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Abstract. Denote by H(d1, d2, d3) the set of all homogeneous polynomial mappings
F = (f1, f2, f3) : C3 → C3, such that deg fi = di. We show that if gcd(di, dj) ≤ 2 for
1 ≤ i < j ≤ 3 and gcd(d1, d2, d3) = 1, then there is a non-empty Zariski open subset
U ⊂ H(d1, d2, d3) such that for every mapping F ∈ U the map germ (F, 0) is A-finitely
determined. Moreover, in this case we compute the number of discrete singularities
(0-stable singularities) of a generic mapping (f1, f2, f3) : C3 → C3, where deg fi = di.

1. Introduction

Let Ω(d1, . . . , dn) denote the set of all polynomial mappings F = (f1, . . . , fn) : Cn → Cn

such that deg fi = di. We have proved in [1] that there is an Zariski open subset
U ⊂ Ω(d1, . . . , dn) such that for every F ∈ U the mapping F is transversal to the Thom-
Boardman varieties and satisfies the normal crossings property. Moreover, by [3] all such
mappings are topologically equivalent, in particular they have the same number of dis-
crete singularities. If U0 ⊂ Ω(d1, . . . , dn) is the maximal Zariski open subset with these
properties (i.e., for every F ∈ U0 the mapping F has constant topological type and it is
transversal to the Thom-Boardman varieties and satisfies the normal crossings property)
then we say that every mapping F ∈ U0 is a generic mapping.

Let F ∈ Ω(d1, . . . , dn) be a generic polynomial mapping. In particular in Mathers nice
dimensions (see [6]) F is a stable mapping. In [1] we have computed the number of cusps
and nodes for F in dimension n = 2. Now we would like to compute the number of discrete
singularities (0-stable singularities) in dimension n = 3.

Note that a generic polynomial mapping F : Cn → Cn can be defined at infinity only
if d1 = d2 = . . . = dn = d. However even in this case the mapping F (if non-linear) has
to be degenerate at infinity, i.e., the whole hyperplane at infinity is a component of the
critical set of F. Indeed the topological degree of F is µ(F ) = dn, but the mapping F
restricted to the infinity has topological degree at most dn−1. Hence the critical set of F
is not smooth and consequently such a mapping can never be stable as a mapping from
Pn to Pn. In particular we cannot use here global techniques based on Thom polynomials.

However, in some cases we can apply local methods using Thom polynomials described
by Ohmoto [9] (see also [7], [8], [4]). Indeed, let F : C3 → C3 be a generic mapping. Since
the pair (3, 3) is a pair of nice dimensions, the mapping F is stable. For F = (f1, f2, f3) ∈
Ω(d1, d2, d3) we denote by f i the homogeneous part of fi of degree di and set F0 =
(f1, f2, f3). Hence F0 has a stable deformation Ft(x) = (td1f1(x/t), t

d2f2(x/t), t
d3f3(x/t)).

Assume that (F0, 0) is a finitely A-determined germ. Since the deformation Ft contracts all
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discrete singularities to 0 as t→ 0, we can compute the number of discrete singularities of
F using the local formulas of Ohmoto for the mapping F0. Hence the fundamental problem
here is to describe finitely A-determined homogeneous mappings H : C3 → C3. We denote
by H(d1, d2, d3) the set of all homogeneous polynomial mappings F = (f1, f2, f3) : C3 →
C3, such that deg fi = di. Our first main result is:

Theorem 1.1. If gcd(di, dj) ≤ 2 for 1 ≤ i < j ≤ 3 and gcd(d1, d2, d3) = 1 then there is a
non-empty Zariski open subset U ⊂ H(d1, d2, d3) such that for every mapping F ∈ U the
map germ (F, 0) is finitely A-determined.

On the other hand if gcd(di, dj) > 2 for some i, j ∈ {1, 2, 3}, i 6= j or gcd(d1, d2, d3) > 1,
then there are no finitely A-determined homogeneous map germs with degrees d1, d2, d3.

This is an extension of a part of a well-known two-dimensional result of Gaffney-Mond
[2] to dimension three. In fact Gaffney and Mond provide a classification of finitely A-
determined quasi-homogeneous (C2, 0)→ (C2, 0) map germs of corank 1 and determine the
admissible weights and degrees for germs of corank 2. Note that our method is ill-suited for
the weighted-homogeneous case. In the homogeneous case we use an action of the linear
group to vastly simplify the necessary computations. In the weighted-homogeneous case
the action is no longer available and the computations become prohibitively complicated.

Theorem 1.1 has the following nice application:

Theorem 1.2. If gcd(di, dj) ≤ 2 for 1 ≤ i < j ≤ 3 and gcd(d1, d2, d3) = 1 then there is a
non-empty Zariski open subset U1 ⊂ Ω(d1, d2, d3) such that for every mapping F ∈ U1 we
have:

• F is stable, in particular the discrete mono- or multi-singularities are of type A3,
A2A1 or A3

1,
• F has precisely #A3 = c31 + 3c1c2 + 2c3 singularities of type A3,
• F has precisely #A2A1 = (P − 3)s1#A2 − 3#A3 singularities of type A2A1,

• F has precisely
1

6

[
(P 2 − 3P + 2)s31 − 6#A2A1 − 6#A3 − 3s1#A

2
1 − 4s1#A2

]
sin-

gularities of type A3
1.

Here s1 = d1 + d2 + d3 − 3, s2 = (d1 − 1)(d2 − 1) + (d1 − 1)(d3 − 1) + (d2 − 1)(d3 − 1),
s3 = (d1 − 1)(d2 − 1)(d3 − 1), P = d1d2d3, c1 = s1, c2 = s2 − s1, c3 = s3 − 2s2 + s1,
#A2 = c21 + c2 and #A2

1 = (P − 2)s21 − 2#A2.

Remark 1.3. The proof works only for finitelyA-determined map germs, i.e., for d1, d2, d3
as in Theorem 1.1. However, we intend to prove in a separate paper, by using global
methods rather then local, that the formula for the number of A3 singularities holds for
all degrees. However the formulae for the numbers of A2A1 and A3

1 singularities depend
on gcd(d1, d2, d3).

2. Main result

For a polynomial mapping F : Cn → Cm let us denote by C(F ) the set of critical points
of F and by ∆(F ) = F (C(F )) the discriminant of F .

Moreover, we call a line through the origin a ray. We will denote by (Cn)∗t the set
{(p1, . . . , pt) : pi ∈ Cn, pi 6= 0 and pi 6= pj for i 6= j}. If p ∈ (Cn)∗ then we denote by Cp
the unique ray passing through p. Here we prove that for certain mappings the critical set
is smooth outside 0 and the discriminant has only simple normal crossings outside 0.
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Lemma 2.1. Assume that gcd(di, dj) ≤ 2 for 1 ≤ i < j ≤ 3 and gcd(d1, d2, d3) = 1.
There is a non-empty Zariski open subset U ⊂ H(d1, d2, d3) such that for every mapping
F = (f1, f2, f3) ∈ U :

(1) F−1(0) = {0},
(2) if d1, d2, d3 are pairwise co-prime then F restricted to any ray contained in C(F )

is injective, if they are not co-prime, i.e., di is odd and the other two are even,
then F restricted to any ray contained in C(F )\V (fi) is injective and F restricted
to any of the finite number of rays contained in C(F ) ∩ V (fi) is 2 : 1,

(3) F|C(F ) is injective outside a finite set of rays,

(4) if p ∈ ∆(F ) then #(F−1(p) ∩ C(F )) ≤ 2,
(5) outside the origin the singularities of F are either folds or cusps, in particular

C(F ) \ {0} is smooth,
(6) if F has a cusp at p then F−1(F (p)) ∩ C(F ) = {p},
(7) if #(F−1(p) ∩ C(F )) = 2 then the surface ∆(F ) has a normal crossing at p.

Proof. We will consider the sets X1, . . . , X7 ⊂ (C3)∗t ×H(d1, d2, d3), where t ∈ {1, 2, 3},
consisting of points and mappings that do not satisfy the assertions above. We will
show that dim(X1), . . . ,dim(X7) ≤ dim(H(d1, d2, d3)) and consider the projections Xi →
H(d1, d2, d3). The inequality between dimensions shows, that there is a non-empty Zariski
open subset U ⊂ H(d1, d2, d3) over which the fibers of the projections are finite. However,
since we consider homogeneous mappings if a point (in (C3)∗t) is in the fiber then the
whole ray through this point must also be in the fiber, i.e., the fibers are either empty or
infinite. Consequently mappings in U satisfy the desired properties.

The sets Xi will be invariant under linear transformations in the following sense: if
T ∈ GL(3) and (p1, . . . , pt, F ) ∈ Xi then (T (p1), . . . , T (pt), F ◦ T−1) ∈ Xi. Consequently,
to compute dim(Xi) we will only have to compute the dimensions of selected fibers (in
most cases only one) of the projection Xi → (C3)t.

We denote by ai,j;k the parameters in H(d1, d2, d3) giving the coefficients of fk at

xdk−i−jyizj .

The proofs of all assertions follow the same pattern, thus in later assertions we will
omit the details explained in the proofs of earlier ones. When relevant we will first assume
that d1, d2, d3 are pairwise co-prime and later consider the case when they are not. By
symmetry we may assume that when d1, d2, d3 are not pairwise co-prime then d1 and d2
are even and d3 is odd.

(1) Consider X1 = {(p, F ) ∈ (C3)∗ × H(d1, d2, d3) : F (p) = (0, 0, 0)}. As explained
above we have to show that dim(X1) ≤ dim(H(d1, d2, d3)) and this follows from the
fact that dim(X1 ∩ {(1, 0, 0)} × H(d1, d2, d3)) ≤ dim(H(d1, d2, d3)) − 3. Let X ′1 denote
X1 ∩ {(1, 0, 0)}×H(d1, d2, d3), we will treat it as a subset of H(d1, d2, d3). We obtain the
equations of X ′1 by substituting (1, 0, 0) into the equations of X1, we have f1(1, 0, 0) =∑
ai,j;kx

dk−i−jyizj(1, 0, 0) = a0,0;1 = 0 and f2(1, 0, 0) = a0,0;2 = 0 and f3(1, 0, 0) = a0,0;3 =
0. Thus X ′1 = V (a0,0;1, a0,0;2, a0,0;3) has codimension 3 in H(d1, d2, d3), as required.

(2) Let F = (f1, f2, f3) and p ∈ (C3)∗. Note that if any two of f1, f2, f3 are nonzero
at p, say f1(p), f2(p) 6= 0, then F restricted to Cp is injective. Indeed, if q = λp and
F (p) = F (q), then f1(p) = f1(λp) = λd1f1(p). Thus λd1 = 1 and similarly λd2 = 1, if
gcd(d1, d2) = 1 then it follows that λ = 1. If gcd(d1, d2) = 2 then λ = 1 or λ = −1.

Thus we have to show that for a generic F we have C(F ) ∩ V (fi, fj) = {0}. We show
the proof for f1 and f2, the other two pairs follow by symmetry. Consider X2 = {(p, F ) ∈
(C3)∗ × H(d1, d2, d3) : f1(p) = f2(p) = J(F )(p) = 0}. Where by J(F ) we denote the
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Jacobian of F . Similarly as in the proof of (1) we define X ′2 = X2∩{(1, 0, 0)}×H(d1, d2, d3)
and treat it as a subset of H(d1, d2, d3). We have to show, that X ′2 has codimension 3. As
for X ′1, the first two equations of X ′2 are a0,0;1 = 0 and a0,0;2 = 0. The third equation is

J(F )(1, 0, 0) = det

d1a0,0;1 a1,0;1 a0,1;1
d2a0,0;2 a1,0;2 a0,1;2
d3a0,0;3 a1,0;3 a0,1;3

 = 0,

after substituting a0,0;1 = a0,0;2 = 0 it simplifies to d3a0,0;3(a1,0;1a0,1;2 − a0,1;1a1,0;2) = 0.
The three equations are clearly independent, thus X ′2 has codimension 3 in H(d1, d2, d3),
as required.

If gcd(d1, d2) = 2 then we additionally have to show that there is only a finite number of
rays contained in C(F ) ∩ V (f3). Consider X2a = {(p, F ) ∈ (C3)∗ ×H(d1, d2, d3) : f3(p) =
J(F )(p) = 0}. Similarly as for X2 we show that X2a has codimension 2, hence the general
fiber of the projection X2a → H(d1, d2, d3) has dimension 1, so it must be a finite union
of rays.

(3) Consider X3 = {(p1, p2, F ) ∈ (C3)∗2 × H(d1, d2, d3) : F (p1) = F (p2), J(F )(p1) =
J(F )(p2) = 0}. Let X ′3 be a nonempty fiber of the projection to (C3)∗2. By (2) we
may assume that F is injective on rays and consider only fibers over (p1, p2) where p1
and p2 are not proportional. Since linear transformations induce isomorphisms of the
fibers, we may assume that (p1, p2) = ((1, 0, 0), (0, 1, 0)). Thus the equations for X ′3 are:
(a0,0;1, a0,0;2, a0,0;3) = (ad1,0;1, ad2,0;2, ad2,0;3) and

det

d1a0,0;1 a1,0;1 a0,1;1
d2a0,0;2 a1,0;2 a0,1;2
d3a0,0;3 a1,0;3 a0,1;3

 = det

ad1−1,0;1 d1ad1,0;1 ad1−1,1;1
ad2−1,0;2 d2ad2,0;2 ad2−1,1;2
ad3−1,0;3 d3ad3,0;3 ad3−1,1;3

 = 0.

The first three equations define a linear subspace of codimension 3, the other two clearly
do not have a common factor even after restricting to this subspace, i.e., after substitut-
ing a0,0;k for adk,0;k in the last equation. Thus X ′3 has codimension 5 in H(d1, d2, d3)
and consequently dim(X2) ≤ dim(H(d1, d2, d3)) + 1. Note that if (p1, p2, F ) ∈ X3 then
also (λp1, λp2, F ) ∈ X3 for λ ∈ C∗, thus the nonempty fibers of the projection X3 →
H(d1, d2, d3) are infinite and so there are only finitely many of them.

(4) Here we prove that if p ∈ ∆(F ) then at most two points from F−1(p) are critical
points, which is the first step to prove that the discriminant has “good” self-intersections.
Consider

X4 = {(p1, p2, p3, F ) ∈ (C3)∗3 ×H(d1, d2, d3) : F (p1) = F (p2) = F (p3),

J(F )(p1) = J(F )(p2) = J(F )(p3) = 0}.
Similarly as above we consider the fibers of the projection X4 → (C3)∗3. However now
we have to consider more than one case: if p1, p2, p3 are not coplanar with the origin then
we may assume that (p1, p2, p3) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), if p1, p2, p3 are coplanar
with zero then we can only assume that (p1, p2, p3) = ((1, 0, 0), (0, 1, 0), (a, b, 0)) for some
a, b ∈ C∗. We denote the fiber by X ′4 in the former case and by Xab

4 in the latter. If
gcd(d1, d2) = 2 then we must additionally consider the case when two of the points are
opposite. In that case we may assume that (p1, p2, p3) = ((1, 0, 0), (−1, 0, 0), (0, 1, 0)), we
denote the fiber by X−4 .

The equations for X ′4 are similar to those of X ′3. First we have (a0,0;1, a0,0;2, a0,0;3) =
(ad1,0;1, ad2,0;2, ad3,0;3) = (a0,d1;1, a0,d2;2, a0,d3;3) which define a linear subspace of codimen-
sion 3. Then we have three equations given by determinants of a matrix. After restricting
to the linear subspace the matrices have a common column: [d1a0,0;1, d2a0,0;2, d3a0,0;3], but
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otherwise contain disjoint sets of variables. Thus the equations give a transverse intersec-
tion outside V (a0,0;1, a0,0;2, a0,0;3) which itself has codimension 3. So X ′4 has codimension
9, as required.

For Xab
4 we obtain the equations

(a0,0;1, a0,0;2, a0,0;3) = (ad1,0;1, ad2,0;2, ad3,0;3)

=
(∑

ai,0;1a
d1−ibi,

∑
ai,0;2a

d2−ibi,
∑

ai,0;3a
d3−ibi

)
which again define a linear subspace, though not as nicely as above. Furthermore we
have the two equations with determinants from the definition of X ′3 and a third one that
is derived from J(F )(a, b, 0) = 0. One can show that the last equation is independent
from the previous ones, but in fact we do not need it. Note that the set of triples in
(C3)∗3 coplanar with the origin has dimension 8, so it suffices to show that Xab

4 has
codimension 8 in H(d1, d2, d3). This way we obtain a peculiar geometric fact: for a
generic F ∈ H(d1, d2, d3) and p ∈ ∆(F ) if p1, p2 ∈ F−1(p) ∩C(F ) then none of the points
in F−1(p) distinct from p1, p2 lie in the plane spanned by p1, p2 and the origin.

For X−4 we have p2 = −p1 so the equation F (p1) = F (p2) reduces to f3(p1) = 0. Fur-
thermore the equations J(F )(p1) = 0 and J(F )(p2) = 0 are equivalent. Thus X−4 is given
only by 6 independent equations: F (p1) = F (p3), f3(p1) = 0, J(F )(p1) = J(F )(p3) = 0
(note that the equation F (p1) = F (p3) gives in fact three independent equations). However
the set of points in (C3)∗3 satisfying p2 = −p1 has also dimension 6.

(5) We consider two sets:

X5 = {(p, F ) ∈ (C3)∗ ×H(d1, d2, d3) : J(F )(p) = J1,i(F )(p) = J2,i(F )(p) = 0},
X5a = {(p, F ) ∈ (C3)∗ ×H(d1, d2, d3) : ∇J(F )(p) = (0, 0, 0)},

where 1 ≤ i ≤ 3 and J1,i(F ) is the determinant of the matrix that we obtain from

the Jacobian matrix by replacing the row ∇fi = [∂fi∂x ,
∂fi
∂y ,

∂fi
∂z ] with the row ∇J(F ) and

similarly for J2,i(F ) by replacing the row ∇fi with the row ∇J1,i(F ). Note that X5

describes the set of pairs (p, F ) such that the singularity of F at p is worse than a cusp,
e.g., is an An singularity with n ≥ 3 or a singularity of corank greater than 1. However,
X5 fails to include pairs (p, F ) with singular C(F )p, e.g., with Fp equivalent to (x3, y, z)0
or (x3 + y2x, y, z)0. This is why we also need the set X5a which describes the pairs (p, F )
such that C(F ) is singular at p, in particular it includes also non-reduced components of
C(F ). Thus the only singularities that are not contained in X5 ∪X5a are folds and cusps.
So it suffices to prove that X5 and X5a have codimension at least 3 and this can be done
by considering the fibers X ′5 and X ′5a over p1 = (1, 0, 0).

By taking the Laplace expansion of J(F )(p1) with respect to the second column we
obtain −a1,0;1m1;1+a1,0;2m2;1−a1,0;3m3;1, where mi;1 are the suitable minors, e.g., m1;1 =
d2a0,0;2a0,1;3 − d3a0,0;3a0,1;2. The formula for J1,1(F )(p1) is too long to conveniently write
down, however it is easy to see that it is the sum of 2a2,0;1m

2
1;1 and a polynomial that

does not contain a2,0;1. Indeed, the term a2,0;1 can only come from ∂2f1
∂y2

which can be

only found in ∂J(F )
∂y by taking the derivative of ∂f1

∂y . Similarly, 6a3,0;1m
3
1;1is a summand of

J2,1(F )(p1). Consequently the determinant of the matrix
∂J(F )(p1)
∂a1,0;1

∂J(F )(p1)
∂a2,0;1

∂J(F )(p1)
∂a3,0;1

∂J1,1(F )(p1)
∂a1,0;1

∂J1,1(F )(p1)
∂a2,0;1

∂J1,1(F )(p1)
∂a3,0;1

∂J2,1(F )(p1)
∂a1,0;1

∂J2,1(F )(p1)
∂a2,0;1

∂J2,1(F )(p1)
∂a3,0;1

 =

 −m1;1 0 0
∂J1,1(F )(p1)

∂a1,0;1
2m2

1;1 0
∂J2,1(F )(p1)

∂a1,0;1

∂J2,1(F )(p1)
∂a2,0;1

−6m3
1;1


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is equal 12m6
1;1, which proves that X ′5 \ V (m1;1) has codimension 3. We make identical

computations for i ∈ {2, 3} and computation with J1,1, J2,1, a1,0;1, a2,0;1, and a3,0;1 replaced
with J1,i, J2,i, a1,0;i, a2,0;i, and a3,0;i, respectively, to obtain that X ′5 \ V (m1;1,m2;1,m3;1)
has codimension 3. The set V (m1;1,m2;1,m3;1) has codimension 2, it is given by the
condition that the first and the third columns of J(F )(p1) are proportional, however, we
can expand J(F )(p1) with respect to the third column and obtain a0,1;1m1;2 +a0,1;2m2;2−
a0,1;3m3;2. Proceeding as above we obtain that X ′5 \V (mi;2)1≤i≤3 has codimension 3, since
V (mi;1,mi;2)1≤i≤3 has also codimension 3 we conclude that X ′5 has codimension 3.

Let Jx(F ), Jy(F ), Jz(F ) denote the partial derivatives of J(F ) with respect to x, y, z,
respectively. We have (deg J(F ))J(F ) = xJx(F ) + yJy(F ) + zJz(F ), so (d1 + d2 + d3 −
3)J(F )(p1) = Jx(F )(p1). In particular we may replace Jx(F )(p1) with J(F )(p1) in the
definition of X ′5a. Observe that

∂J(F )(p1)
∂a1,0;1

∂J(F )(p1)
∂a1,1;1

∂J(F )(p1)
∂a2,0;1

∂Jz(F )(p1)
∂a1,0;1

∂Jz(F )(p1)
∂a1,1;1

∂Jz(F )(p1)
∂a2,0;1

∂Jy(F )(p1)
∂a1,0;1

∂Jy(F )(p1)
∂a1,1;1

∂Jy(F )(p1)
∂a2,0;1

 =

 −m1;1 0 0
∂Jz(F )(p1)

∂a1,0;1
−m1;1 0

∂Jy(F )(p1)
∂a1,0;1

∂Jy(F )(p1)
∂a1,1;1

−m1;1


and 

∂J(F )(p1)
∂a0,1;1

∂J(F )(p1)
∂a1,1;1

∂J(F )(p1)
∂a0,2;1

∂Jy(F )(p1)
∂a0,1;1

∂Jy(F )(p1)
∂a1,1;1

∂Jy(F )(p1)
∂a0,2;1

∂Jz(F )(p1)
∂a0,1;1

∂Jz(F )(p1)
∂a1,1;1

∂Jz(F )(p1)
∂a0,2;1

 =

 m1;2 0 0
∂Jy(F )(p1)

∂a0,1;1
m1;2 0

∂Jz(F )(p1)
∂a0,1;1

∂Jz(F )(p1)
∂a1,1;1

m1;2

 .
Similarly as above we obtain that X ′5a \ V (mi;1,mi;2)1≤i≤3 has codimension 3. Thus
X ′5 ∪X ′5a has codimension 3, which concludes the proof of (5).

(6) Consider X6 = {(p1, p2, F ) ∈ (C3)∗2 × H(d1, d2, d3) : F (p1) = F (p2), J(F )(p1) =
J1,i(F )(p1) = J(F )(p2) = 0}. We have to prove that X6 has codimension 6. The argument
is a mix of the arguments in (3) and (5). As above we focus on the fiber over (p1, p2) =
((1, 0, 0), (0, 1, 0)). The equations obtained from F (p1) = F (p2) define a linear subspace
of codimension 3. From (5) we obtain that J(F )(p1) = J1,i(F )(p1) = 0 give a space of
codimension 2. And the equation obtained from J(F )(p2) is independent from the previous
ones outside V (a0,0;1, a0,0;2, a0,0;3).

If gcd(d1, d2) = 2 then we must additionally consider the case p2 = −p1. In this case
the equation F (p1) = F (p2) reduces to f3(p1) = 0 and the equations J(F )(p1) = 0 and
J(F )(p2) = 0 are equivalent. Thus the fiber of X6 over (p1, p2) has codimension 3, however
the space of points in (C3)∗ × (C3)∗ satisfying p2 = −p1 has also codimension 3, so the
sum of fibers of this type has codimension 6.

(7) Consider X7 = {(p1, p2, F ) ∈ X2 : F (p1) = F (p2), J(F )(p1) = J(F )(p2) =
0, dF (p1)(C3) = dF (p2)(C3)}. Note that since ∆(F ) is a hypersurface either the two
branches at F (p1) intersect transversally or they have equal tangent spaces, which is the
condition that we added in the definition ofX7. As in (3) we look at the fiber over (p1, p2) =
((1, 0, 0), (0, 1, 0)) and obtain the equations (a0,0;1, a0,0;2, a0,0;3) = (ad1,0;1, ad2,0;2, ad2,0;3)
and rankA ≤ 2, where

A =

d1a0,0;1 a1,0;1 a0,1;1 ad1−1,0;1 d1ad1,0;1 ad1−1,1;1
d2a0,0;2 a1,0;2 a0,1;2 ad2−1,0;2 d2ad2,0;2 ad2−1,1;2
d3a0,0;3 a1,0;3 a0,1;3 ad3−1,0;3 d3ad3,0;3 ad3−1,1;3

 .
After substituting (a0,0;1, a0,0;2, a0,0;3) = (ad1,0;1, ad2,0;2, ad2,0;3) into A the first and the

fifth columns become equal, so we may cross the fifth one out without altering the rank.
We obtain a 3× 5 matrix A′ with variables as entries, the condition rankA ≤ 2 defines a
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subset of codimension 3 (on the Zariski open set where a 2 × 2 minor is nonzero the set
is given as the zero set of the three 3 × 3 minors containing that 2 × 2 minor). Together
with the first three equations we obtain a set of codimension 6.

If gcd(d1, d2) = 2 then we additionally consider the case (p1, p2) = ((1, 0, 0), (−1, 0, 0)).
We obtain the equations a0,0;3 = 0 and rankB ≤ 2, where

B =

d1a0,0;1 a1,0;1 a0,1;1 −d1a0,0;1 −a1,0;1 −a0,1;1
d2a0,0;2 a1,0;2 a0,1;2 −d2a0,0;2 −a1,0;2 −a0,1;2
d3a0,0;3 a1,0;3 a0,1;3 d3a0,0;3 a1,0;3 a0,1;3

 .
After substituting a0,0;3 = 0 and adding columns 1, 2, 3 to columns 4, 5, 6, respectively

we obtain

B′ =

d1a0,0;1 a1,0;1 a0,1;1 0 0 0
d2a0,0;2 a1,0;2 a0,1;2 0 0 0

0 a1,0;3 a0,1;3 0 2a1,0;3 2a0,1;3

 .
The condition rankB′ ≤ 2 means that either the first two rows are proportional or

a1,0;3 = a0,1;3 = 0. Both conditions define a subset of codimension 2, together with
a0,0;3 = 0 we obtain codimension 3. This is sufficient since the space of pairs (p1, p2) ∈
(C3)∗2 such that p2 = −p1 has dimension 3. �

Remark 2.2. Note that Lemma 2.1 (2) fails if gcd(di, dj) > 2 for some i, j ∈ {1, 2, 3},
i 6= j or if gcd(d1, d2, d3) > 1. Indeed, suppose gcd(d1, d2) = d > 2, for general F ∈
H(d1, d2, d3) the set C(F ) ∩ V (f3) consists of a finite and nonzero number of rays. If p
is an element of such a ray then for εd = 1 we have F (εp) = F (p) and the mapping is
actually d : 1 on that ray. If gcd(d1, d2, d3) > 1 then F is not generically one to one on
C(F ).

We have the following geometric criterion for finite determinacy of homogeneous map
germs (see [10]):

Theorem 2.3. Let F : (C3, 0)→ (C3, 0) be a holomorphic map germ. Then F is finitely
A-determined if and only if there is a finite representative F : U ⊂ C3 → V ⊂ C3 such
that

(1) F−1(0) = {0},
(2) the restriction F|U\{0} : U \ {0} → V \ {0} is stable.

Using Theorem 2.3, Lemma 2.1 and Remark 2.2 we can prove Theorem 1.1:

Proof of Theorem 1.1. By Lemma 2.1 any F ∈ U is locally stable, it is also proper, since
F is homogeneous and F−1(0) = 0. Thus by [5] F : C3 \ {0} → C3 \ {0} is stable. By
Theorem 2.3 (F, 0) is finitely A-determined.

The last statement follows from Remark 2.2. �

3. Counting singularities

Mappings from C3 to C3 have three types of stable discrete mono- or multi-singularities:

• A3 – the swallowtail: (x, y, z) 7→ (x, y, z4 + y2z + xz)
• A2A1 – intersection of cusp edge and fold surface:{

(x1, y1, z1) 7→ (x1, y1, z
3
1 + y1z1)

(x2, y2, z2) 7→ (x22, y2, z2)
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• A3
1 – triple self-intersection of fold surface:

(x1, y1, z1) 7→ (x1, y1, z
2
1)

(x2, y2, z2) 7→ (x2, y
2
2, z2)

(x3, y3, z3) 7→ (x23, y3, z3)

Let us denote s1 = d1+d2+d3−3, s2 = (d1−1)(d2−1)+(d1−1)(d3−1)+(d2−1)(d3−1),
s3 = (d1 − 1)(d2 − 1)(d3 − 1) and P = d1d2d3. Furthermore let c1 = s1, c2 = s2 − s1 and
c3 = s3−2s2+s1. Finally let #A2 = c21+c2 and #A2

1 = (P −2)s21−2#A2. The definitions
of c1, c2, c3 and #A2 and #(A1)

2 have a deeper meaning, the former are related to certain
quotient Chern classes, the latter to Thom polynomials. We refer the reader to a paper
by Ohmoto [9] for the details.

We can now prove Theorem 1.2:

Proof of Theorem 1.2. For F = (f1, f2, f3) ∈ Ω3(d1, d2, d3) we denote by f i the homoge-
neous part of fi of degree di and set F0 = (f1, f2, f3). By [1, Theorem 2.7] there is a
Zariski open set V ⊂ Ω3(d1, d2, d3) such that every F ∈ V is transversal to the Thom-
Boardman strata. This determines the types of singularities that F may have: A1, A2 and
A2

1 are the non-discrete types and A3, A2A1 and A3
1 are the discrete types. In particular

F is locally stable. We let U1 = {F ∈ V : F0 ∈ U}, where U is the Zariski open set from
Lemma 2.1. If F ∈ U1 then F0 is proper, so F is also proper. Since F is locally stable and
proper, it is also stable. Let Ft(x, y, z) = (td1f1, t

d2f2, t
d3f3)(t

−1x, t−1y, t−1z), then Ft is a
stable deformation of F0. Obviously for all t 6= 0 the mappings Ft have the same number
of singularities, furthermore all the singularities tend to zero when t tends to zero. Thus
by [9, Example 5.9] F has the numbers of singularities as written above. �
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