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ABSTRACT: Extracellular vesicles (EVs) are a frontier class of circulating biomarkers for the
diagnosis and prognosis of different diseases. These lipid structures afford various biomarkers such
as the concentrations of the EVs (CV) themselves and carried proteins (CP). However, simple,
high-throughput, and accurate determination of these targets remains a key challenge. Herein, we
address the simultaneous monitoring of CV and CP from a single impedance spectrum without
using recognizing elements by combining a multidimensional sensor and machine learning models.
This multidetermination is essential for diagnostic accuracy because of the heterogeneous
composition of EVs and their molecular cargoes both within the tumor itself and among patients.
Pencil HB cores acting as electric double-layer capacitors were integrated into a scalable
microfluidic device, whereas supervised models provided accurate predictions, even from a small
number of training samples. User-friendly measurements were performed with sample-to-answer
data processing on a smartphone. This new platform further showed the highest throughput when
compared with the techniques described in the literature to quantify EVs biomarkers. Our results
shed light on a method with the ability to determine multiple EVs biomarkers in a simple and fast way, providing a promising
platform to translate biofluid-based diagnostics into clinical workflows.
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Extracellular vesicles (EVs) consist of lipid nanoparticles
(50 to 200 nm in diameter) released by cells into the

circulation and have emerged as a promising class of
biomarkers for the diagnosis and prognosis of diseases such
as cancer and Alzheimer’s disease.1,2 These structures remain
stable over weeks, are abundant in biofluids, and carry
molecular cargoes such as proteins, nucleic acids, and lipids,
which are either inherited from parent cells or exist as
membrane-bound molecules.3 Accordingly, the circulating EVs
reflect the molecular status of their parent cells and further
afford multiple biomarkers, e.g., the amounts of EVs
themselves and proteins (cell-inherited and extravesicular).4−6

Despite the clinical potential of EVs and their contents,
accurate and high-throughput monitoring of these targets
remains an important challenge. Conventional techniques for
EVs analysis (Western blotting, ELISA, flow cytometry, and
counting methods) usually have poor sensibility, need a large
quantity of samples (>500 μL), and demand laborious
purification procedures prior to analysis. New sensors have
been developed to monitor EVs biomarkers, which are
generally based on sandwich immunoassays or EVs magnetic
isolation. While these approaches are promising, they typically
require time-consuming (>1 h) tests.1,3

A further sensing challenge facing the monitoring of EVs
biomarkers is the high heterogeneity in their biomolecular
composition both within the tumor itself and among patients.3

In this regard, the analysis of multiple biomarkers is key to
ensure accurate diagnoses.7 To circumvent this limitation, the
simultaneous quantification of EVs and carried extravesicular
proteins is addressed herein for the first time by converging a
multidimensional sensor and machine learning tasks toward
rapid, sample-to-answer, and accurate multideterminations as
demonstrated in Scheme 1. After EVs isolation (10 min) using
a low-cost technique (<$9.00 per sample) based on size
exclusion chromatography, mice blood samples were analyzed
by an impedimetric microfluidic chip (<6 min) bearing ready-
to-use and cross-reactive probes. Concentrations of both EVs
(CV) and extravesicular proteins (CP) could be meaured from a
single impedance spectrum with the aid of supervised models,
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without using separation or targeting elements (e.g., antibodies
or aptamers).
Multidimensional sensors have emerged as a potential

alternative for multitarget analysis.8 These sensing arrays
respond to a class of species (global selectivity) with different
sensibilities (cross-sensibility), thus creating fingerprint-like
responses that are treated by statistical learning models for the
recognition of samples.9,10 Conventional sensing arrays
demand the combination of specific receptors with distinct
cross-reactive probes and the use of a large number of training
samples to afford accurate multidetermination models.11−13

Otherwise, we herein show the sample-to-answer, high-
throughput, simultaneous, and accurate monitoring of EVs
biomarkers, even from a small training subset. Broadly available
scholar pencil graphite was employed as a cross-reactive and
ready-to-use single probe.

Graphite cores (HB scale) were reversibly incorporated into
low-cost and scalable microfluidic chips of polydimethylsilox-
ane (PDMS) and operated as an association of five electric
double-layer (EDL) capacitors in parallel as exhibited in
Figures 1A and S1. In contrast to traditional arrays that involve
the fabrication of different probes and succeeding assays,14 the
fingerprints were herein achieved from a single scan of
differential capacitance (Cd)

15 vs frequency due to chemical
diversification of the equivalent Cd data as it has been
developed by our group.16−19

Microfluidic devices composed of the PDMS elastomer were
fabricated by a bondless, scalable, and cleanroom-free method
that is based on sequential steps of polymerization and scaffold
removal as highlighted in the Supporting Information.20−22

The sample channel had a diameter of 700.0 μm. The HB
cores were reversibly inserted above and below the sample
channel as exhibited in Figure 1B, avoiding laborious routines

Scheme 1. Illustration of the Strategy to Quantify EVs Biomarkersa

aSamples extracted from mice blood with isolated EVs are tested by the sensor bearing pencil core-based probes, which acted as parallel capacitors
(1). The amounts of EVs and proteins could be shown on a smartphone by treating the capacitances through machine learning models (2).
Adapted with permission from Shutterstock. Copyrights [2017, 2019].

Figure 1. Device, differential readout, and electrodes. (A) PDMS microfluidic chip. (B) Stereoscopic image of the sample channel in contact with
cross sections of two electrode channels (in black) that are related to one EDL capacitor. (C) Plots of Cd vs frequency for KCl 4.0 mol L−1 reached
after renewing (1−4) the HB cores (n = 3) and (D) resulting PCA scores plots. (E) Relative importance of the Cd features for discriminatory by RF
model. (F) dC/dZ merged on 3D RRMS images of two core areas (S1,S2). (G) SEM image (1) and color maps of C, O, Si, and Al on the same area
(2). In (A), the yellow arrow indicates the sliding direction for renewing the electrodes (1), whereas the blue and gray arrows highlight the sample
and electrode channels, respectively (2). Cd is diversified in three regions as indicated by arrows in (E) and discussed in the main text. The
specification of the capacitances (C1 to C19) in (E) is shown in the Supporting Information. Its inset shows the EDL with anion specific
adsorption. In (G), the scale bars on the SEM image and color maps correspond to 1 and 25 μm, respectively.
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to irreversibly attach electrodes to the device.22 Five pairs of
pencil cores were short-circuited with copper pieces to achieve
an association of five polarizable capacitors in parallel.
Spectra of Cd vs dc potential and frequency show high

chemical diversification, thus increasing cross-sensibility with a
consequent improvement on recognition ability of the sensor.
The potential-based capacitances depend on the differential
ion and dipole arrangements on EDL around the potential of
zero charge (PZC). In terms of the frequency-based plots,
these capacitance data are diversified into three regions.18 Ions
in solution are able to follow the excitation electric field
oscillations at low frequencies and then charge the electrode/
liquid interface forming the EDL capacitance that mainly
drives Cd at values lower than 10

2 Hz. The electrode material is
the driving effect at intermediate frequencies. At high
frequencies (>105 Hz), the ions are not capable of migrating
toward interfaces and Cd is then dominated by the geometric
capacitance with sample (bulk) working as the dielectric
medium.23,24

Chemical diversification of the Cd data was also provided by
the HB cores as revealed by measurements of KCl 4.0 mol L−1.
In practice, different electrode surfaces were exposed to the
solution by renewing the cores after recording Cd vs potential
and frequency (n = 3). Such renewal was based on manually
sliding the probes across the sample channel (Figure 1A). The
capacitances were calculated from imaginary impedances and
angular frequencies assuming the sensing probes as ideally
polarizable electrodes (see the Supporting Information).25,26

From spectra and principal component analysis (PCA) plots
in Figure 1C,D, respectively, the data of Cd vs frequency by the
four renewed HB core areas were distinct from each other.
Similar behavior was attained for the data of Cd vs potential
(Figure S2). These data show a heterogeneous EDL capacitive
charging along the core surfaces, thus indicating that different
Cd outputs are obtained even from the core pairs in contact
with the sample in the same assay. Such diversified data lead to

an enhanced recognition ability since the equivalent Cd
achieved by the sensor comprises contributions of the
individual capacitors.16−19 In comparison with the potential-
based data, the plots as a function of frequency provided the
best classification performance (data not shown) and then
were considered in the following analyses.
Using supervised random forests (RF) model (tree depth of

25 and 500 estimators), the relative importance of the features
for data classification could be calculated as exhibited in Figure
1E. Capacitances at the three previously mentioned regions of
frequency presented high relevance. The precision of the
analyses was satisfactory, with the confidence intervals (α =
0.05) ranging from 41.6 pF (for Cd up to 101 Hz) to 4.3 nF
(for the other Cd data).
The spectra of Cd vs potential (Figure S2) presented

different values of PZC to each electrode renewal. These PZCs
were negative (−0.31 to −0.38 V), thus confirming the
incidence of anions specifically adsorbed on graphite (inset of
Figure 1E).15,27 These adsorptions are crucial for sensing
performance by increasing the dispersion of Cd with
frequency.25 These deviations in PZC, along with the
discrepancies in Cd vs frequency, are likely owing to
heterogeneous chemical composition and surface area of the
HB cores (see the Supporting Information), as it was indeed
confirmed by energy-dispersive X-ray spectroscopy (EDS) and
atomic force microscopy (AFM), respectively.
While capacitance gradient (dC/dZ) values by AFM

electrical analyses revealed only a small heterogeneity as
shown in Figures 1F and S3, the root-mean-square roughness
(RRMS) showed high a discrepancy in five core areas of 10 μm
× 10 μm. Their values were 121.3 ± 23.8, 79.0 ± 24.5, 142.2 ±
13.5, 137.8 ± 23.8, and 110.6 ± 27.2 nm (n = 4), whereas the
global RRMS was calculated as 118.2 ± 15.7 (n = 16). One
should note that such high roughness data favor the occurrence
of specific adsorptions at EDL,25 thus increasing the cross-
sensibility of the sensing array.

Figure 2. Analysis of EVs. True data of (A) CV by NTA and (B) CP by Bradford assay. (C) PCA scores plots by our chip to treated mice samples as
indicated. Adapted with permission from Shutterstock. Copyright [2013]. (D) Our setup with the sensor, potentiostat, and smartphone. Fittings of
predicted vs expected CV (1) and CP (2) from (E) SISSO and (F) RF. Insets in (A,B) show TEM images of tumor and healthy EVs, respectively. In
(A), the error bars mean confidence intervals for α = 0.05 (n = 3, 1498 frames). These intervals were lower than 0.2 μg μL−1 (n = 3) in (B). In
(E,F), the red dashed lines correspond to the ideal behavior. Their insets show average confidence intervals (108 P mL−1 in 1 and μg μL−1 in 2) to
EVs from healthy (blue) and tumor (red) mice (n = 8).
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From 2D SEM image (100 μm2) in Figure 1G, the HB core
is composed of flake-graphite, the most common natural
graphite. The relative amounts of C, O, Si, and Al on probe
surfaces were heterogeneous (Figure S4, Table S1) as well. In
four regions of size (250.000 μm2) similar to the detection
areas into the device, Si and Al ranged from ∼8% to ∼15%.
The color maps of O, Si, and Al had the same 2D profile
(Figure 1G) in accordance with their covalently bonded
incidence on clay minerals.
In addition to the CC/CC peaks associated with

graphite, results by X-ray photoelectron spectroscopy (XPS)
revealed the occurrence of CO/CO peaks that are related
to fatty alcohols and acids present in wax, respectively (Figure
S4). Such groups maximize intermolecular attractions (e.g.,
electrostatic interactions and hydrogen bonding) with the
targets, which are critical for the recognition performance of
sensing arrays. The presence of C sp2 is also essential by
generating π−π stacking with amino acids and proteins in
bioassays.28

The sensor was applied to a total of 12 samples of mice
blood with (6) and without (6) Ehrlich tumor that is a
neoplasm from female mice breast carcinoma and presents
primary features of mammary tumor cells.29 For EVs isolation,
blood samples were treated by size exclusion chromatography
using a fast and cheap protocol. The latter is further reported
to be reproducible and produce intact EVs purer than
ultracentrifugation and precipitation methods.30,31 Following,
EVs and cargoes were diluted in phosphate-buffered saline
(PBS) medium for ensuing analyses.
Transmission electron microscopy (TEM) images of typical

EVs from tumor and healthy mice are displayed in Figure 2A,B,
respectively. From the data of nanoparticle tracking analysis
(NTA; Figure S5), the tumor EVs (106 to 700 nm) showed
polydispersity larger than the healthy ones (156 to 348 nm).
The EVs were mainly composed of lipid structures with
roughly 150 nm in diameter that corresponds to exosomes,
generated by the repeated inward budding of the endosomal
membrane.3 The values of CV by NTA in Figure 2A were lower
for the diseased EVs (4.4−1.2 × 108 particles per mL, P mL−1).
The opposite behavior was noted for CP by Bradford assay
(0.3−8.7 μg μL−1) as shown in Figure 2B. In this case, the
healthy EVs had the lower CP data.
Using 15 data features at frequencies from 101 to 106 Hz

(see the Supporting Information, Figure S6), the sensor
provided the recognition of the healthy and tumor samples as
exhibited in the PCA scores plots of Figures 2C and S7 (n =
8). Thus, our sensing strategy may be used for a screening
diagnosis. Next, advanced machine learning models were
applied to ensure accurate breast cancer stage monitoring from
the determination of both CV and CP. These tasks relied on a
randomized splitting (ratios of 83/17 and 75/25 for splitting
the training/testing and training/validation sets, respectively)
and 5-fold cross-validation.
First, the Cd data were processed by the supervised sure

independence screening and sparsifying operator (SISSO).
Recently reported in the literature,32 SISSO operates by means
of simple mathematical equations that compress the original
features and provide accurate predictions even from a small
training subset, avoiding the need for a large number of
samples. Originally proposed to evaluate material properties,33

SISSO regression models were herein fitted to obtain CV and
CP assuming the data by NTA and Bradford assay methods as
the true contents (expected data). The final SISSO equations

reduced the original 15 Cd features to 6 (CV) and 5 data (CP)
as shown below

= | − | + |

− | +

C a a

b

(C9/C5) (C13/C9) (C8/C3)

(C13/C6)
V 1 2

1 (1)

= | − | + |

− | +

C a a

b

(C8/C1) (C15/C9) (C9/C2)

(C14/C6)
P 3 4

2 (2)

wherein the constants a and b are defined in the Supporting
Information.
Only capacitances at frequencies lower than 105 Hz were

selected by SISSO, indicating the EVs were able to migrate to
the electrode/liquid interfaces, contributing to EDL charging.
PBS-diluted EVs are negatively charged phospholipid-bilayer
membranous structures, showing zeta potentials of around −20
mV.34 Only a few features at low frequencies (<102 Hz, C1 to
C4) were picked. This result is supposed to be tightly tied to
the electrode polarization effects, in which the charging by free
ions common to all samples (present in PBS in our case)
mainly drives the EDL capacitance.35 While the solution
resistance is basically governed by the buffer,15 the cell
geometry (gap and area of the cores) was constant over all the
analyses since the probes were not renewed in this case. These
parameters modify the geometric capacitance that is, thereby,
expected to remain invariable as noted herein (Figure S6).
This phenomenon supports the absence of high-frequency Cd
in the previous modeled SISSO equations.
The adjusted SISSO models endowed the chip with the

ability to attain CV and CP in a simple way by considering the
device prototyping, sample preparation, detection, and data
processing. The latter routine is usually laborious, especially
when machine learning methods are used, hindering the
development of effective point-of-care tests.36 Taking up the
potential use of sample-to-answer analytical techniques for
user-friendly experiments, an Android app was further written
with Xamarin (open-source app platform) to automatically
quantify the values of CV and CP on smartphone from SISSO as
exhibited in Figure 2D. The app was able to control a portable
potentiostat, acquire Cd, and complete the SISSO tasks. CV and
CP, along with resulting clinical status (healthy or diseased),
were exhibited on the smartphone display without the need for
data treatment by the user (Video S1).
The resulting plots of predicted vs true concentrations by

the SISSO algorithm are shown in Figure 2E. These data
indicate a linear trend for both the EVs biomarkers, with a
better overall predictive ability for CV than for CP. In the first
case, the linear fitting had intersection close to 0 and slope near
1, with R2 and mean absolute error (MAE) of 0.94 and 0.2 ×
108 P mL−1, respectively. While a poorer predictive capability
(R2 < 0.68 and MAE < 1.0 μg μL−1) was achieved in the
second situation, a satisfactory accuracy was noted for the
healthy samples.
By once again using the biomarker contents from NTA and

Bradford assay as the true data, a multioutput regression based
on a single RF model (tree depth of 13 and 239 estimators)
was also employed to improve the multidetermination
accuracy as it was indeed verified herein. In this case, the
fingerprints consisted of Cd features throughout the frequency
spectra and resulted in a satisfactory correlation as shown in
Figure 2F. In fact, the accuracies were close to the ideal
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behavior for both CV (R
2 > 0.99 and MAE < 0.1 × 108 P mL−1)

and CP (R
2 > 0.92 and MAE < 0.7 μg μL−1) (Figure S8).

Assuming 2.4 × 108 P mL−1 and 2.2 μg μL−1 as the
thresholds to define the clinical condition in agreement with
NTA (CV) and Bradford assay (CP) data, respectively, both the
learning models of SISSO and RF led to successful
discrimination of the healthy and diseased sample groups.
However, since these models rely on randomized iterations,
several final analytical solutions were obtained depending on
the selected testing subset because of the small number of
training samples. Nonetheless, the same trend was obtained in
all the cases, with similar prediction abilities. Such results show
the robustness of the models. One should also emphasize the
low dispersion of the data points indicates once again a
satisfactory precision.
The sensor further exhibited a high lifetime, which is crucial

for its daily applicability by minimizing the impacts of its poor
reproducibility that arises from the heterogeneous surface of
the HB cores (see Figure 1D). In practice, 60 samples of lake
spiked with multiple heavy metals were analyzed by two
operators on different days (Figure S9, Table S2). Machine
learning tasks assured accurate classification and multi-
determination tasks with reproducibility.
Considering both steps of sample preparation and detection,

to our knowledge, this new platform presents the highest
throughput when compared with the approaches reported in
the literature to quantify EVs cargoes as shown in Figure 3A.
Such sensors are typically based on sandwich-type immuno-
assays or EVs magnetic isolation.5−7,37−46 To guarantee
accurate analyses, these methods may require additional assays
on each sample to correct variations in the EVs concentration
among patients.6 Therefore, in addition to enhancing the
diagnostic accuracy, the detection of both EVs and proteins as
described herein is advantageous for sensor simplicity and
analytical frequency.

By means of magnetic isolation and enrichment by
resuspension in water as usually described in the literature
for EVs analysis, our sensor was also successfully used in the
specific quantification of p16, a peptide whose expression is
correlated to the incidence and stage of prostate and cervical
tumors.47 Our chip could directly detect the target in
dispersion as exhibited in Figure 3B, dispensing the usage of
active labels on secondary antibodies as commonly needed.
Briefly, the analytical routine was based on magnetic beads
modified with p16 antibody (MB-Ab) for p16 immunocapture.
Following, the peptide was isolated by applying an external
magnetic field and, then enriched by resuspending the formed
MB-Ab-p16 conjugates in water. Afterwards, this aqueous
dispersion was inserted into the device for impedimetric
measurements.
The responses comprised six features, i.e., Cd at five

frequencies (2.2, 4.6, 10.0, 21.5, and 46.4 Hz) and PZC. By
treating the data by PCA, p16 standards were well-
distinguished as shown in the scores plots of Figure 3C.
Since PC2 was lower than 3%, only PC1 was collected to
acquire the analytical curve as shown in Figure 3D. Nonlinear
fitting (R2 > 0.99) resulted in a limit-of-detection of 0.6 pg
mL−1 that is lower than the values addressed in the
literature.47−49 While experiments on real samples are still
necessary to assess its effective potential, these preliminary data
show the sensor may be attractive for specific analyses as well.
Further study will evaluate a greater number of samples

originating from patients with different pathologies to
scrutinize the effective sensor lifetime and model robust
learning algorithms that can be used not only to predict CV and
CP but also to monitor other EVs cargos. The latter ability
further advances the potential use of the device to diagnose
and guide the treatment of numerous diseases. Future
investigation will also exploit different sensing arrays that can
be classified into three classes, i.e., disposable sensors such as
the microfluidic paper-based analytical chips, high-performance

Figure 3. Comparison with literature and protein selective analysis. (A) Ability of methods addressed in the literature to treat (e.g., from blood to
serum) and sensing samples per h (S h−1) to monitor EVs biomarkers. (B) Main steps to capture p16. Adapted with permission from Shutterstock.
Copyright [2017]. (C) PCA scores plots and (D) analytical curve for standards of p16. In (A), the references are underlined and its inset highlights
the marked region (†). In (B), photos of the sample after adding MBs-Ab (1) and during magnetic separation (2) are shown. The p16/antibody
binding is exhibited in the bottom inset of (2). In (C), S1−S8 mean the increasing analytical concentrations of p16 (Cp16) as highlighted in the
analytical curve of (D).

ACS Sensors pubs.acs.org/acssensors Letter

https://dx.doi.org/10.1021/acssensors.0c00599
ACS Sens. 2020, 5, 1864−1871

1868

https://pubs.acs.org/doi/10.1021/acssensors.0c00599?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00599?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00599?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00599?fig=fig3&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c00599?ref=pdf


sensors fabricated by conventional photolithography-based
processes, and long-lifetime sensors.
In summary, our results demonstrated that this new method

is capable of classifying healthy and tumor mice samples and
quantifying CV and CP from single spectra of impedance in a
user-friendly, high-throughput, and accurate fashion. While the
platforms addressed in the literature require time-consuming
experiments and active probes for indirect EVs monitoring, we
herein describe that the convergence of a universal sensing
array with machine learning tasks and sample-to-answer data
treatment on smartphones provides a potential method to
assess multiple EVs biomarkers. Combined with a fast EVs
isolation method as used herein, this platform may be of
paramount relevance to advance and translate clinical
diagnostics and therapeutics from research to routine
applications. Indeed, our sensing approach meets the most
guidelines (sensitive, affordable, user-friendly, delivered, and
rapid) of the World Health Organization (WHO) for point-of-
care bioanalyses.36

Remarkably, the rapid sample preparation method of size
exclusion chromatography for EVs isolation and resuspension
in saline buffer avoids the drawbacks (sensibility, reproduci-
bility, and accuracy loss) associated with electrode fouling at
complex body fluids such as blood, plasma, and serum.50 Such
an advantage contributes to the manufacturing of simpler
electrode designs. One should also highlight that the developed
strategy may be attractive for mass individual testing by
eliminating the use of recognizing species. Mass testing is
crucial for taking pandemic combat actions and restoring civil
liberties as we have been witnessing nowadays with the
COVID-19 pandemic.51 The requirement for antibodies and
other bioreagents has hindered the global supply of fast
diagnosis kits, especially in low-income countries.
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13083-970, Brazil

Ricardo A. G. de Oliveira − Brazilian Nanotechnology
National Laboratory, Brazilian Center for Research in Energy
and Materials, Campinas, Saõ Paulo 13083-970, Brazil
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F. A.; Vieira, L. C. S.; Gonca̧lves, S. P. C.; da Silva, G. H.; Cardoso, M.
B.; Gobbi, A. L.; Martinez, D. S. T.; Oliveira, O. N., Jr.; Lima, R. S.
Monitoring the Surface Chemistry of Functionalized Nanomaterials
with a Microfluidic Electronic Tongue. ACS Sens 2018, 3, 716−726.
(18) Nicoliche, C. Y. N.; Costa, G. F.; Gobbi, A. L.; Shimizu, F. M.;
Lima, R. S. Pencil graphite core for pattern recognition applications.
Chem. Commun. 2019, 55, 4623−4626.
(19) da Silva, G. S.; de Oliveira, L. P.; Costa, G. F.; Giordano, G. F.;
Nicoliche, C. Y. N.; da Silva, A. A.; Khan, L. U.; da Silva, G. H.;
Gobbi, A. L.; Silveira, J. V.; Filho, A. G. S.; Schleder, G. R.; Fazzio, A.;
Martinez, D. S. T.; Lima, R. S. Ordinary microfluidic electrodes
combined with bulk nanoprobe produce multidimensional electric
double-layer capacitances towards metal ion recognition. Sens.
Actuators, B 2020, 305, 127482−127493.
(20) de Camargo, C. L.; Shiroma, L. S.; Giordano, G. F.; Gobbi, A.
L.; Vieira, L. C. S.; Lima, R. S. Turbulence in microfluidics:
cleanroom-free, fast, solventless, and bondless fabrication and
application in high throughput liquid-liquid extraction. Anal. Chim.
Acta 2016, 940, 73−83.

(21) Teixeira, C. A.; Giordano, G. F.; Beltrame, M. B.; Vieira, L. C.
S.; Gobbi, A. L.; Lima, R. S. Renewable solid electrodes in
microfluidics: recovering the electrochemical activity without treating
the surface. Anal. Chem. 2016, 88, 11199−11206.
(22) de Oliveira, R. A. G.; Nicoliche, C. Y. N.; Pasqualeti, A. M.;
Shimizu, F. M.; Ribeiro, I. R.; Melendez, M. E.; Carvalho, A. L.;
Gobbi, A. L.; Faria, R. C.; Lima, R. S. Low-Cost and Rapid-
Production Microfluidic Electrochemical Double-Layer Capacitors for
Fast and Sensitive Breast Cancer Diagnosis. Anal. Chem. 2018, 90,
12377−12384.
(23) de Oliveira, R. F.; Merces, L.; Vello, T. P.; Bufon, C. B. F.
Water-gated phthalocyanine transistors: Operation and transduction
of the peptideeenzyme interaction. Org. Electron. 2016, 31, 217−226.
(24) Riul, A., Jr.; Malmegrim, R. R.; Fonseca, F. J.; Mattoso, L. H. C.
An artificial taste sensor based on conducting polymers. Biosens.
Bioelectron. 2003, 18, 1365−1369.
(25) Lockett, V.; Sedev, R.; Ralston, J.; Horne, M.; Rodopoulos, T.
Differential Capacitance of the Electrical Double Layer in
Imidazolium-Based Ionic Liquids: Influence of Potential, Cation
Size, and Temperature. J. Phys. Chem. C 2008, 112, 7486−7495.
(26) Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zang, L. L.;
MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical
double-layer capacitors. Nat. Commun. 2014, 5, 3317.
(27) Bockris, J. O’M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern
Electrochemistry: Fundamentals of Electrodics 2A, Vol. 2; Kluwer
Academic Publishers: New York, 2002; pp 806−919.
(28) Tao, Y.; Ran, X.; Ren, J.; Qu, X. Array-Based Sensing of
Proteins and Bacteria By Using Multiple Luminescent Nanodots as
Fluorescent Probes. Small 2014, 10, 3667−3671.
(29) Mishra, S.; Tamta, A. K.; Sarikhani, M.; Desingu, P. A.;
Kizkekra, S. M.; Pandit, A. S.; Kumar, S.; Khan, D.; Raghavan, S. C.;
Sundaresan, N. R. Subcutaneous Ehrlich Ascites Carcinoma mice
model for studying cancer-induced cardiomyopathy. Sci. Rep. 2018, 8,
5599.
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