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Generalized Estimating Equations using
the new R package glmtoolbox
by L.H. Vanegas, L.M. Rondón, and G.A. Paula

Abstract This paper introduces a very comprehensive implementation, available in the new R package
glmtoolbox, of a very flexible statistical tool known as Generalized Estimating Equations (GEE),
which analyzes cluster correlated data utilizing marginal models. As well as providing more built-
in structures for the working correlation matrix than other GEE implementations in R, this GEE
implementation also allows the user to: (1) compute several estimates of the variance-covariance
matrix of the estimators of the parameters of interest; (2) compute several criteria to assist the selection
of the structure for the working-correlation matrix; (3) compare nested models using the Wald test as
well as the generalized score test; (4) assess the goodness-of-fit of the model using Pearson-, deviance-
and Mahalanobis-type residuals; (5) perform sensibility analysis using the global influence approach
(that is, dfbeta statistic and Cook’s distance) as well as the local influence approach; (6) use several
criteria to perform variable selection using a hybrid stepwise procedure; (7) fit models with nonlinear
predictors; (8) handle dropout-type missing data under MAR rather than MCAR assumption by using
observation-specific or cluster-specific weighted methods. The capabilities of this GEE implementation
are illustrated by analyzing four real datasets obtained from longitudinal studies.

1 Introduction

The Generalized Estimating Equations (GEE), proposed by Liang and Zeger (1986), extend the theo-
retical framework of the Generalized Least Squares (GLS) by allowing the variance of the response
variable distribution to be proportional to a known function of its mean, resulting thus in a very
flexible statistical tool for the analysis of heteroskedastic discrete and continuous cluster correlated
data. Unlike conditional models such as random-effect models, the GEE approach is based on marginal
models. In addition, and according to Lipsitz and Fitzmaurice (2008), GEE can also be regarded as a
multivariate generalization of the quasi-likelihood approach to Generalized Linear Models (GLMs)
introduced by Wedderburn (1974). The main advantage of GEE over other approaches to analyzing
cluster correlated data lies in that this methodology does not require the full specification of the
multivariate distribution of the (discrete or continuous) response vector measured on each subject or
cluster, reducing the possibility of model misspecification. Indeed, GEE just requires the following:

• Specification of a variance function, which describes the mechanism of heteroscedasticity
(if there is any), that is, it describes the way in which the variance of the response variable
distribution is assumed to be dependent on its mean.

• Specification of a regression structure, very similar to that described in the theoretical framework
of the GLMs (see, for instance, McCullagh and Nelder (1989)), that includes a link function and
a linear predictor, which describe the way the mean of the response variable distribution is
assumed to be dependent on some continuous and/or discrete regressors.

• Specification of a correlation matrix structure. This matrix describes the dynamic of the linear
association between the different measurements of the response variable performed on the same
subject or cluster.

This paper introduces the package glmtoolbox, which, besides providing more built-in structures
for the working correlation matrix than other GEE implementations available in R, has several features,
including: (1) compute several estimates of the variance-covariance matrix of the estimators of the
parameters of interest; (2) compute several criteria to assist the selection of the structure for the
working correlation matrix; (3) compare nested models using the Wald test as well as the generalized
score test; (4) assess the goodness-of-fit of the model using Pearson-, deviance- and Mahalanobis-type
residuals; (5) perform sensibility analysis using the global influence approach (that is, dfbeta statistic
and Cook’s distance) as well as the local influence approach; (6) use several criteria to perform variable
selection using a hybrid stepwise procedure; (7) fit models with nonlinear predictors; (8) handle
dropout-type missing data under MAR rather than MCAR assumption by using observation-specific or
cluster-specific weighted methods. The rest of this paper is organized as follows: in Section 2 the main
features of the GEE model setup are described; in Section 3 the main features of the implementation
of GEE in the package glmtoolbox are described and compared with those available in the packages
gee (Carey, 2022), geepack (Yan, 2002; Højsgaard et al., 2005) and geeM (McDaniel et al., 2013), which
are the most widely used packages in R to analyze cluster correlated data using GEE; in Section 4
the capabilities of this implementation are illustrated by analyzing four real datasets obtained from
longitudinal studies.
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2 Generalized Estimating Equations

Let yi = (yi1, . . . , yij, . . . , yi ni )
⊤ for i = 1, . . . , n be the multivariate response of interest measured on n

subjects or clusters, which are assumed to be realizations of independent random vectors denoted
here by Yi = (Yi1, . . . , Yij, . . . , Yi ni )

⊤ for i = 1, . . . , n, where ni represents the size of the ith cluster or
the number of measurements performed on the ith subject. So, the total number of observations is
N = n1 + . . . + nn. The random variables associated with the ith subject or cluster, given by Yij for
j = 1, . . . , ni, are assumed to satisfy the following:

Var(Yij) =
ϕ

ωij
V(µij) and Corr(Yij, Yik) = rjk(ρ),

where µij = E(Yij), ϕ > 0 is the dispersion parameter, ωij > 0 are known weights typically specified
to be 1, V(µ) > 0 is the variance function, and rjk(ρ) is the Pearson’s linear correlation coefficient,
which is assumed to be dependent just on j, k and the unknown nuisance parameter vector denoted
here by ρ = (ρ1, . . . , ρq)⊤. In addition, µij is assumed to be dependent on a vector of p continuous
and/or discrete regressors, denoted here by (x1ij, . . . , xpij), in the following way:

g(µij) = x⊤ij β, (1)

where g(µ) is a strictly monotone and twice-differentiable known function better known as link
function, xij = (1, x1ij, . . . , xpij)

⊤ and β = (β0, β1, . . . , βp)⊤ is the interest parameter vector.

According to Liang and Zeger (1986), the estimate of β, denoted here by β̂, reduces to the solution to
the (p + 1) equations given by U(β̂) = 0, where

U(β) = ϕ−1
n

∑
i=1

X⊤i KiV
−1
i (yi − µi) = ϕ−1

n

∑
i=1

X⊤i WiK
−1
i (yi − µi) = ϕ−1X⊤WK−1(y − µ), (2)

in which Xi = (xi1, . . . , xini )
⊤, Wi = KiV

−1
i Ki, Ki = diag{1/g′(µi1), . . . , 1/g′(µini )}, Vi = A

1
2
i RiA

1
2
i ,

Ai = diag{V(µi1)/ωi1, . . . , V(µini )/ωini}, Ri is a square matrix whose (j, k)th entry is rjk(ρ), µi =

(µi1, . . . , µini )
⊤, X = (X⊤1 , . . . , X⊤n )⊤, W = blockdiag{W1, . . . , Wn}, K = blockdiag{K1, . . . , Kn}, y =

(y⊤1 , . . . , y⊤n )⊤ and µ = (µ⊤1 , . . . , µ⊤n )
⊤. Moreover, the estimate of ϕ may be written as follows:

ϕ̂ =
1

N − p − 1

n

∑
i=1

ni

∑
j=1

(yij − µ̂ij)
2

V(µ̂ij)/ωij
,

where µ̂ij = g−1(x⊤ij β̂). If the model for the mean (µ) is correctly specified, then, under certain

regularity conditions, β̂ is consistent for β and its distribution is such that (Liang and Zeger, 1986):

√
n(β̂ − β)

D−−−→
n→∞

N (0, Var(β̂)),

where

Var(β̂) = lim
n→∞

(
1
n

X⊤WX
)−1
(

1
n

n

∑
i=1

X⊤i WiK
−1
i Var(Yi)K

−1
i WiXi

)(
1
n

X⊤WX
)−1

.

Therefore, if the mean model is correctly specified, then β̂ remain consistent and asymptotically
normal distributed regardless of whether or not the correlation matrix structure is correctly specified.
Indeed, if the structure of the correlation matrix is also correctly specified, that is, if Var(Yi) = ϕVi for
i = 1, . . . , n, then Var(β̂) reduces to

Var(β̂) = lim
n→∞

ϕ

(
1
n

X⊤WX
)−1

.

3 R package glmtoolbox

The function glmgee() is the GEE solver available in the package glmtoolbox. That function includes
the typical arguments present in regression routines such as lm() and glm(), that is, it includes
arguments such as formula, weights, start, data and subset. In addition, the objects generated by
the function glmgee() are associated with the typical extraction methods such as summary(), print(),
coef(), vcov(), fitted(), confint(), anova(), residuals(), predict(), leverage(), dfbeta() and
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cooks.distance(). Next, the main features of the implementation of GEE in glmtoolbox are described
and compared with those available in the packages gee, geepack and geeM.

3.1 Link and variance functions

The available options for the link (g(µ)) and variance function (V(µ)) in the routine glmgee() are the
following:

family V(µ) g(µ)

gaussian 1 inverse
(
µ−1), identity (µ), log (log(µ))

binomial µ(1 − µ) logit
(
log
(

µ
1−µ

))
, cloglog (log(− log(1 − µ))),

probit
(
Φ−1(µ)

)
, cauchit

(
tan
(

π
2 (2µ − 1)

))
poisson µ sqrt

(
µ

1
2

)
, identity (µ), log (log(µ))

Gamma µ2 inverse
(
µ−1), identity (µ), log (log(µ))

inverse.gaussian µ3 1/muˆ2
(
µ−2), inverse (µ−1), identity (µ), log (log(µ))

negative.binomial(θ)
1

µ(1 + µ/θ) log (log(µ)), identity (µ), sqrt
(
µ

1
2

)
tweedie(θ,γ)

2
µθ log(µ) if γ = 0 and µγ if γ ̸= 0

1 function available in package MASS

2 function available in package statmod

Moreover, new families and new link functions may be defined by the user as described on the
help page of the routine glm(). The variance functions V(µ) = µ3 and V(µ) = µ(1 + µ/θ) are not
available in gee.

3.2 Estimating algorithm

The (p + 1) equations given by U(β̂) = 0 may be solved using the following algorithm:

Step 0: Start the counter at t = 0; set the tolerance limit, ϵ > 0; set the maximum number of iterations,
nmax; and set the initial value for β, say β[0].

Step 1: Compute ρ[t] from the Pearson’s residuals evaluated at β[t], denoted here by r[t]ij .

Step 2: Compute β[t+1] = β[t] + [K(β[t])]−1U(β[t]) = (X⊤W[t]X)−1X⊤W[t]ỹ[t].

Step 3: Compute δ(t+1) = δ(β[t], β[t+1]).

Step 4: Update the counter by t = t + 1.

Step 5: Repeat Steps 1,2,3 and 4 until δ(t) < ϵ or t > nmax.

Step 6: If δ(t) < ϵ, then β̂ is defined to be β[t]. Otherwise, convergence was not achieved.

Note that,

• β[0] is specified to be the estimate of β in the GLM under which the random variables Yij for
i = 1, . . . , n and j = 1, . . . , ni are assumed to be independent. This may be easily obtained by
using the function glm(). However, the starting value, β[0], also may be supplied by the user
with the argument start of the function glmgee().

• r[t]ij =
yij − µ

[t]
ij√

ϕ[t] V(µ
[t]
ij )/ωij

for i = 1, . . . , n and j = 1, . . . , ni, with ϕ[t] =
1

N − p − 1

n
∑

i=1

ni

∑
j=1

(yij − µ
[t]
ij )

2

V(µ
[t]
ij )/ωij

.

• δ(a, b) is a non-negative and strictly increasing function of the “difference” between the vec-
tors a = (a1, . . . , ap+1)

⊤ and b = (b1, . . . , bp+1)
⊤. For instance, δ(a, b) = ||b − a||r or δ(a, b) =

||(b − a)∗||r, where ||a||r =
(
|a1|r + . . . + |ap+1|r

)1/r for any r ≥ 1, ||a||∞ = max{|a1|, . . . , |ap+1|}
and (b − a)∗ :=

(
(b1 − a1)/|a1|, . . . , (bp+1 − ap+1)/|ap+1|

)
. The comparison criterion in the

function glmgee() is δ(a, b) = ||(b − a)∗||∞ = max{|b1 − a1|/|a1|, . . . , |bp+1 − ap+1|/|ap+1|}.
In addition, the values of the tolerance limit, ϵ, and the maximum number of iterations, nmax,
may be specified in the function glmgee() via its arguments toler and maxit, respectively. By
default, toler = 0.00001 and maxit = 50. If trace=TRUE is specified in the function glmgee(),
then the values of δ(β[t], β[t+1]) are printed until convergence is reached or the maximum
number of iterations is exceeded.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 108

• K(β) = E
(

∂U(β)

∂β⊤

)
= ϕ−1

n
∑

i=1
X⊤i WiXi = ϕ−1X⊤WX and ỹ = Xβ + K−1(y − µ). Therefore, β̂

may be written as β̂ = (X⊤ŴX)−1X⊤Ŵ ˆ̃y, in which Ŵ and ˆ̃y represent to W and ỹ evaluated at
β̂, respectively. Thus, β̂ can be regarded as the GLS estimate of β in a linear model such that
E(Ỹ) = Xβ and Var(Ỹ) = σ2Ŵ−1, with ˆ̃y being the observed value of the random vector Ỹ.

The package glmtoolbox also includes an extracting method, named estequa(), associated with
the objects generated by the function glmgee(), which allows the user to verify if, actually, the
parameter estimates satisfy the generalized estimating equations, that is, the extracting method
estequa() provides the value of the vector U(β) evaluated at the parameter estimates and the observed
data.

3.3 Structures for the working-correlation matrix

The available options for the structure of the working correlation matrix in the function glmgee() are
the following:

• corstr=“Independence”:

Corr(Yij, Yik) =

{
1, if j = k,
0, if j ̸= k

• corstr=“Exchangeable”:

Corr(Yij, Yik) =

{
1, if j = k,
ρ, if j ̸= k,

and ρ[t] =
1

M − p − 1

n

∑
i=1

∑
j<k

r[t]ij r[t]ik ,

where M =
1
2

n
∑

i=1
ni(ni − 1).

• corstr=“AR-M-dependent(m)”:
If m = 1, then the values of Corr(Yij, Yik) become

Corr(Yij, Yik) =

{
1, if j = k,
ρ|j−k|, if j ̸= k,

and ρ[t] =
1

M − p − 1

n

∑
i=1

ni−1

∑
j=1

r[t]ij r[t]i,j+1,

where M =
n
∑

i=1
(ni − 1).

• corstr=“Stationary-M-dependent(m)”:

Corr(Yij, Yi,j+l) =


1, if t = 0,
ρl , if l = 1, . . . , m,
0, if l > m,

and ρ
[t]
l =

1
Ml − p − 1

n

∑
i=1

ni−l

∑
j=1

r[t]ij r[t]i,j+l ,

where Ml =
n
∑

i=1
(ni − l).

• corstr=“Non-Stationary-M-dependent(m)”:

Corr(Yij, Yik) =


1, if j = k,
ρjk, if 0 < |j − k| ≤ m,
0, if |j − k| > m,

and ρ
[t]
jk =

1
n − p − 1

n

∑
i=1

r[t]ij r[t]ik ,

• corstr=“Unstructured”:

Corr(Yij, Yik) =

{
1, if j = k,
ρjk, if j ̸= k,

and ρ
[t]
jk =

1
n − p − 1

n

∑
i=1

r[t]ij r[t]ik ,

• corstr=“User-defined”:
Supplied by the user at the argument corr.

In geepack the structure Stationary-M-dependent is not available. Furthermore, Non-Stationary-M-dependent
and AR-M-dependent (for m > 1) structures are not available in geepack nor in geeM.
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3.4 Missing values

The rows of the data set with the same value in the variable specified by the argument id of the
function glmgee() are assumed to belong to the same cluster regardless of whether they are located in
consecutive rows. If the data are longitudinal, that is, if the data consist of measurements performed on
the same subject/cluster but at different time points, then, by default, the function glmgee() assumes
that the rows belonging to the same subject/cluster are ordered in time. However, the function
glmgee() allows specifying, via its argument waves, an integer-valued vector, which by default is set
to be 1, . . . , ni, with the time points of the rows corresponding to each subject/cluster.

In longitudinal data, in which the structures for the working correlation matrix such as AR-M-dependent,
Stationary-M-dependent, Non-Stationary-M-dependent and Unstructured become meaningful, the
missing values may be present in one of the following ways:

• Missing values are located at the first time points.
• Intermittent missing values, that is, missing values intermixed with non-missing values in time.
• Missing values located at the last time points, also known as dropouts.

Similar to the packages geepack and geeM, the GEE solver in the package glmtoolbox allows the user
to specify, via its argument waves, the way in which the missing values occurred, that is, it allows the
user to specify an integer-valued vector with the time points of the non-missing values. By default,
waves is set to be 1, . . . , ni, meaning the missing values, if any, occurred at the last time points. The
missing-data pattern is assumed to be Missing Completely At Random (MCAR) (see, for instance, Laird
(1988)). Statistical inferences based on the GEE approach under the presence of missing values remain
valid in such a scenario. According to Lipsitz and Fitzmaurice (2008), the data are said to be MCAR
when the probability that responses are missing is unrelated to either the specific values that, in
principle, should have been obtained (the missing responses) or the set of observed responses. In
Section 2.4.2, the weighted GEE method to handle dropout-type missing data under the MAR (Missing
At Random) assumption is approached. The MAR assumption is weaker than MCAR.

3.5 Variance estimation

The vcov-type extraction method associated with the objects generated by the function glmgee()
allows the user to compute five different estimates of Var(β̂). The user may specify the estimate
type through the argument type of the vcov-type method. The five types of estimates for Var(β̂) are
described as follows:

• type=“model”:

V̂arM(β̂) = [K(β̂)]−1 = ϕ̂
(
X⊤ŴX

)−1

• type=“robust” (Liang and Zeger, 1986):

V̂arR(β̂) =
(
X⊤ŴX

)−1
(

n

∑
i=1

X⊤i ŴiK̂
−1
i eie

⊤
i K̂−1

i ŴiXi

)(
X⊤ŴX

)−1
,

where ei = yi − µ̂i. This estimator is robust to misspecification of the working correlation matrix.
That is, it is a consistent estimator of Var(β̂) provided that the mean model (µ) is correctly
specified.

• type=“df-adjusted”:
V̂arA(β̂) =

n
n − p − 1

V̂arR(β̂)

• type=“bias-corrected” (Mancl and DeRouen, 2001):

V̂arB(β̂) =
(
X⊤ŴX

)−1
(

n

∑
i=1

X⊤i ŴiK̂
−1
i ẽiẽ

⊤
i K̂−1

i ŴiXi

)(
X⊤ŴX

)−1
,

where ẽi = (I − Ĥi)
−1ei and Ĥi = K̂iXi

(
X⊤ŴX

)−1
X⊤i K̂iV̂

−1
i . The “bias-corrected” estimator for

Var(β̂) is also robust to the misspecification of the working correlation matrix, and is very useful
in cases where the sample size is “small” due to its improved finite sample properties.

• type=“jackknife” (Lipsitz et al., 1990):

V̂arJ(β̂) =

(
n

∑
i=1

β̂1
(i) − β̂1

)(
n

∑
i=1

β̂1
(i) − β̂1

)⊤
= V̂arB(β̂)− 1

n

(
n

∑
i=1

β̂ − β̂1
(i)

)(
n

∑
i=1

β̂ − β̂1
(i)

)⊤
,
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where β̂1
(i) is the “one-step approximation” of β̂(i) given in Section 2.3.8, with β̂(i) representing

the estimate of β obtained from the dataset in which the ith cluster or subject is excluded, and
β̂1 = n−1(β̂1

(1) + . . . + β̂1
(n)).

The summary-type method associated with the objects generated by the function glmgee() also allows
the user to choose among the five different types of estimates for Var(β̂) through its argument varest.

3.6 Comparison of nested models

The package glmtoolbox includes an anova-type method associated with the objects generated by
the function glmgee(), which allows the user to compare nested GEE models (that is, it allows the
user to assess the hypothesis system H0 : β∗ = 0 versus H1 : β∗ ̸= 0, where the elements
of β∗ are a subset of those of β, as β∗ may be written as β∗ = L⊤β, in which L is a r × (p + 1)
contrast matrix) by using not just the Wald test but also the generalized score test (Rotnitzky and
Jewell, 1990; Boos, 1992)). The following decision rule may be used to assess the hypothesis system
H0 : β∗ = 0 versus H1 : β∗ ̸= 0:

“Reject H0 at the approximate 100(α)% significance level if ξ > χ2
1−α(r)”,

where α ∈ (0, 1), χ2
1−α(r) is the 100(1 − α)th percentile of the chi-square distribution with r degrees-of-

freedom, and ξ is one of the following statistics:

• test=“wald”. Computes the Wald test, which is based on the following statistic:

ξW =
(
L⊤β̂
)⊤(

L⊤V̂arR(β̂)L
)−1(

L⊤β̂
)

.

• test=“score”. Computes the generalized score test, whose statistic, denoted here by ξS , reduces
to the following expression evaluated at the estimate of β obtained under the restriction given
by H0 (that is, the estimate of β restricted to β∗ = 0):

U⊤(β)

[
V̂arM(β̂)L

(
L⊤V̂arR(β̂)L

)−1
L⊤V̂arM(β̂)

]
U(β).

The packages gee and geeM do not include an anova-type method. On the other hand, the anova-
type method available in geepack() allows the user to compare nested models using just the Wald
test.

3.7 Criteria for choosing a working correlation structure

The selection criteria available in glmtoolbox are the following:

• Quasi-likelihood under Independence model Criterion (Pan, 2001):

QIC = −2
n

∑
i=1

ni

∑
j=1

µ̂ij∫
yij

ωij
(yij − µij)

ϕ̂ V(µij)
dµij + 2 trace

{
ϕ̂−1(X⊤K̂Â−1K̂X)V̂arR(β̂)

}

The expressions for
µ̂ij∫
yij

ωij
(yij − µij)

V(µij)
dµij for the variance functions in Table 2.3.1 are listed in

Table 9.1 of McCullagh and Nelder (1989).

• Correlation Information Criterion (Hin and Wang, 2009):

CIC = trace
{

ϕ̂−1(X⊤K̂Â−1K̂X)V̂arR(β̂)
}

• Gosho-Hamada-Yoshimura’s Criterion (Gosho et al., 2011; Gosho, 2014):

GHYC = trace


(1

n

n

∑
i=1

(yi − µ̂i)(yi − µ̂i)
⊤
)(

1
n

n

∑
i=1

ϕ̂V̂i

)−1

− I

2

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• Pardo-Alonso’s Criterion (Pardo and Alonso, 2019):

PAC =

∣∣∣∣∣∣∣∣
det
(

1
n

n
∑

i=1
(yi − µ̂i)(yi − µ̂i)

⊤
)

det
(

1
n

n
∑

i=1
ϕ̂V̂i

) − 1

∣∣∣∣∣∣∣∣
• Rotnitzky-Jewell’s Criterion (Hin et al., 2007):

RJC =

[1 − trace(RJC)

p + 1

]2

+

[
1 − trace(RJC 2

)

p + 1

]2
1

2

,

where RJC = V̂arR(β̂)[V̂arM(β̂)]−1.

• Akaike-type penalized Gaussian Pseudo-likelihood Criterion (Carey and Wang, 2011; Zhu and
Zhu, 2013; Fu et al., 2018):

AGPC =
n

∑
i=1

[
ni log(2π) +

1
ϕ̂
(yi − µ̂i)

⊤V̂−1
i (yi − µ̂i) + log(ϕ̂|V̂i|)

]
+ 2(p + 1 + q)

• Schwarz-type penalized Gaussian Pseudo-likelihood Criterion (Carey and Wang, 2011; Zhu and
Zhu, 2013; Fu et al., 2018):

SGPC =
n

∑
i=1

[
ni log(2π) +

1
ϕ̂
(yi − µ̂i)

⊤V̂−1
i (yi − µ̂i) + log(ϕ̂|V̂i|)

]
+ log(n)(p + 1 + q)

The above criteria may be computed for one or more GEE models using the extraction methods QIC(),
CIC(), GHYC(), PAC(), RJC(), AGPC() and SGPC().

3.8 Global influence

The dfbeta- and cooks.distance-type extraction methods associated with the objects generated by the
function glmgee() compute and, optionally, display plots of the statistics dfbeta and Cook’s distance,
which are “leave-one-out” statistics computed to quantify the effect on the estimates of the parameters
of interest of deleting each subject/cluster or observation. If the ith cluster is excluded, these statistics
may be expressed as follows:

Dfbeta
(i) = β̂ − β̂

(i) and CD
(i) =

1
(p + 1)

(β̂ − β̂
(i) )

⊤[V̂ar(β̂)]−1(β̂ − β̂
(i) ),

respectively, where β̂
(i) represents the estimate of β computed from the dataset in which the ith cluster

has been excluded. Similar to the extraction function vcov(), the estimate of Var(β̂) to be used in the
computation of the Cook’s distance can be chosen by using the argument varest of the function
cooks.distance(), whose options are varest=“model”, varest=“robust”, varest=“df-adjusted’,
varest=“bias-corrected’ and varest=“jackknife”. To avoid computational burden, the values
of β̂

(i) are replaced by their “one-step approximations”, denoted here by β̂1
(i)

. Next, the two methods
for the computation of the “one-step approximations” available in the dfbeta- and cooks.distance-type
extraction methods (through their arguments method) are described:

• method=“full”. β̂
(i) is replaced by the result of the first iteration of the estimating algorithm of

the GEE when it is performed using: (i) the dataset in which the ith cluster has been excluded;
and (ii) a starting value which is the solution to the same GEE but computed from the dataset
including all clusters (that is, the current β̂).

• method=“Preisser-Qaqish”. β̂
(i) is replaced by the result of the first iteration of the estimating

algorithm of the GEE when it is performed using: (i) the dataset in which the ith cluster has
been excluded; (ii) a starting value which is the solution to the same GEE but computed from
the dataset including all clusters (that is, the current β̂); and (iii) the working correlation matrix
is assumed to be known and equal to its current estimate. According to Preisser and Qaqish
(1996); Hammill and Preisser (2006), β̂1

(i)
reduces to

β̂1
(i)
= β̂ −

(
X⊤ŴX

)−1
X⊤i ŴiK̂

−1
i ẽi.
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Thus, V̂arB(β̂) =
n
∑

i=1
(Dfbeta

(i) )(Dfbeta
(i) )

⊤. Similar, but more complicated closed-form expres-

sions for β̂1
(ij)

are given in Preisser and Qaqish (1996) and Hammill and Preisser (2006) when
observations instead of clusters/subjects have been excluded from the dataset. The statistics
based on those values of β̂

(ij) may be obtained by specifying level=“observations” when using
the extraction methods dfbeta() and cooks.distance().

3.9 Local influence

The localInfluence-type extraction method associated with the objects generated by the function
glmgee() computes and, optionally, displays plots of some local influence measures based on the
approach proposed by Cook (1986). Let u be a set of perturbations applied to the model and/or the
data. The resulting estimating equations are denoted by U(β|u). Similar to Jung (2008), the following
is assumed: (i) the working correlation matrix is known and equal to its current estimate; (ii) the
quasi-likelihood function Q(β) exists such that U(β) is its gradient; and (iii) u0 exists, such that
U(β|u0) and U(β) coincide. So, the influence of the set of perturbations u on the estimate of β may be
assessed by studying the conformal normal curvature, Cd, around u0, along a unitary direction d, in
which Cd = 2|d⊤C d| and

C = ∆̂⊤[−Q̈(β̂)]−1∆̂,

where ∆̂ corresponds to the (p + 1)× dim(u) matrix given by
∂U(β|u)

∂u⊤ = (∆1, . . . , ∆n) evaluated at

β = β̂ and u = u0, and Q̈(β̂) corresponds to the (p + 1)× (p + 1) matrix given by
∂U(β|u)

∂β⊤ evaluated

at β = β̂ and u = u0. The matrix Q̈(β) may be written as follows

Q̈(β) =
n

∑
i=1

X⊤
i

[
diag{D(ai)V

−1
i (yi − µi)}+ KiV

−1
i D(bi)

]
Xi

in which D(ai) and D(bi) are diagonal matrices with diagonal elements given by ai1, . . . , aini and
bi1, . . . , bini , respectively, where

aij = − 1
[g′(µij)]2

[
g′′(µij)

g′(µij)
+

V′(µij)

2V(µij)

]
and bij = − 1

g′(µij)

[
1 +

(yij − µij)V′(µij)

2V(µij)

]
.

Next, the options for the perturbation schemes available in the extraction method localInfluence()
(through its argument perturbation) are described:

• Case weight perturbations

(1) Clusters (perturbation=“cw-clusters”):

U(β|u) =
n

∑
i=1

uiX
⊤
i KiV

−1
i (yi − µi).

Therefore, dim(u) = n, u0 = (1, . . . , 1)⊤ and ∆̂i = XiK̂iV̂
−1
i (yi − µ̂i) is a (p + 1) × 1

matrix.

(2) Observations (perturbation=“cw-observations”)

U(β|u) =
n

∑
i=1

X⊤
i Kidiag(ui)V

−1
i (yi − µi),

in which ui = (ui1, . . . , uini )
⊤. Therefore, dim(u) = N, u0 = (1, . . . , 1)⊤ and ∆̂i =

X⊤
i diag{K̂iV̂

−1
i (yi − µ̂i)} is a (p + 1)× ni matrix.

• Response perturbation (perturbation=“response”):
If the response is continuous, then the value of yij is perturbed by adding a quantity which is
proportional to the standard deviation of Yij, thus,

U(β|u) =
n

∑
i=1

X⊤
i KiV

−1
i (yi +

√
ϕ[diag(Vi)]

1
2 ui − µi),

in which ui = (ui1, . . . , uini )
⊤. Therefore, dim(u) = N, u0 = (0, . . . , 0)⊤ and ∆̂i = ϕ̂

1
2 X⊤

i K̂iV̂
−1
i [diag(V̂i)]

1
2

is a (p + 1)× ni matrix.
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• Perturbation of covariates (perturbation= “covariate”):
If the r-column of X corresponds to a continuous covariate, then the values of that covariate are
perturbed by adding a quantity which is proportional to its standard deviation, cr, thus,

U(β|u) =
n

∑
i=1

(
Xi + uiδ

⊤
r

)
KiV

−1
i

(
yi − g−1

[
zi + (Xi + uiδ

⊤
r )β

])
,

in which ui = (ui1, . . . , uini )
⊤ and δr is a (p + 1)-dimensional column vector of zeros with

the known constant cr in the r-th position. Therefore, dim(u) = N, u0 = (0, . . . , 0)⊤ and

∆i = crδr

{
(yi − µ̂i)

⊤V̂−1
i K̂i + (Xi β̂)

⊤
[
M̂iV̂

−1
i (yi − µ̂i)− K̂iV̂

−1
i K̂i1ni

]
1⊤ni

}
is a (p + 1) × ni

matrix, where Mi is a diagonal matrix with diagonal elements mi1, . . . , mini , with mij =

−g′′(µij)/[g′(µij)]
3.

The options to study the local influence from Cd available in the extraction method localInfluence()
(through its argument type) are described as follows:

• type=“local”. Computes and, optionally, displays an index plot of the elements of dmax (that
is, the eigenvector which correspond to the maximum absolute eigenvalue of C). The vector
dmax is computed using the power iteration algorithm.

• type=“total”. Computes and, optionally, displays an index plot of the elements of the main
diagonal of C.

3.10 Variable selection

The function stepCriterion() associated with the objects generated by the function glmgee() allows
the user to iteratively choose the more “relevant” and/or ” significant” variables and/or effects in the
model fit by using either of the following “hybrid stepwise” strategies (see James et al. (2013), page
212):

• direction=“forward”. The “hybrid forward stepwise” strategy starts with the simplest model
(which may be set at the argument scope, and by default, is a model whose parameters in the
linear predictor, except the intercept, if there is, are set to be 0), and then the candidate models
are built by hierarchically including effects in the linear predictor, whose “relevance” and/or
“importance” in the model fit is assessed by comparing nested models (that is, by comparing
the models with and without the included effect) using a criterion previously specified. If an
effect is included in the model, this strategy may also remove any effect which, according to the
previously specified criterion, no longer contributes to an improvement in the model fit.

• direction=“backward”. The “hybrid backward stepwise” strategy starts with the more complex
model (which may be specified at the argument scope), and then the candidate models are
built by hierarchically removing effects in the linear predictor, whose “relevance” and/or
“importance” in the model fit is assessed by comparing nested models (that is, by comparing the
models with and without the excluded effect) using a criterion previously chosen. If an effect is
excluded from the model, then this strategy may also add any effect which, according to the
criterion previously specified, provides an improvement in the model fit.

The available comparison criteria are the following:

• criterion=“qic”. QIC

• criterion=“qicu”. According to Pan (2001), the QICu may be written as

QICu = −2
n

∑
i=1

ni

∑
j=1

µ̂ij∫
yij

ωij
(yij − µij)

ϕ̂ V(µij)
dµij + 2(p + 1)

• criterion=“agpc”. AGPC

• criterion=“sgpc”. SGPC

• criterion=“p-value”. p-values of the Wald (test=“wald”) or generalized score (test=“score”)
tests.

According to Xu et al. (2019), the AGPC and SGPC outperform other existing methods in selecting
variables, and they perform well regardless of whether the working correlation structure is correctly
specified or not.
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3.11 Leverage

The leverage-type extraction method associated with the objects generated by the function glmgee()
computes and, optionally, displays a plot of the leverage measures at the cluster- and observation-level.
According to Preisser and Qaqish (1996); Hammill and Preisser (2006), the observation leverage for
the jth observation of the ith cluster is the value of the jth diagonal element of the matrix Ĥi. Cluster
leverage for cluster i is the mean of the observation leverages. This, unlike the sum of observation
leverages, makes the leverage measures comparable when there are clusters of different sizes. The
leverage at cluster- and observation-level may be obtained from the leverage-type extraction method
(leverage()) by specifying level=“clusters” and level=“observations”, respectively.

3.12 Residuals

The residuals-type extraction method associated with the objects generated by the function glmgee()
computes and, optionally, displays a plot of three different types of residuals. The user may specify the
residual type through the argument type of the residuals-type method. The residuals are computed
to quantify the goodness-of-fit of the model at the cluster-level (Mahalanobis-type residuals) and
at the observation-level (Pearson- and deviance-type residuals). Indeed, a plot of the Pearson- or
deviance-type residuals versus the fitted values may be a useful tool to assess if, for instance, the
specified variance function provides a suitable description of the dispersion present in the data. As
follows, three types of residuals are described:

• type=“pearson”. Computes the Pearson-type residuals, given by

rP
ij =

yij − µ̂ij√
ϕ̂ V(µ̂ij)/ωij

for i = 1, . . . , n and j = 1, . . . , ni.

• type=“deviance”. Computes the deviance-type residuals, given by

rD
ij = sign(yij − µ̂ij)

√
d(yij, µ̂ij, ωij)/ϕ̂ for i = 1, . . . , n and j = 1, . . . , ni,

where d(yij, µij, ωij) represents the contribution to the non-scaled deviance of the jth measure-
ment performed on the ith subject or cluster.

• type=“mahalanobis”. Computes the Mahalanobis-type residuals, given by

rM
i = n−1

i (yi − µ̂i)
⊤[V̂ar(Yi)]

−1(yi − µ̂i) =
n−1

i
ϕ̂

(yi − µ̂i)
⊤V̂−1

i (yi − µ̂i) for i = 1, . . . , n.

The residuals-type extraction method in geepack provides neither deviance- nor Mahalanobis-type
residuals computation, whereas gee and geeM do not include a residuals-type extraction method.

4 Extensions

4.1 Nonlinear predictors

Unlike that described in expression (1), where g(µij) is restricted to being a linear combination of
the elements of the parameter vector β, in the new model formulation described here, g(µij) may be
expressed using a more general family of functions of β = (β1, . . . , βp)⊤. That is,

g(µij) = η(xij, β),

where ηij(β) ≡ η(xij, β) is a continuous and twice differentiable function of β, with xij being a vector
of continuous and/or discrete regressors. The estimate of β can be obtained by solving the p non-linear
equations given by U(β̂) = 0, where

U(β) = ϕ−1
n

∑
i=1

D⊤
i KiV

−1
i (yi − µi) = ϕ−1

n

∑
i=1

D⊤
i WiK

−1
i (yi − µi) = ϕ−1D⊤WK−1(y − µ),

in which D = (D⊤
1 , . . . , D⊤

n )
⊤, Di = (di1, . . . , dini )

⊤ and dij = (∂ηij(β)/∂β1, . . . , ∂ηij(β)/∂βp)⊤. This
type of GEE model is implemented in the function gnmgee() of the package glmtoolbox. The arguments
of the function gnmgee() are very similar to those of glmgee(). Nevertheless, the form of the non-
linear function ηij(β) and the starting value for β in the estimation algorithm must be set by the user
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via the arguments formula and start of gnmgee(). But, the argument formula also accepts built-in
non-linear functions such as SSasymp(), SSasympOff(), SSasympOrig(), SSbiexp(), SSfol(), SSfpl(),
SSgompertz(), SSlogis(), SSmicmen() and SSweibull(), which do not require user-supplied starting
values.

4.2 Weighted GEE methods

In longitudinal studies, in which the response variable is planned to be measured at J time points
on each subject/cluster, the weighted GEE methods provide consistent estimates under the MAR
assumption when the missing data pattern is dropout and its mechanism is correctly specified (Robins
et al., 1995). Let tij = 1 if the response is observed on the ith subject/cluster at time j, and 0 otherwise,
which is assumed to be a realization of a random variable denoted here by Tij. In addition, let
ti = 1 + ti1 + ti2 + . . . + ti J the time of dropout for the ith subject/cluster, so, ti ∈ {2, . . . , J + 1}. The
probability of observing yij may be expressed using the following logistic model:

logit(πij) = logit
(
Pr
[

Tij = 1 | Ti,j−1 = 1, xi1, . . . , xij, Yi1, . . . , Yi,j−1

])
= z⊤ijτ,

where τ = (τ0, τ1, . . . , τs)⊤ is an unknown parameter vector and zij = (1, zij1, . . . , zijs) is a vector
of regressors which may include visit indicator variables (I(j = 2),. . . ,I(j = J − 1), where I(·) is
the indicator function), covariates (xi1, . . . , xij) and past responses (yi1, . . . , yi,j−1). The maximum
likelihood estimate of τ is τ̂ = argmax

τ ∈Rs+1
ℓ(τ), where (Robins et al., 1995; Preisser et al., 2002)

ℓ(τ) =
n

∑
i=1

t∗i
∑
j=1

ti,j−1

[
tij log(πij) + (1 − tij) log(1 − πij)

]
is the log-likelihood function of τ, in which t∗i = min(ti, J) and ti0 = 0. If the missing data pattern is
dropout, then ti1 = 1 is assumed for all i = 1, . . . .n. Therefore,

π̂ij =


1 if j = 1

exp(z⊤ij τ̂)

1 + exp(z⊤ij τ̂)
if j > 1

The estimate of τ satisfies
∂ℓ(τ)

∂τ

∣∣∣∣
τ=τ̂

= S1 + . . . + Sn = 0, where Si = Z⊤i (t − π̂), Zi = (zi1, . . . , zit∗i )
⊤,

t = (ti1, . . . , tit∗i )
⊤ and π̂ = (π̂i1, . . . , π̂it∗i )

⊤.

Observation-specific weights

According to Fitzmaurice et al. (2011), the underlying idea of this weighting method is to base the
estimation on the observed responses but weight them to account for the probability of remaining in
the study. When using the observation-specific weighted GEE method, the covariates for all occasions
for a subject/cluster must be observed, regardless of whether the response is missing. That is, the
input data set must contain J observations for each subject/cluster. The estimate of β is the solution to
the (p + 1) nonlinear equations given by U∗(β̂) = 0, in which U∗(β) may be expressed as follows

U∗(β) = ϕ−1
n

∑
i=1

X⊤i KiV
−1
i Λi(yi − µi),

where Λi = diag{ti1λi1, . . . , ti Jλi J} and λij = 1/(π̂i1 × π̂i2 × . . . × π̂ij). The estimator of β has an
asymptotic normal distribution with consistent estimator of its asymptotic variance given by (Robins
et al., 1995; Preisser et al., 2002)

V̂ar(β̂) =

(
n

∑
i=1

X⊤i K̂iV̂
−1
i ΛiK̂iXi

)−1( n

∑
i=1

EiE
⊤
i

)(
n

∑
i=1

X⊤i K̂iV̂
−1
i ΛiK̂iXi

)−1

,

where Ei = X⊤i K̂iV̂
−1
i Λi(yi − µ̂i)−

(
n
∑

i=1
X⊤i K̂iV̂

−1
i Λi(yi − µ̂i)S⊤i

)(
n
∑

i=1
SiS⊤i

)−1
Si.
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Subject/Cluster-specific weights

In the cluster-specific weighted GEE method, covariates for a cluster who dropout at time k must
be observed for occasions up to and including time k. That is, each subject must have at least k
observations in the input data set. The estimate of β is the solution to the (p + 1) nonlinear equations
given by U(β̂) = 0, in which U(β) is given by (2), but where the weights in the matrices A1, . . . , An
are set to be ω∗

ij = ωij × λi for i = 1, . . . , n and j = 1, . . . , ti − 1. The value of λi may be computed as
follows

λ−1
i =

ti−1

∏
j=1

π̂ij

(1 − π̂iti )
I(ti ≤ J).

The estimator of β has an asymptotic normal distribution with a consistent estimator of its asymptotic
variance given by (Robins et al., 1995; Preisser et al., 2002)

V̂ar(β̂) =

(
n

∑
i=1

X⊤i K̂iV̂
−1
i K̂iXi

)−1( n

∑
i=1

EiE
⊤
i

)(
n

∑
i=1

X⊤i K̂iV̂
−1
i K̂iXi

)−1

,

where Ei = X⊤i K̂iV̂
−1
i (yi − µ̂i)−

(
n
∑

i=1
X⊤i K̂iV̂

−1
i (yi − µ̂i)S⊤i

)(
n
∑

i=1
SiS⊤i

)−1
Si.

The weighted GEE methods based on observation-specific weights and cluster-specific weights are
implemented in the function wglmgee() of the package glmtoolbox, whose arguments are very similar
to those of the function glmgee(). In that function, the user sets the GEE and missingness models at
the same argument of type Formula (Zeileis and Croissant, 2010). In addition, the user sets the type of
weighting method: observation-specific weights (level=“observations”) or cluster-specific weights
(level=“clusters”). The wglmgee() function estimates the parameters of the missingness model and
uses them to compute the required weights. Then, wglmgee() introduces the weights in the estimation
process of the GEE model parameters as well as in the estimation of their asymptotic variance matrix.

5 Examples

5.1 Growth patterns of trees under two types of atmosphere

The dataset of this example, described by Diggle et al. (2002) and available in the spruces object of
glmtoolbox, is composed of the columns tree, days, size and treat (see Table 1). The analysis of
this dataset aims to assess the effect of ozone pollution on tree growth. Ozone pollution is common
in urban areas, thus the impact of increased ozone concentrations on tree growth is of considerable
interest. The response variable is tree size (size), where size is conventionally measured by the
product of tree height and stem diameter squared. A total of 79 trees, identified in the dataset by the
column tree, were considered in this experiment. In the first group a total of 54 trees were grown
under an ozone-enriched atmosphere (treat=“ozone-enriched”), that is, ozone exposure at 70 parts
per billion, whereas in the second group, a total of 25 trees were grown under a normal atmosphere
(treat=“normal”). The size of each tree was observed and recorded exactly 13 times across the time
since the experiment began (days), so the data are balanced and the number of rows in the dataset is
1027. The main objective of the analysis is to compare the growth patterns of trees under two types of
atmosphere: normal and ozone-enriched.

Column Role Description
tree Cluster/subject identifier Identifier of the tree
days Explanatory variable Number of days after the treatment began
treat Explanatory variable Treatment: “normal” or “ozone-enriched”
size Response variable Tree size

Table 1: Columns in the object spruces of the package glmtoolbox.

An adjusted for skewness box-plot of the data (Figure 1), obtained using the function adjbox() in
the package robustbase (Maechler et al. (2022)), shows that ozone suppresses tree growth. The plot
also indicates that under the two types of atmosphere the location as well as the dispersion of the
tree size are non-decreasing and non-linear functions of the time since the experiment began, which
suggests the data should be analyzed using a GEE with the following features: (i) a linear predictor
which includes a polynomial effect of the time, as well as a dummy variable to indicate the type of
atmosphere under which the trees grew; and (ii) an increasing variance function such as V(µ) = µ,
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V(µ) = µ2 or V(µ) = µ3, which is aimed to include in the model the heteroscedasticity observed in
the data.
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Figure 1: Growth patterns of trees under normal and ozone-enriched atmospheres.

Plots (not shown here) of the deviance-type residuals versus the fitted values for two GEE with
logarithmic link, working correlation matrix specified to be the identity matrix, and variance functions
V(µ) = µ and V(µ) = µ3, reveal megaphone shaped and inverted megaphone shaped patterns,
respectively, indicating thus how inappropriate such variance functions are for describing the het-
eroscedasticity present in the data. On the other hand, the same plot but using the variance function
V(µ) = µ2 (Figure 2(a)) does not reveal any trend, indicating that the data could be suitably analyzed
under the assumption of a constant coefficient of variation. So, several GEE with the variance function
V(µ) = µ2, logarithmic link, and different structures for the working correlation matrix are fitted to
the data. Then, the selection criteria available in glmtoolbox are used to choose the more suitable
structure for the correlation matrix.

> data(spruces)
> m1 <- glmgee(size ~ poly(days,4) + treat, id=tree, family=Gamma(log), data=spruces)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")

> a <- CIC(m1, m2, m3, m4, m5, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, verbose=FALSE)
> c <- GHYC(m1, m2, m3, m4, m5, verbose=FALSE)
> d <- RJC(m1, m2, m3, m4, m5, verbose=FALSE)
> e <- AGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> f <- SGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],GHYC=c[,"GHYC"],RJC=d[,"RJC"],AGPC=e[,"AGPC"],SGPC=f[,"SGPC"])

Object Correlation CIC QIC GHYC RJC AGPC SGPC
1 m1 Independence 23.43 42068 116.42 41.303 13539 13554
2 m2 Exchangeable 23.43 42068 40.96 7.639 11689 11706
3 m3 AR-M-dependent(1) 23.66 42086 11.26 0.129 10941 10957
4 m4 AR-M-dependent(2) 23.56 42158 13.72 0.489 10981 11000
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5 m5 AR-M-dependent(3) 23.56 42201 12.45 0.914 10994 11016

Most of the selection criteria (that is, Gosho-Hamada-Yoshimura’s criterion, Rotnitzky-Jewell’s
criterion, Akaike-type penalized Gaussian pseudo-likelihood criterion, and Schwarz-type penalized
Gaussian pseudo-likelihood criterion) suggest the first-order autoregressive (AR-1) and Independence
as the more and less adequate structures for the correlation matrix, respectively. GEE with the AR-1
structure for the correlation matrix is summarized as follows:

> summary(m3)
Sample size

Number of observations: 1027
Number of clusters: 79

Cluster size: 13
*********************************************************************
Model

Variance function: Gamma
Link function: log

Correlation structure: AR-M-dependent(1)
*********************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 5.90378 0.10486 56.30321 < 2e-16
poly(days, 4)1 19.20015 0.51848 37.03159 < 2e-16
poly(days, 4)2 -2.85755 0.20585 -13.88147 < 2e-16
poly(days, 4)3 5.41639 0.18246 29.68549 < 2e-16
poly(days, 4)4 -3.57407 0.12478 -28.64405 < 2e-16
treatozone-enriched -0.25861 0.12835 -2.01486 0.043919

Dispersion 0.32866
*********************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
[1] 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70 0.68 0.66
[2] 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70 0.68
[3] 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70
[4] 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73
[5] 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76
[6] 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78
[7] 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81
[8] 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84
[9] 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87
[10] 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90
[11] 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93
[12] 0.68 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97
[13] 0.66 0.68 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00

The Wald test and the generalized score test suggest that there is no interaction between time and
the type of atmosphere. This is because, as shown below, the p-values associated with that effect are
“large”.

> m3a <- update(m3, . ~ . + poly(days,4):treat)
> anova(m3a, test="wald")
Wald test

Model 1 : size ~ 1
Model 2 : size ~ poly(days, 4)
Model 3 : size ~ poly(days, 4) + treat
Model 4 : size ~ poly(days, 4) + treat + poly(days, 4):treat

Chi df Pr(>Chi)
1 vs 2 1931.9813 4 < 2e-16 ***
2 vs 3 4.0597 1 0.04392 *
3 vs 4 3.6641 4 0.45336

> anova(m3a, test="score")
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Generalized score test

Model 1 : size ~ 1
Model 2 : size ~ poly(days, 4)
Model 3 : size ~ poly(days, 4) + treat
Model 4 : size ~ poly(days, 4) + treat + poly(days, 4):treat

Chi df Pr(>Chi)
1 vs 2 61.3028 4 1.544e-12 ***
2 vs 3 3.3687 1 0.06645 .
3 vs 4 3.4665 4 0.48300

Variance estimation

Next, the estimates of Var(β̂0), Var(β̂1), . . . , Var(β̂5) are obtained using four different estimators.

> cbind(model=diag(vcov(m3, type="model")),
+ robust=diag(vcov(m3, type="robust")),
+ bias.corrected=diag(vcov(m3, type="bias-corrected")),
+ jackknife=diag(vcov(m3, type="jackknife")))

model robust bias.corrected jackknife
(Intercept) 0.0110 0.0110 0.0119 0.0119
poly(days, 4)1 0.2564 0.2688 0.2758 0.2758
poly(days, 4)2 0.0922 0.0424 0.0435 0.0435
poly(days, 4)3 0.0352 0.0333 0.0342 0.0342
poly(days, 4)4 0.0283 0.0156 0.0160 0.0160
treatozone-enriched 0.0159 0.0165 0.0176 0.0176

Parameter interpretation

Across time, the expected size of the trees that grew under the ozone-enriched atmosphere is approx-
imately 22.79% = 100 × [1 − exp(β̂treat)] lower than that of the trees that grew under the normal
atmosphere, where βtreat represents the parameter associated with the dummy variable indicating
the type of atmosphere under which the trees grew. According to the Wald test, the hypothesis
H0 : βtreat ≥ 0 versus H1 : βtreat < 0 is rejected at the approximate level of 5%, indicating thus that the
ozone-enriched atmosphere suppresses tree growth.

Variable selection

As an illustration, the procedure of variable selection is applied using the strategy “hybrid forward
stepwise” with the p-value of the generalized score test as the comparison criterion, and where the
thresholds for add and drop effects are set at 10% and 5%, respectively. In addition, the simplest
and most complex models are specified to be 1 and 1+poly(days,4)+treat+poly(days,4):treat,
respectively. As shown below, the best linear predictor according to the chosen strategy incorporates
both time and atmosphere, but not the interaction between them. The same results are obtained when
the strategy of variable selection is changed as follows: (i) the generalized score test is replaced by
the Wald test; (ii) and the “hybrid forward stepwise” procedure is replaced by the “hybrid backward
stepwise”.

stepCriterion(m3, direction="forward", criterion="p-value", test="score",
+ scope=list(lower=~1, upper=~poly(days,4)*treat), levels=c(0.10,0.05))

Variance function: Gamma
Link function: log

Correlation structure: AR-M-dependent(1)
Comparison criteria: P(Chisq>)(*)

Initial model:
~ 1

Step 0 :
df QIC QICu AGPC SGPC P(Chisq>)(*)

+ poly(days, 4) 4 39944 39928 10927 10941 1.544e-12
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+ treat 1 19534 19517 12353 12360 0.03618
<none> 18998 18989 12362 12367

Step 1 : + poly(days, 4)

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ treat 1 42086 42051 10941 10957 0.06645
<none> 39944 39928 10927 10941

Step 2 : + treat

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ poly(days, 4):treat 4 41815 41787 10954 10980 0.483
<none> 42086 42051 10941 10957

Final model:
~ poly(days, 4) + treat
****************************************************************************
(*) p-values of the generalized score test
Effects are added when their p-values are lower than 0.1
Effects are excluded when their p-values are higher than 0.05
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Figure 2: Some diagnostic plots for the GEE with correlation structure AR-1 fitted to the data on
growth patterns of trees.
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Residual analysis

> residuals(m3, type="deviance", plot.it=TRUE, pch=16)
> residuals(m3, type="mahalanobis", plot.it=TRUE, identify=3)

According to the Mahalanobis-type residuals (Figure 2(b)) the trees for which the model has the
lowest goodness-of-fit are those identified as O1T09, O1T17 and O2T14. Although those trees grew
under an ozone-enriched atmosphere, which seems to be associated with expected sizes lower than
those of the trees which grew under the normal atmosphere, their observed sizes across the time are
even greater than those observed for 70% of the trees which grew under a normal atmosphere.

Global influence

> dfbeta(m3, method="full", coefs="treat", identify=4)

According to the statistic Dfbeta at the cluster-level for β̂treat (Figure 2(c)), the trees known as
N1T02, N1T07 and N2T07 are those providing the greatest evidence which supports the negative effect
of the ozone-enriched atmosphere on the growth pattern of the trees, as their exclusion from the dataset
leads the estimate of βtreat closer to zero. Those trees grew under a normal atmosphere, and their sizes
across time are higher than those observed for 90% of the trees growing under such an atmosphere. On
the other hand, the tree identified as N1T10 is that providing the greatest evidence against the negative
effect of the ozone-enriched atmosphere on the growth pattern of the trees, because its exclusion
from the dataset decreases the estimate of βtreat. The tree identified as N1T10 grew under a normal
atmosphere, however, its size across time is lower than that observed for 90% of the trees growing
under the ozone-enriched atmosphere.

Local influence

> localInfluence(m3, type="total", perturbation="cw-clusters", coefs="treat",
+ plot.it=TRUE, identify=4)

The plot of the total local influence under the case weight perturbation scheme at the cluster-level
for β̂treat (Figure 2(d)) highlights the trees identified as N1T07, N1T02, N2T07 and N1T10 as suspected
to be influential on the estimate of βtreat, which confirms the results of the global influence analysis
above.

5.2 Comparison with other GEE solvers

The parameter estimates and the associated standard errors provided by the function glmgee() are
compared with those generated by the GEE solvers available in the packages gee, geepack and geeM.
The results are presented in Table 2. The values provided by the other GEE solvers are very similar to
those generated by the function glmgee().

glmtoolbox geepack gee geeM
(Intercept) 5.904(0.105) 5.903(0.105) 5.904(0.105) 5.904(0.105)

poly(days, 4)1 19.200(0.518) 19.186(0.519) 19.201(0.518) 19.200(0.518)
poly(days, 4)2 -2.858(0.206) -2.860(0.206) -2.857(0.206) -2.858(0.206)
poly(days, 4)3 5.416(0.182) 5.414(0.182) 5.417(0.182) 5.416(0.182)
poly(days, 4)4 -3.574(0.125) -3.572(0.125) -3.574(0.125) -3.574(0.125)

treatozone-enriched -0.259(0.128) -0.257(0.128) -0.259(0.128) -0.259(0.128)
ρ 0.97 0.97 0.97 0.97

Table 2: Parameter estimates (standard errors) of the GEE model with correlation structure AR-1 fitted
to the data on growth patterns of trees.

5.3 Treatment of severe postnatal depression

The dataset of this example, available in the object depression of glmtoolbox and composed of
columns named subj, group, visit, dep and depressd (see Table 3), arose from a double-blind placebo-
controlled study on the efficacy of oestrogen given transdermally for treatment of severe postnatal
depression (Gregoire et al., 1996). A total of 61 women with severe depression (identified in the dataset
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by the column subj), which began within 3 months of childbirth and persisted for up to 18 months
postnatal, were randomly assigned to either a control group (group=“placebo”) of size 27, which were
treated with a placebo patch, or an active treatment group (group=“oestrogen”) of size 34, which
were treated with an oestrogen patch. Prior to therapy, all women were assessed by self-ratings of
depressive symptoms on the Edinburgh Postnatal Depression Scale (EPDS), where higher scores are
indicative of higher levels of depression. A monthly EPDS (dep) was collected for six months once
treatment began (visit). The binary response (depressd) was 1 to indicate severe depression when
the EDPS value was greater than or equal to 11, and 0 in other cases. There are missing values in
the data, because for some women, just two measurements of the response variable are available.
However, those missing values are positioned at the last time positions, so, there are no intermixed
missing values, and the argument waves of the function glmgee() is not needed.

Column Role Description
subj Cluster/subject identifier Identifier of the woman
group Explanatory variable Treatment: “placebo” or “oestrogen”
visit Explanatory variable Number of months after the treatment began
depressd Response variable 1 if EDPS ≥ 11 and 0 otherwise

Table 3: Columns in the object depression of the package glmtoolbox.

A plot of the data (Figure 3) suggests that oestrogen patches are an effective treatment for postnatal
severe depression, as across time, the proportion of women with severe depression is lower in the
group treated with oestrogen patches than in the group treated with placebo patches. The plot also
indicates that the (logit of the) proportion of women with severe depression decreases linearly as a
function of the time since the therapy began, but the rate of decreasing seems to be independent of the
type of patch (placebo or oestrogen), which suggests that the data could be analyzed by using a GEE
with the logit link function and a linear predictor including the effects of time and type of patch, but
without the interaction between them.
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Figure 3: Evolution of the (logit of the) proportion of women with severe depression.

Several GEE with variance function V(µ) = µ(1 − µ), logit link function, and different structures
for the working correlation matrix are fitted to the data. Then, some selection criteria available in
glmtoolbox are used to choose the more suitable structure for the correlation matrix.

> data(depression)
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> m1 <- glmgee(depressd ~ visit + group, id=subj, family=binomial(logit), data=depression)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")

> a <- CIC(m1, m2, m3, m4, m5, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, verbose=FALSE)
> c <- AGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> d <- SGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],AGPC=c[,"AGPC"],SGPC=d[,"SGPC"])

Object Correlation CIC QIC AGPC SGPC
1 m1 Independence 7.708 383.555 304.2907 310.6233
2 m2 Exchangeable 8.048 377.815 247.9647 256.4082
3 m3 AR-M-dependent(1) 6.971 358.244 234.4696 242.9131
4 m4 AR-M-dependent(2) 7.031 363.784 234.9438 245.4982
5 m5 AR-M-dependent(3) 7.230 366.387 231.5530 244.2183

According to most of the selection criteria, the AR-1 structure is more suitable. Here is the summary
of the GEE with that structure for the working correlation matrix:

> summary(m3)
Sample size

Number of observations: 356
Number of clusters: 61

Min 25% 50% 75% Max
Cluster sizes: 2 4 7 7 7

*********************************************************************
Model

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
*********************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 3.23604 0.51842 6.24218 4.3152e-10
visit -0.62632 0.07477 -8.37681 < 2.22e-16
groupoestrogen -1.77723 0.54578 -3.25631 0.0011287

Dispersion 1.02842
*********************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7]
[1] 1.000 0.513 0.263 0.135 0.069 0.036 0.018
[2] 0.513 1.000 0.513 0.263 0.135 0.069 0.036
[3] 0.263 0.513 1.000 0.513 0.263 0.135 0.069
[4] 0.135 0.263 0.513 1.000 0.513 0.263 0.135
[5] 0.069 0.135 0.263 0.513 1.000 0.513 0.263
[6] 0.036 0.069 0.135 0.263 0.513 1.000 0.513
[7] 0.018 0.036 0.069 0.135 0.263 0.513 1.000

The Wald test and the generalized score test indicate that there is no interaction between time and
the type of patch. As shown below, the p-values associated with that effect are “large”.

> m3a <- update(m3, . ~ . + visit:group)
> anova(m3a, test="wald")
Wald test

Model 1 : depressd ~ 1
Model 2 : depressd ~ visit
Model 3 : depressd ~ visit + group
Model 4 : depressd ~ visit + group + visit:group

Chi df Pr(>Chi)
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1 vs 2 88.1275 1 < 2.2e-16 ***
2 vs 3 10.6036 1 0.001129 **
3 vs 4 2.2104 1 0.137082

> anova(m3a, test="score")
Generalized score test

Model 1 : depressd ~ 1
Model 2 : depressd ~ visit
Model 3 : depressd ~ visit + group
Model 4 : depressd ~ visit + group + visit:group

Chi df Pr(>Chi)
1 vs 2 39.9226 1 2.642e-10 ***
2 vs 3 10.9208 1 0.0009509 ***
3 vs 4 2.3977 1 0.1215150

Variance estimation

Next, the estimates of Var(β̂0), Var(β̂1), Var(β̂2) are obtained using four different estimators.

> cbind(model=diag(vcov(m3, type="model")),
+ robust=diag(vcov(m3, type="robust")),
+ bias.corrected=diag(vcov(m3, type="bias-corrected")),
+ jackknife=diag(vcov(m3, type="jackknife")))

model robust bias.corrected jackknife
(Intercept) 0.26219 0.26875 0.29023 0.29023
visit 0.00844 0.00559 0.00583 0.00583
groupoestrogen 0.21114 0.29788 0.32441 0.32441

Parameter interpretation

Regardless of the type of patch (placebo or oestrogen), the probability of severe depression decreases
across time. However, the odds of severe depression of women treated with oestrogen patches is
approximately 83.09% = 100 × [1 − exp(β̂group)] lower than that of women treated with placebo
patches, where βgroup represents the parameter associated with the dummy variable indicating the
type of patch the women were treated with.

Variable selection

As an illustration, the procedure of variable selection is applied using the strategy “hybrid forward
stepwise” with the QIC as the comparison criterion. In addition, the simplest and most complex
models are specified to be 1 and 1 + visit + group + visit*group, respectively. According to this
strategy, the “best” linear predictor consists of the effects of time and type of patch, but without the
interaction between them. The same results are obtained in the following scenarios: (i) the “hybrid
forward stepwise” is replaced by the “hybrid backward stepwise”; and (ii) the comparison criterion
based on the QIC is replaced by the AGPC.

> stepCriterion(m3a, direction="forward", criterion="qic")

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
Comparison criteria: QIC

Initial model:
~ 1

Step 0 :
df QIC QICu AGPC SGPC P(Chisq>)(*)

+ visit 1 413.89 409.23 273.13 279.46 < 2.2e-16
+ group 1 443.77 440.13 366.77 373.10 0.000424
<none> 465.70 463.63 385.09 389.31
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Figure 4: Some diagnostic plots for the GEE with correlation structure AR-1 fitted to the data on
postnatal depression.

Step 1 : + visit

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ group 1 358.24 350.30 234.47 242.91 0.001129
<none> 413.89 409.23 273.13 279.46

Step 2 : + group

df QIC QICu AGPC SGPC P(Chisq>)(*)
<none> 358.24 350.30 234.47 242.91
+ group:visit 1 358.63 351.24 234.60 245.16 0.1371
- visit 1 443.77 440.13 366.77 373.10 <2e-16

Final model:
~ visit + group
****************************************************************************
(*) p-values of the Wald test

Residual analysis

> residuals(m3, type="mahalanobis", plot.it=TRUE, identify=3)

Mahalanobis-type residuals suggest that the women for whom the model has the lowest goodness-
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of-fit are those identified as 10, 14 and 20 (Figure 3(a)). Those women were treated with placebo
patches and just one month after therapy began their EDPS decreased until reaching values lower than
11. However, one or two months later their EDPS values increased to 11 or higher.

Global influence

> dfbeta(m3, method="full", coefs="group", identify=6)

The plot of the dfbeta statistic for β̂group at the cluster-level (Figure 3(b)) highlights the women
identified as 5, 18, 26, 31, 39 and 51. The EDPS values of the women identified as 31, 39 and 51
remained higher or equal to 11 even after they were treated with oestrogen patches. Their exclusion
from the dataset decreases the estimate of βgroup, that is, increases the evidence on the effectiveness
of oestrogen patches for treatment of postnatal severe depression. On the other hand, the values on
the EDPS of the women identified as 5, 18 and 26 remained lower than 11 since the first or second
month since therapy began, although they were treated with placebo patches, so their exclusion from
the dataset also increases the evidence on the effectiveness of the oestrogen patches for treatment of
postnatal severe depression.

Local influence

> localInfluence(m3, type="total", perturbation="cw-clusters", coefs="group",
+ plot.it=TRUE, identify=4)
> localInfluence(m3, type="total", perturbation="cw-observations", coefs="group",
+ plot.it=TRUE, identify=7)

According to the plot of the total local influence for β̂group under the case weight perturbation
scheme at the cluster-level (Figure 3(c)), the women identified as 5, 18, 20 and 26 are suspected
to be influential on β̂group. At least 4/7 of the EDPS measurements carried out on those women
were smaller than 11, although they were supplied with placebo patches. The plot of the total local
influence for β̂group under the case weight perturbation scheme at the observation-level (Figure 3(d))
highlights mainly two kinds of observations: (1) measurements of the EDPS in which, unlike the
others measurements made on the same women, the values were lower than 11, although they were
treated with placebo patches (second measurement performed on women identified as 10 and 14);
(2) measurements of the EDPS performed on women treated with placebo patches and in which, for
the first time for those women since the treatment began, the reported value was lower than 11, thus
indicating absent severe depression, which remains until the end of the observation period (second,
third and fourth measurements performed on women identified as 26, 18 and 5, respectively).

Comparison with other GEE solvers

The parameter estimates and the associated standard errors provided by the function glmgee() are
compared with those calculated by the GEE solvers available in the packages gee, geepack and geeM.
The results are presented in Table 4. The values obtained with the other GEE solvers are very similar
to those obtained with the function glmgee().

glmtoolbox geepack gee geeM
(Intercept) 3.236(0.518) 3.276(0.531) 3.214(0.514) 3.199(0.543)

visit -0.626(0.075) -0.630(0.077) -0.624(0.074) -0.633(0.077)
groupestrogen -1.777(0.546) -1.847(0.556) -1.754(0.543) -1.781(0.572)

ρ 0.51 0.48 0.47 0.51

Table 4: Parameter estimates (standard errors) of the GEE model with correlation structure AR-1 fitted
to the data on severe postnatal depression.

5.4 Growth patterns of two soybean genotypes

This dataset, analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) and available
in the object Soybean of the package nlme (Pinheiro et al., 2022), arose from an experiment aimed
at comparing growth patterns of two genotypes of soybeans: Plant Introduction (Variety=“P”), an
experimental strain, and Forrest (Variety=“F”), a commercial variety. The average leaf weight per
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plant (weight), in grams, was measured at 14, 20, 27, 34, 41, 55, 69 and 84 days after planting (Time) in
each plot (Plot). As an illustration, only plots planted in 1989 (Year=“1989”) are analyzed here. Table
5 describes the roles played in the analysis of the variables in the Soybean dataset. The graph of the
data (Figure 5) indicates that the location of the response (average leaf weight per plant) increases
non-linearly over time. In addition, there is an approximately proportional relationship between the
mean and the standard deviation, as the variance of the response variable (in the log scale) seems to be
constant. As a result, the data may be analyzed assuming that the coefficient of variation is constant,
that is, using a quadratic variance function. Moreover, the graph of the data also indicates that at each
time point, the location of the response is larger for the experimental strain (Variety=“P”) than for the
commercial variety (Variety=“F”) of soybean.

Column Role Description
Plot Cluster/subject identifier Identifier of the plot
Variety Explanatory variable Treatment: “F” (experimental) or “P” (commercial)
Year Explanatory variable Year the plot was planted
Time Explanatory variable Days after planting
weight Response variable Average leaf weight per plant

Table 5: Columns in the object Soybean of the package nlme.
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Figure 5: Average leaf weight per plant over time.

The data are analyzed using a model where the mean of the random variable Yij (jth measurement
of the average leaf weight per plant performed on the ith plot) is given by the following logistic-type
curve:

µij =
β1 + β4 Varietyij

1 + exp
(
−(Timeij − β2 − β5 Varietyij)/(β3 + β6 Varietyij)

) , i = 1, . . . , 16; j = 1, . . . , 8,

where Varietyij = 1 if the soybean genotype is the experimental strain and Varietyij = 0 otherwise.
Therefore, the horizontal asymptote as Time → ∞ (also known as the carrying capacity), the inflection
point and the scale parameter of µ for commercial varieties of soybean are β1, β2 and β3; and (β1 + β4),
(β2 + β5) and (β3 + β6) for experimental strains.

The starting value for β in the algorithm of parameter estimation is obtained through the built-in
function SSlogis().
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> data(Soybean,package="nlme")
> Soybean2 <- subset(Soybean,Year=="1989")
> Soybean2 <- within(Soybean2,x <- ifelse(Variety=="P",1,0))
>
> m0 <- gnmgee(weight ~ SSlogis(Time,b1,b2,b3), id=Plot, family=Gamma(identity),
+ data=Soybean2)
> start <- c(coef(m0),rep(0,3))
> names(start) <- paste0("b",1:6)
> start

b1 b2 b3 b4 b5 b6
14.185637 51.453724 7.086697 0.000000 0.000000 0.000000

Then, GEE models with quadratic variance function and different correlation matrix structures are
fitted to the data.

> m1 <- gnmgee(weight ~ (b1 + b4*x)/(1 + exp(-(Time - b2 - b5*x)/(b3 + b6*x))),
+ start=start, id=Plot, family=Gamma(identity), data=Soybean2)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")
> m6 <- update(m1, corstr="AR-M-dependent(4)")

As shown below, the correlation matrix structure chosen by the most of the criteria (that is, CIC, QIC,
GHYC and PAC) is AR-M-dependent(3).

> a <- CIC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> c <- GHYC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> d <- PAC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> e <- AGPC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> f <- SGPC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],GHYC=c[,"GHYC"],PAC=d[,"PAC"],AGPC=e[,"AGPC"],SGPC=f[,"SGPC"])

Object Correlation CIC QIC GHYC PAC AGPC SGPC
1 m1 Independence 6.951 6163.648 8.126 0.9847 90.5844 95.2200
2 m2 Exchangeable 6.951 6163.648 7.552 0.9785 86.8152 92.2233
3 m3 AR-M-dependent(1) 6.795 6098.876 6.640 0.9753 86.1055 91.5136
4 m4 AR-M-dependent(2) 6.713 6095.808 6.622 0.9737 87.7812 93.9619
5 m5 AR-M-dependent(3) 6.708 6094.956 6.621 0.9736 89.7920 96.7453
6 m6 AR-M-dependent(4) 6.752 6115.573 6.673 0.9741 91.3912 99.1171

The chosen model is summarized as follows:

> summary(m5)

Sample size
Number of observations: 128

Number of clusters: 16
Cluster size: 8

*************************************************************
Model

Variance function: Gamma
Link function: identity

Correlation structure: AR-M-dependent(3)
*************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
b1 10.58794 0.54866 19.29779 < 2e-16
b2 52.08512 0.99860 52.15828 < 2e-16
b3 7.01786 0.19565 35.87033 < 2e-16
b4 7.48960 0.88795 8.43475 < 2e-16
b5 -0.77453 1.29528 -0.59797 0.54986
b6 0.09913 0.24511 0.40441 0.68591

Dispersion 0.05686
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*************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7] [8]
[1] 1.000 0.253 0.151 0.053 0.025 0.010 0.004 0.002
[2] 0.253 1.000 0.253 0.151 0.053 0.025 0.010 0.004
[3] 0.151 0.253 1.000 0.253 0.151 0.053 0.025 0.010
[4] 0.053 0.151 0.253 1.000 0.253 0.151 0.053 0.025
[5] 0.025 0.053 0.151 0.253 1.000 0.253 0.151 0.053
[6] 0.010 0.025 0.053 0.151 0.253 1.000 0.253 0.151
[7] 0.004 0.010 0.025 0.053 0.151 0.253 1.000 0.253
[8] 0.002 0.004 0.010 0.025 0.053 0.151 0.253 1.000

These results suggest that only the horizontal asymptote as Time → ∞ depends on the soybean variety.
Their estimates are 10.588 grams and 18.078 grams for commercial varieties and experimental soybean
strains, respectively.

5.5 Amenorrhea rates over time

The dataset of this example, available in the object amenorrhea of glmtoolbox and comprised of the
columns named ID, Dose, Time, and amenorrhea (see Table 6), arose from a longitudinal clinical trial of
contracepting women (Machin et al., 1988; Fitzmaurice et al., 2011). A total of 1151 women completed
menstrual diaries. The diary data were used to generate a binary sequence for each woman, indicating
whether she had experienced amenorrhea (the absence of menstrual bleeding for a specified number
of days) on the day of randomization and three additional 90-day intervals. This trial compared the
two treatments (injections of 100 mg or 150 mg of depot-medroxyprogesterone acetate (DMPA)) in
terms of how amenorrhea rates change over time with continued use of the contraceptive method.
Figure 6 shows that amenorrhea rates increase across treatments, but that it appears that women
treated with 150 mg of DMPA are more likely to experience amenorrhea than those treated with 100
mg of DMPA at each time point. Moreover, Figure 6 shows that the proportion of women experiencing
amenorrhea (on the logit scale) increases non-linearly over time. A feature of this clinical trial is that
there was substantial dropout. This is when a woman skips a particular injection and never returns for
subsequent injections. Indeed, 38% of the women dropped out before the trial ended; 17.2% dropped
out after receiving only one injection of DMPA, 13.5% dropped out after receiving only two injections
of DMPA, and 7.3% dropped out after receiving three injections of DMPA. The subsequent statistical
analysis is performed using the weighted GEE method, as it is assumed that the missing data pattern
is better described by MAR than MCAR.

Column Role Description
ID Cluster/subject identifier Identifier of the woman
Dose Explanatory variable Treatment: “100mg” or “150mg” of DMPA
Time Explanatory variable Number of 90-day intervals since the trial began
amenorrhea Response variable 1 if experienced amenorrhea; 0 otherwise

Table 6: Columns in the object amenorrhea of the package glmtoolbox.

The data are analyzed using a model in which the probability of the ith woman experienced
amenorrhea at time j, denoted here by µij, is such that

logit(µij) = 1 + Time+ Time2 + Dose.

For the missingness model the following systematic component is considered

logit(πij) = 1 + CTime+ Dose+ ylag1,

where CTime is a categorical version of the explanatory variable Time and ylag1 is defined to be
yi,j−1 if j > 1 and 0 if j = 1. In addition, the structure of the working correlation matrix is set to be
AR-M-dependent(1). The observation-specified weighted GEE method results are the following:

> data(amenorrhea)
> amenorrhea2 <- within(amenorrhea,{Ctime <- factor(Time)
+ Ctime <- relevel(Ctime,ref="1")
+ ylag1 <- c(0,amenorrhea[-length(ID)])
+ ylag1 <- ifelse(Time==0,0,ylag1)})
>
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Figure 6: Amenorrhea rates over time.

> fit1 <- wglmgee(amenorrhea ~ poly(Time,2) + Dose | Ctime + Dose + ylag1,
+ family=binomial, data=amenorrhea2, id=ID, corstr="AR-M-dependent(1)",
+ scale.fix=TRUE, scale.value=1, level="observations")
> summary(fit1)

Clusters by dropout time
Time 1 2 3 4 Freq %

---- ---- ---- ---- | ---- ----
X . . . | 198 17.2
X X . . | 155 13.5
X X X . | 84 7.3
X X X X | 714 62

---- ---- ---- ---- | ---- ----
| 1151 100

*************************************************************
Coefficients of missingness model

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 2.4349 0.1401 17.3845 < 2.2e-16 ***
Ctime1 -0.7247 0.1438 -5.0399 4.659e-07 ***
Ctime2 -0.5911 0.1469 -4.0250 5.698e-05 ***
Dose150mg -0.0174 0.1049 -0.1663 0.8679
ylag1 -0.5765 0.1122 -5.1369 2.793e-07 ***
*************************************************************
Observation-specific Weighted GEE

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
*************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) -0.6835 0.0750 -9.1136 < 2e-16 ***
poly(Time, 2)1 40.7447 2.2598 18.0301 < 2e-16 ***
poly(Time, 2)2 -4.6883 1.9528 -2.4008 0.01636 *
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Dose150mg 0.2437 0.1061 2.2975 0.02159 *

Dispersion 1.0000
*************************************************************
Working correlation

[1] [2] [3] [4]
[1] 1.000 0.414 0.171 0.071
[2] 0.414 1.000 0.414 0.171
[3] 0.171 0.414 1.000 0.414
[4] 0.071 0.171 0.414 1.000

According to the missingness model, the probability of remaining in the trial increases over
time, regardless of the amenorrhea status reported by the women in the previous measurement. In
addition, the missingness model indicates that the probability of remaining in the trial is higher
for women without amenorrhea in their previous measurement, regardless of how many DMPA
injections they have received. Therefore, the MAR assumption seems more appropriate than MCAR.
Moreover, according to the model for µ, the odds of experiencing amenorrhea is approximately
27.6% = 100 × [exp(β̂Dose)− 1] higher in women treated with 150 mg of DMPA than those treated
with 100 mg of DMPA, where βDose represents the parameter associated with the explanatory variable
Dose. This is irrespective of the number of 90-day intervals since the experiment began. The results of
the cluster-specific weighted GEE approach (do not show here) are very similar.
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