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Abstract

The automatic recognition of animal vocalizations is a valuable tool for monitoring pigs’
behavior, health, and welfare. This study investigates the feasibility of implementing a
convolutional neural network (CNN) model for classifying pig vocalizations using tiny
machine learning (TinyML) on a low-cost, resource-constrained embedded system. The
dataset was collected in 2011 at the University of Illinois at Urbana-Champaign on an
experimental pig farm. In this experiment, 24 piglets were housed in environmentally
controlled rooms and exposed to gradual thermal variations. Vocalizations were recorded
using directional microphones, processed to reduce background noise, and categorized into
“agonistic” and “social” behaviors using a CNN model developed on the Edge Impulse
platform. Despite hardware limitations, the proposed approach achieved an accuracy of
over 90%, demonstrating the potential of TinyML for real-time behavioral monitoring.
These findings underscore the practical benefits of integrating TinyML into swine produc-
tion systems, enabling early detection of issues that may impact animal welfare, reducing
reliance on manual observations, and enhancing overall herd management.

Keywords: social behavior; agonistic behavior; machine learning; vocalization; swine

1. Introduction
Machine learning (ML) techniques are revolutionizing data analysis by enabling the

rapid processing of large datasets and uncovering patterns that are often difficult to detect
using traditional methods [1]. In agriculture, ML has been extensively applied to insect
management, soil health prediction, crop yield estimation, and the monitoring of animal
behavior [1–5].

Among these applications, ML-based behavior classification and welfare assessment
have become particularly relevant in swine production, one of the most prominent sectors of
global livestock farming. The growing demand for animal protein has driven the expansion
of intensive pig farming systems [6], which are characterized by high productivity, reduced
labor costs, and limited space per animal. However, this intensification raises critical
concerns regarding animal welfare [7,8].
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Animal welfare is a fundamental pillar of modern livestock systems, as its compromise
can negatively impact both animal health and productivity. According to the Welfare
Quality® protocol [9], animal welfare is based on four key principles: good feeding, good
housing, good health, and appropriate behavior. The latter encompasses the expression of
social behaviors, positive human–animal interactions, and favorable emotional states [10].
In swine production, vocalizations have emerged as key indicators of health and welfare,
as they are closely associated with specific behavioral events [11]. For example, coughing
may indicate respiratory illness, whereas squealing is often linked to environmental stress,
aggression, or pain [12,13].

Vocal pattern analysis provides valuable insights into social behaviors through the
assessment of sound frequency, duration, and amplitude. Low-pitched vocalizations, such
as grunts, may reflect social bonding [14], whereas changes in pitch and intensity can reveal
stress or discomfort. Stressful situations, such as isolation, castration, or weaning, typically
elicit higher-pitched, more frequent, and prolonged vocalizations. Additionally, high-
pitched calls may indicate food deprivation [14]. Nevertheless, direct human observation
presents limitations, such as observer bias and interference with natural behavior.

In light of these challenges, sound-based monitoring technologies have emerged as
promising tools in precision livestock farming, particularly due to advancements in sensor
technology and data processing [15]. However, the acoustic environment in swine facilities
is complex, with overlapping sounds [16], thus, requiring robust classification algorithms.
Recent studies have employed ML to correlate specific vocalizations with behavioral states.
For instance, Yin et al. [17] used convolutional neural networks (CNNs) to detect coughs,
achieving 96.8% accuracy in identifying respiratory diseases. Liao et al. [18] developed
the transformer CNN model, which combines CNNs and transformer layers, reaching
96.05% accuracy. Other works by Hou et al. and Pann et al. [19,20] reported classification
accuracies above 93% for grunts, squeals, and coughs.

Despite these advances, most models have not been adapted for deployment on
low-cost embedded systems, which are essential for real-time monitoring in commercial
farms [17]. As highlighted by Reza et al. [15], key challenges include achieving high ac-
curacy while minimizing costs. A promising solution is tiny machine learning (TinyML),
which enables the execution of sophisticated ML models on microcontrollers and IoT de-
vices, overcoming constraints related to hardware, memory, and processing power [21,22].

In this context, the primary objective of this study is to develop an automated system to
classify agonistic and social behaviors in pigs through vocalization analysis using accessible
computing hardware. The proposed model, based on a convolutional neural network
(CNN), is implemented on embedded devices such as smartphones via TinyML, aiming to
provide a feasible solution for real-time welfare monitoring.

2. Materials and Methods
The dataset used in this study was collected in 2011 at the experimental pig facility of

the University of Illinois Urbana-Champaign. Despite the age of the data, pig behavioral
responses to temperature variations and social interactions remain consistent, making this
dataset suitable for the proposed analysis.

2.1. Experimental Setup

The study was conducted over two weeks in June and July 2011 at the Experimental
Swine Unit of the University of Illinois Urbana-Champaign. The pigs were housed in a
climate-controlled facility with four identical rooms, each measuring 9.30 m (L) × 8.5 m
(W) × 2.2 m (H), with insulated walls and ceilings to ensure thermal stability.
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Twenty-four newly weaned Landrace × Large White piglets (19 days old) were se-
lected, separated by sex, and randomly distributed into four pens, each housing six animals
(three males and three females). After a seven-day acclimatization period, the groups
underwent a dominance re-establishment phase under controlled thermal conditions.

Each pen (Figure 1) was equipped with a drinker and three ad libitum feeders. A
unidirectional microphone was placed 80 cm above the floor to record sound. All proce-
dures were approved by the Institutional Animal Care and Use Committee (IACUC) under
protocol 11083.

Figure 1. Top view of the animal pens.

Treatments were administered at two-day intervals, with temperatures gradually
increasing. The first treatment, conducted during the first week, consisted of alternating
days of thermal comfort (27 ◦C) and moderate heat (35 ◦C). The second treatment, carried
out during the second week, involved alternating days of thermal comfort (24 ◦C) and high
heat (34 ◦C). In both treatments, the temperature increased by 2 ◦C every three hours.

2.2. Audio Acquisition

A unidirectional cardioid microphone (XM8500, Behringer Inc., Bothell, WA, USA)
was used to collect the animals’ vocalizations. The microphone was connected to a signal
amplifier (Micropower PS400, Behringer Inc., Bothell, WA, USA), which was linked to
an audio and graphics card connected to a microcomputer. Unidirectional microphones
capture sound from a single direction, making them more responsive to animal sound
stimuli while reducing external noise from outside the pen. All recordings were saved in
WAV format (waveform audio file) with a duration of ten seconds each. The audio files
were grouped according to the time of day into four periods: dawn (00:00 a.m.–05:55 a.m.),
morning (06:00 a.m.–11:55 a.m.), afternoon (12:00 p.m.–05:55 p.m.) and night (06:00 p.m.–
11:55 p.m.). For this study, recordings from two days were used, with samples randomly
distributed across the four time periods and thermal treatments.

2.3. Audio Processing

A preliminary analysis of the database was conducted to select the relevant vocal-
izations. The recordings were categorized based on the following observed behaviors:
noises related to approaching the feeder, noises related to approaching the drinker, social
vocalizations, agonistic vocalizations, and others (defined as recordings containing multiple
behavioral categories simultaneously). All behaviors were identified based on the ethogram
described by Massari et al. [23].
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From the selected database, 25 audio files were labeled as ‘agonistic’ and another 25 as
‘social’. The aim of this study was not to evaluate the impact of heat stress, but rather to
identify two types of behavior (agonistic and social) using machine learning techniques.
These files were imported into Audacity® for processing. To reduce environmental noise
and retain only information relevant to behavioral analysis using the convolutional neural
network (CNN) model, a band-pass filter with cutoff frequencies of 650 Hz and 8 kHz
was applied, in accordance with the sampling theorem [24]. This theorem states that the
sampling frequency must be at least twice the highest frequency in the signal.

During audio processing, segments of silence were detected and removed to ensure
that the resulting audio contained only agonistic or social sounds. Silence removal settings
used a threshold of −20 dB and a minimum duration of 0.5 s. Each audio clip was trimmed
to a maximum length of two seconds so that only the vocalizations associated with each
behavior were retained for training the model. Shorter clips capture less variability in
sound, improving classification accuracy and allowing a greater number of training samples
to be generated. After processing and compiling the audio clips into uniform time units,
the final dataset contained 3 min and 46 s of audio. These clips were formatted to meet the
input requirements of the machine learning platform used for model training.

The final dataset consisted of 2 min and 38 s of training data (1 min and 11 s of ‘social’
and 1 min and 27 s of ‘agonistic’) and 1 min and 8 s of testing data (54 s of ‘social’ and
54 s of ‘agonistic’). However, due to the noise reduction step during processing, where
some samples underwent more extensive filtering, it was not possible to achieve a perfectly
balanced distribution between the two classes during training and testing.

2.4. Model Development

Model development was carried out using Edge Impulse, an artificial intelligence (AI)
platform that enables the deployment of advanced machine learning models on embedded
devices via TinyML (Edge Impulse) [25], eliminating the need for external processing and
increasing energy efficiency [26].

To balance the class distribution, undersampling was performed by randomly selecting
samples from the majority class until both classes had equal representation. The dataset was
then split into training (60%) and testing (40%) sets, with random stratification using the
data augmentation tool provided by Edge Impulse. The model was trained for 250 epochs
with a batch size of 128, using the stochastic gradient descent (SGD) optimizer with a
learning rate of 0.01. No early stopping criteria were applied, and the hardware/software
environment remained fixed throughout the experiments.

A convolutional neural network (CNN) architecture was used to train the animal
vocalization classification model. This architecture was selected because it allows audio
signals to be converted into spectrogram images for pattern recognition, thereby improving
classification accuracy [17]. Figure 2 illustrates the proposed CNN architecture. The input
layer (serving_default_x_0) accepts an input of size 1 × 16,000 (the original audio length),
which is then reshaped into a 2D format of 1 × 50 × 32 × 1 to facilitate convolutional
operations.

Figure 2. Overall structure of the proposed convolution neural network architecture model.
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The first Conv2D layer applies eight filters of size 3 × 3, followed by a ReLU activation
function, producing an output of 1 × 50 × 32 × 8. A Max-Pooling layer then reduces the
spatial dimensions, while preserving features, to 1 × 25 × 16 × 8. The second Conv2D
layer increases the depth to 16 channels using 16 filters (3 × 3), followed by another ReLU
activation and Max-Pooling, resulting in an output of 1 × 13 × 8 × 16. The third Conv2D
layer, with 32 filters (3 × 3) and ReLU activation, extracts more complex features. After
another Max-Pooling operation, the output is 1 × 7 × 4 × 32. The fourth and final Conv2D
layer increases the depth to 64 channels using 64 filters (3 × 3), followed by Max-Pooling,
which reduces the output size to 1 × 4 × 2 × 64.

The Reshape layer flattens the 3D feature maps into a 1D vector of size 1 × 512
for classification. This vector is passed through a fully connected (dense) layer with
512 neurons. Finally, a Softmax layer outputs a probability vector of size 1 × 2, classifying
the input into one of two categories: ‘agonistic’ or ‘social’.

After completing the training phase, the developed model was converted into a
TinyML model—a compressed version optimized for deployment on embedded devices.
Subsequently, the TinyML model was implemented in an IoT device simulator to evaluate
its performance under real-world conditions (Figure 3).

Figure 3. Steps to build the classification swine vocalization based on the TinyML application.

The model’s performance was assessed using the following metrics: accuracy, preci-
sion, F1-score, and sensitivity. Accuracy measures the overall correctness of the model by
calculating the ratio of correctly predicted samples (true positives and true negatives) to the
total number of samples. Precision quantifies the proportion of true positive predictions
among all positive predictions made by the model. It is calculated as the number of true
positives divided by the sum of true positives and false positives. Sensitivity (also known as
recall) measures the model’s ability to correctly identify positive instances. It is computed
by dividing the number of true positives by the sum of true positives and false negatives.
The F1-score is the harmonic mean of precision and sensitivity. It provides a balanced
evaluation by considering both precision and recall, which is particularly important when
dealing with imbalanced datasets.

3. Results
During training, the model underwent multiple cycles of synaptic weight adjustment

based on the error calculated in each iteration to optimize its accuracy [27], ultimately
achieving a performance of 96.6%. Analysis of the confusion matrix (Table 1) revealed that
the model correctly classified 100% of the agonistic vocalizations and 93.8% of the social
vocalizations. These results indicate that the model effectively learned and standardized the
extracted audio features, accurately distinguishing between agonistic and social behaviors.
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Table 1. Confusion matrix from the training phase, showing predictions for agonistic and social
behaviors.

True Class

Agonistic Social

Predicted class
Agonistic 100.0% 0.0%

Social 6.3% 93.8%

When the trained model was applied to the test dataset, data not used during training,
it achieved an accuracy of 92.08%. The confusion matrix for the test dataset (Table 2) showed
that agonistic behavior was correctly classified 85.2% of the time, with 14.8% misclassified
as social behavior. In contrast, all instances of social behavior were correctly identified
(100%).

Table 2. Confusion matrix from the testing phase, showing predictions for agonistic and social
behaviors.

True Class

Agonistic Social

Predicted class
Agonistic 85.2% 14.8%

Social 0.0% 100.0%

Table 3 presents the performance metrics for the test dataset. The model achieved a
precision of 85.2% for agonistic behavior, indicating that 85.2% of the samples predicted as
agonistic were correctly classified. However, some social vocalizations were misclassified
as agonistic. For social behavior, the model achieved a precision of 100%, meaning all
predicted instances of social behavior were correct.

Table 3. Performance metrics—precision, sensitivity, and F1-score—based on the test dataset.

Precision Sensitivity F1-Score

Agonistic 85.2% 85.5% 92.0%
Social 100.0% 100.0% 100.0%

Sensitivity followed a similar trend. Social behavior had a sensitivity of 100%, indicat-
ing that all actual instances were correctly identified. Agonistic behavior had a sensitivity
of 85.5%, meaning that while most instances were correctly detected, some were missing.
The F1-score, which balances precision and sensitivity, was 92.0% for agonistic behavior
and 100.0% for social behavior. These metrics underscore the model’s overall effectiveness
in distinguishing between the two behavioral classes.

The compressed TinyML model, based on the previously trained CNN, was simulated
using Edge Impulse’s online platform (Figure 4). During simulation, the model exhibited a
confidence level of 0.90 when classifying an unseen audio sample as agonistic (Figure 4a)
and 0.85 for social behavior (Figure 4c). Notably, when the confidence level dropped below
0.50, the model classified the input as “No event detected” (Figure 4b). The simulation
also revealed an inference time of 244 ms, with memory usage of 23.1 KB RAM and
72.7 KB Flash.

Overall, the model demonstrated strong performance in behavior classification, main-
taining reliability even when deployed on a resource-constrained mobile device.
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Figure 4. Simulation of TinyML model on a mobile device, illustrating: (a) when the behavior is
classified as agonistic; (b) when no event is detected; and (c) when the behavior is classified as social.

4. Discussion
The classification of vocalization patterns yielded satisfactory results, with the convo-

lutional neural network (CNN) model achieving over 90% accuracy, even when deployed
on a low-cost platform with limited memory and hardware resources. Similar levels of
accuracy were reported by Yin et al. [17], who achieved 96.8% in classifying cough sounds
in pigs. However, those authors did not implement their complex CNN model on con-
strained hardware, which underscores the feasibility of the TinyML approach presented
in this study for real-time animal vocalization monitoring in environments such as farms,
where computing resources may be limited.

Nevertheless, classification errors, particularly for agonistic behavior, highlight the
need for a more comprehensive analysis in future phases. This will include augmenting
the dataset with recordings collected on additional days. Despite a careful selection and
organization of audio samples to accurately differentiate between the two behaviors, it
is possible that low-intensity agonistic vocalizations were misclassified as social interac-
tions. Additionally, although background noise was minimized through filtering and
the use of unidirectional microphones, some residual noise may still have contributed to
misclassification.

These challenges are consistent with findings by Hou et al. and Reza et al. [15,19],
who, although studying different behaviors, also reported that low-intensity pig grunts
could be difficult to distinguish from coughing or vocal syncope. Moreover, interference
such as background noise or human activity was found to negatively impact classification
accuracy in their studies as well.

Beyond classification accuracy, the use of TinyML in behavioral monitoring systems
holds significant promise for real-time pig monitoring. In contrast to traditional monitoring
systems that require sophisticated machine learning models and external processing units,
TinyML enables on-device processing, reducing energy consumption and eliminating the
need for high-bandwidth data transmission. This advantage was also emphasized by other
authors [26,28,29], who explored TinyML’s application in low-power embedded systems.

Consequently, TinyML emerges as a viable, cost-effective, remote, and continuous
monitoring solution for pig producers. Real-time analysis of vocalization patterns can
assist in identifying signs of stress, resource competition, or fighting, thus providing critical
information for informed herd management. Future studies should explore improvements
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such as adaptive noise filtering, real-time model retraining, and dataset augmentation to
enhance classification robustness across varying environmental conditions and to include a
broader range of animal behaviors in the model.

5. Conclusions
This study demonstrated the feasibility of employing tiny machine learning (TinyML)

to recognize pig vocalizations, achieving over 90% classification accuracy despite implemen-
tation on a low-cost, low-memory embedded system. These results highlight the potential
of TinyML-based vocal monitoring for real-time behavioral classification in animals, offer-
ing a scalable and efficient alternative to more complex machine learning solutions.

Future research should focus on testing and refining this methodology by incorpo-
rating datasets with greater variability in vocalizations and background noise. Next steps
include developing hardware prototypes for real-time application and further improving
model performance. Integrating TinyML-based vocalization recognition into farm man-
agement practices holds great potential to facilitate early detection of health or welfare
issues in livestock, reduce reliance on manual monitoring, and ultimately enhance animal
welfare outcomes.
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