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ABSTRACT

The use of a spatial index is a common strategy to improve the performance of spatial queries in spatial database
systems and Geographic Information Systems. Choosing the right spatial index to be employed in a given context
requires a quantitative method to analyze the performance of spatial indices. This is done through extensive
experimental evaluations. However, conducting these evaluations is an expensive, error-prone, and challenging
task because (i) spatial objects are complex data to manage, (ii) spatial indices can apply different parameter
values and thus assume distinct configurations, and (iii) there are indices specifically developed for different
storage systems, such as disks and flash memories. In this article, we propose FESTIval, a versatile framework for
conducting experimental evaluations of spatial indices. FESTIval has the following main advantages:

o the support for different types of disk-based and flash-aware spatial indices;

e the specification and execution of user-defined workloads;

o the use of a data schema that stores index configurations and statistical data of executed workloads.
Because of its characteristics, FESTIval allows users to reproduce executed experiments. Further, FESTIval

provides an extensible environment, where any spatial dataset can be handled by spatial indices. FESTIval has

been used to validate new proposals of flash-aware spatial indices, such as eFIND-based indices.
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Method details

This article introduces the Framework to Evaluate SpaTial Indices (FESTIval), a versatile method for
conducting experimental evaluations of spatial indices. Before describing the details of FESTIval, we
shortly discuss the context and motivation behind its development.

Context and motivation

Spatial database systems and Geographic Information Systems (GIS) widely make use of spatial
indices to accelerate the processing of spatial queries, such as spatial selections,range queries, and point
queries [1,2]. Ahuge set of spatial indices has been proposed in the literature. In general, a spatial index
groups nearest spatial objects in index pages. Commonly, these index pages are nodes in hierarchical
structures. This organization allows us to avoid the processing of data where the answer of spatial
queries certainly cannot be found.

Many spatial indices are designed for manipulating spatial objects stored in magnetic disks like
Hard Disk Drives (HDDs). Hence, these indices, termed disk-based spatial indices, deal with the slow
mechanical access and rotational delay of HDDs. Examples of traditional disk-based spatial indices are
the R-tree [3] and its variants, the R*-tree [4]| and the Hilbert R-tree [5]. The R-tree is able to index
spatial objects of any type (e.g., point, line, and region) by employing their minimum bounding
rectangles (MBRs) organized in a hierarchical form. The R*-tree improves the insertion algorithm of
the R-tree by employing a set of criteria for organizing the entries among the nodes of the tree.
The Hilbert R-tree combines the Hilbert curve with the R-tree by using the Hilbert values of the nodes’
entries; thus, the Hilbert R-tree employs the searching algorithm of the R-tree and an
insertion algorithm very similar to the insertion algorithm of the B-tree [6]. These spatial indices
are surveyed in [1].

The development of spatial indices for newer storage devices like flash-based Solid State Drives
(SSDs) has attracted the attention of the research community [7-11]. The main reason is that SSDs
have several improved characteristics than HDDs, such as smaller size, lighter weight, lower power
consumption, and faster reads and writes. However, SSDs have intrinsic characteristics that introduce
several system implications [12-15], such as the asymmetric costs between reads and writes, the
performance interference of interleaved reads and writes, and the read disturbance management.

To take into account the intrinsic characteristics of SSDs, flash-aware spatial indices have been
proposed in the literature, such as FAST-based indices [ 16], the FOR-tree [17], and eFIND-based indices
[18,19]. While the FOR-tree ports the R-tree to SSDs, FAST and eFIND are generic approaches to porting
any type of hierarchical index to SSDs. A common focus of these approaches is on decreasing the
number of random writes to the SSD by employing an in-memory buffer to store index modifications.
If this buffer is full, a flushing algorithm is executed. This operation may deploy a flushing policy to
pick some index modifications stored in the buffer to be sequentially written to the SSD. eFIND-based
indices distinguish themselves because eFIND is based on a distinct set of design goals that exploits
the positive characteristics of SSDs. For instance, eFIND has specific data structures and algorithms to
mitigate the effects of reads on frequent locations and interleaved reads and writes.

With the increasing number of spatial indices, choosing the best spatial index to be employed in a
given context requires the execution of extensive performance evaluations [1]. However, conducting
these evaluations is an expensive, error-prone, and challenging task because (i) spatial objects are
complex data to manage, (ii) spatial indices can apply different parameter values and thus assume
distinct configurations, and (iii) there are indices specifically developed for different storage systems,
such as disks and flash memories. A performance evaluation usually requires the execution of user-
defined workloads on a given spatial dataset. A workload consists of a set of index operations, such as
insertions, deletions, or updates of spatial objects, and the processing of spatial queries.

To the best of our knowledge, there are no methods that provide needed functionalities for creating
and executing workloads to benchmark disk-based and flash-aware spatial indices on different storage
devices. The reason is that existing approaches [20-23] face several problems (see next section). In
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general, they are not extensible since users are not able to define their own workloads. More
importantly, they do not provide support for flash-aware spatial indices.

In this article, we extend our previous work [39] by proposing FESTIval, a versatile framework for
conducting experimental evaluations of spatial indices that:

provides support for different types of disk-based and flash-aware spatial indices;

allows the specification and execution of user-defined workloads under a unique environment;
allows the reproduction of executed experiments;

employs a data schema that stores index configurations and statistical data of executed workloads.

Related work

Benchmarking spatial indexing structures in spatial database systems and GIS helps users to
identify the best spatial indices for their applications. There are a few approaches available in the
literature [20-23] that provide tools for conducting experimental evaluations of spatial indices. AMDB
[20] and BASIS [21] are approaches that enable the performance analysis of different spatial indices
like the R-tree and the R*-tree under the same environment. However, they do not allow the definition
of user-defined workloads. In addition, they do not provide support for flash-aware spatial indices.

LOCUS [22] is a benchmark focused on conducting performance evaluations of Location-Based
Services, which consider point datasets representing mobile users. It specifies a set of workloads for
executing index operations considering different types of spatial queries. Unfortunately, LOCUS does
not provide support for other spatial data types (e.g., complex regions) and face the same problems of
the aforementioned approaches.

The tool employed in [23] provides a unique environment to conduct experimental evaluations of
different spatial indices. This tool permits users to implement their workloads by using C/C++
language. However, its focus is on in-memory spatial databases; thus, it assumes that the whole
dataset fits in the main memory without accesses to external storage devices like HDDs and SSDs.

Researchers from the spatial database and GIS communities also often define their own datasets
and workloads in their experiments (e.g., in [3-5,7,16,17]). The main problem of conducting such
standalone experiments is the extra effort with implementations since none of the aforementioned
approaches offers a versatile environment for (i) defining new workloads, (ii) implementing other
spatial indices, (iii) varying parameter values, and (iv) storing the statistical data of executed
workloads. Further, reproducing or extending the standalone experiments can be a problematic task
because the employed implementations and datasets are possibly not publicly available.

On the other hand, in this article we solve the aforementioned problems by proposing FESTIval.
FESTIval distinguishes itself because it allows the definition of user-defined workloads in a unique and
common environment. Further, it allows the specification and execution of different configurations of
disk-based and flash-aware spatial indices. Statistical data of these executions are stored in an
integrated data schema. By posing queries on this data schema, users are able to retrieve and analyze
performance results.

FESTIval

FESTIval is an open-source PostgreSQL extension implemented in C by using the extensibility
provided by the PostgreSQL internal library.! FESTIval is also based on the PostGIS,” a widely used
PostgreSQL extension to manage spatial objects. To process topological relationships in spatial queries,
FESTIval further requires GEOS,> an open-source geometry engine for computing spatial predicate

! For more information about writing PostgreSQL extensions, please access related PostgreSQL documentation at https://
www.postgresql.org/docs/10/static/extend-extensions.html.

2 https://postgis.net/.

3 http://trac.osgeo.org/geos.
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Fig. 1. The overview of FESTIval.

functions and spatial operators. The complete documentation of FESTIval is available at https://
accarniel.github.io/FESTIval/.

Currently, FESTIval provides support for the following disk-based spatial indices: the R-tree, the
R*-tree, and the Hilbert R-tree. FESTIval also provides support for the following flash-aware spatial
indices: the FAST R-tree, the FAST R*-tree, the FAST Hilbert R-tree, the FOR-tree, the eFIND R-tree, the
eFIND R*-tree, and the eFIND Hilbert R-tree. Further, FESTIval allows the execution of user-defined
workloads on real storage devices (e.g., HDDs and SSDs) and on the Flash-DBSim [24], which is a flash
simulator that emulates the behavior of flash memory in the main memory. The use of a flash
simulator is useful because the Flash Translation Layer (FTL) [25] of a real flash memory usually does
not provide access to the number of internal operations actually performed on the flash memory.

Fig. 1 depicts a general view of FESTIval, which is detailed as follows.

Workloads. FESTIval allows the creation and execution of user-defined workloads by using the
Structured Query Language (SQL). By using the FESTIval's SQL functions, a user (e.g., database
administrator, researcher, and software developer) is able to define the sequence of index operations
that should be executed and then analyzed. Index operations include insertions, updates, and
deletions of spatial objects, and the execution of spatial queries (i.e., general and atomic operations).
Further, users can also determine the exact moment that statistical data should be collected and stored
in the FESTIval's data schema (i.e., auxiliary operations).

Storage device. It stores three main elements: (i) the spatial indices, (ii) the spatial datasets, and (iii)
the FESTIval's data schema. The spatial indices are handled by FESTIval during the execution of
workloads, whereas the spatial datasets provide spatial objects to these indices. The FESTIval's data
schema stores information of spatial datasets, parameters used by spatial indices, and statistical data
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Fig. 2. The FESTIval's logical data schema. This figure shows only the primary and foreign keys of the relational tables to
illustrate the relationships among the tables. Primary keys are highlighted. The relationship between a primary key and a
foreign key is represented by a directed arrow from the primary key to the foreign key. Table 1 details the attributes of each
relational table of this figure.
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Attributes of each relational table of the FESTIval's data schema.

Relational table

Attributes

Source
BasicConfiguration
StorageSystem
FlashDBSimConfiguration
VirtualFlashDevice

FlashTranslationLayer
BufferConfiguration
SpecializedConfiguration
RTreeConfiguration
RStarTreeConfiguration

HilbertRTreeConfiguration
FORTreeConfiguration
FASTConfiguration
eFINDConfiguration

OccupancyRate
IndexConfiguration
Spatiallndex
Execution®

ReadWriteOrder
FlashSimulatorStatistics
IndexSnapshot®

PrintIndex

src_id, schema_name, table_name, column_name, pk_name

bc_id, ss_id, page_size, io_access, refinement_type

ss_id, storage_system, description

ss_id, ftl_id, vfd_id

vfd_id, nand_device_type, block_count, page_count_per_block, page_size1, page_size2,
erase_limitation, read_random_time, read_serial_time, program_time, erase_time
ftl_id, ftl_type, map_list_size, wear_leveling_threshold

buf_id, buf_type, buf_size

sc_id, description

sc_id, or_id, split_type

sc_id, or_id, reinsertion_perc_internal_nodes, reinsertion_perc_leaf_nodes,
reinsertion_type, max_neighbors_exam

sc_id, or_id, order_splitting_policy

sc_id, or_id, buffer_size, flushing_unit_size, ration_flushing, x, y

sc_id, index_type, db_sc_id, buffer_size, flushing_unit_size, flushing_policy, log_size
sc_id, index_type, db_sc_id, buffer_size, read_buffer_perc, temporal_control_policy,
read_temporal_control_perc, write_temporal_control_size,
write_temporal_control_mindist, write_temporal_control_stride,
timestamp_percentage, flushing_unit_size, flushing_policy, read_buffer_policy,
log_size

or_id, min_fill_int_nodes, min_fill_leaf_nodes, max_fill_int_nodes, max_fill_leaf_nodes
config_id, src_id, bc_id, sc_id, buf_id

idx_id, config_id, idx_name, idx_path, idx_creation, idx_last_mod

pe_id, idx_id, execution_name, total_time, index_time, read_time, write_time,
split_time, reads_num, writes_num, total_cpu_time, index_cpu_time, read_cpu_time,
write_cpu_time, split_cpu_time,...

pe_id, rw_order, op_type, op_timestamp, page_id

pe_id, read_count, write_count, erase_count, read_latency, write_latency, erase_latency
pe_id, height, num_int_nodes, num_leaf_nodes, num_entries_int_nodes,
num_entries_leaf_nodes, avg_num_entries_pnode, avg_coverage_area_pnode,...
pe_id, node_id, geom, elem_position, node_height

All attributes are fully described in the FESTIval's documentation at https://accarniel.github.io/FESTIval/.
2 Attributes were suppressed.

of executed workloads. Collected statistical data can be used in mathematical models to measure the
performance of spatial indices, considering employed parameter values, characteristics of the spatial
dataset, and the employed storage device.

The FESTIval's data schema

Fig. 2 depicts the FESTIval's logical data schema, called fds. In this figure, we only show the primary
and foreign keys of the relational tables to illustrate their relationships. Table 1 enriches this figure by
listing the attributes of each relational table. Here, we only provide a general view of this schema,
detailing the most important tables only. The complete description can be found at the FESTIval's
documentation.

There are two categories of data managed by FESTIval: (i) configuration of a spatial index, and
(ii) storage of statistical data.

Configuration of a spatial index. It consists of four components. The first component is the spatial
dataset, which is the source of spatial objects to be used by a spatial index. A spatial dataset is a
PostgreSQL relational table that contains a column storing spatial objects. The needed information of
spatial datasets is stored in the table Source. To insert a new spatial dataset in the FESTIval's data
schema, we should provide its PostgreSQL schema name (schema_name), table name (table_name),
column name that contains spatial objects (column_name), and the primary key of this table
(pk_name). Hence, each tuple in Source represents a dataset that can be indexed. By using this strategy,
users can use any spatial dataset in experiments. This fact contributes to providing a versatile platform
to conduct empirical analyses.
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The second component of a configuration refers to basic parameters that are employed by any
spatial index. Basic parameters are stored in the table BasicConfiguration, which contains the storage
system that stores the index (ss_id), the page size in bytes that an index page should have (page_size),
the method of access to the storage device (io_access), and the library used in the refinement step in
the spatial query processing (refinement_type). Currently, the attribute io_access is either the classical
access to storage devices (i.e., using the libio.h in C) or the DIRECT I/O (i.e., using the fcntlLh in C) that
allows us to bypass the caching system of reads and writes of the operating system; while the attribute
refinement_type is either the use of the GEOS library or the use of PostGIS algorithms. As for the storage
system, related data is stored in the table StorageSystem. This table contains the type of the storage
device (storage_system) and its description (description). It can be HDDs, SSDs, or simulated flash
memories using Flash-DBSim. For simulated flash memories, the primary key of the StorageSystem is
linked to the table FlashDBSimConfiguration, which is an aggregated table of two needed information
of the Flash-DBSim: (i) the flash device (table VirtualFlashDevice), and (ii) the flash translation layer
(table FlashTranslationLayer). The attributes of these tables correspond to the same parameters
required by Flash-DBSim, represented by the table FlashDBSimConfiguration, to simulate a flash
memory as detailed in [24] and in the FESTIval's documentation.

The third component of a configuration refers to the generic buffer management of the spatial index.
A generic buffer manager is a general-purpose method employed to reduce the number of accesses to
the storage device; thus, any spatial index can employ a buffer manager. Parameters of the generic
buffer manager are stored in the table BufferConfiguration. The attributes of this table consist of the
size of the buffer in bytes (buf_size), and the type of the page replacement algorithm (buf_type).
Currently, FESTIval provides support for the following buffer managers: LRU [26], LRU storing
preferentially the highest nodes of the tree, called HLRU (as used in [18]), and the two versions of 2Q
[27]. The management of generic buffers flushes modifications whenever their size is reached. The size
of the buffer of a spatial index equal to 0 means that the spatial index has not a general buffer manager.
This is the case if the spatial index has its own specialized buffer manager. For instance, flash-aware
spatial indices (e.g., FAST-based and eFIND-based indices) have specialized buffer managers with
specific parameter values (see below). Although it is possible to also employ generic buffer managers
in flash-aware spatial indices, performance evaluations usually do not employ general buffer
managers when analyzing the performance of flash-aware spatial indices [16-19,28].

Finally, the fourth component of a configuration refers to specific parameters that are used by an
index. That is, each spatial index has its own set of parameters, and the table SpecializedConfiguration
generalizes this concept by providing a unique identifier for this specific set of parameters. For
instance, the R-tree permits to specify its split algorithm (split_type), which can be exponential,
quadratic, and linear [3]. Other split algorithms are also conceivable, such as the Greene-split [29] and
the AngTan-split [30]. This specific information is stored in the specialized table RTreeConfiguration
and for each entry in this table, there is also an entry in the table SpecializedConfiguration that
includes a short description (description). This strategy is similarly employed to store the specific
parameters of other supported indices, that is, the R*-tree (table RStarTreeConfiguration), the Hilbert
R-tree (table HilbertRTreeConfiguration), the FOR-tree (table FORTreeConfiguration), FAST-based
indices (table FASTConfiguration), and eFIND-based indices (table eFINDConfiguration). The attributes
of these tables are based on the corresponding parameters of their indices as specified in their original
research papers. For FAST- and eFIND-based spatial indices, the use of the attribute db_sc_id that refers
to the identifier of an entry of the SpecializedConfiguration allows us to combine the specific
parameters of the underlying index pointed by this attribute and the specific parameters of FAST
and eFIND.

In addition, we can vary the occupancy rate (table OccupancyRate) of index pages. This occupancy
rate is informed by the attribute or_id that is present in the tables storing specific parameters of
indices. We can specify the maximum capacity of leaf and internal nodes by using percentage values
max_fill_leaf nodes and max_fill_int_nodes, respectively. These percentage values specify how much
space from the page size should be allocated to accommodate node entries. We can also specify the
minimum capacity of leaf and internal nodes using respectively the attributes min_fill_leaf nodes and
min_fill_int_nodes, indicating the minimum occupancy rate considering the total available space
(calculated from the maximum capacity of the nodes).
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FESTIval provides an SQL script, named festival-inserts.sql, that contains SQL INSERT INTO
statements for inserting default parameter values into all the aforementioned relational tables related
to the configuration of spatial indices. As for the default spatial datasets, they can be downloaded at
https://github.com/accarniel/FESTIval/wiki/ and a detailed specification of them is also given in [31].
Users are also able to insert new values to the aforementioned tables by executing SQL INSERT INTO
statements. The informed values are checked by using triggers and SQL CHECK constraints in order to
ensure the consistency of the parameters. For instance, it is impossible to insert a new R*-tree
configuration that has a reinsertion type not defined in the original R*-tree paper.

The combination of the values of the attributes src_id, bc_id, sc_id, and buf_id of the tables Source,
BasicConfiguration, SpecializedConfiguration, and BufferConfiguration, respectively, creates one
spatial index configuration (table IndexConfiguration). Then, a spatial index (table Spatiallndex)
consists of a configuration from the table IndexConfiguration (config_id) and other specific data, such
as the name of the index (idx_name), the directory storing the index file (idx_path), the time of its
creation (idx_creation), and the time of its last modification (idx_last_mod). Note that multiple spatial
indices might have the same configurations; however, their states (i.e., content) might be different
because of the executed operations. Only FESTIval insert entries into the tables IndexConfiguration
and Spatiallndex, that is, users should not manually insert entries into these relational tables.

Storage of statistical data. FESTIval collects and stores two types of statistical data. The first type
refers to statistical data collected from the execution of index operations. This data is maintained in the
table Execution, which is a non-normalized table in order to avoid excessive joins when retrieving
performance results. Each entry in this table means that at least one index operation like insertion,
deletion, and query was performed. To identify the type of execution, the user can set a name
(execution_name). This aspect is further discussed in the next sections of this article. Here, we only
provide a general view of the main attributes of the table Execution: the total processing time of the
index (index_time), the time spent to perform reads and writes (read_time and write_time,
respectively), the processing time to execute splitting operations (split_time), the number of reads
and writes (reads_num and writes_num, respectively), the CPU time of processing specific operations
(e.g., index_cpu_time), and other attributes. Note that the total processing time of the index considers
other times, such as the processing time of splits, reads, and writes. By collecting and storing detailed
statistical data, FESTIval allows us to better analyze the composition of the total processing time
(total_time). Further, FESTIval stores the order of reads and writes performed on the storage device
(table ReadWriteOrder). To this end, a sequential identifier of the operation (rw_order), the type of
operation (op_type, which can be either read or write), the moment that the operation was performed
(op_timestamp), and the identifier of the index page (page_id) are stored. The order of reads and writes
is optionally collected and is useful to discover data access patterns. Finally, if the executed workload
employed a simulated flash memory, statistical data collected by Flash-DBSim are stored in the table
FlashSimulatorStatistics. This data includes the number of read, writes, and erases actually performed
on the simulated flash memory (read_count, write_count, and erase_count, respectively).

The second type of collected statistical data refers to the structure of the spatial index. This data is
stored in the table IndexSnapshot. Each entry in this table allows us to analyze the structure of an
index after executing operations that modify its structure, such as insertions and deletions. Here, we
only provide a general view of the main attributes of the table IndexSnapshot: the height of the index
(height), the number of internal and leaf nodes (num_int_nodes and num_leaf_nodes, respectively), the
number of entries in internal and leaf nodes (num_entries_int_nodes and num_entries_leaf_nodes,
respectively), summary data per node (e.g., the average number of entries - avg_num_entries_pnode),
and other related attributes. Further, FESTIval provides the table PrintIndex that allows us to
graphically visualize a spatial index by using a GIS, such as QGIS* and ArcGIS.® To this end, FESTIval
stores data related to each node entry of the spatial index, such as position in the node (elem_position),
its minimum bounding rectangle (MBR) (geom), height of the node (node_height), and the identifier of

4 https://qgis.org/.
5 https://www.arcgis.com/index.html.
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the node (node_id). This allows us to understand the structure of a spatial index for different purposes,
such as educational.

The FESTIval's operations

FESTIval provides a set of SQL functions that allows users to create and execute workloads by using
a common design. Each SQL function has the prefix FT_ and calls one C function internally
implemented in the FESTIval's internal library that is responsible for performing the desired
processing. Hence, an index can be seen as an abstract data type [32] that has common parameters (i.e.,
its configuration) and a set of operations (i.e., SQL functions). The main advantage of this strategy is
that complex implementations are hidden from users, who now can manage and test different indices
under the same environment (i.e., using the same SQL functions).

There are three types of operations: (i) general operations, (ii) auxiliary operations, and (iii) atomic
operations. They are described as follows.

General operations. They are responsible for handling index structures. Since FESTIval provides a
common design, the same SQL function can be used for any type of index. We detail each general
operation of FESTIval as follows:

1. boolean FT CreateEmptySpatiallndex(integer index type, text apath, integer
src_id, integer bc_id, integer sc_id, integer buf id);

2. boolean FT Insert (text apath, integer pointer, geometry geom) ;

. boolean FT Delete (text apath, integer pointer, geometry geom) ;

4. boolean FT Update (text apath, integer old pointer, geometry old geom, integer

w

new_pointer, geometry new_geom) ;

5. setof query result FT QuerySpatiallIndex (text apath, integer query type, geome-
try search obj, integer predicate, integer proc option=1);

6. boolean FT_ ApplyAllModificationsForFAI (text apath);

7. boolean FT ApplyAllModificationsFromBuffer (text apath);

All these functions have a common parameter, apath, that indicates the absolute path of the index
file. The first SQL function creates an empty spatial index (i.e., without any spatial objects) according to
a set of parameters. It returns true if the index is successfully created, and false otherwise. The
parameter index_type is an identifier that specifies the type of index to be created. Currently, FESTIval
employs integer values from 1 to 10 to respectively represent the R-tree, the R*-tree, the Hilbert R-tree,
the FAST R-tree, the FAST R*-tree, the FAST Hilbert R-tree, the FOR-tree, the eFIND R-tree, the eFIND
R*-tree, and the eFIND Hilbert R-tree. The parameter src_id is a primary key value of the table Source
that binds the spatial objects to the index. The parameters bc_id, sc_id, and buf_id specify the basic,
specific, and buffer parameters of the spatial index by using the primary key values originated from
the tables BasicConfiguration, SpecializedConfiguration, and BufferConfiguration, respectively. Since
the specific parameters refer to only one type of index, FESTIval checks if the index to be constructed
(i.e., the parameter index_type) is compatible with the values of sc_id. In summary, FT_CreateEmpty-
Spatiallndex prepares all internal structures needed to handle a spatial index.

The three SQL functions FT_Insert, FT_Delete, and FT_Update execute operations that modify the
index structure by respectively inserting, deleting, and updating spatial objects. They return true if the
modification is successfully executed, and false otherwise. To insert and delete spatial objects, two
additional parameters are needed: pointer and geom. The parameter pointer is the primary key value of
the spatial object being inserted (or deleted), while the parameter geom is the geometry representing
the spatial object. Spatial objects handled by FESTIval are PostGIS objects (i.e., geometry objects),
guaranteeing a full integration of FESTIval with spatial applications that use PostGIS. To update a
spatial object, FT_Update requires information about the spatial object being updated (parameters
old_pointer and old_geom) to a new value (parameters new_pointer and new_geom). In general, an
update is an atomic operation that sequentially deletes the old spatial object (and its pointer) and then
inserts the new spatial object (and its pointer).

To apply the functions FT_Insert, FT_Delete, and FT_Update, it is needed to first create the index file
(i.e., apath) by using the function FT_CreateEmptySpatiallndex. Further, since a spatial index is related
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to a specific dataset, it is important to apply the corresponding modification firstly in its dataset. For
instance, add a new spatial object with its primary key value as a new tuple in the indexed dataset by
using an SQL INSERT INTO statement before calling FT_Insert. FESTIval does not perform any changes in
the dataset; thus, the user should perform modifications in the dataset as needed. The main advantage
of this treatment is that we can isolate the time processing of a modification performed on the spatial
index from the modification performed on the dataset.

The fifth SQL function executes spatial queries. It is a set-returning function of the PostgreSQL. It returns a
set of query_result rows, formed by a primary key value (id) and a spatial object (geom) of the indexed
dataset. The parameter query_type specifies the type of spatial query to be processed. There are many
types of spatial queries proposed in the literature [1,2]. FESTIval provides support for spatial selections
(query_type=1), range queries (query_type=2), and point queries (query_type=3). Spatial selection is a
general type of query that returns a set of spatial objects that satisfy some topological predicate (e.g.,
overlap, inside) for a given spatial object, called search object. Range query is similar to spatial selection
but considering the search object as a rectangular-shaped object. Point query specializes spatial
selection by allowing only the use of intersects as the topological predicate and points as search objects.
The parameter search_obj is the search object, which is a PostGIS object. Some restrictions with respect
tothe geometric format of search_obj may be applicable. If query_typeis equal to 2, the MBR of search_obj
is considered. If query_type is equal to 3, search_obj must be a simple point object. The parameter
predicate specifies the topological predicate [33] to be used in the spatial query. It can assume the
following topological predicates: intersects, overlap, disjoint, meet, inside, coveredBy, contains, covers, and
equals (they are integer values from 1 to 8, respectively). Finally, the last parameter proc_option refers to
the type of the result of the spatial query, which is often executed by using two steps, filter and
refinement|[1].If proc_optionisequal to 1,its default value, FT_QuerySpatiallndex yields the final result of
the query, that is, it executes the filter and refinement steps. In this case, it is important to maintain the
spatial index compatible with the indexed dataset, as previously discussed. If proc_option is equal to 2,
FT_QuerySpatialindex returns the candidates of the query returned by the filter step only.

The last two SQL functions are responsible for executing a flushing operation that writes to the
storage device all buffered index modifications. They return true if the flushing operation is
successfully executed, and false otherwise. FT_ApplyAllModificationsForFAI flushes all buffered
modifications stored in the specialized buffers of flash-aware spatial indices (i.e., eFIND-based
indices), while FT_ApplyAllModificationsFromBuffer flushes all buffered modifications stored in the
generic buffers (e.g., LRU, 2Q). These SQL functions write all modifications contained in the main
memory, cleaning the corresponding buffer.

Auxiliary operations. They are designed for helping the process of creating workloads. They are
mainly related to collecting and storing statistical data. We detail each auxiliary operation of FESTIval
by providing its synopsis together with its short description as follows:

1. boolean FT StartCollectStatistics(boolean rw=false);

2. boolean FT CollectOrderOfReadWrite () ;

3. integer FT StoreStatisticalData (text apath, integer statistic option=1, inte-
ger loc _stat data=1, text file=NULL) ;

4. boolean FT StoreIndexSnapshot (text apath, integerexecution id, booleanprint in-
dex=false, integer loc_stat data=1, text file=NULL) ;

5. boolean FT SetExecutionName (text execution name, integer loc stat data=1);

The functions returning Boolean values yield true if the processing is successfully performed, and
false otherwise. The first auxiliary operation is the SQL function FT_StartCollectStatistics. After invoking
this function, FESTIval starts to collect statistical data in the main memory. If the parameter rw is false,
its default value, the order of reads and writes made on the storage device are not be collected.
Otherwise, this order is collected, requiring extra computation. When an user performs the SQL
function FT_StartCollectStatistics(false), and afterwards wants to collect the order of reads and writes,
the user should call the SQL function FT_CollectOrderOfReadWrite(). This allows users to collect the
order of reads and writes only for specific index operations since this collection is expensive; but it is
important to understand access patterns.
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Collected in-memory statistical data are only stored in the FESTIval's data schema after calling the
SQL function FT_StoreStatisticalData, which returns an integer value that consists of the primary key
value of the row inserted into the table Execution (i.e., the value of the column pe_id). The parameter
apath is the absolute path of the index file and the parameter statistic_option refers to the type of
statistical data that is stored. Independently of the value of statistic_option, FESTIval stores typical
statistical data about the executed index operations (i.e., the attributes of the table Execution). If
statistic_option is equal to 1, its default value, FESTIval inserts a new tuple in the table Execution only,
without any other additional information. Optionally, FESTIval stores a new tuple in the table
IndexSnapshot (statistic_option=2 or statistic_option=4), requiring the traversal of all index pages in
order to collect statistical data related to the index structure. Further, FESTIval stores new tuples in the
table PrintIndex (statistic_option=3 or statistic_option=4), also requiring the traversal of all index pages
to visualize the index structure. The cost of traversing the tree is not take into account when collecting
typical statistical data. Storing data in the tables IndexSnapshot and PrintIndex is particularly useful
after the execution of operations that modify the index structure (e.g., insertions, deletions, and
updates). As for the parameter loc_stat_data, it defines where (i.e., the location) the statistical data
should be stored. If its value is equal to 1, its default value, the statistical data is stored directly in the
FESTIval's data schema. If its value is equal to 2, the statistical data is stored in an SQL file that can be
latter loaded into the FESTIval's data schema. In this case, the absolute path of this SQL file should be
informed by using the parameter file. Particularly, setting the value 2 for loc_stat_data is useful to avoid
reads and writes performed on the FESTIval's data schema during the execution of a workload. This
aspect is important for SSDs because of the interference between reads and writes [13,14]. Hence, the
statistical data can be first stored in a file located in other storage device (e.g., an HDD). Finally, at any
moment, the user is also able to collect and store statistical data related to the index structure by using
the SQL function FT_StorelndexSnapshot. It has almost the same parameters as the SQL function
FT_StoreStatisticalData, expect for the parameters execution_id and print_index. The parameter
execution_id is the primary key value of the table Execution that links the collected statistical data with
an execution, while the parameter print_index indicates whether the structure of index should be
collected and stored in the table PrintIndex or not.

The last auxiliary operation is the SQL function FT_SetExecutionName. Its main applicability is to set
a name for the execution of a workload through the parameter execution_name. By creating workloads
with this function, users are able to easily retrieve statistical data of executed workloads by issuing
SQL queries on the table Execution. As previously described, the parameter loc_stat_data defines
where the statistical data should be stored.

Atomic operations. They are combinations of some aforementioned functions and help the
construction of workloads. An atomic operation is an SQL function that is executed as a unique and
indivisible operation, following the principles of the atomicity of database systems [34]. That is, if any
function inside an atomic operation fails, the entire atomic operation fails. In general, an atomic
operation is formed by the following sequence of operations: (i) FT_StartCollectStatistics, (ii) the
requested operation, and (iii) FT_StoreStatisticalData. The atomic operations of FESTIval start with FT_A
and are specified as follows:

1. integer FT AlInsert (text apath, integer pointer, geometry geom, integer statis-
tic_option=1, integer loc_stat data=1, text file=NULL) ;

2. integer FT ADelete (text apath, integer pointer, geometry geom, integer statis-
tic_option=1, integer loc_stat data=1, text file=NULL) ;

3. integer FT_AUpdate (text apath, integer old pointer, geometry old geom, integer
new_pointer, geometry new_geom, integer statistic option=1, integer loc_stat -
data=1, text file=NULL) ;

4. setof query result FT AQuerySpatiallIndex(text apath, integer query type,
geometry search _obj, integer predicate, integer proc_option=1, integer statis-
tic_option=1, integer loc stat data=1, text file=NULL) ;

Algorithm 1 depicts the source code of the SQL function FT_AInsert, which illustrates a first usage of
FESTIval's operations. The remaining atomic operations have very similar codifications. In fact,
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FT_Alnsert, FT_ADelete, FT_AUpdate, and FT_AQuerySpatiallndex are atomic versions of the functions
that respectively insert, delete, update, and query spatial objects from a spatial index. They combine
the parameters of the SQL function responsible for executing the index operation and the parameters
of FT_StoreStatisticalData. They assume that the order of reads and writes is not collected. Hence,
collecting this kind of information requires the invocation of the SQL function FT_CollectOrderOfRead-
Write before executing an atomic operation.

Algorithm 1. The source code of the SQL function FT_AInsert, an atomic operation of FESTIval

1 CREATE OR REPLACE FUNCTION FT Alnsert (apath text, pointer int4, geom geometry,
statistic.option int4 default 1, location.stat._data int4 default 1, file text default NULL)

2 RETURNS int4 AS

3 $BODY$

4 BEGIN

5 PERFORM FT_StartCollectStatistics(); —--the default value of its parameter is false

6 PERFORM FT_Insert (apath, pointer, geom);

7 RETURN FT_StoreStatisticalData (apath, statistic.option, location.stat.data, file);

8 END

9 $BODYS

10 LANGUAGE plpgsql VOLATILE

11 COST 100;

Creating and executing workloads

FESTIval provides a common design to create workloads. A workload consists of a sequence of index
operations and can be created by using the SQL Procedural Language of the PostgreSQL (PL/pgSQL).
Hence, users create workloads as user-defined functions in PL/pgSQL and execute them in SQL SELECT
statements. Here, we illustrate two examples of workload and describe different scenarios of
capturing performance results after executing a workload.

The first workload, depicted in Algorithm 2, executes a sequential insertion of spatial objects
stored in a given dataset. That is, it constructs a spatial index by inserting spatial objects one-by-
one. Due to the importance of this workload, FESTIval includes this function in its source code.
The inputs of FT_CreateSpatiallndex are similar to those of the aforementioned SQL functions, except
for the Boolean parameters apply_fai and apply_stdbuffer (line 1) that are employed to decide whether
flushing operations should be performed in the end of the index creation. First, FI_CreateSpatia-
lindexextracts needed data about the dataset that is being indexed (line 10). This includes the
names of its schema, table, column storing spatial objects, and primary key column. Then, the total
number of rows of this table is retrieved (line 11) to identify how many spatial objects should be
inserted into the spatial index. Afterwards, statistical data should be collected when executing the
next index operations (line 12). The first index operation is the creation of an empty spatial index
(line 13). Next, a sequence of insertions is made (lines 15-25). To better manage the main memory,
the workload retrieves 100,000 spatial objects by time from the dataset (lines 16 and 17). The loop
stops when all spatial objects are inserted into the spatial index (lines 19-21). In the sequence, the
workload checks whether a flushing operation should be made in order to write all the remaining
in-memory modifications after the insertions (lines 26-31). This includes the specialized in-
memory buffer managers of flash-aware spatial indices (lines 26-28), and general buffer
managers (lines 29-31). Finally, the workload stores statistical data related to the creation of the
spatial index (line 32).
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Algorithm 2. The workload written in PL/pgSQL for creating spatial indices

1 CREATE OR REPLACE FUNCTION FT. CreateSpatialIndex (index_type int4, apath text, src.id int4,
bc_id int4, sc._id int4, buf.id int4, apply-fai bool default false, apply-stdbuffer bool
default false, statistic._option int4 default 1, location.stat._data int4 default 1, file text
default NULL)

2 RETURNS bool AS

3 $BODY$

4 DECLARE

5 src REFCURSOR; rec RECORD;

6 i INTEGER; total INTEGER := 0;

7 sch VARCHAR; tab VARCHAR; colu VARCHAR; pk VARCHAR;

8

9 BEGIN

10 EXECUTE 'SELECT schema_name, table_name, column_name, pk_name FROM fds.source WHERE
src.id = $1' INTO sch, tab, colu, pk USING src.id;

11 EXECUTE 'SELECT count (x) from ' || sch || '."'" || tab INTO total;

12 PERFORM FT StartCollectStatistics();

13 PERFORM FT CreateEmptySpatialIndex (index_type, apath, src.id, bc.id, sc-id, buf_id);

14 i = 0;

15 WHILE (i <= total) LOOP

16 OPEN src FOR

17 EXECUTE 'SELECT ' || pk || ' as pk, ' || colu || ' as geom FROM ' || sch [| '."' ||

tab || ' ORDER BY ' || pk || ' LIMIT 100000 OFFSET $1' USING i;

18 LOOP

19 FETCH src INTO rec;

20 EXIT WHEN NOT FOUND;

21 PERFORM FT_Insert (apath, rec.pk, rec.geom);

22 END LOOP;

23 CLOSE src;

24 i :=1 + 100000;

25 END LOOP;

26 IF (apply-fai AND (index.id = 4 OR index_id = 5 OR index_id = 6 OR index.id = 7 OR
index_id = 8 OR index_id = 9 OR index_id = 10)) THEN

27 ‘ PERFORM FT ApplyAllModificationsForFAI (apath);

28 END IF;

29 IF (apply-stdbuffer) THEN

30 ‘ PERFORM FT ApplyAllModificationsFromBuffer (apath);

31 END IF;

32 PERFORM FT_StoreStatisticalData (apath, statistic_option, location_stat._data, file);

33 RETURN true;

34 END

35 $BODYS

36 LANGUAGE plpgsgl VOLATILE

37 COST 500;

Before introducing the second workload, we show how the workload depicted in Algorithm 2 can
be employed and how users can collect performance results. For this, we show a set of SQL statements
that can be incrementally executed in order to reproduce our example.

In order to provide a name for the execution of FT_CreateSpatiallndex, we need to first execute an
SQL SELECT statement that invokes FT_SetExecutionName, as shown below:

SELECT FT SetExecutionName (‘Creating R-tree on brazil points2017");

Then, an index can be created by executing FT_CreateSpatialindex. The next SQL SELECT statement
creates an R-tree, called linear_rtree and stored in /opt/, that indexes the spatial objects stored in the
dataset identified by src_id=7 and with the parameter values bc_id=6, sc_id=18, and buf_id=4. These
values are included in festival-inserts.sql, which can be loaded into the FESTIval's data schema after
installing FESTIval. More precisely, this command builds an R-tree with page (node) size of 4 KB,
employing the linear splitting algorithm, and a general LRU buffer of 512 KB. The indexed spatial
objects are from the dataset named brazil_points2017 [31]. Since this command does not change
default values for arguments of FT_CreateSpatiallndex, it does not flush any modification remaining in
the buffer after the insertions, and it stores statistical data only for the table Execution that is directly
inserted into the FESTIval's data schema.

SELECT FT CreateSpatialIndex(l, ‘/opt/linear rtree’, 7, 6, 18, 4);
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By issuing SQL SELECT statements, we are also able to retrieve and analyze performance results.
For instance, the following command returns the required index time to build the previous R-tree
(i.e., linear_rtree):

SELECT index time
FROM fds.execution
WHERE execution name = ‘Creating R-tree on brazil points2017’ ;

Note the importance of setting a name for the execution, which can be used to retrieve
performance results of executed workloads. The previous SQL SELECT statement could also include
other columns containing statistical values. For instance, the next SQL SELECT statement yields the
number of writes and reads required by the creation of the previous R-tree (i.e., linear_rtree).

SELECT reads num, writes num
FROM fds.execution
WHERE execution name = ‘Creating R-tree on brazil points2017’ ;

If FT_CreateSpatiallndex is executed multiple times, we are able to capture average statistical results
from these executions. In this case, the index is built with different names but with the same
configurations. Assuming that the previous R-tree is created multiple times (with different names,
such as linear_rtree2, linear_rtree3, and so on), the following SQL SELECT statement returns the average
index time and its standard deviation of these executions:

SELECT avg (index time), stddev (index time)
FROM fds.execution
WHERE execution name = ‘Creating R-tree on brazil points2017’ ;

Comparing performance results between two or more spatial indices is another scenario in which
FESTIval helps users. For instance, consider the execution of the following two SQL SELECT statements.
The first statement sets a new execution name since we are dealing with a different spatial index, the
R*-tree. The second statement creates an R*-tree, named rstartree and stored in /opt/, using the same
node size of 4 KB (i.e., bc_id=6) and general LRU buffer of 512 KB (i.e., buf_id=4) that indexes the same
dataset as the previous R-tree (i.e., src_id=7). The specific parameter sc_id=60 refers to the
configuration of the R*-tree that specifies the reinsertion of 30% of entries according to the CLOSE
REINSERT policy. Further, this command does not change default values for arguments of
FT_CreateSpatiallndex.

SELECT FT SetExecutionName (‘Creating R*-tree on brazil points2017");
SELECT FT CreateSpatiallIndex (2, ‘/opt/rstartree’ , 7, 6, 60, 4);

Considering that the previous R-tree and R*-tree have been built the same number of times and
with different names, we are able to compare their average time of creation as follows:

SELECT execution name, avg(index time), stddev (index time)

FROM fds.execution

WHERE execution name IN (‘Creating R-tree on brazil points2017’,
‘Creating R*-tree on brazil points2017);

Another example of execution of FT_CreateSpatiallndex is to vary its parameter values in order to
collect statistical data related to the index structure, as shown in the next two SQL SELECT statements.
The first one denominates the corresponding execution name. The second one creates another R-tree,
called linear_rtree_comp and stored in /opt/, with the same parameter values of the previous R-tree
(i.e., linear_rtree); but collecting statistical data related to its structure, which is useful to analyze the
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(@)

(c)

Fig. 3. Visualization of the MBRs of node entries of an R-tree. This R-tree (a) is built over the brazil_points2017 (b) and has height
equal to 3. The entries of each level, from the highest to the lowest level, are shown in (c), (d), and (e), respectively.

spatial organization of the index. In addition, FESTIval also stores the nodes of the built index, which is
useful to visualize the index by using specialized programs like QGIS.

SELECT FT SetExecutionName (‘Creating R-tree on brazil points2017');
SELECT FT CreateSpatialIndex(l, ‘/opt/linear rtree comp’, 7, 6, 18, 4, false,
false, 4);

The next SQL SELECT statement shows an example of a query that returns the height, the number of

internal and leaf nodes, and the average number of entries per node of the previously built R-tree
(considering that only the aforementioned SQL statements were executed):

SELECT height, num_internal nodes, num_leaf nodes, avg num entries pnode
FROM fds.execution e, fds.indexsnapshot is

WHERE e.pe id = is.pe_id AND execution name = ‘Creating R-tree on brazil -
points2017’ ;

Further, the user is also able to visualize this index by retrieving rows from the Printindex. Every

row in this table represents an entry of an index page, which has at least a pointer, height, and a
geometry object representing its MBR. Fig. 3 depicts the structure of the built R-tree (i.e.,
linear_rtree_comp) by using the QGIS. Different layers of geometries are employed to see the MBRs of
each level of the tree (Fig. 3c-e). This visualization is particularly useful to graphically represent
indices, such as for educational purposes.
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Algorithm 3. The workload written in PL/pgSQL for executing spatial queries

1 CREATE OR REPLACE FUNCTION FT_QueryWorkload(index_type int4, apath text, src_id int4, bc_id
int4, sc.id int4, buf_id int4, file text default NULL)

2 RETURNS bool AS

3 $BODY$

4 DECLARE

5 query_-windows RECORD;

6 tab VARCHAR;

7

8 BEGIN

9 EXECUTE 'SELECT table_name FROM fds.source WHERE src_.id = $1' INTO tab USING src_id;

10 PERFORM FT_SetExecutionName ('Query Worload - Index Creation');

11 PERFORM FT CreateSpatiallndex (index_type, apath, src.id, bc.id, sc-id, buf_id, false,
false, 1, 2, file);

12 PERFORM FT_SetExecutionName ('Query Worload - Execution of IRQs with Query Windows of
0.001%");

13 FOR query.-windows IN EXECUTE 'SELECT geom FROM generated.rectangle WHERE dataset = ''"
|| tab || "'' AND type = ''intersection'' AND percentage = 0.001 AND is_correlated is
TRUE'

14 LOOP

15 ‘ PERFORM FT_AQuerySpatiallIndex (apath, 2, query.windows.geom, 1, 2, 1, 2, file);

16 END LOOP;

17 PERFORM FT_SetExecutionName ('Query Worload - Execution of IRQs with Query Windows of
0.01%");

18 FOR query_windows IN EXECUTE 'SELECT geom FROM generated.rectangle WHERE dataset = ''"'
|| tab || "'' AND type = ''intersection'' AND percentage = 0.0l AND is_correlated is
TRUE'

19 LOOP

20 ‘ PERFORM FT_AQuerySpatiallIndex (apath, 2, query.-windows.geom, 1, 2, 1, 2, file);

21 END LOOP;

22 PERFORM FT_SetExecutionName ('Query Worload - Execution of IRQs with Query Windows of
0.1%");

23 FOR query_windows IN EXECUTE 'SELECT geom FROM generated.rectangle WHERE dataset = ''"'
|| tab || "'' AND type = ''intersection'' AND percentage = 0.1 AND is_correlated is
TRUE'

24 LOOP

25 PERFORM FT_AQuerySpatiallIndex (apath, 2, query.-windows.geom, 1, 2, 1, 2, file);

26 END LOOP;

27 RETURN true;

28 END

29 $BODYS

30 LANGUAGE plpgsgl VOLATILE

31 COST 500;

Algorithm 3 depicts another workload, named FT_QueryWorkload. This workload has been used to
understand the impact of SSDs on the spatial indexing context [10,11,28,35,36] and to measure the
performance gains of eFIND [18,19]. Its main goal is to build an index and to execute intersection range
queries (IRQs). The employed query windows (stored in the relational table called generated_rectangle)
are correlated to the indexed dataset [31] and are available at https://github.com/accarniel/FESTIval/
wiki/. All inputs of this workload have the same meaning of the common inputs of the workload
depicted in Algorithm 2. FT_QueryWorkload first gets the name of the dataset to be indexed in this
workload (line 9). Then, the workload sets the name of the execution (line 10) to identify that the next
operation is the index construction (line 11). After building the index, three different sets of IRQs are
processed (lines 12-16, lines 17-21, and lines 22-26). To this end, three different sets of query
windows are employed. Each set has 100 query windows with specific sizes of the area of the total
extent of Brazil. These sizes are 0.001%, 0.01%, and 0.1%, respectively. Considering that the selectivity of
a spatial query is the ratio of the number of returned objects and the total objects, these sets of query
windows form spatial queries with low, medium, and high selectivity, respectively. Each execution of a
spatial query is performed by the atomic operation FT_AQuerySpatialindex. Finally, all statistical data is
stored in a file located in the HDD (parameter file in lines 11,15, 20, and 25) since this workload handles
the spatial index file stored in an SSD. The use of this workload to validate a flash-aware spatial index is
further discussed in the next section.
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Method validation: employing FESTIval to measure the efficiency of eFIND

In this section, we show how FT_QueryWorkload (Algorithm 3) is employed to validate eFIND and
how the statistical results can be extracted to measure its performance gains. eFIND [18,19] is a generic
approach that transforms a disk-based spatial index (e.g., the R-tree) into an efficient flash-aware
spatial index (e.g., eFIND R-tree). The examples described in this section details a part of the
experimental evaluation conducted by us in [19]. These experiments compare eFIND against FAST,
which is the closest competitor to eFIND among existing approaches to implementing flash-aware
spatial indices. eFIND and FAST are employed to port the traditional R-tree to SSDs, forming the
following configurations: the eFIND R-tree and the FAST R-tree, respectively. The used spatial dataset
(i.e., src_id) is the brazil_buildings2017 [31], containing 1,485,866 regions that represent the buildings
of Brazil. Both configurations employed an in-memory buffer of 512 KB, log size of 10 MB, and the
flushing unit size equal to 5. The best parameter values were applied for the remaining specific
parameters. This means that we did not vary specific parameter values for each configuration
(i.e., sc_id=50031 for the eFIND R-tree and sc_id=1323 for the FAST R-tree). On the other hand, basic
parameter values (i.e., bc_id) are varied to evaluate the eFIND R-tree and the FAST R-tree under page
sizes from 2 KB to 32 KB. A generic buffer was not employed in the experiments (i.e., buf_id=1). We
conducted the experiments on a Kingston SSD V300 of 480 GB.

The next SQL SELECT statements execute the workload depicted in Algorithm 3 to evaluate the
performance of the eFIND R-tree and the FAST R-tree, respectively, using the page size equal to 4 KB
(i.e., bc_id=53). The files efind_results.sql and fast_results.sql, maintained in an HDD, are employed to
store statistical data for the eFIND R-tree and the FAST R-tree, respectively:

SELECT FT QueryWorkload (8, ‘/opt/efind rtreel’, 5, 53, 50031, 1, ‘/HDD/efind re-
sults.sqgl’ ) ;
SELECT FT QueryWorkload (4, ‘/opt/fast rtreel’, 5, 53, 1323, 1, ‘/HDD/fast re-
sults.sql’ ) ;

Similar SQL SELECT statements are issued to evaluate the eFIND R-tree and the FAST R-tree for
different page sizes. Each SQL SELECT statement is executed 5 times, varying the name of each index
file, in order to calculate the average index time of the index construction and the execution of the
IRQs. The cache of the PostgreSQL and the operating system is cleaned between the executions.

As previously discussed, collecting statistical data requires the execution of SQL SELECT statements
on the FESTIval's data schema. For instance, the next query returns the average index time and its
standard deviation to construct an eFIND R-tree for each employed page size:

SELECT b.page_size, avg(e.index time), stddev(e.index time)

FROM fds.basicconfiguration b, fds.specializedconfiguration sc,
fds.indexconfiguration ic, fds.spatialindex si, fds.execution e
WHERE b.bc_id =ic.bc_id AND sc.sc_id =1ic.sc_id AND

ic.config_id = si.config_id AND si.idx_id =e.idx_id AND

ic.sc_1id = 50031 AND execution_name = ‘Query Worload - Index Creation’
GROUP BY b.page_size

ORDER BY b.page size;

The same structure of query can be also used for extracting performance results of the FAST R-tree.

In our analyses, we collected the average of the total elapsed time required to execute each set of
100 IRQs. The following SQL SELECT statement is performed when collecting results for the query
windows with 0.001% of the area of Brazil:

SELECT t.page size, avg(t.s), stddev(t.s)

FROM (

SELECT si.idx name, b.page size, sum(e.index time) as s

FROM fds.basicconfiguration b, fds.specializedconfiguration sc,
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Fig. 4. FESTIval was very useful to measure the performance gains of the eFIND R-tree, which reduced the time spent when
building spatial indices (a) and when processing IRQs (b, ¢, and d).

fds.indexconfiguration ic, fds.spatialindex si, fds.execution e
WHERE b.bc_id =ic.bc_id AND sc.sc_id = ic.sc_id AND
ic.config id = si.config id AND si.idx id=e.idx id AND ic.sc_id = 50031 AND

execution name = ‘Query Worload - Execution of IRQs with Query Windows of
0.001GROUP BY si.idx name, b.page size
) as t

GROUP BY t.page_size
ORDER BY t.page size;

The subquery returns the sum of the index time required to process the 100 IRQs with query
windows of 0.001% for each built index and page size. Note that we have 5 spatial indices with the
same configurations created by the multiple executions of FT_QueryWorkload; each spatial index has a
different name stored in idx_name. Then, the outer query returns the average and the standard
deviation of the total elapsed time for each page size. A similar approach is used to extract the
performance results of the FAST R-tree.

By using the returned results of the SQL SELECT statements, we can employ data analytics tools
(Fig. 1) to analyze the performance results. For instance, we can visualize the results by using bar
graphs, where the x-axis is the first returned column (i.e., page_size) and the y-axis is the average time
with the errors bar for the standard deviation, as shown in Fig. 4. In our experiments, the eFIND R-tree
overcame the FAST R-tree when building indices in all employed page sizes. Its performance gains
were very expressive, ranging from 60% to 77% for the Kingston SSD (Fig. 4a). As for the query
processing (Fig. 4b-d), the eFIND R-tree provided the best performance only for larger pages, showing
gains of 22% and 23% for the index pages of 16 KB and 32 KB, respectively. The efficiency of eFIND
comes from the use of a set of design goals specified to fully exploit SSD performance [18].



18 A.C. Carniel et al./ MethodsX 7 (2020) 100695
Conclusions and future work

In this article, we propose FESTIval, a versatile method for conducting experimental evaluations of
spatial indices under the same environment. FESTIval is implemented as a PostgreSQL extension and
includes the following advantages: (i) the support for disk-based and flash-aware spatial indices that
can assume different configurations by setting their corresponding parameter values, (ii) the
definition of user-defined workloads by using FESTIval's SQL functions, (iii) the use of any spatial
dataset when executing workloads, (iv) the collection of different types of statistical data that are
stored in the FESTIval's data schema, and (v) the reproduction of executed experiments.

The positive characteristics of FESTIval allow its use in distinct experimental evaluations, such as
experiments for analyzing the impact of SSDs in the spatial indexing context [10,11], and
experiments for validating new proposals of spatial indexing on SSDs (e.g., eFIND-based indices
[18,19]). Moreover, external data analytics tools can access the FESTIval's data schema to generate
different types of graphics, to plot maps, and to process statistical data in mathematical models.
These aspects are very important when benchmarking spatial indexing structures in spatial
database systems and GIS.

Future work will mainly deal with two topics. The first topic relates to the continuous development
of FESTIval by including the support for other spatial indexing structures. We plan to provide support
for the XxBR*-tree [37] since this spatial index has been ported to SSDs using FAST and eFIND [38]. As a
result, we also plan to include the FAST xBR*-tree and the eFIND xBR*-tree in FESTIval. The second
topic consists of creating a systematic model that recommends the best spatial indices to be employed
on SSDs according to a given context (e.g., the type of workload employed in the spatial application).
The idea is to integrate this model into FESTIval as SQL functions.
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