FINITE A-DETERMINACY OF GENERIC HOMOGENEOUS MAP
GERMS IN C?
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ABSTRACT. Denote by H(d1,d2,ds) the set of all homogeneous polynomial mappings
F = (f1, f2, f3) : C* — C?, such that deg fi = d;. We show that if gcd(d;,d;) < 2 for
1 <¢ < j <3 and ged(di,d2,ds) = 1, then there is a non-empty Zariski open subset
U C H(d1,d2,ds) such that for every mapping F' € U the map germ (F,0) is A-finitely
determined. Moreover, in this case we compute the number of discrete singularities
(0-stable singularities) of a generic mapping (f1, fa, f3) : C* — C3, where deg f; = d;.

1. INTRODUCTION

Let (dy, ..., d,) denote the set of all polynomial mappings F' = (fi,..., fp) : C* — C"
such that deg f; = d;. We have proved in [1] that there is an Zariski open subset
U C Q(dy,...,d,) such that for every F' € U the mapping F' is transversal to the Thom-
Boardman varieties and satisfies the normal crossings property. Moreover, by [3] all such
mappings are topologically equivalent, in particular they have the same number of dis-
crete singularities. If Uy C Q(dy,...,dy) is the maximal Zariski open subset with these
properties (i.e., for every F' € Uy the mapping F' has constant topological type and it is
transversal to the Thom-Boardman varieties and satisfies the normal crossings property)
then we say that every mapping F' € Uy is a generic mapping.

Let F € Q(dy,...,d,) be a generic polynomial mapping. In particular in Mathers nice
dimensions (see [6]) F' is a stable mapping. In [1] we have computed the number of cusps
and nodes for F' in dimension n = 2. Now we would like to compute the number of discrete
singularities (O-stable singularities) in dimension n = 3.

Note that a generic polynomial mapping F' : C" — C™ can be defined at infinity only
if dg =dy = ... =d, = d. However even in this case the mapping F' (if non-linear) has
to be degenerate at infinity, i.e., the whole hyperplane at infinity is a component of the
critical set of F. Indeed the topological degree of F' is u(F) = d", but the mapping F
restricted to the infinity has topological degree at most d”~'. Hence the critical set of F
is not smooth and consequently such a mapping can never be stable as a mapping from
P" to P". In particular we cannot use here global techniques based on Thom polynomials.

However, in some cases we can apply local methods using Thom polynomials described
by Ohmoto [9] (see also [7], [8], [4]). Indeed, let F : C> — C3 be a generic mapping. Since
the pair (3,3) is a pair of nice dimensions, the mapping F' is stable. For F' = (f1, f2, f3) €
Q(dy,ds,d3) we denote by f; the homogeneous part of f; of degree d; and set Fy =
(f1, f2, f3). Hence Fy has a stable deformation Fy(z) = (t% f1(z/t),t% fo(z/t),t% f3(z/t)).
Assume that (Fp,0) is a finitely .A-determined germ. Since the deformation F; contracts all
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discrete singularities to 0 as ¢ — 0, we can compute the number of discrete singularities of
F using the local formulas of Ohmoto for the mapping Fy. Hence the fundamental problem
here is to describe finitely .A-determined homogeneous mappings H : C3 — C3. We denote
by H(d1,ds,ds) the set of all homogeneous polynomial mappings F' = (f1, f2, f3) : C3 —
C3, such that deg f; = d;. Our first main result is:

Theorem 1.1. If ged(d;,dj) <2 for1 <i < j <3 and ged(dy,ds,d3) =1 then there is a
non-empty Zariski open subset U C H(dy,da,ds) such that for every mapping F € U the
map germ (F,0) is finitely A-determined.

On the other hand if ged(d;, dj) > 2 for some i, j € {1,2,3}, i # j orged(di, da,d3) > 1,
then there are no finitely A-determined homogeneous map germs with degrees dy, da, ds.

This is an extension of a part of a well-known two-dimensional result of Gaffney-Mond
[2] to dimension three. In fact Gaffney and Mond provide a classification of finitely A-
determined quasi-homogeneous (C2,0) — (C2,0) map germs of corank 1 and determine the
admissible weights and degrees for germs of corank 2. Note that our method is ill-suited for
the weighted-homogeneous case. In the homogeneous case we use an action of the linear
group to vastly simplify the necessary computations. In the weighted-homogeneous case
the action is no longer available and the computations become prohibitively complicated.

Theorem 1.1 has the following nice application:
Theorem 1.2. If ged(d;,dj) <2 for1 <i < j <3 andged(di,d,d3) =1 then there is a

non-empty Zariski open subset Uy C Q(dy,ds,ds) such that for every mapping F € Uy we
have:

F is stable, in particular the discrete mono- or multi-singularities are of type As,
A2A1 or A?,

F has precisely # A3 = ¢} + 3cico + 2c3 singularities of type As,

F has precisely #As A1 = (P — 3)s1#Ag — 3# A3 singularities of type As A1,

F has precisely % [(P2 — 3P +2)s3 — 64 AA; — 6# A3 — 3514 A7 — 451#A2] sin-
gularities of type A3.

Here S1 = d1 + d2 + d3 - 3, S9 = (dl — 1)(d2 — 1) + (d1 — 1)<d3 — 1) + (dg - 1)(d3 — 1),
S§3 — (dl — 1)(d2 — 1)(d3 — 1), P = d1d2d3, cl1 = 81, €2 = S92 — 81, C3 = 83 — 282 + S1,
H#As =2+ co and #A2 = (P —2)s? — 24 A,.

Remark 1.3. The proof works only for finitely .A-determined map germs, i.e., for dy, do, ds
as in Theorem 1.1. However, we intend to prove in a separate paper, by using global
methods rather then local, that the formula for the number of A3 singularities holds for
all degrees. However the formulae for the numbers of AyA; and A3 singularities depend
on ged(dy,da,ds).

2. MAIN RESULT

For a polynomial mapping F': C" — C™ let us denote by C(F’) the set of critical points
of F and by A(F) = F(C(F)) the discriminant of F'.

Moreover, we call a line through the origin a ray. We will denote by (C")*' the set
{(p1,....pt) : pi € C", p; #0 and p; # p; for i # j}. If p € (C™)* then we denote by Cp
the unique ray passing through p. Here we prove that for certain mappings the critical set
is smooth outside 0 and the discriminant has only simple normal crossings outside 0.
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Lemma 2.1. Assume that gcd(d;,d;) < 2 for 1 < i < j < 3 and ged(dy,ds,d3) = 1.
There is a non-empty Zariski open subset U C H(dy,da,ds) such that for every mapping
F= (f17f27f3) € U:

(1) F~1(0) = {o},

(2) if di,da,ds are pairwise co-prime then F' restricted to any ray contained in C(F)
is injective, if they are not co-prime, i.e., d; is odd and the other two are even,
then F' restricted to any ray contained in C(F)\'V(f;) is injective and F restricted
to any of the finite number of rays contained in C(F)NV(f;) is2:1,

(3) Fio(r) is injective outside a finite set of rays,

(4) if p € A(F) then #(F~'(p) N C(F)) < 2,

(5) outside the origin the singularities of F are either folds or cusps, in particular
C(F)\ {0} is smooth,

(6) if F has a cusp at p then F~Y(F(p)) N C(F) = {p},

(7) if #(F~1(p) N C(F)) = 2 then the surface A(F) has a normal crossing at p.

Proof. We will consider the sets Xi,..., X7 C (C3)* x H(dy,ds,d3), where t € {1,2,3},
consisting of points and mappings that do not satisfy the assertions above. We will
show that dim(X1),...,dim(X7) < dim(H(d;, d2,ds)) and consider the projections X; —
H(dy,ds,ds). The inequality between dimensions shows, that there is a non-empty Zariski
open subset U C H(dy,ds,ds3) over which the fibers of the projections are finite. However,
since we consider homogeneous mappings if a point (in (C3)**) is in the fiber then the
whole ray through this point must also be in the fiber, i.e., the fibers are either empty or
infinite. Consequently mappings in U satisfy the desired properties.

The sets X; will be invariant under linear transformations in the following sense: if
T € GL(3) and (p1,...,pi, F) € X; then (T(p1),...,T(p;), F o T~1) € X;. Consequently,
to compute dim(X;) we will only have to compute the dimensions of selected fibers (in
most cases only one) of the projection X; — (C3)L.

We denote by a; j.;, the parameters in H(di,ds,ds) giving the coefficients of fj at
U T

The proofs of all assertions follow the same pattern, thus in later assertions we will
omit the details explained in the proofs of earlier ones. When relevant we will first assume
that di,do, d3 are pairwise co-prime and later consider the case when they are not. By
symmetry we may assume that when dy, ds, ds are not pairwise co-prime then d; and ds
are even and d3 is odd.

(1) Consider X; = {(p,F) € (C3)* x H(dy,ds,d3) : F(p) = (0,0,0)}. As explained
above we have to show that dim(X;) < dim(H(d1,dz,d3)) and this follows from the
fact that dim(X; N {(1,0,0)} x H(d1,d2,ds)) < dim(H (dy,ds2,ds)) — 3. Let X/ denote
X1n{(1,0,0)} x H(dy,ds,ds), we will treat it as a subset of H(dy,ds,ds). We obtain the
equations of X{ by substituting (1,0,0) into the equations of X;, we have fi(1,0,0) =
Z ai,j;kxdk*i*jyizj(l, 0, 0) = ap,0;1 = 0 and f2<1, 0, 0) = ap,0;2 = 0 and f3<1, 0, 0) = a0,0;3 =
0. Thus X| = V(ao,0,1, @0,0:2, a0,0;3) has codimension 3 in H(dy, da,ds), as required.

(2) Let F = (f1, fo, f3) and p € (C3)*. Note that if any two of fi, fo, f3 are nonzero
at p, say fi(p), fa(p) # 0, then F restricted to Cp is injective. Indeed, if ¢ = Ap and
F(p) = F(q), then fi(p) = fi(Ap) = A fi(p). Thus A = 1 and similarly A% = 1, if
ged(dy, da) = 1 then it follows that A = 1. If ged(dy,d2) =2 then A =1 or A = —1.

Thus we have to show that for a generic F' we have C(F) NV (f;, f;) = {0}. We show
the proof for fi and fo, the other two pairs follow by symmetry. Consider Xs = {(p, F) €
(C3)* x H(dy,da,d3) : fi(p) = fa(p) = J(F)(p) = 0}. Where by J(F) we denote the
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Jacobian of F. Similarly as in the proof of (1) we define X, = Xon{(1,0,0)} x H(dy, d2, d3)
and treat it as a subset of H(d1,ds,ds). We have to show, that X’ has codimension 3. As
for X1, the first two equations of X} are ag; = 0 and a2 = 0. The third equation is

drapp;1  ai1001  @o,1;1
J(F)(l, 0, 0) = det d2a0,0;2 ai02 @o1;2| = 0,
d3app;3 @103 @0,1;3
after substituting ag ;1 = ao,0;2 = 0 it simplifies to dzag 0:3(a1,0,1@0,1:2 — @0,1;101,0.2) = 0.
The three equations are clearly independent, thus X/ has codimension 3 in H(d1,ds,ds),
as required.

If ged(dy, d2) = 2 then we additionally have to show that there is only a finite number of
rays contained in C'(F) NV (f3). Consider Xo, = {(p, F) € (C?)* x H(dy,ds,d3) : f3(p) =
J(F)(p) = 0}. Similarly as for X we show that Xs, has codimension 2, hence the general
fiber of the projection Xo, — H(d,d2,ds) has dimension 1, so it must be a finite union
of rays.

(3) Consider X3 = {(p1,p2, F) € (C*)** x H(dy,d2,d3) : F(p1) = F(p2), J(F)(p1) =
J(F)(p2) = 0}. Let X} be a nonempty fiber of the projection to (C3)*2. By (2) we
may assume that F' is injective on rays and consider only fibers over (pi,p2) where p;
and py are not proportional. Since linear transformations induce isomorphisms of the
fibers, we may assume that (p1,p2) = ((1,0,0),(0,1,0)). Thus the equations for X3 are:
(@0,0:1,@0,0;2, @0,0:3) = (Ady 0515 Ady,0:2, Od,0:3) and

d1a0,0;1 a1,0;1  Ao,1;1 ad,—1,0;1 d1ad1,0;1 ad;—1,1;1
det [doapp;2 a102 ao12| =det |ag,—1,02 doad, 02 ady—1,1:2| = 0.
d3app,;3 a1,03 Q0,13 ag;—1,0;3 d30d;03 Ads—1,1;3

The first three equations define a linear subspace of codimension 3, the other two clearly
do not have a common factor even after restricting to this subspace, i.e., after substitut-
ing ag . for ag, o in the last equation. Thus X3 has codimension 5 in H(dy,d2, d3)
and consequently dim(Xs) < dim(H(dy,da,d3)) + 1. Note that if (p1,p2, F)) € X3 then
also (Ap1, Ap2, F') € X3 for A € C*, thus the nonempty fibers of the projection X3 —
H(dy,d2,ds) are infinite and so there are only finitely many of them.

(4) Here we prove that if p € A(F) then at most two points from F~1(p) are critical
points, which is the first step to prove that the discriminant has “good” self-intersections.
Consider

X = {(p1,p2,p3, F) € (C*)*® x H(dy,dy,d3) : F(p1) = F(p2) = F(ps),

J(F)(p1) = J(F)(p2) = J(F)(ps) = 0}.

Similarly as above we consider the fibers of the projection X; — (C3)*3. However now
we have to consider more than one case: if py, p2, p3 are not coplanar with the origin then
we may assume that (p1,p2,p3) = ((1,0,0),(0,1,0),(0,0,1)), if p1,p2,ps are coplanar
with zero then we can only assume that (p1,p2,p3) = ((1,0,0),(0,1,0), (a,b,0)) for some
a,b € C*. We denote the fiber by X} in the former case and by X¢ in the latter. If
ged(dy, da) = 2 then we must additionally consider the case when two of the points are
opposite. In that case we may assume that (p1,p2,p3) = ((1,0,0),(—=1,0,0),(0,1,0)), we
denote the fiber by X, .

The equations for X are similar to those of Xj3. First we have (ag 0.1, a0,0;2, @0,0:3) =
(@dy 0115 Ady 0.2+ Ady,0:3) = (@0,dy:15 @0,dy:25 A0,dy:3) Which define a linear subspace of codimen-
sion 3. Then we have three equations given by determinants of a matrix. After restricting
to the linear subspace the matrices have a common column: [dia 0.1, d2a0 0.2, d3ao,0;3), but
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otherwise contain disjoint sets of variables. Thus the equations give a transverse intersec-
tion outside V'(ao,0:1, a0,0:2, @0,0;3) which itself has codimension 3. So X 4 has codimension
9, as required.

For Xffb we obtain the equations

(a0,0;1a ap,0;2, a0,0;S) = (ad1,0;la ad2,0;27 ad3,0;3)

= (E ai 010 Y)Y " 020y az’,o;?,adrlbl)

which again define a linear subspace, though not as nicely as above. Furthermore we
have the two equations with determinants from the definition of X%} and a third one that
is derived from J(F)(a,b,0) = 0. One can show that the last equation is independent
from the previous ones, but in fact we do not need it. Note that the set of triples in
(C3)*3 coplanar with the origin has dimension 8, so it suffices to show that X has
codimension 8 in H(dj,ds2,ds). This way we obtain a peculiar geometric fact: for a
generic F' € H(dy,ds,d3) and p € A(F) if p1,p2 € F~1(p) N C(F) then none of the points
in F~1(p) distinct from py, ps lie in the plane spanned by p;,ps and the origin.

For X, we have p» = —p; so the equation F(p;) = F(p2) reduces to f3(p1) = 0. Fur-
thermore the equations J(F')(p1) = 0 and J(F)(p2) = 0 are equivalent. Thus X is given
only by 6 independent equations: F(p1) = F(ps), fa(p1) = 0, J(F)(p1) = J(F)(p3) = 0
(note that the equation F'(p;1) = F(ps) gives in fact three independent equations). However
the set of points in (C3)*3 satisfying p, = —p; has also dimension 6.

(5) We consider two sets:

X5 ={(p,F) € (C*)* x H(dy,dy,d3) : J(F)(p) = J1i(F)(p) = Jo,(F)(p) = 0},
Xsa = {(p, F) € (C*)* x H(dy,da,d3) : VJ(F)(p) = (0,0,0)},

where 1 < ¢ < 3 and Jj;(F) is the determinant of the matrix that we obtain from
the Jacobian matrix by replacing the row Vf; = [%J;, %];i, %J;i] with the row VJ(F) and
similarly for Jy;(F) by replacing the row Vf; with the row VJ;(F). Note that X5
describes the set of pairs (p, F') such that the singularity of F' at p is worse than a cusp,
e.g., is an A,, singularity with n > 3 or a singularity of corank greater than 1. However,
X5 fails to include pairs (p, F') with singular C(F),, e.g., with F,, equivalent to (23,y, 2)o
or (3 + y%x,y, z)o. This is why we also need the set X5, which describes the pairs (p, F')
such that C'(F) is singular at p, in particular it includes also non-reduced components of
C(F). Thus the only singularities that are not contained in X5 U X5, are folds and cusps.
So it suffices to prove that X5 and X5, have codimension at least 3 and this can be done
by considering the fibers X} and X[, over p; = (1,0,0).

By taking the Laplace expansion of J(F')(p1) with respect to the second column we
obtain —a1,0;1M1;1 +a1,0,2M2;1 — a1,0;3M3:1, where my,1 are the suitable minors, e.g., mi =
d2a0,0;200,1:3 — d3a0,0;300,1;2. The formula for J; 1 (F)(p1) is too long to conveniently write
down, however it is easy to see that it is the sum of 2a270;1mi1 and a polynomial that
does not contain as .. Indeed, the term asg.; can only come from %Zyj;l which can be
9J(EF)

0

only found in by taking the derivative of %—J;l. Similarly, 6a370;1milis a summand of

J21(F)(p1). Consequently the determinant of the matrix

9J(F)(p1 OJ(F)(p1) 8J(F)(p1
3(a1,0(;1 ) 8a2,)o(;1 5513,)0;1 ) —mii 0 0

ona(F)p1)  0Jia(Fipy)  0ha(F)(p) | _ | 9aE)e) o 2 0
0a1,0;1 0a2,0:1 0a3,0:1 - da1,0:1 . 1;1

A1 (Fi(p1)  0Ji(Fi(p1)  8J2,1(F)(p) 92a(F)(pr)  0L2a(F)p) g3
da1,0;1 Oaz 0;1 0a3z,0;1 da1,0;1 daz,0;1 11
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is equal 12m?;17 which proves that X! \ V(m1,1) has codimension 3. We make identical
computations for i € {2, 3} and computation with J; i, J2.1, a1,0:1, a2,0;1, and ag p,1 replaced
with Ji;, J24, a1,0:, 02,0, and ag.o.i, respectively, to obtain that XL \ V(my.1, mo;1, ms.1)
has codimension 3. The set V(mq.,1,ma;1, ms3,1) has codimension 2, it is given by the
condition that the first and the third columns of J(F')(p1) are proportional, however, we
can expand J(F)(p1) with respect to the third column and obtain ag 1,1m1,2 + ag1,2ma2;2 —
ao,1:3m3;2. Proceeding as above we obtain that X!\ V' (m;,2)1<i<3 has codimension 3, since
V(mi.1, mi:2)1<i<3 has also codimension 3 we conclude that X é has codimension 3.

Let Jo(F), Jy(F'), J.(F) denote the partial derivatives of J(F') with respect to z,y, z,
respectively. We have (deg J(F))J(F) = xJ,(F) + yJy(F) + 2J:(F), so (di + dg + d3 —
3)J(F)(p1) = Jo(F)(p1). In particular we may replace J,(F)(p1) with J(F)(p1) in the
definition of X{,. Observe that

0J(F)(p1)  9J(F)(p1)  9OJ(F)(p1) _

a1 ,0;1 day,1;1 Oaz 0.1 mi;1 0 0

0L (F)(p) 0:(F)py) 0L(F)py) | _ [2LEE) 0

Oa1,0;1 day,1;1 0daz,0;1 - day,0:1 i '

Ay(F)(p1)  8Jy(F)(p)  8Jy(F)(p1) OJy(F)(p1)  0Jy(F)(p1) e

0da1,0;1 a1 151 9a2,0;1 da1,0;1 da1,1.1 ;
and

OJ(F)(p1)  9J(F)(p1)  9J(F)(p1)

0ao,1;1 odat1,1;1 0ap,2;1 mi:2 0 0

00, (F)lpy)  04,(Fllpn) 02, (Filpy) | _ |2

0ao,1;1 odai 1;1 0ao,2;1 - Dag,1:1 )

AL (F)(p1) 8J(F)p1) 8J(F)(p1) 0J:(F)(p1)  0J=(F)(p1) Lo

0a0,1;1 0a1,1;1 0ao,2;1 dao,1;1 0dai,1;1 )

Similarly as above we obtain that X[, \ V(ms1,mi2)1<i<3 has codimension 3. Thus
X! U X[, has codimension 3, which concludes the proof of (5).

(6) Consider Xg = {(p1,p2, F) € (C3)*2 x H(dy,da,d3) : F(p1) = F(p2), J(F)(p1) =
J1i(F)(p1) = J(F)(p2) = 0}. We have to prove that X has codimension 6. The argument
is a mix of the arguments in (3) and (5). As above we focus on the fiber over (p1,p2) =
((1,0,0),(0,1,0)). The equations obtained from F(p;) = F(p2) define a linear subspace
of codimension 3. From (5) we obtain that J(F)(p1) = J1,i(F)(p1) = 0 give a space of
codimension 2. And the equation obtained from J(F')(p2) is independent from the previous
ones outside V(ao,0:1, @0,0:2, €0,0:3)-

If ged(dy, d2) = 2 then we must additionally consider the case po = —p;. In this case
the equation F(p1) = F(p2) reduces to f3(p1) = 0 and the equations J(F)(p;) = 0 and
J(F)(p2) = 0 are equivalent. Thus the fiber of X4 over (p1, p2) has codimension 3, however
the space of points in (C3)* x (C?)* satisfying po = —p; has also codimension 3, so the
sum of fibers of this type has codimension 6.

(7) Consider X7 = {(pl,pQ,F) S X2 : F(pl) = F(pg), J(F)(pl) = J(F)(pg) =
0, dF(p1)(C3) = dF(p2)(C3)}. Note that since A(F) is a hypersurface either the two
branches at F'(p;) intersect transversally or they have equal tangent spaces, which is the
condition that we added in the definition of X7. Asin (3) we look at the fiber over (p1, p2) =
((1,0,0),(0,1,0)) and obtain the equations (ao,0;1, 0,02, @0,03) = (@dy,0;15 Ady,0:2 Ad,0;3)
and rank A < 2, where

diaoo;1 @101 G011 Odi—1,0:1 G1Qdy0:1  Gdy—1,1:1
A= |daapo2 @102 0,12 Gdo—1,02 d20dy0:2 CGdo—1,1:2
d3a0,0.3 1,03 0,1;3 Qds—1,03 343,03 Adz—1,1;3

After substituting (ao,0.1, @0,0;2, @0,0;3) = (@dy,0:1, @ds,0:2; @dy,0;3) into A the first and the
fifth columns become equal, so we may cross the fifth one out without altering the rank.
We obtain a 3 x 5 matrix A’ with variables as entries, the condition rank A < 2 defines a
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subset of codimension 3 (on the Zariski open set where a 2 x 2 minor is nonzero the set
is given as the zero set of the three 3 x 3 minors containing that 2 x 2 minor). Together
with the first three equations we obtain a set of codimension 6.

If ged(dy,d2) = 2 then we additionally consider the case (p1,p2) = ((1,0,0),(—1,0,0)).
We obtain the equations ag 0.3 = 0 and rank B < 2, where

drap01 @101 aoi1;1 —diapoal —ai0;1  —a0,1:1
B = |dyapp2 ai1p2 aoi2 —d2app02 —aipo2 —ao,1:2
dzapn:3 a103 ao1;3  d3apo3 41,03 00,13

After substituting ag .3 = 0 and adding columns 1,2, 3 to columns 4, 5, 6, respectively
we obtain

diaop;1 aipon ao11 O 0 0
/
B' = |dsap02 aio2 aoi2 O 0 0
0 a1,03 ao1;3 0 2a103 200,13

The condition rank B’ < 2 means that either the first two rows are proportional or

a1,0.3 = ap,1;3 = 0. Both conditions define a subset of codimension 2, together with
ap0:3 = 0 we obtain codimension 3. This is sufficient since the space of pairs (pi,p2) €
(C3)*2 such that py = —p; has dimension 3. O

Remark 2.2. Note that Lemma 2.1 (2) fails if ged(d;, d;) > 2 for some i,j € {1,2,3},
i # j or if ged(dy,da,d3) > 1. Indeed, suppose ged(dy,d2) = d > 2, for general F €
H(dy,d2,ds) the set C(F) N V(f3) consists of a finite and nonzero number of rays. If p
is an element of such a ray then for ¢ = 1 we have F(ep) = F(p) and the mapping is

actually d : 1 on that ray. If ged(dy,dz2,ds) > 1 then F is not generically one to one on
C(F).

We have the following geometric criterion for finite determinacy of homogeneous map
germs (see [10]):

Theorem 2.3. Let F : (C3,0) — (C3,0) be a holomorphic map germ. Then F is finitely
A-determined if and only if there is a finite representative F : U C C* — V C C3? such
that

(1) F~1(0) = {0},
(2) the restriction Fiin oy : U\ {0} — V' \ {0} is stable.

Using Theorem 2.3, Lemma 2.1 and Remark 2.2 we can prove Theorem 1.1:

Proof of Theorem 1.1. By Lemma 2.1 any F' € U is locally stable, it is also proper, since
F is homogeneous and F~1(0) = 0. Thus by [5] F : C?\ {0} — C3?\ {0} is stable. By
Theorem 2.3 (F,0) is finitely A-determined.

The last statement follows from Remark 2.2. O

3. COUNTING SINGULARITIES

Mappings from C? to C? have three types of stable discrete mono- or multi-singularities:
o A3z — the swallowtail: (z,y,2) — (z,y, 2% + y?2 + 22)
e As A — intersection of cusp edge and fold surface:
(z1,y1,21) = (@1, 91,27 +y121)
(2, Y2, 22) = (23, Y2, 22)
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o A3 — triple self-intersection of fold surface:

(x1,91,21) — (fL‘l»yl,Z%)
(xg,y2,22)+4>(x2,y%,22)
(:1:37?/37/23) = ($§7y37z3)

Let us denote s1 = d1+do+d3—3, 50 = (dl—1)(d2—1)+(d1—1)(d3—1)+(d2—1)(d3—1),
sg = (dy — 1)(da — 1)(ds — 1) and P = dydads. Furthermore let ¢; = s1, g = s — 1 and
c3 = s3—2s9+51. Finally let #A4s = c?+co and #A42 = (P —2)s? —2# A,. The definitions
of ¢1, ¢, c3 and # A and #(A1)? have a deeper meaning, the former are related to certain
quotient Chern classes, the latter to Thom polynomials. We refer the reader to a paper
by Ohmoto [9] for the details.

We can now prove Theorem 1.2:

Proof of Theorem 1.2. For F = (f1, f2, f3) € Q3(dy,dz,d3) we denote by f; the homoge-
neous part of f; of degree d; and set Fy = (fy, fo, f3). By [1, Theorem 2.7] there is a
Zariski open set V' C Q3(d1,ds,ds) such that every F' € V is transversal to the Thom-
Boardman strata. This determines the types of singularities that /' may have: A;, As and
A% are the non-discrete types and As, AyA; and A3 are the discrete types. In particular
F is locally stable. We let Uy = {F € V : Fy € U}, where U is the Zariski open set from
Lemma 2.1. If I € Uy then Fy is proper, so F' is also proper. Since F is locally stable and
proper, it is also stable. Let Fy(x,y, z) = (% f1, 92 fo, t% f3)(t 12, t =1y, t7'2), then F; is a
stable deformation of Fy. Obviously for all ¢ # 0 the mappings F; have the same number
of singularities, furthermore all the singularities tend to zero when ¢ tends to zero. Thus
by [9, Example 5.9] F" has the numbers of singularities as written above. g
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