn there exists H E sp (n, R) which is diagonalizable and has a 
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principal eigenvalue ,\m of multiplicity one, that is, ,\'" > /L for any other eigen­
value, and moreover, 

1. v spans the eigenspace associated with,\'"' and 

1!. the other eigenspaces are contained in V. 

Proof: If v = e1, the first basic vector, take 

with ..\1 > · · · > ,\n > 0. This Ho satisfies the requirements. 
On the other hand. let I{ be the compact component of a Cartan decomposition 

of Sp (n, R) contained in the orthogonal group. It is well known that/( is transitive 
on the sphere s1n-l (see e.g. Ill). Therefore for an arbitrary t• E sin- I, there exists 
k E J( such that ke1 = t•. Then H = kH0k - 1 is the required clement in sp (n, R) 
because its eigenspaces are the images under k of the eigenspaces of H0 . □ 

Lemma 3.2 Let IV E Rd be <L vointed generating cone and consider its dual 

w· = { v E Rd: (v, w) ~ 0 /or all w E IV}. 

Then int W n int w· t- 0. 

Proof: By induction on d. for d = 1 or 2 the result is trivial. Before proving the 
induction step, let P : Rd ➔ Rd be ,m orthogonal projection. Then P1 = P and 
since W is generating, P (IF) is generating in the image of P. ~loreover, the dual 
(P(W)r in the image of Pis contained in IF". In fact, talce y E (P(W))". Then 

(y, x} = (P1y, x) = (y, Px) ~ 0 

for all x E W. 
This fact will be used in the following situation: If int Iv• c IV there is nothing to 

prove. Otherwise, let x E (int ff•) - II', and denote by P the orthogonal projection 
onto x.l. We claim that P (H') is a pointed cone. Ju fact. suppose O ¥- ±y E P(lV). 
Then there are a± E R such that .::r = ±y + n-:.1.· E IF. Since x E int IV", a± > 0. 
However, 
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with a+ + a_ > 0 which implies that x E H' contradicting the choice of x. 
The induction hypothesis applies then to P (H') so that 

int P (II'} n int P (II')" # 0 

with the interior taken in x-. By the previous comment, 1v• contains the wedge 

and it is clear that Ax+ int (P (H'))" is contained in the interior of V if.>. > 0. This 
being so, pick 

;; E intP(W)nintP(IIT. 

Then Ax + ;; E iut F C int 11"• for all ,\ > 0. ~Iorem·N, there exists a E R such 
that ax + ;; E IV because ;; E P (ll'). Since x E int w•, a > 0. This shows that 
W n int w• # 0 couclmliug the proof of the lemma because if two pointed and 
generating wedges arc such that one of them itercepts the interior of the other than 
they have a common interior point. D 

We can show now that Sw is transiti\·e on SL (2n, R) / S7J (n, R ). According to 
Corollary 2.2 we must show that Sp (n. R) meets the interior of gSwg- 1 for all g. 
Now, gSwy - 1 = S9w, and of murse, gll' is pointed and generating if and only 
if the same happens to Ir. Also, 9 E int Su· if and only if gW C int W. Hence 
the transitivity of Sw follm,·s if we show that there exists g E Sp (n, R) such that 
gW C int II'. For this, take 

v E int IF n int 11'0
• 

We have that v..L n IV = 0 because v E int II'". Let H E sp (n, R) be as in Lemma 
3.1 with v a principal eigem·L'Ctor. Then v is an attractor for the spherical action 
of exp (tH), t > 0 with the stable manifold gi\·en by (o, •) > 0. From this we have 
that exp ( tH) IV C int 11' for t > 0 big enough. This shows that Sp ( n, R) meets the 
interior of any Sw so that these sernigroups arc transitive on SL (2n, R) /Sp(n, R). 

The transitivity of Sw 011 Sl (2n. R) / Sp (2n. R) shows that Theorem 1.2 does 
not hold without the assmnptiou that G / L is l:Ompact as was claimed in [,l, Thm. 
6.4J. 

The flaw iu the proof offered in [-lJ for this fat:t comes from Lemma l iu 13] which 
is wrong. That lemma c-laims that if a snbsemigronp S. with nonvoid interior, of a 
linear b'TOIIJ> G is transitiw in a projPcti\·e orbit CJ l>f G then it is also transiti\'e on 
the orbits which arc· in tlHf closmc of CJ. 
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In order to provide a c:ounterexemple for this statement we use again the semi­
groups Sw C Sl (2n, R) and the symplectic group 

Sp (n. R) = {g E Sl (2n, R) : gJg' = J} 

where 

J = ( 0 -lnxn ) . 
lnxn 0 

Let V = 1\2 (R 2n)* be the space of skew-symmetric bilinear forms on R2n. 
Sl (2n, R) represents in F by 

Taking the symplcctic form ;,.; E I'. whose matrix is J, the isotropy of the action 
of Sl (2n, R) is exactly the symplcctic: group. Therefore, S is transith·e on the orbit 
of w and thus in its projective orbit. On the other hand, on the closure of this 
projective orbit there is a Crassmannian. In fact, the matrLx of gw, g E SI (2n, R) 
is 

(g -•)' .lg-• 
so that if h-1 = diag{A1, ... , A2n} with At > • · · > A2n > 0 then the matrL-...: of hkw, 
k ~ 1 is 

with A= diag{A1An+1,- ... AnA2n}- The eigenmlue A1,\n+t of A is strictly bigger 
than any other eigenvalue. This implies that 

1 I" At A~ t W --+ £1 I\ £,a+I 

as k ➔ oo. Here £i, i = l, ... , 2n is the basis of ( R2n) • dual to the basis of R2
n. 

This shows that the orbit of the decomposable vector £1 /\ £n+1 is in the closure of 
the orbit of w. Now it is easily seen that the isotropy at £1 /\ E'n+t is the subgroup 
Q of matrices of the form 

with x being a 2 x 2 matrb,. In other words. the orbit of c I I\ en+ 1 is the Grassman­
nian of 2n - 2 subspac:t'S of R2". None of the scmigroups S11· is transitive on this 
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Grassmannian. This can be seen either by Theorem 6.2 in l•ll, or by Theorem 1.1 
above (the isotropy Q is not transitive on the projective space) or even directly: The 
(2n - 2)-subspaces which meet W is a proper subset of the Grassmannian which is 
invariant under Siv. 
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