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Objetivos

O crescimento significativo das fontes
renovaveis de energia estd transformando o
panorama da distribuicdo de energia elétrica,
especialmente a geracdo solar, que registrou
um aumento de 82,4% na poténcia em 2022 em
comparagdo com o ano anterior, segundo a
Empresa de Pesquisa Energética [1]. Nesse
contexto, as microrredes surgem como sistemas
formados por um conjunto de cargas e recursos
energeéticos distribuidos, que operam como uma
unidade coesa e controlavel em relagéo a rede
elétrica principal [2]. Para garantir a eficiéncia e
a estabilidade das microrredes, é crucial
gerenciar o consumo e a geracao de energia das
unidades que as compdem. Esse
gerenciamento pode ser local, onde os
inversores ajustam suas opera¢fes com base
em parametros locais, ou coordenado, utilizando
um controlador centralizado ou distribuido para
orquestrar os inversores [3]. Este estudo visa
analisar o impacto das diferentes condicbes de
impedancia da linha na coordenacdo de
inversores em microrredes monofasicas.

Métodos e Procedimentos

A pesquisa ocorreu por meio de simulacdes
realizadas no Simulink/MATLAB. O circuito das
simulagBes conta com a microrrede conectada a
rede elétrica principal por meio do Ponto de
(PAC),

Acoplamento  Comum sendo a

microrrede composta por dois inversores e uma
carga RL.

Grid

Figura 1 — Esquema simplificado do circuito
utilizado na pesquisa

Para a pesquisa, foi utilizado um controlador de
corrente DQ (Direct-Quadrature) monofésico,
gue facilita a andlise e o controle ao representar
a corrente CA em duas componentes
constantes, em fase (Direct) e em quadratura
(Quadrature) [4]. Na coordenagdo dos
inversores, a estratégia Current-Based Control
(CBC) é empregada para balancear as
correntes de acordo com a capacidade nominal
dos inversores, usando coeficientes a; e al. O
controle é baseado em valores de referéncia das
correntes no PAC, permitindo calcular a corrente
da carga e ajustar a demanda dos inversores,
garantindo que eles operem dentro da sua
capacidade nominal e evitando sobrecarga [5].

A andlise do impacto da impedancia de linha na
coordenacdo dos inversores pode ser feita pela
medicdo da corrente que flui pelo PAC sob
diferentes valores de impedancia de linha,
escalando de modo a representar o0
comprimento em metros.
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Resultados

Com o valor base da impedancia de linha:
Z =(0.163/1000) + j(0.136/1000) [Ohms/metro]

Foi realizado os testes para um comprimento de
1 metro, 10 metros, 50 metros, 200 metros,
5.000 metros e 10.000 metros. Nos testes, pode-
se comparar os valores obtidos de corrente em
fase e em quadratura que fluem no PAC com os
valores de referéncia, calculando-se também o
Erro Percentual (E.P.):

Comprimento Irer p=20 E.P. IrRer_0=20 E.P.
1m 19,985 -0,08% 20,069 0,34%
10m 19,985 -0,08% 20,070 0,35%
50 m 19,982 -0,09% 20,074 0,37%
200 m 19,976 -0,12% 20,091 0,45%
5000 m 19,499 -2,57% 20,459 2,24%
10000 m 14,206 -40,79% 18,337 -9,07%

Tabela 1 — Tabela com os valores de corrente
fluindo no PAC para diferentes comprimentos

Adicionalmente, é importante observar as
formas de onda de corrente geradas pelos
inversores 1 e 2 para os comprimentos de 1
metro e 10.000 metros:

Figura 2 — Corrente nos inversores 1 e 2,
respectivamente, para 1 metro

respectivamente, para 10.000 metros
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Conclusoes

A partir da Tabela 1, observa-se uma variacéo
significativa na corrente que flui pelo PAC em
comparacdo aos Vvalores de referéncia,
especialmente nos comprimentos de 5.000
metros e, principalmente, de 10.000 metros.
Para este ultimo, o Erro Percentual (E.P.)
alcanca -40,79% para a componente em fase e
-9,07% para a componente em quadratura.
Além disso, nota-se distor¢cdes consideraveis na
forma de onda da corrente no inversor 1 em
relagéo ao inversor 2, conforme o aumento da
impedancia de linha, como ilustrado na Figura 3.
Essas variacges e distorgoes devem ser levadas
em conta ao projetar microrredes, para evitar
danos aos dispositivos conectados e aproveitar
melhor os recursos. Outras simula¢cdes com
diferentes condi¢cdes de impedancia de linha
estdo em andamento.
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