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ABSTRACT
Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential
impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and
galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from
baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed
by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component
(PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power,
one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally
reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we
reach ∼ 20 per cent improvement in the constraint of S8 = σ8(�m/0.3)0.5 = 0.788+0.018

−0.021 compared to the original DES 3 × 2pt
analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded
in previous DES analyses that did not model baryonic physics. We obtain S8 = 0.781+0.014

−0.015 for the combined DES Y1+Planck
EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure Q1 = 1.14+2.20

−2.80 for DES
Y1 only and Q1 = 1.42+1.63

−1.48 for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback
hydrodynamical scenario at more than 2σ .

Key words: cosmological parameters – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Understanding the composition and evolution of our Universe has
been a central science endeavour in the astronomical community.

� E-mail: hungjinh@email.arizona.edu

Ongoing wide-field imaging surveys such as the Dark Energy Survey
(DES;1 Krause et al. 2017; Abbott et al. 2018, 2019; Troxel et al.
2018a), the Kilo-Degree Survey (KiDS;2 van Uitert et al. 2018;

1www.darkenergysurvey.org/
2http://www.astro-wise.org/projects/KIDS/
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Kuijken et al. 2019; Hildebrandt et al. 2020), and the Hyper Suprime
Cam Subaru Strategic Program (HSC;3 Mandelbaum et al. 2018;
Hikage et al. 2019; Hamana et al. 2020) have collected a wealth of
cosmological data over the past years that can be used to explore
fundamental questions such as the underlying physics of cosmic
acceleration, the mass and number of neutrino species, and the
interplay of dark and luminous matter.

The cosmological information is bound to increase significantly
in the near future with analysis of the full DES, KiDS, and HSC data
sets, and even more so in the early 2020s with the advent of Stage
IV surveys such as the Vera C. Rubin Observatory Legacy Survey
of Space and Time (LSST;4 Ivezić et al. 2019), Euclid5 (Laureijs
et al. 2011), the Spectro-Photometer for the History of the Universe,
Epoch of Reionization, and Ices Explorer (SPHEREx;6 Doré et al.
2014), and the Nancy Grace Roman Space Telescope (WFIRST;7

Spergel et al. 2015; Eifler et al. 2020a,b).
The increased cosmological information encoded in these data

sets will require a new level in accuracy of modelling cosmological
observables. One of the fundamental quantities for making theo-
retical predictions is the matter power spectrum Pδ(k, z), which
quantifies the amount of matter clustering at the second-order level
and its evolution as a function of time. Previous studies have
estimated that Pδ(k, z) needs to be predicted to ∼ 1 per cent level
out to k � 10 hMpc−1 for the future era of Stage IV cosmological
experiments (e.g. Huterer & Takada 2005; Eifler 2011; Hearin,
Zentner & Ma 2012). To quantify the non-linear evolution of the
density field at the required precision, significant computational
resources have been devoted to building power spectrum emulators
with N-body dark-matter-only (DMO) simulations (e.g. Heitmann
et al. 2010, 2014; DeRose et al. 2019). However, baryonic effects such
as feedback and cooling mechanisms redistribute matter, causing
uncertainties in Pδ(k, z) at the level of tens of per cent (e.g. van
Daalen et al. 2011; Chisari et al. 2018; van Daalen, McCarthy &
Schaye 2020) for k � 5 hMpc−1.

Adopting mitigation schemes to account for uncertainties of
baryons is crucial to assure the robustness of cosmological analyses.
The most straightforward way is to exclude data points for which the
fractional contributions from potential systematic uncertainties are
non-negligible given the covered model flexibility. For the DES Y1
cosmic shear analysis, conservative scale cuts are applied to ensure
the level of baryon contamination to be within 2 per cent (Troxel
et al. 2018a).

Methods have been proposed to reduce the sensitivity to small
scales in the data. By cutting the most extreme peaks in the density
fields, the derived summary statistics become less sensitive to the
non-linear regime, as proposed in the peak clipping technique
(Simpson et al. 2011; Simpson, Heavens & Heymans 2013; Giblin
et al. 2018). By designing special weighting functions to filter out
the contributions of small-scale modes in observables of cosmic
shear, the k-cut (Taylor, Bernardeau & Kitching 2018) and x-cut
(Taylor, Bernardeau & Huff 2020) cosmic shear methods provide
new summary statistics with reduced sensitivity to baryonic effects
on the matter power spectrum. Also, the COSEBIS (Schneider, Eifler
& Krause 2010) method is designed to separate E/B modes from ξ±
in a finite angular interval, which makes its summary statistics less

3http://www.naoj.org/Projects/HSC/HSCProject.html
4https://www.lsst.org/
5https://sci.esa.int/web/euclid
6http://spherex.caltech.edu/
7https://wfirst.gsfc.nasa.gov/

sensitive to small-scale physical effects compared with ξ± given a
fixed angular range (Asgari et al. 2020).

However, including small-scale information with models for bary-
onic effects not only provides the potential to increase the statistical
power of constraints on cosmology, but also offers a mechanism
to quantify the effects of baryons on the matter power spectrum
using real data. A number of methods have been proposed to model
baryonic effects (see Chisari et al. 2019 for a review). One class of
methods is to employ the halo model (Peacock & Smith 2000; Seljak
2000), based on the principle that the main contribution of baryons is
to modify halo density profiles in the one-halo regime (see e.g. Rudd,
Zentner & Kravtsov 2008; Velliscig et al. 2014; Mummery et al.
2017). Within the NFW (Navarro–Frenk–White; Navarro, Frenk &
White 1996) profile, a straightforward option is to vary parameters
related to the halo concentration to perform baryon marginalization
(Zentner, Rudd & Hu 2008; Zentner et al. 2013). Besides the degree
of freedom provided via halo concentration, extra parameters are
added offering the complexity to account for the effect of halo
bloating induced by baryonic feedback in HMCODE (Mead et al.
2015, 2016), and for the inner halo core formation induced by the
cooling effect of baryons (Copeland, Taylor & Hall 2018). HMCODE
has been applied in several weak lensing analyses to mitigate
baryonic effects, for example in data sets of CFHTLenS (Joudaki
et al. 2017), DES Science Verification (MacCrann et al. 2017),
KiDS-450 (Hildebrandt et al. 2017; Yoon & Jee 2020), and DLS
(Yoon et al. 2019). Even more sophisticated halo model frameworks
provide descriptions of the radial distributions of the stellar, gas, and
dark matter components within haloes, and parametrize the baryonic
effects in more physically motivated quantities (Semboloni et al.
2011; Semboloni, Hoekstra & Schaye 2013; Mohammed et al. 2014;
Schneider & Teyssier 2015; Debackere, Schaye & Hoekstra 2020).

Another category of approaches to modelling baryonic effects
is through empirical modelling, where the functional form of the
fitting formula is calibrated based on hydrodynamical simulations.
Parametric forms are designed with the flexibility to model the be-
haviour of the power spectrum ratio between paired hydrodynamical
and DMO simulations (Pδ, hydro(k)/Pδ, DMO(k)) for the Horizon-AGN
hydrosimulation in Chisari et al. (2018), and for the nine scenarios in
the OWLS simulation suites as detailed in Harnois-Déraps et al.
(2015), which is adopted in HSC Y1 cosmic shear analysis to
account for baryonic effects (Hikage et al. 2019). Recently van
Daalen et al. (2020) derive a formulation which provides even wider
applications for hydrodynamical scenarios accumulated over the past
ten years. Alternatively, Eifler et al. (2015) proposed performing
principal component analyses (PCA) using the cosmic shear model
vectors extracted from the hydrodynamical simulations, and use a
few dominant principal components (PCs) as a flexible basis to span
the range of baryon uncertainties for the survey-specific summary
statistic.

Going beyond modelling summary statistics, there are approaches
focusing on post-processing the output DMO simulations. The ‘bary-
onification’ model contains prescriptions for the density profiles of
the stellar, gas, and the redistributed DM components to correct
the particle positions in DMO simulations so as to more accurately
approximate what they would look like in the presence of baryons
(Schneider & Teyssier 2015; Schneider et al. 2019; Aricò et al.
2020). Dai, Feng & Seljak (2018) propose using the potential gradient
descent model to displace particles to improve the modelling of non-
linear matter distribution.

In this paper, we aim to utilize the information from small-scale
cosmic shear data to place constraints on the strength of baryonic
effects, and to compare the results with existing hydrodynamical
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Figure 1. Baryonic effects on the 3D matter power spectrum at different redshifts. We plot the power spectrum ratio for 11 hydrodynamical simulations with
respect to their corresponding DMO simulation setting at the same initial condition: IllustrisTNG, MB2, Eagle, Horizon-AGN, Illustris, the cosmo-OWLS sets,
and the BAHAMAS sets, at redshifts 0.0, 0.3, 0.8. The grey vertical lines delineate regions where the data points come from direct measurement (k < 30 h Mpc−1)
and from extrapolation (k > 30 h Mpc−1) with a quadratic spline fit based on data points at k ∈ [10, 30] h Mpc−1.

simulations. We will also explore the potential for achieving more
precise cosmological constraints with the inclusion of small-scale
data. We adopt the PCA baryon mitigation framework (Eifler et al.
2015) to perform our analyses. In Huang et al. (2019), we have
validated and improved the performance of the PCA method using
simulated analyses of cosmic shear mock data under an LSST-
like survey configuration. Here we delve into its application to the
observational data of DES Y1, which includes two-point correlations
of cosmic shear, galaxy–galaxy lensing and galaxy clustering. With
the ability to model small-scale cosmic shear, we push the cosmic
shear observables down to 2.5 arcmin and perform a combined
analysis with galaxy–galaxy lensing and galaxy clustering data
(subjected to the original conservative Y1 scale cuts).

We begin with an overview of the data products, the theoretical
modelling, and the analysis approaches in Section 2. We describe
the design and validation of our pipeline in Section 3. We employ
simulated likelihood analyses to understand and validate our pipeline
performance, before we unblind and perform analyses of the real
DES Y1 data. We present our main cosmology results in Section 4,
followed by our constraints on baryonic effects in Section 5. Finally,
we conclude in Section 6.

2 DATA , T H E O RY, A N D A NA LY S I S

2.1 Data

2.1.1 Observational data

In this work, we use the DES Y1 3 × 2pt data vector8 which
is computed using the METACALIBRATION (Huff & Mandelbaum
2017; Sheldon & Huff 2017; Zuntz et al. 2018) shape catalogue
as the source sample for cosmic shear (Troxel et al. 2018a), and
the redMaGiC (Rozo et al. 2016) sample as the lens population
for galaxy–galaxy lensing (Prat et al. 2018) and galaxy clustering
(Elvin-Poole et al. 2018) measurements. The photometric redshift
measurement and calibration are described in Hoyle et al. (2018),
Gatti et al. (2018), Davis et al. (2017).

8The publicly released 3 × 2pt data vector and its associated covariance
matrix, 2pt NG mcal 1110.fits, can be downloaded at https://des.ncsa
.illinois.edu/releases/y1a1/key-products

The DES Y1 source galaxies are divided into four tomographic
bins ranging from z = 0.2 to 1.3, resulting in 10 auto- and cross-
correlations of cosmic shear for ξ+ and ξ−, respectively. The
lens galaxies are placed in five tomographic bins ranging from z

= 0.15 to 0.9, resulting in 20 tomographic cross-correlation bins
between lens and source samples for galaxy–galaxy lensing, and
five autocorrelations for galaxy clustering. Each of the correlation
function statistics is measured using treecorr (Jarvis, Bernstein
& Jain 2004) in 20 log-spaced bins of angular separation 2.5 arcmin
< θ < 250 arcmin.

Conservative scale cuts are applied to the raw 3 × 2pt data vector
in the original DES Y1 key cosmological analysis to avoid biases
due to modelling uncertainties on small scales (Abbott et al. 2018).

For cosmic shear, scale cuts are determined by contaminating the
ξ± model vector according to the OWLS-AGN scenario (Schaye
et al. 2010), which has the same baryonic feature as the cosmo-
OWLS AGN scenario shown in the red curves in Fig. 1, and removing
data points that have a fractional contribution of baryons exceeding
2 per cent (Troxel et al. 2018a). For galaxy–galaxy lensing and galaxy
clustering, the scale cuts are defined using a specific comoving scales
of (Rggl, Rclustering) = (12, 8) Mpc h−1 to avoid parameter biases due
to non-linear biasing or non-locality of γ t, and converted to their
corresponding angular scales in each tomographic bin (Krause et al.
2017). After scale cuts are applied, there are a total of 457 elements
for the fiducial DES Y1 3 × 2pt cosmological analysis (Abbott et al.
2018).

In this analysis, we utilize the DES Y1 cosmic shear correlation
function measurements down to scales of 2.5 arcmin. Together
with the galaxy–galaxy lensing and galaxy clustering measurements
(subjected to the original DES Y1 scale cuts), our extended 3 × 2pt
data vector has a total of 630 data points (400 elements for cosmic
shear, 176 elements for galaxy–galaxy lensing, and 54 elements for
galaxy clustering).

2.1.2 Hydrodynamical simulation data and power spectrum

In order to build baryon mitigation models with sufficient flexi-
bility, we rely on a large variety of hydrodynamical simulations:
MassiveBlack-II (MB2; Khandai et al. 2015; Tenneti et al. 2015),
Horizon-AGN (Dubois et al. 2014), Eagle (Schaye et al. 2015),
Illustris (Genel et al. 2014; Vogelsberger et al. 2014), IllustrisTNG
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(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018;
Pillepich et al. 2018; Springel et al. 2018), three cosmo-OWLS
simulations (cOWLS; Le Brun et al. 2014) with their minimum
active galactic nucleus (AGN) heating temperatures 	Theat being
set at 108.0, 108.5, 108.7, and three BAHAMAS scenarios (McCarthy
et al. 2017) with their 	Theat = 107.6, 107.8, 108.0. Here 	Theat is the
most dominant subgrid physical parameter controlling the strength of
AGN feedback in the cosmo-OWLS and the BAHAMAS simulation
sets. Black holes are storing their feedback energy until it is large
enough to heat the a certain number of surrounding particles by
	Theat.

Fig. 1 shows the effects of baryonic physics on the 3D matter
power spectra for different hydrodynamical simulations, displayed
as the ratio of these power spectra with respect to the power spectra
for the corresponding dark matter only (DMO) simulations with the
same initial conditions. On small scales, the effects of baryons show
large variations, and have different redshift evolution histories across
simulations. On large scales, we expect the power spectrum ratios
to converge to unity because of diminishing baryonic effects, and
because of the cosmic variance fluctuations being cancelled when
taking ratios of power spectra for pairs of simulations with identical
initial conditions. In Appendix B of Huang et al. 2019 (hereafter
H19), we have discussed the convergence of power spectrum ratios
in detail and provide an upper limit for their uncertainties due to
cosmic variance.

We have used the power spectrum ratio for MB2, ILLUSTRIS,
Eagle from H19. We extracted power spectrum measurements from
the publicly released IllustrisTNG100 snapshot data (Nelson et al.
2019) and added the corresponding baryonic scenario to our power
spectrum library. The Horizon-AGN Pδ(k) data are computed in
Chisari et al. (2018). The cosmo-OWLS and BAHAMAS Pδ(k) sets
are taken from the power spectra library released by van Daalen et al.
(2020). Specifically, as listed in table 1 of van Daalen et al. (2020),
for the cosmo-OWLS baryonic scenario sets, we use the Pδ(k) data
from files:

(i) AGN Mseed800 WMAP7 L100N512,
(ii) AGN Mseed800 Theat 8p5 WMAP7 L100N512,
(iii) AGN Mseed800 Theat 8p7 WMAP7 L100N512,

for the BAHAMAS sets, we use files:

(i) AGN CALIB nu0 WMAP9 L400N1024,
(ii) AGN CALIB Theat 7p6 nu0 WMAP9 L400N1024,
(iii) AGN CALIB Theat 8p0 nu0 WMAP9 L400N1024.

We make a slight adjustment to the power spectrum ratios. At
larger scales, the raw Pδ(k) ratios for Horizon-AGN and cosmo-
OWLS are observed to have subtle (� 1 per cent) excesses above
unity towards large scales (e.g. see fig. 5 of Chisari et al. 2018).
As discussed in Appendix B of van Daalen et al. (2020), this large-
scale excess of power originates from details of the simulation setup
between pairs of hydrodynamical and DMO simulations, for which
their transfer functions and the number of particles often differ. Given
that this sub-percent level offset is due to artefacts, we correct for
this power mismatch by re-scaling the DMO power spectra using the
linear growth factor, such that the ratio between P

hydro
δ and P DMO

δ

asymptotically approaches one on large scales.
On scales above k > 30 Mpc−1 h, we perform extrapolation by

fitting a quadratic spline curve to data points at k ∈ [10, 30] Mpc−1 h

to capture the power boosting from the effect of cooling. As discussed
in Appendix B of H19, we argue that our extrapolation approach more
accurately captures cooling effects compared to simply adopting
the raw ratio as computed from the simulations. This is supported

Table 1. Parameters and priors used to run the likelihood analyses. Flat(a,
b) denotes a flat prior in the range given while Gauss(μ, σ ) is a Gaussian
prior with mean μ and width σ . The third column summarizes the fiducial
parameter values we used to generate mock data vectors and to construct PCs.
The fiducial values are chosen to be consistent with the posterior constraints
from the fiducial 
CDM model of DES Y1 3 × 2pt analyses (Abbott et al.
2018). The fiducial photo-z and shear calibration parameters are set at the
peak of the Gaussian prior for the purpose of running likelihood simulations.

Parameter Prior Fiducial value

Cosmology
�m Flat (0.1, 0.9) 0.3

As Flat (5 × 10−10, 5 × 10−9) 2.19 × 10−9

ns Flat (0.87, 1.07) 0.97

�b Flat (0.03, 0.07) 0.048

�νh2 baseline : Flat (5 × 10−4, 0.0013) 0.00083

Y1 fiducial : Flat (5 × 10−4, 0.01) –
h Flat (0.55, 0.91) 0.69

Lens galaxy bias

b1
g Flat (0.8, 3.0) 1.53

b2
g Flat (0.8, 3.0) 1.71

b3
g Flat (0.8, 3.0) 1.70

b4
g Flat (0.8, 3.0) 2.05

b5
g Flat (0.8, 3.0) 2.14

Lens photo-z shift

	z1
l Gauss (0.008, 0.007) 0.008

	z2
l Gauss (−0.005, 0.007) −0.005

	z3
l Gauss (0.006, 0.006) 0.006

	z4
l Gauss (0.0, 0.01) 0.0

	z5
l Gauss (0.0, 0.01) 0.0

Source photo-z shift

	z1
s Gauss (−0.001, 0.016) −0.001

	z2
s Gauss (−0.019, 0.013) −0.019

	z3
s Gauss (+0.009, 0.011) 0.009

	z4
s Gauss (−0.018, 0.022) −0.018

Shear calibration (METACALIBRATION)

m1 Gauss (0.012, 0.023) 0.012

m2 Gauss (0.012, 0.023) 0.012

m3 Gauss (0.012, 0.023) 0.012

m4 Gauss (0.012, 0.023) 0.012

Intrinsic alignment

AIA Flat (−5, 5) 0.45

ηIA Flat (−5, 5) −1.0

Baryon PC amplitude

Q1 baseline: Flat (−3, 12)
informative: Flat ( 0, 4)

Q2 Flat (−2.5, 2.5)

by comparing both methods to power spectrum ratios derived from
higher resolution simulations.

2.1.3 Mock data vectors

In order to validate our baryon mitigation pipeline, we generate
three mock data vectors to conduct simulated likelihood analyses:
a pure theoretical data vector derived from our analysis pipeline
(COSMOLIKE) with the fiducial parameters shown in Table 1 (we
refer to this mock data vector as the DMO scenario hereafter), and
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Figure 2. The principal components used in our baryon model (equation 19).
Here we show the first three L · vPC components projected on the cosmic shear
correlation functions in the cross tomographic bin (2,3). The solid curves
indicate PCs constructed based on 10 hydrodynamical scenarios, which are
used when analysing the DES data, and validating our pipeline on mock data
constructed from the Illustris and the DMO scenarios. The dashed curves
are constructed from 9 hydrodynamical scenarios, which are used when
validating on the Eagle mock data (see Section 2.3.1 for detail). The grey
shaded backgroud regions highlight the angular scales that excluded in the
original Y1 cosmic shear analysis. In this work, we include these small-
scale cosmic shear data points, and use the PCs as flexible bases to span
uncertainties of baryons in cosmic shear.

two baryon-contaminated mock data vectors based on the Illustris and
Eagle scenarios. Throughout this work, when conducting a simulated
analysis with a specific baryon-contaminated mock data vector, we
avoid using this specific baryonic scenario as input to the construction
of our baryon mitigation model. Further details of the simulated
likelihood analyses are found in Section 2.3.

We derive the baryon-contaminated data vectors at a specific cos-
mology pco using the underlying hydrodynamical power spectrum
defined as

P
hydro
δ (k, z | pco) = P

hydro,sim
δ (k, z | pco,sim)

P
DMO,sim
δ (k, z | pco,sim)

P
theory
δ (k, z | pco). (1)

The ratio terms
P

hydro,sim
δ (k,z | pco,sim)

P
DMO,sim
δ (k,z | pco,sim)

are computed from interpolating

the power spectrum ratio table constructed from various simulations
snapshots from z = 0 ∼ 3.5.9 Some of the selected snapshots are
visualized in Fig. 1.

When using equation (1), we implicitly assume that baryonic
effects and cosmology are independent. That is, we fix the ratio
of Pδ(k, z) for each baryonic scenario, while the cosmological
dependence is propagated through the theoretical power spectrum
P

theory
δ (k, z | pco). The expression of P

hydro
δ (k, z | pco) computed as

in equation (1) is then passed into the COSMOLIKE package to derive
the baryon-contaminated data vectors (Section 2.2).

The dependence of the baryonic suppression of the power spectrum
with cosmological parameters is explored in detail in Schneider et al.
(2020a). Based on the parametrization of their baryon correction
model, the derived power spectrum ratios are largely independent
of individual cosmological parameters, but they are related to the
cosmic baryon fraction, fb = �b/�m (see their Fig. 2); when varying
fb from 0.16 to 0.2, the power spectrum ratios are further suppressed
by ∼5 per cent (10 per cent) for k � 3 h Mpc−1 (k ≤ 10 h Mpc−1).
Here we use k ∼ 3 h Mpc−1 as a reference, because this roughly
corresponds to the effective scale to which we are sensitive given our
small-scale cut at 2.5 arcmin, given the lensing kernel peak at z ∼ 0.5

9The power spectra ratio data are available at https://github.com/hungjinh/ba
ryon-power-spectra and from the van Daalen et al. (2020) data release.

for DES Y1. Similarily, based on a fixed sets of BAHAMAS runs, but
varying cosmologies from WMAP 2009 (fb ∼ 0.17; Hinshaw et al.
2013), Planck 2013 (fb ∼ 0.15; Planck Collaboration XVI 2014),
to Planck 2015 (fb ∼ 0.16; Planck Collaboration VIII 2016), van
Daalen et al. (2020) showed that the power spectrum ratios vary �
2 per cent (4 per cent) for k � 3 h Mpc−1 (k ≤ 10 h Mpc−1). We
note that the interaction between baryonic physics and cosmological
parameters is a subdominent effect given the constraining power of
DES Y1. According to Schneider et al. (2020a), ignoring the coupling
of baryon suppression with fb is a valid approximation even for future
stage IV weak lensing surveys (see their fig. 10).

2.2 Model

We use the COSMOLIKE package (Krause & Eifler 2017), one
of the pipelines for DES cosmological inference, to perform the
theoretical modelling of the 3 × 2pt data vectors. The linear DMO
power spectrum is generated at each cosmology using CLASS (Blas,
Lesgourgues & Tram 2011), with non-linear corrections derived
from the Takahashi et al. (2012) version of HALOFIT. Throughout
this work, we consider a flat 
CDM cosmological model with six
free parameters, pco = {�m, As, �b, ns, �νh

2, h} in addition
to the considered systematics parameters. The complete list of all
parameters and their priors is given in Table 1.

Below we briefly summarize the theoretical modelling of the
three types of two-point correlation functions and their associated
systematic effects.

2.2.1 Cosmic shear ξ±(θ )

The real-space cosmic shear correlation function in tomographic bins
i, j is modelled as

ξ
ij
± (θ ) = (1 + mi)(1 + mj )

1

2π

∫
d� �J0/4(�θ )Cij

γ γ (�). (2)

Here J0 and J4 are Bessel functions of the first kind. The mi are
multiplicative factors, one for each tomographic bin, that account
for shear calibration bias (Heymans et al. 2006; Huterer et al.
2006). Cij

γ γ (�) is the detected shear–shear power spectrum, which
contains the real lensing signal due to gravity (GG) as well as the
contamination due to intrinsic alignment (II, GI, IG terms)

Cij
γ γ (�) = C

ij

GG(�) + C
ij

II (�) + C
ij

GI(�) + C
ij

IG(�) . (3)

Adopting the Limber approximation and the flat Universe assump-
tion (these modelling assumptions are demonstrated to be sufficient
for Y1, see Fang et al. 2020) the real lensing contribution can be
computed as

C
ij

GG(�) =
∫ χh

0
dχl

gi(χl)gj (χl)

χ2
l

Pδ

(
k = �

χl
, χl

)
, (4)

where χ l is the comoving distance for the matter distribution (lens)
along the line of sight, and χh is the comoving horizon distance. The
lensing kernel in the i-th tomographic interval is

gi(χl) = 3

2

H 2
0 �m

c2

χl

a(χl)

∫ χh

χl

dχsn
i
s(χs)

χs − χl

χs
, (5)

with ni
s(χs) being the probability density function (PDF) for the

redshift distribution of source galaxies in tomographic bin i, defined
such that ni

s(χs)dχs = ni
s(z)dz, which is normalized to unity.

For the intrinsic alignment (IA) contamination, we compute the
intrinsic–intrinsic shape correlation due to the local tidal gravitational
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field on pairs of source galaxies as,

C
ij

II (�) =
∫ χh

0
dχs

ni
s(χs)nj

s (χs)

χ2
s

PII

(
k = �

χs
, χs

)
. (6)

The lensing shear-intrinsic shape correlations for pairs of galaxies
where the foreground one is tidally torqued and the background one
is sheared by the same gravitational field reads,

C
ij

GI(�) + C
ij

IG(�) =
∫ χh

0
dχ

gi(χ)nj
s (χ) + ni

s(χ)gj (χ)

χ2
PGI

(
k = �

χ
,χ

)
.

(7)

The PII and PGI are IA power spectra. Throughout the work, we
adopt the commonly used non-linear alignment (NLA) model (Hirata
& Seljak 2004) to mitigate IA uncertainties, i.e. assuming the
amplitudes of IA power spectra are linearly related to the local density
field:

PII(k, z) = A2(z)Pδ(k, z)

PGI(k, z) = A(z)Pδ(k, z)

A(z) = −AIAC1
3H 2

0 �m

8πG
D−1(z)

(
1 + z

1 + z0

)ηIA

. (8)

Here D(z) is the linear growth factor; C1 is the normalization constant
being set at 5 × 10−14 M−1

� h−2Mpc3 (Brown et al. 2002); the pivot
redshift z0 is being set to 0.62. The nuisance parameters that go
into the pipeline for IA marginalization are AIA and ηIA. For a more
detailed IA analysis on DES Y1 data see Samuroff et al. (2018).

2.2.2 Galaxy clustering

The location of galaxies traces the underlying matter density field, yet
with some unknown bias factor which depends on scales and redshift
and on the tracer galaxy population. On large scales, under the simple
scale-independent linear bias model, the theoretical prediction for the
galaxy–galaxy autocorrelation function in tomographic bin i can be
expressed as

wi(θ ) = 1

2π

∫
d�J0(�θ )Cii

δgδg
(�)

Cii
δgδg

(�) =
(
bi

g

)2
∫ χh

0
dχl

(
ni

l (χl)
)2

χ2
l

Pδ

(
k = �

χl
, χl

)
, (9)

where ni
l (χl) is the PDF for the redshift distribution of lens galaxies,

and bi
g is the galaxy bias factor for each tomographic bin.

2.2.3 Galaxy–galaxy lensing

Galaxy–galaxy lensing, the cross-correlation between the position
of lens galaxies in bin i and their surrounding matter density field
traced by the shear of source galaxies in bin j, is modelled as

γ
ij
t (θ ) = (1 + mj )

1

2π

∫
d�J2(�θ )Cij

δgγ (�) , (10)

where mj again is the multiplicative shear bias; J2 is the second-order
Bessel function. Similarly, the C

ij
δgγ (�) term has contributions from

both pure lensing and IA effects,

C
ij
δgγ (�) = C

ij

δgG(�) + C
ij

δgI(�) . (11)

The lensing term reads

C
ij

δgG(�) = bi
g

∫ χh

0
dχl

ni
l (χl)gj (χl)

χ2
l

Pδ

(
k = �

χl
, χl

)
, (12)

and the IA term is expressed as

C
ij

δgI(�) = bi
g

∫ χh

0
dχ

ni
l (χ )nj

s (χ )

χ2
PGI

(
k = �

χ
, χ

)
, (13)

with the IA power spectrum PGI being defined in equation (8).
Finally, throughout this work, the uncertainty in the photometric

redshifts is modelled as a constant shift of the initial redshift
probability distribution function ni

pz(z), for both source and lens
galaxies, in each tomographic bin.

ni
s(z) = ni

s,pz

(
z − 	zi

s

)
; ni

l (z) = ni
l,pz (z − 	zi

l ). (14)

2.3 PC decomposition to model baryonic effects

We adopt the principal component (PC) decomposition technique to
model baryonic effects for small-scale cosmic shear (Eifler et al.
2015). The basic idea of this technique is to perform principal
component analysis (PCA) on the difference of the theoretical model
vectors (the 3 × 2pt vectors for this work) between hydrodynamical
and DMO simulations, for several baryonic scenarios. To construct
the baryon-contaminated cosmic shear correlation functions, we use
equation (1) to derive the underlying baryonic power spectra that go
into integration (see Section 2.1.3).

The resulting dominant PC modes then serve as a flexible basis set
to account for possible baryonic effects in both spatial and redshift
dimensions via the angular bins and tomographic information. In
H19, we validate this method assuming an LSST-like cosmic shear
experiment. We further improve the efficiency of this method by
imposing a covariance-driven weighting factor when performing
PCA, which is referred to as method C in H19. Below we briefly
summarize the formalism of this method.

Let M be a DMO-based theoretical 3 × 2pt model vector, and
Bx be a model vector contaminated with baryonic scenario x,
computed by replacing the matter power spectrum via equation (1)
(see Section 2.1.3 for detail). We first build a difference matrix �

� = [
B1 − M B2 − M . . . BNsim − M

]
Ndata×Nsim

. (15)

Each column of � is a difference vector, Bx − M, with 630 elements
(Section 2.1.1), computed with the cosmology and the nuisance
parameters being set to the fiducial values listed in Table 1.

Next we use the Cholesky decomposition on the data vector
covariance matrix, to find the square root of the covariance

C = LLt . (16)

We use L−1 to build a noise-weighted difference matrix �ch, and
apply singular value decomposition (SVD) to �ch

�ch = L−1�

= L−1
[

B1 − M B2 − M . . . BNsim − M
]
Ndata×Nsim

= Uch �ch Vt
ch , (17)

where Uch and Vch are square unitary matrices with dimensions of
Ndata × Ndata and Nsim × Nsim, respectively. �ch is a diagonal matrix
with the singular values populating the diagonal in descending order.

The first Nsim columns of the Uch matrix form a set of PC bases,
vPC, i, that can be used to fully span the baryonic features of our
training simulations. For a given baryonic scenario x, we have

L−1(Bx − M) =
Nsim∑
i=1

Qi vPC,i . (18)
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With the derived PCs, we can generate a baryonic model that
utilizes PC amplitudes Qi to simulate possible baryonic behaviours.

Mbary( pco, pnu, Q) = M( pco, pnu) +
n∑

i=1

Qi L · vPC,i . (19)

Here n specifies the number of PC amplitudes/PC modes used to
model the baryonic effect, and n ≤ Nsim. The operation of L · vPC,i

transforms the PC mode back to the same basis as M.
Note that although we pass the full 3 × 2pt vector in equation (17)

to perform PCA, the deviations from the DMO scenario are extremely
small for the galaxy–galaxy lensing and galaxy clustering parts
because of their conservative scale cuts. Therefore, the PCs mostly
account for baryonic effects in small-scale data points of cosmic
shear (see Fig. A2 for the fractional change of model vector when
varying Q1).

2.3.1 Input hydrodynamical scenarios for PC construction

We will use the Illustris and the Eagle scenarios as the conservative
and optimistic validation scenarios for our PCA baryon mitigation
model.

As mentioned before, we exclude the considered scenario in the
baryon PC basis set, hence we are building two PC bases for this
exercise, one excluding Eagle and the second one excluding Illustris.

The first PC set is constructed with 10 hydrodynamical scenarios:
MB2, Horizon-AGN, TNG100, Eagle, three variants of cosmo-
OWLS, and three variants of BAHAMAS scenarios with different
AGN feedback strength. We will use this basis set to mitigate
baryonic effects for our Illustris and DMO mock data vectors (see
Section 2.1.3), and for the real DES Y1 observational data vector.

The second PC basis set is constructed with the same scenarios as
the first, with the Eagle scenario being excluded. When performing
our analyses on the Eagle mock data vector, we will use the second
PC set as bases to conduct baryon mitigation. The reasoning for this
design can be understood in equation (18). If using the first PC set
to perform marginalization on Eagle, the first PC set is guaranteed to
be able to describe Eagle by construction.

Fig. 2 provides a visualization of L · vPC,i in projection on the ξ±
observables in the cross tomographic bin (2,3), for our two sets of
PC bases. As shown, these two sets of PC modes turn out to be quite
similar.

2.4 Likelihood analysis

We infer the posterior probability distribution of cosmological ( pco)
and nuisance parameters ( pnu) via Bayes’ theorem:

P ( pco, pnu|D) ∝ L(D| pco, pnu)Pprior( pco, pnu) , (20)

with the prior probability distribution for each of the parameter
defined in Table 1.

The priors for our baseline analysis are chosen to be mostly the
same as DES Y1 (Abbott et al. 2018), with an exception of the upper
limit of the neutrino mass prior. We now discuss the priors in more
detail.

2.4.1 Prior for neutrino mass

Instead of applying a non-informative upper limit on the sum of neu-
trino masses �mν < 0.94 eV c −2 (i.e. �νh2 < 0.01) as in DES Y1, we
adopt an upper limit of �mν < 0.12 eV c−2 (�νh2 < 0.0013) as our
baseline analysis. This upper limit is based on the latest 95 per cent

Figure 3. Cosmological parameter constraints from simulated likelihood
analyses subjected to different choices of neutrino mass priors. All chains
shown here are based on the DMO mock 3 × 2pt analyses. The grey (orange)
contours indicate the case with fiducial Y1 scale cuts, and with wide (narrow)
neutrino prior applied. The shaded green (pink) contours are the case when
extending cosmic shear to 2.5 arcmin in the 3 × 2pt mock data (without
performing baryon marginalization), subjected to the Y1 fiducial (narrow)
neutrino prior. Here, and in all 2D posterior plots below, the contours depict
the 68 per cent and 95 per cent confidence levels. The parameter biases of �m

and S8 decrease when narrowing the neutrino prior. The coloured dots are
randomly selected samples in the wide neutrino prior chain (orange curves)
with the neutrino mass coloured as indicated in the sidebar. Higher neutrino
mass tends to suppress the clustering amplitude of matter. The posterior of
�m is thus biased high to compensate for that.

constraint from Planck TT, TE, EE+lowE+lensing+BAO (Planck
Collaboration VI 2018) and has the advantage that it reduces biases in
the 1D projected posterior probabilities of the relevant cosmological
parameters.

As shown in Fig. 3, for the simulated likelihood analysis with
DES Y1 scale cuts, the wide Y1 neutrino prior leads to a ∼0.8σ

level bias in S8 (grey contour); while the case with an informative
neutrino prior only has a 0.35σ bias in S8. The bias is caused by
the asymmetric coverage of the neutrino prior around the fiducial
neutrino value, as discussed in Krause et al. (2017). Since DES
Y1 data do not have significant constraining power on neutrino
masses, marginalizing over neutrino mass preferentially allows
many scenarios with increased neutrino mass, which leads to a net
suppression in structure growth. The �m posterior is then biased high
to compensate for that.

This neutrino prior-induced bias becomes more significant when
including small-scale data in the analysis, due to the smaller uncer-
tainties (grey versus green contours in Fig. 3) and due to the fact that
small-scale data are more sensitive to the neutrino mass. We thus
place a narrower limit on the neutrino mass prior as our baseline
analysis, and the S8 bias is reduced to ∼0.3σ (shaded pink contours).
For the purpose of comparison, we will also present and discuss the
result with the original Y1 wide neutrino prior.

2.4.2 Priors for baryonic parameters

The theoretical PC amplitude Qi for each hydrodynamical scenario
x can be computed by taking the inner product of the weighted
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Figure 4. The expected PC amplitudes Q1, Q2 for baryonic scenarios
considered in this work, with PCs being constructed using 10 hydrodynamical
simulations as detailed in Section 2.3.1. Our choice of priors for Q1, 2 are
based on the range of values from these baryonic scenarios. The yellow band
highlights the range of informative prior on Q1, Flat(0,4), which is bounded
by the Illustris scenario. As shown in Fig. 2 on the features of PC modes, the
larger Q1 value indicates stronger suppression of matter clustering at small
scales. The Q2 parameter further provides a higher order correction.

difference vector, L−1(Bx − M), with the PC mode PCi (see
equation 18). Fig. 4 presents the expected Q1, 2 values for all
hydrodynamical scenarios considered in this work.

An increase in Q1 mostly controls the amount of suppression
on small scales, whereas higher order PC amplitudes Qi ≥ 2 provide
corrections on baryonic effects that can also impact larger scales (see
Fig. 2).

We adopt two choices of priors for the baryonic parameters.

(i) baseline: Q1 ∈ Flat(−3, 12) ; Q2 ∈ Flat(−2.5, 2.5)
(ii) informative: Q1 ∈ Flat(0, 4) ; Q2 ∈ Flat(−2.5, 2.5)

The baseline priors are extremely conservative and allow for the
data to entirely self-calibrate the baryonic effects. Looking at Fig. 4
we see that they are significantly larger than the spread of Q1, 2 for
all hydrodynamical scenarios.

The informative prior of Q1 is highlighted in the yellow band
of Fig. 4, and we consider this prior range to be well-motivated if
one considers including a minimal amount of external information
from the simulation literatures in our analysis. Specifically, Haider
et al. (2016) found that the radio-mode AGN feedback in Illustris is
too strong such that too much gas is heated and ejected, leading to
insufficient baryons in galaxy groups compared with observations.
Also in Le Brun et al. (2014), the cosmo-OWLS T8.5 and T8.7
scenarios are a poor match to several X-ray observables. It is thus
reasonable to use the Illustris scenario as an upper bound on the level
of feedback strength that our Universe could possibly reach and to
adopt a corresponding prior in our analysis. As we will see later,
this informative, but well-motivated prior, will increase the amount
of information we gain on cosmology by adding small-scale cosmic
shear data in DES Y1.

For our likelihood analyses, we adopt a Gaussian likelihood:

L(D| pco, pnu) ∝ exp

(
−1

2

[
(D − M)t C−1 (D − M)

]
︸ ︷︷ ︸

χ2( pco, pnu)

)
. (21)

As discussed in Lin et al. (2019), the impact of non-Gaussianity
in the likelihood is estimated to be negligible in current and future
cosmic shear surveys.

The 3 × 2pt covariance matrix C is computed using the COSMOLIKE

package (Krause & Eifler 2017), which calculates the relevant four-
point functions in the halo model. The analytic form of the covariance
matrix and relevant validation for DES Y1 is detailed in Krause et al.
(2017), with updates provided in Troxel et al. (2018b) to address the
effect of survey geometry and the uncertainty in the multiplicative
shear bias calibration. For simplicity, we do not consider potential
baryonic effects when computing the covariance matrix. As discussed
in previous works, neglecting baryonic effects in the covariance
matrix has little impact on the cosmological inference for stage IV
weak lensing surveys Schneider et al. (2020a), Barreira et al. (2019),
and should be negligible for DES.

We use the emcee package (Foreman-Mackey et al. 2013),
which relies on the affine-invariant ensemble sampling algorithm
(Goodman et al. 2010), to sample the parameter space. We run
MCMC (Markov Chain Monte Carlo) chains to 2.5 million steps,
and then discard the first 1.25 million steps as burn-in. We have
visually checked the convergence of MCMC chains by ensuring that
the 1D and 2D posterior distributions for all parameters are consistent
with the results of a chain with 5 million steps out to 3σ confidence
intervals.

2.5 Blinding strategy

Our blinding strategy aims to shield against ‘confirmation bias’, i.e.
stopping the search for new systematics or better parametrizations of
existing systematics when the result matches the expectation. There
are differences between our analysis and the DES Y1 analysis choices
described in Krause et al. (2017), and these analysis differences will
drive those in the respective blinding strategies. In particular, we
include small scales in cosmic shear (down to 2.5 arcmin), we add
a corresponding parametrization for baryonic physics uncertainties,
and we use a different prior for the neutrino mass parameter. Beyond
these differences, we follow the Krause et al. (2017) choices; in
particular, we do not reassess scale cuts for galaxy–galaxy lensing
and galaxy clustering, or other model parametrizations and priors.
This is justified given that our constraining power is very similar to
that of Abbott et al. (2018), and even when we use informative priors
on baryonic physics we expect a 20 per cent information increase at
most (see Section 3.2). Based on these considerations, our blinding
strategy proceeds as follows:

(i) We develop our pipeline completely independently of the data
vector, i.e. we run 100+ simulated likelihood analyses to stress test
our pipeline. We use different data vectors, different prior settings,
and different modelling settings until we converge to the setup
described in Table 1. We describe this process in Section 2.4 and
results in Section 3.

(ii) Our pipeline is a modified version of the DES Y1 COSMOLIKE

pipeline; we performed a comparison with the latest COSMOLIKE

version (which has undergone testing and validation for DES Y3) and
have reached an excellent agreement at the level of 	χ2 = 0.0005
and 	χ2 = 0.0006 for model vectors with the original scale cuts used
in Abbott et al. (2018) and with the new scale cuts used in this paper,
respectively. The residual uncertainties are due to small modifications
in the interpolation routines that were incorporated between Y1 and
Y3. The version used in this work is tagged as ’Huang2020’ in
the ’cosmolike core’ github repository of the COSMOLIKE github
organization.
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Figure 5. Results with the analysis setup where we fit the 3×2pt observables while marginalizing over baryonic physics on two hydrodynamical simulations.
The two panels show posterior constraints on �m and S8 for the Eagle (left-hand panel) and the Illustris (right-hand panel) mock data. The yellow contours
indicate the result when the DES Y1 scale cut is applied. The blue (red) contours show the result when extending cosmic shear to 2.5 arcmin, but without (with)
marginalization on baryonic parameter Q1. The analysis result when adopting the informative Q1 prior is indicated in grey shaded contours. The marginalized
1D constraint in S8 with 1σ error is spelled out in the lower right corners of the plots.

(iii) We described all our pipeline tests and the code comparison
to an internal review panel within the DES collaboration and only
replaced the simulated data vector with the actual data after their
sign-off.

The data constraining results presented in Section 5 and Section 4
are unaltered post unblinding.

3 LIK ELIHOOD SIMULATION R ESULTS

In this section, we present our simulated likelihood analysis results
for the three mock data vectors of baryonic scenarios, DMO,
Eagle, and Illustris, in order to design and understand the expected
performances of our baryon mitigation pipeline. DMO is the best-
case scenario for which we know in advance that the resulting
cosmological inference should not be biased, regardless of whether
baryon mitigation is performed. With its strong feedback, the
Illustris simulation serves as a conservative scenario in our pipeline
validation; such strong feedback is largely ruled out by observations
already (Haider et al. 2016). The Eagle scenario has significantly
weaker feedback, so its deviation from DMO is relatively small and
it serves as an optimistic scenario in our pipeline validation.

As an overview, in Fig. 5, we show the posterior distributions of
�m and S8 with the input mock 3 × 2pt data from the Eagle (left-
hand panel) and Illustris (right-hand panel) scenarios. We compare
the fiducial DMO case (filled grey contours) with

(i) applying DES Y1 scale cuts (yellow contours),
(ii) extending cosmic shear to 2.5 arcmin but without introducing

an extra parameter to marginalize over baryonic physics (blue
contours),

(iii) same as (ii), but marginalizing over Q1 with our baseline prior
Flat(−3, 12) (red contours),

(iv) same as (iii), but applying an informative prior Flat(0, 4) on
Q1 (grey shaded contours).

Below we will investigate the posterior distributions on these
simulated likelihood analyses (shown in Fig. 5), to understand the
potential outcomes when applying our pipeline on real data.

3.1 Number of PC modes to be marginalized over given DES
Y1 constraining power

To determine how many PC modes are needed in equation (19)
to account for baryons when pushing cosmic shear to 2.5 arcmin
given DES Y1 statistical power, we increase the available degrees of
freedom by increasing the number of PC amplitudes Qi when running
likelihood simulations and track the resulting posterior distributions.

3.1.1 The residual bias after marginalization

Fig. 6 summarizes the marginalized 1D S8 posterior constraints for
our likelihood simulations (as shown in Fig. 5 for the case of the
Eagle and Illustris scenarios).

We use the DMO results as a baseline for understanding the level of
parameter projection effects, i.e. the parameter biases as revealed in
the marginalized posterior constraints. Parameter degeneracies in the
high-dimensional space may lead the 1D and 2D projected posteriors
to peak at biased positions, and for parameters where the data are
not sufficiently constraining the posterior can peak at biased values
due to prior volume effects (e.g. the neutrino prior issue discussed
in Section 2.4.1). As indicated by the yellow square markers, we
observe that the projection effects would cause ≈ 0.3 ∼ 0.5σ biases
in the S8 constraints under our baseline setting (see Table 1), which
we should keep in mind when interpreting tensions between different
experiments using distances in projected parameter spaces.

MNRAS 502, 6010–6031 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/4/6010/6136267 by U
niversidade de Sao Paulo - EESC

 user on 13 N
ovem

ber 2021



Baryonic physics in the Universe 6019

Figure 6. The marginalized 1D S8 posterior constraints for our baseline
likelihood simulations with baryonic scenarios of DMO, Eagle, and Illustris.
Each marker’s centre, lower, and upper error bars indicate the median,
the 16th and the 84th percentiles of marginalized 1D posteriors. The open
markers are results of 3 × 2pt mock data vectors subjected to the original
DES Y1 scale cuts, while the filled markers are results when extending the
cosmic shear data points to 2.5 arcmin (Section 2.1), with different choices
for the number of marginalized PC amplitudes Qi to account for baryonic
effects. Marginalizing over 1 PC mode is sufficient to account for baryonic
effects to within ∼0.2σ under the statistical power of DES Y1, for all
baryonic scenarios considered here.

When performing analyses with the Y1 scale cut (open markers)
without marginalizing over baryonic physics, we find a residual
∼0.9σ bias in S8 for the Illustris scenario. This is because the
Y1 cosmic shear scale cut is determined based on the cOWLS-
AGN 	Theat = 108 scenario, which is less intense compared with
the feedback effect of Illustris (see Fig. 1). When including small-
scale cosmic shear data points in the 3 × 2pt analyses (filled
markers), for weaker baryonic scenarios like Eagle, we find that even
without marginalization the S8 bias can still be within 0.5σ . Using a
strong feedback scenario like Illustris as the most pessimistic limit,
we conclude that marginalizing over a single PC mode would be
sufficient to account for baryonic effects to within ∼0.2σ , which is
well within the referential bias level set from the DMO case.

3.1.2 The degradation on parameter constraints after
marginalization

Small-scale cosmic shear data points provide additional cosmolog-
ical information, but some of the information will be lost after
accounting for uncertainties in baryonic physics. Here, we explore
the expected degradation on parameter constraints in DES Y1 within
the PCA framework, subject to our choices on the number of
marginalization parameters for baryons.

Fig. 7 shows the rescaled S8 1σ error for our likelihood analyses
(as shown in Fig. 5 for the cases of the Eagle and Illustris scenarios).
Starting from left to right, the first/second/third group is for the
Illustris/Eagle/DMO mock data vectors when running likelihood
simulation. The yellow bars are for S8 errors derived with Y1 scale
cuts applied. The blue/red/brown bars are the results with the cosmic
shear data points extended to 2.5 arcmin, and with 0/1/2 PC mode(s)
being marginalized. This figure confirms our expectation that after
marginalizing over one PC mode (red bars), the resulting S8 constraint

Figure 7. The rescaled S8 1σ error in the simulated likelihood analyses:
σ /σY1 cut DMO. The horizontal yellow dashed line indicates the condition when
σ = σY1 cut DMO. Starting from left to right, the first/second/third groups
indicate results when using the Illustris/Eagle/DMO scenarios as mock data
in our likelihood simulations. The yellow bars are for S8 errors derived with
Y1 scale cuts applied. The blue/red/brown bars are the results with the cosmic
shear data points extended to 2.5 arcmin, and with 0/1/2 PC mode(s) being
marginalized. The grey bars indicate the results when marginalizing over
Q1 with an informative prior range. For the baseline analysis setting with
small-scale cosmic shear included, marginalizing over 1 PC mode leads to
similar constraining power in S8 compared with the result with Y1 scale cuts
being applied. When adopting an informative prior on Q1, a ∼ 20 per cent
improvement in S8 is expected.

should be similar to the result with conservative scale cuts being
applied (yellow bars). Marginalizing over two PC modes (brown
bars) should lead to 20 per cent∼30 per cent larger errors in S8,
depending on the baryonic scenarios.

In conclusion, we do not expect to gain extra cosmological
information from small-scale cosmic shear data points when using
our wide baseline prior to account for baryons. The same conclusion
can be inferred from the 2D posterior distributions in the �m–S8

plane presented in Fig. 5 for the analyses using the Eagle and the
Illustris scenarios as mock data.

3.2 Information gained with informative prior on baryonic
physics

Next we explore the improvement in the constraints on cosmological
parameters when adopting our well-motivated, informative Q1 prior
which limits the allowed range of baryonic uncertainties to exclude
feedback strength at the Illustris level (Section 2.4.2). Thus, when
adopting our informative prior, we do not expect the allowed degrees
of freedom to fully mitigate Illustris or other baryonic scenarios with
more intense AGN feedback.

As shown in the grey bars of Fig. 7, we expect to have about
20 per cent improvement in the marginalized 1D S8 constraint when
using the informative Q1 ∈ (0,4) prior, compared with adopting Y1
scale cuts (yellow bars). Fig. 5 also provides a visualization of the
relative improvements in terms of 2D posterior distributions (grey
shaded versus yellow contours).

3.3 Expected constraints on baryonic parameters

Next we present the expected constraints on the baryon pa-
rameters (PC amplitudes) for our baseline pipeline setting and
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6020 H.-J. Huang et al.

Figure 8. Posterior distributions of Q1 under our baseline setting for mock data vectors of DMO (left-hand panel), and Illustris and Eagle scenarios (right-hand
panel). We show the case when cosmic shear is extended to 2.5 arcmin, and only varying Q1 to account for baryons. Given the constraining power of Y1, when
the baryonic feedback of the input mock data is weak (at the level of Eagle), we expect to exclude some of the extreme baryonic scenarios at the ∼2σ confidence
intervals.

discuss the potential parameter projection effects on their posterior
distributions.

Fig. 8 shows the Q1 posterior distributions for the DMO (left-
hand panel) and Eagle and Illustris (right-hand panel) mock data
vectors, with cosmic shear data down to 2.5 arcmin and with
only Q1 being marginalized over an un-informative prior. The
theoretical values of Q1 for various baryonic scenarios are com-
puted relying on the relation of equation (18), as detailed in
Section 2.4.2.

The DMO mock data are created with Q1 = 0, and therefore
could be used to estimate the level of projection effects on Q1.
We see that the marginalized 1D peak of Q1 has a ∼0.5σ shift
from its fiducial value. This happens due to parameter degeneracies
between Q1 and other cosmological and systematics parameters.
As discussed in Section 3.1.1, we have seen that biases of the
order of ∼0.3∼0.5σ are expected (see the yellow square markers
in Fig. 6) in the marginalized 1D S8 constraints for the case of DMO.
We explore the topic of parameter degeneracies in more detail in
Appendix A.

Note that the projection effect in Q1 is less apparent for the
cases of Eagle (∼0.01σ ) and Illustris (∼0.1σ ), as shown in the
right-hand panel of Fig. 8. This is because the mock data vec-
tors of Eagle and Illustris have extra baryonic features hidden
in the higher order PC modes. This residual ‘noise’ of bary-
onic physics, which cannot be accounted for using only Q1,
is pushing the Q1 posterior closer to the expected theoretical
value.

Regarding the constraining power on baryonic physics shown in
Fig. 8, we find that the DES Y1 type constraint can exclude baryonic
scenarios that are different from the input fiducial scenario by ∼2σ .
For example, when the input fiducial baryonic scenario is weak
like Eagle (blue curve in the right-hand panel), the cosmoOWLS-
AGN with the minimum heating temperature at 108.7 K (the strongest
feedback baryonic scenario in the pool) can be excluded at the 2σ

confidence level, given Y1 statistical power. When the input mock
baryonic scenario is Illustris (yellow curve in the right-hand panel),
all other baryonic scenarios are covered within the 2σ posterior
region of Q1.

4 C O S M O L O G Y C O N S T R A I N T S FRO M D E S Y 1
DATA

This section presents the main cosmology results when applying our
pipeline to DES Y1 data.

Fig. 9 presents a summary of the 68 per cent confidence intervals
on the constraints of �m, S8, and σ 8 for all the analyses we have run.
As a high-level summary, we start by presenting the DES Y1-only
constraints of the baseline setting with Y1 scale cuts applied (top
orange), and with the cosmic shear data extended to 2.5 arcmin but
without performing baryon marginalization (green). With baryonic
effects being properly marginalized through an non-informative prior
on Q1, we find that almost no information is gained with the inclusion
of small-scale cosmic shear data points (dark blue) compared to the
case with conservative Y1 scale cuts. When using our informative
prior, we find an improvement in cosmological constraints from the
inclusion of small-scale cosmic shear (grey). Finally, we also present
a result with cosmic shear being extended down to 2.5 arcmin but with
an adoption of the non-informative prior on neutrino mass (purple).
We then combine the DES Y1 constraints with external data sets
of Planck and baryon acoustic oscillation (BAO) constraints (darker
orange and light blue), and explore the combined results (red and
yellow). We will discuss these results in detail below.

4.1 Baseline constraints

Our baseline setting mostly follows the fiducial DES Y1 3 × 2pt key
paper (Abbott et al. 2018), except for adopting a informative neutrino
prior of mν < 0.12 eV c−2 (see Section 2.4).

Fig. 10 shows the best-fitting theoretical models on top of the
observed cosmic shear correlation function. The yellow lines show
the fits when the original Y1 scale cut is applied. With the discarded
small-scale data points added in the analyses, the yellow-green
contours are the result without performing baryon marginalization;
the blue lines show the result when the first PC amplitude is used
to marginalize over uncertainties in baryonic effects. In Table 2, we
provide χ2 analyses on the derived best-fitting models. For the case
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Baryonic physics in the Universe 6021

Figure 9. Summary of the marginal 1D peak values of cosmological parameters in 
CDM from DES Y1 data. The 68 per cent confidence levels are shown as
horizontal bars. The first row is the baseline DES 3 × 2pt data analysis with the adoption of the conservative Y1 scale cuts, and with the informative neutrino
mass prior being applied. Rows 2–4 present the DES results with cosmic shear extended to 2.5 arcmin, but without taking baryonic uncertainty into account
(yellow-green), using the Q1 parameter to marginalize over the effect of baryons with an uninformative Q1 prior (blue), and with an informative Q1 prior (grey).
The 5th row (purple) shows the result using the same setup as the second row, but adopting wide neutrino prior as in the original DES Y1 analysis. Two likelihood
chains from the Planck DR18 results (Planck Collaboration VI 2018) are presented for comparison: the CMB polarization auto power spectra combined with
BAO (orange), and the joint CMB temperature and polarization auto- and cross-power spectra (light blue). The last two rows are the results of the small-scale
extended DES data (as shown in third row) when adopting informative cosmological priors from Planck EE+BAO (red), and from Planck TT,TE,EE (yellow).

of Y1 scale cut (first column), the reduced χ2 derived in this work
is consistent with the fiducial DES Y1 key paper (as discussed in
the Appendix C of Abbott et al. 2018). After including the extra 175
small-scale data points of cosmic shear, but without introducing any
new parameters in the modelling procedure, the reduced χ2 value
remains low (second column of Table 2).10 This suggests that the
baryonic features in the power spectrum on the scales to which these
data are sensitive are weak enough that, within the Y1 error, the
DMO calibrated theoretical model still provides a valid description
of the data. Adding an extra degree of freedom to account for the
potential baryonic effect at small scales does not reduce the χ2 value
any further.

The posterior cosmological parameter distributions from our
baseline analyses are presented in Fig. 11. The yellow contours
show the constraint when the original Y1 scale cuts are applied.
The derived marginalized 1D peak constraints are

�m = 0.268+0.034
−0.031 S8 = 0.787+0.024

−0.025 σ8 = 0.831+0.060
−0.069 , (22)

which is consistent with the Y1 key paper result. The minor difference
in the constraints is caused by the following three factors: neutrino
prior difference (which would induce a factor of ∼0.5σ shift as
shown in Fig. 3), sampler difference (emcee versus MultiNest
– Feroz, Hobson & Bridges 2009) and theory code uncertainty
(COSMOLIKE versus COSMOSIS – Zuntz et al. 2015). As discussed
in fig. 17 of Abbott et al. (2018), the latter two differences together
contribute at about 0.2σ level. Given the Y1 constraining power,
these uncertainties would not change the conclusion of this paper,
but further investigation and management of their error budgets will
become a necessity for Stage IV cosmological analyses.

10Note that for the small-scale data analyses, the χ2 value goes from 674
to 675 when an additional degree of freedom is added to perform baryon
marginalization. This could happen due to the stochastic MCMC sampling
in high dimensional parameter space, and that the likelihood surface is not a
simply smooth function but noisy. So when comparing the reduced χ2 values,
their error bars (

√
2/d.o.f ) are important.

The blue contours in Fig. 11 show the cosmological constraints
when introducing additional information from small-scale cosmic
shear in the original Y1 3 × 2pt analysis while properly marginalizing
over the uncertainties of baryons at these scales. The derived
marginalized 1D posterior peaks of the main cosmological parame-
ters are

�m = 0.278+0.034
−0.031

S8 = 0.779+0.030
−0.025

σ8 = 0.810+0.061
−0.066 .

(23)

Without performing baryon marginalization (yellow-green con-
tours), the resulting marginal 2D posterior is still overlapping with the
1σ region of the case when introducing one parameter to account for
baryonic uncertainty (blue), and with the result when the conservative
scale cuts is adopted (yellow). By comparing the �m–S8 posterior
distribution in the left-hand panel of Fig. 11 with the left-hand panel
of Fig. 5, we find that the baryonic scenario as measured from DES is
comparable to that of the Eagle mock-data simulation, for which we
have learned that even without performing baryon marginalization
when extending cosmic shear to 2.5

′
, the S8 bias can still be within

0.5σ (see Section 3.1.1).

4.2 Informative prior on baryonic physics

The parameter constraints obtained when adopting our informative
Q1 prior is shown in the right-hand panel of Fig. 11 in the shaded
grey contours in comparison with the baseline (blue contours) and
the Y1 scale cut (yellow contours) results. The derived marginal 1D
peak cosmological parameters are

�m = 0.278+0.024
−0.034

S8 = 0.788+0.018
−0.021

σ8 = 0.821+0.052
−0.052 . (24)

Compared with the (averaged) error bars resulting from setting Y1
scale cuts, as shown in equation (22), we have around 11 per cent,
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6022 H.-J. Huang et al.

Figure 10. DES Y1 cosmic shear data vector (filled black points) and the best-fitting theoretical predictions from our baseline analyses. The yellow solid
lines show the best-fitting model when the original Y1 scale cut is applied; the Y1 discarded data points are highlighted in the shaded grey regions. The blue
dash-dotted (yellow-green dashed) lines indicate the best-fitting model when extending cosmic shear data points to 2.5 arcmin, and marginalizing over 1 (0) PC
amplitude to account for baryons. For clarity, the two panels on the right show the (2, 3) tomographic bin with the rescaled vertical axis to better illustrate the
differences between the models. The χ2 information of these best-fitting models is summarized in Table 2.

Table 2. Goodness-of-fit for 3 × 2pt data for the best-fitting models (maximum likelihood point sampled in a chain), and the summary of constraints on the
1D peak value of �m, S8, and σ 8. The comparison between the cosmic shear data vectors and the model predictions for these best-fitting models are shown in
Fig. 10. The first row lists the χ2 values. The second and the third rows summarize the effective number of parameters (parameters subjected to wide priors), and
the effective degrees of freedom for each of the analyses settings. The fourth row shows the reduced χ2 values computed, with their errors provided in the fifth
row. To understand whether a specific model is a good description of the data, in the sixth row, we derive the p-values based on the χ2 distribution. A p-value >

0.05 indicates that the data are compatible with the model prediction within the error.

Y1 cut Shear to 2.5 arcmin Shear to 2.5 arcmin DES (shear 2.5 arcmin, mar. Q1)
(no baryon marginalization) (mar. Q1) +

Planck EE+BAO

Best-fitting χ2 502 674 675 678

Effective Npar 12 12 13 8

Effective d.o.f 443 618 617 622

Reduced χ2 1.128 1.091 1.094 1.090√
2/d.o.f 0.067 0.057 0.057 0.057

p-value 0.027 0.059 0.053 0.059

�m 0.268+0.034
−0.031 0.284+0.033

−0.027 0.278+0.034
−0.031 0.294+0.008

−0.006

S8 0.787+0.024
−0.025 0.770+0.015

−0.017 0.779+0.030
−0.025 0.781+0.014

−0.015

σ 8 0.831+0.060
−0.069 0.784+0.047

−0.047 0.810+0.061
−0.066 0.788+0.010

−0.010
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Baryonic physics in the Universe 6023

Figure 11. Cosmological parameter constraints on DES Y1 3 × 2pt data in 
CDM. The yellow solid contours indicate the constraint when the original Y1
scale cut is applied. The blue dash-dotted contours show the result when adding extra small-scale cosmic shear data, and with uncertainties of baryon being
marginalized with non-informative Q1 prior. Left-hand panel: The yellow-green dashed contours indicate the result with small-scale cosmic shear data added
but without performing baryon marginalization. Right-hand panel: The shaded grey contours indicate the case when extending cosmic shear to 2.5 arcmin while
adopting informative prior on the first PC amplitude to perform baryon marginalization.

20 per cent, 19 per cent improvements on the 1D marginalized 1σ

error bars of �m, S8, σ 8, respectively. The derived improvements
are consistent with what we have learned from simulated likelihood
analyses (Section 3.2) before unblinding.

4.3 Non-informative neutrino prior

Due to concerns about parameter projection effects as discussed
in Section 2.4.1, we adopt an informative prior on the sum of the
neutrino mass parameter based on the external information from
Planck Collaboration VI (2018) and BAO measurements (Beutler
et al. 2011; Ross et al. 2015; Alam et al. 2017). Here we explore the
cosmology results for different choices of neutrino priors between
our baseline (�νh2 ∈ Flat(5 × 10−4, 1.3 × 10−3)) and the non-
informative case as adopted in the original Y1 analysis (�νh2 ∈
Flat(5 × 10−4, 0.1)).

Fig. 12 shows that the adoption of non-informative neutrino priors
(purple contours) results in a slight shift (∼0.3σ in S8) in the posterior
distribution compared to the case of an informative neutrino prior,
which matches our previous observation using simulated likelihood
analyses (see Section 2.4.1) before unblinding. The best-fitting
cosmological parameters when including cosmic shear small-scale
information and when marginalizing over uncertainties in baryonic
physics with a non-informative prior on the Q1 parameter are as
follows:

�m = 0.286+0.037
−0.032

S8 = 0.771+0.026
−0.028

σ8 = 0.788+0.055
−0.069 . (25)

4.4 Constraints with external data

We compare our baseline DES measurements to external data from
Planck (Planck Collaboration VI 2018) and BAO measurements

Figure 12. The effect of neutrino priors on the cosmological parameter
constraints with DES Y1 3 × 2pt data in 
CDM . The blue contours show
our baseline result as in Fig. 11, for which an informative neutrino prior is
applied (�νh2 ∈ Flat(5 × 10−4, 1.3 × 10−3)). The shaded purple contours
indicate the result when adopting a non-informative prior on neutrinos as the
original Y1 analysis (�νh2 ∈ Flat(5 × 10−4, 0.1)).

(Beutler et al. 2011; Ross et al. 2015; Alam et al. 2017). The main
motivation is to use external information to tighten constraints on
cosmology, and increase our constraining power on baryonic physics
(see Section 5).
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6024 H.-J. Huang et al.

Figure 13. DES+Planck 
CDM cosmology constraints. The blue contours show our baseline analysis on DES 3 × 2pt data with small-scale cosmic shear
data included in the analysis, and marginalizing over the Q1 parameter to account for baryon uncertainty. The orange contours in the left-hand panel show the
Planck EE+lowE+BAO constraints, and the light blue contours in the right-hand panel display the Planck TT, TE, EE+lowE results from Planck Collaboration
VI (2018). Within 2σ , the Planck contours are in agreement with our baseline DES result. The shaded contours present the joint constraints from our baseline
DES analyses with the information from the Planck results.

We have considered two likelihood chains from the baseline
DR18 Planck analyses11: the CMB polarization auto power spectra
combined with BAO (referred to as EE+lowE+BAO), and the joint
CMB temperature and polarization auto- and cross-power spectra
(referred to as TT, TE, EE+lowE).

Our primary choice is the Planck EE+BAO likelihood, motivated
by its high level of statistical consistency with DES Y1, as shown in
the left-hand panel of Fig. 13. We compute 5D parameter covariance
in �m, As, ns, �b, and h from the Planck EE+BAO posterior
distribution, and then rerun the DES Y1 data by adopting informative
5D Gaussian priors on these cosmological parameters. We have
confirmed that the posterior of the Planck chains can be well-
described with a multidimensional Gaussian fit out to the 4σ level.
The shaded red contours in Fig. 13 present the combined result. The
χ2 analysis on the sampled maximum likelihood model indicates
that our model prediction is consistent with the data (see Table 2).

The 1D marginal constraints are

�m = 0.294+0.008
−0.006

S8 = 0.781+0.014
−0.015

σ8 = 0.788+0.010
−0.010. (26)

There is ∼ 50 per cent improvement in the S8 constraint after
adopting informative cosmological priors.

We also compare our DES Y1 analysis with the Planck TT, TT, TE
constraint (light blue contours of Fig. 13). With the addition of Planck
CMB temperature information, the CMB constraints reveal hints of
tension with several ongoing weak lensing experiments (Hildebrandt
et al. 2017; Abbott et al. 2018; Hikage et al. 2019), where the weak
lensing results show lower values in the S8 constraints. As shown in

112018 Planck Cosmological parameters and MCMC chains

the right-hand panel of Fig. 13, although the two data sets are largely
in agreement to within the 95 per cent confidence level in their 2D
posterior constraints, the marginal 1D S8 constraints differ by more
than 1σ (see summary in Fig. 9).

5 BA RYO N C O N S T R A I N T S FRO M D E S Y 1 DATA

In this section, we present the constraints on baryonic physics
in terms of the first PC amplitude Q1, which captures the most
dominant features of baryonic effects on the clustering of the matter
distribution. We first discuss the baryonic physics constraints from
DES alone, and then increase the constraining power by combining
DES with external data from Planck and BAO measurements.

5.1 DES-only information

The blue curves shown in Fig. 14 indicate the joint constraints of
Q1 and S8 from the DES 3 × 2pt data with cosmic shear extended
down to 2.5 arcmin, and with parameter priors listed in Table 1. As
discussed in Appendix A, there is a significant positive correlation
between Q1 and S8.

The marginal 1D Q1 posterior for our baseline result is presented
in the blue curve of Fig. 15. We find that Q1 is constrained to be in
the range:

− 1.66 < Q1 < 3.34 (68 per cent, DES Y1)

−2.96 < Q1 < 5.63 (95 per cent, DES Y1) . (27)

We can rule out the cosmo-OWLS scenario with AGN minimum
heating temperature setting at 108.7 K at ∼2.1σ with DES alone.
This conclusion still holds (and the Q1 posterior remains similar) for
the analysis when adopting the original Y1 wide neutrino prior, as
shown in the purple contours of Fig. 14.
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Baryonic physics in the Universe 6025

Figure 14. Joint constraints on cosmological parameters and baryonic
physics. The blue contours show the Q1–S8 constraints from the baseline
analyses of DES 3 × 2pt data with cosmic shear measured down to 2.5 arcmin
and with the baseline priors detailed in Table 1. The analysis setting for the
purple contour is the same as the blue contour, except for the adoption of
the non-informative neutrino prior as used in the original Y1 analysis. The
red contours present the results when adopting informative cosmology priors
from the external information of Planck 2018 EE+BAO.

As concluded in Section 3.3 from the results of the simulated
likelihood analyses, we expect a � 0.5σ shift in the peak of the
marginal 1D Q1 posterior distribution due to the parameter projection
effects driven by the degeneracies between parameters.

In the next section, we explore the constraints on baryonic physics
when including cosmological information from external data sets.

5.2 Adopting cosmological parameter priors from external
data sets

As discussed in Section 4.4, we adopt the Planck EE+BAO like-
lihood as the primary source of prior information on cosmological
parameters, due to its consistency with DES Y1 data.

With the inclusion of the Planck EE+BAO information, the con-
straints on cosmology improve by ∼ 38 per cent in the 68 per cent
confidence interval of Q1 (see the red curve in Fig. 15), which is
further quantified as

−0.06 < Q1 < 3.04 (68 per cent, DES+Planck EE+BAO)

−1.68 < Q1 < 4.66 (95 per cent, DES+Planck EE+BAO) .
(28)

With the tighter constraining power, the cosmo-OWLS 108.7 K
scenario is disfavoured by ∼2.8σ .

We note that when claiming the cosmo-OWLS (108.7 K) scenario
is ruled out at >2σ significance with DES Y1 data, this does not
mean that we are ruling out setting the subgrid physical parameter
of 	Theat at 108.7 K when running the hydrodynamical simulations
at >2σ . Rather, we are simply ruling out the level of baryonic
suppression in the cosmic shear signal exhibited by that simulation,
as shown in Fig. 16 based on the empirical PCA framework. As
discussed in Section 2.1.3, for baryon models with realistic physical
parametrizations, such as the baryon correction model of Schneider

et al. (2020a) or subgrid physical parameters in hydrodynamical
simulations, the baryonic physics parameters controlling halo density
profiles couple to the cosmic baryon fraction fb = �b/�m. As
revealed in the trend of power spectrum ratios in fig. 6 of van Daalen
et al. (2020), at fixed 	Theat value in hydrosimulations, the baryonic
suppression features also vary slightly at different cosmologies with
different fb. For a Universe with lower fb, higher AGN heating
temperature is needed to generate the same amount of suppression
feature compared with a Universe with higher fb.

Finally, we link back to the physical effect of Q1, which is best
demonstrated by looking at the suppression of the amplitude of
cosmic shear correlation functions (Fig. 16, also see Fig. A2). In
Fig. 16 we convert the 1σ constraints on Q1 to cosmic shear model
vectors via equation (19), and present the ratio of the baryonic
physics-included model with respect to the DMO-based theoretical
model. We use the pair of tomographic bins (2, 3) to demonstrate the
effects of baryons. The thick lines indicate the results when setting
the Q1 value at the 1D marginal peak the posteriors, as indicated
in the text in the right-hand panel of Fig. 14. The other baryonic
scenarios are also overplotted in thinner curves for comparison. The
figure shows the effect of the baryonic effects on the shear–shear
observables, and can be compared to Fig. 1 where we show the
effects on the matter power spectrum. The shear–shear correlation
function measured on a range of scales and tomographic bins can
constrain both the spatial and temporal evolution of the baryonic
effects.

6 D I SCUSSI ON AND SUMMARY

Small-scale information in galaxy imaging surveys has substantial
statistical power to improve cosmological constraints. But conven-
tional cosmological analyses discard this information to avoid biased
inference of cosmology due to an insufficient theoretical description
of the sources of astrophysical and observational systematic uncer-
tainty on these scales.

The effects of baryonic physics constitute the dominant source
of uncertainty at small scales in the matter power spectrum (van
Daalen et al. 2011, 2020). A variety of modelling and mitigation
strategies have been proposed in the literature to account for the
complicated mechanisms involved, such as baryonic feedback and
cooling processes (see Chisari et al. 2019 for a review of existing
baryon mitigation methods).

To enable robust inference of cosmological parameters, it is
desirable to find a minimal parametrization that accurately captures
the effects of baryonic physics on the observables and to have
stringent priors on these parameters. Principal component analysis
(PCA) of the cosmological observables, derived from a set of
hydrodynamical simulations that span the range of allowed baryonic
scenarios, is one of the most promising avenues to obtain such a
minimal parametrization (Eifler et al. 2015; Kitching et al. 2016;
Mohammed & Gnedin 2018; Huang et al. 2019).

In this paper, we employ the hydrodynamical simulation-based
PCA method to parametrize baryonic effects in the Dark Energy
Survey Year 1 data. We find that one principal component is sufficient
to capture the range of baryonic physics at the level of DES Y1
statistical constraining power. We include the amplitude of this
PC, Q1, as an additional parameter in our likelihood analysis. The
magnitude of Q1 reflects the strength of baryonic feedback, with
larger Q1 values corresponding to a stronger suppression of small-
scale cosmic shear correlation functions (see Fig. A2).

Previous DES multiprobe analyses (e.g. Abbott et al. 2018, 2019)
impose stringent scale cuts to ensure that the analysis is unaffected by

MNRAS 502, 6010–6031 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/4/6010/6136267 by U
niversidade de Sao Paulo - EESC

 user on 13 N
ovem

ber 2021



6026 H.-J. Huang et al.

Figure 15. Constraints on the baryonic parameter Q1 from the DES Y1 information only (blue) and with the adoption of the Planck EE+BAO cosmological
prior (red). The shaded bands highlight the 68 per cent and the 95 per cent confidence intervals of the constraints. The representative Q1 values from various
baryonic scenarios are shown in the legend and are overplotted as vertical lines. The most extreme baryonic scenario, the cosmoOWLS-AGN with minimum
AGN heating temperature of 108.7K, is excluded at above 2σ level by the real data.

baryonic physics; this had the largest effect on the range of scales used
by cosmic shear. The inclusion of baryonic effects in our theoretical
model for the observables allows us to relax these scale cuts and
to include scales as small as 2.5 arcmin from cosmic shear in the
analysis. We otherwise follow the DES Year 1 systematics modelling
and mitigation strategy, except for adding an informative neutrino
mass prior based on findings by the Planck satellite mission. The
reduced range in varying neutrino mass avoids parameter volume
effects in the DES analysis (see Section 2.4.1).

Our joint analysis of baryonic physics and cosmology (in com-
bination with the other DES systematics parameters) yields S8 =
0.779+0.030

−0.025 if we allow for self-calibration of Q1. When we restrict
the range of Q1 such that AGN feedback stronger than the level of
Illustris (Genel et al. 2014; Vogelsberger et al. 2014) is excluded, we
get S8 = 0.788+0.018

−0.021 (see the right-hand panel of Fig. 11).
We proceed to combine DES Y1 with data from the latest Planck

mission analysis (Planck Collaboration VI 2018). However, we
exclude the Planck temperature power spectrum information due to
an abundance of caution as to whether these data sets might be in
tension (Adhikari & Huterer 2019; Garcia-Quintero et al. 2019; Park
& Rozo 2019). We instead use the Planck EE+lowE+BAO chain as
described in Planck Collaboration VI (2018), which also includes
BAO measurements from the BOSS DR12, 6DF and MGS survey.
Our joint DES Y1+Planck+BAO analysis yields S8 = 0.781+0.014

−0.015
(see Fig. 13).

We emphasize that the main goal of this paper is not to find the
tightest possible constraints on cosmological parameters, but rather
unbiased constraints on baryonic physics with cosmological param-
eters being allowed to vary. We find the baryon parameter Q1 =
1.14+2.20

−2.80 for DES Y1 only and Q1 = 1.42+1.63
−1.48 for DES+Planck

EE+BAO (see Fig. 15), which allows us to exclude one of the most
extreme AGN feedback hydrodynamical scenario, cosmo-OWLS
AGN (T = 108.7K), at ∼2.8σ .

Among the 11 hydrodynamical scenarios in our pool, the default
BAHAMAS simulation (minimum AGN heating temperature at T =
107.8 K) is perhaps the best-calibrated baryon scenario. Not only is
it tuned to reproduce the galaxy stellar mass function, but it also has
adjusted feedback parameters so that the halo hot gas mass fractions
match those from the observations (McCarthy et al. 2017). The 1σ

region of our Q1 posterior constraint likewise includes the default
BAHAMAS scenario.

Constraining the strength of baryon feedback is also important to
understand whether it can serve as a possible explanation for the
‘lensing-is-low’ effect, i.e. the fact that the observed galaxy–galaxy
lensing signal is low by ∼20–40 per cent compared to predictions
from N-body+HOD mocks, at fixed clustering signal (Leauthaud
et al. 2017). As discussed in Lange et al. (2019), the IllustrisTNG
scenario can account for ∼10 per cent of the suppression signal and
the stronger feedback scenario of Illustris can reach to ∼15 per cent
(cf. Fig. 15 for our constraints on these scenarios). While our
constraints currently lack the constraining power to make definite
statements on ruling out baryonic effects as a potential explanation
for the lensing-is-low signal, we expect that future analyses, e.g.
using DES Y3 data, will be very interesting in that regard.

Generally speaking, our resulting Q1 posterior distribution indi-
cates a preference for moderate to weak baryonic feedback, which
is consistent with previous cosmic shear constraints of Joudaki et al.
(2017) for an analysis on CFHTLenS data, and with MacCrann et al.
(2017) for the DES SV data (Abbott et al. 2016) using HMCODE
(Mead et al. 2015). Recent constraints from the cosmic shear
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Figure 16. Quantifying the strength of baryonic feedback using the Q1 parameter. Here we show the ratio of cosmic shear correlation functions for the 11
baryonic scenarios with respect to the theoretical (DMO) predictions (thinner curves), using the pair of tomographic bins (2,3) as an demonstration. The grey
bands highlight the angular scales that were excluded in the fiducial DES Y1 analysis, but are now included in this work. The thick curves depict the baryonic
features using the best-fitting Q1 constraints from our baseline DES Y1 analysis (left-hand panel, blue) and the result with the adoption of cosmological
priors from Planck 2018 EE+BAO information (right-hand panel, red). The shaded bands highlight the 1σ region of our data constraints. The numbers in the
coloured-shaded legend are the best-fitting Q1 values from data constraints, and the representative Q1 values from various baryonic scenarios are also provided
in the right-hand-side legend.

KiDS-VIKING 4502 degree field (Hildebrandt et al. 2020) analysed
by Yoon & Jee (2020) also derive a weak signal of baryonic feedback
based on the baryonic model of HMCODE. They found that the baryon
suppression signal is consistent with the DMO scenario within 1.2σ

significance with the KiDS data alone, and is at 2.2σ level deviation
from DMO under the assumption of the WMAP9 cosmology. On
the contrary, based on the analysis of the DLS (Deep Lens Survey;
Jee et al. 2016) Fourier space galaxy-mass and galaxy–galaxy power
spectra, Yoon et al. (2019) report a preference for strong baryonic
feedback that is more extreme than that predicted by OWLS-AGN.12

The difference in the resulting baryon constraints could be the result
of Yoon et al. (2019) adopting a linear galaxy bias model, which
may not be a sufficient assumption to interpret the data points to
scales as small as � ∼ 2000 (see fig. 7 of Krause et al. 2017 for
the determination of scale cuts in DES Y1 galaxy lensing and galaxy
clustering observables to avoid the impact of non-linear galaxy bias).

Although baryonic effects are the dominant systematic uncertainty
on small-scale cosmic shear measurements, there are other system-
atics that will likely become important in future, more constraining
analyses. Contributions from third-order corrections of the shear
two-point correlations, such as reduced shear (Shapiro 2009) and

12The OWLS-AGN scenario is equivalent to the cosmoOWLS AGN scenario
with T=108.0 K as indicated in the red line of Fig. 15

magnification bias (Schmidt et al. 2009) effects are estimated to
produce a ∼ 2 per cent fractional difference in the observables of ξ+
and ∼ 5 per cent in ξ− at 2.5 arcmin. If not accounted for, they would
lead to a ∼1σ -level bias in the constraint of the HMCODE baryon
parameter (Mead et al. 2015) under a DES Y5-like data quality,
according to MacCrann et al. (2017) (see their figs 5 and 7). The
choice of IA models can also affect baryon constraints in future more
constraining data sets, given that IA and cosmological parameters
are degenerate (see e.g. fig. 4 of MacCrann et al. 2017). For Y1,
switching from the simple NLA model to the full tidal alignment and
tidal torquing (TATT) model (Blazek et al. 2019) leads to a slight
shift of ∼0.5σ in S8, but overall the resulting likelihoods are still
in agreement within Y1 errors (Samuroff et al. 2018; Troxel et al.
2018a). The improved data quality in forthcoming data sets will likely
mean that discrepancies induced from these small-scale systematics
will become non-negligible, and will require extra efforts to extract
precise joint constrains on both cosmology and baryonic physics.

The ongoing KiDS and HSC analyses provide an excellent data
set to get additional insights into discriminating between different
baryonic physics scenarios. Moreover, future data sets from DES
Year 3 and Year 6 will provide improved joint constraints on baryonic
physics and cosmological parameters.

In the regime where effects of baryonic physics are causing the
suppression of clustering power (k � few 10 Mpc−1h), the properties
of halo gas contain a wealth of information on baryon feedback
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mechanisms. Observational probes such as X-ray, thermal, and
kinetic Sunyaev–Zel’dovich measurements are directly sensitive to
the distribution and the characteristics of gas content (e.g. Battaglia
et al. 2017). Ultimately, utilizing information from both gas-sensitive
observables and weak lensing provides the most promising avenue
to constrain baryon feedback (Hojjati et al. 2017; Aricò et al. 2020;
Debackere et al. 2020; Mead et al. 2020; Osato et al. 2020; Pandey,
Baxter & Hill 2020; Schneider et al. 2020b)

As we prepare for future analyses of the Rubin Observatory LSST,
Euclid, SPHEREx, and Roman Space Telescope, the information
regarding which baryonic scenarios are already excluded by Stage III
data is invaluable for the design of cosmology analysis pipelines, and
simulation efforts in order to focus the computational power where it
is needed most and in order to optimally analyse these future data sets.
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APPENDI X A : THE I NTERPLAY BETWEEN
BA RYO N S , C O S M O L O G Y, A N D OTH E R
SYSTEMATI C PARAMETERS

In this appendix, we investigate the degeneracies of the baryonic
physics parameter Q1 with cosmological and other nuisance param-
eters (see Table 1).

To quantify the level of parameter degeneracies, we compute
correlation coefficients of the marginalized 2D posterior distributions
between Q1 with all the other parameters. The parameter correlation
Corrij

par is computed via:

Corrij
par = Cij

par/

√
Cii

parC
jj
par , (A1)

with the parameter covariance matrix computed as

Cij
par = 1

N − 1

N∑
k=1

(θ ik − 〈θ i〉)(θ jk − 〈θ j 〉) . (A2)

The 〈θ i〉 indicates the mean of the i-th parameter, and k ∈ [1, N] is the
index running over the first 90 per cent higher likelihood steps in the
MCMC chain. We discard the 10 per cent of the MCMC samples with
the lowest likelihood values when deriving the parameter covariance,
in order to decrease the effects from samples distributed far away
from the high likelihood region.

Using the likelihood simulation chain with the DMO scenario as
mock data, in Fig. A1 we display the posterior distributions between
Q1 and parameters that are significantly correlated with it.

To understand the trends of parameter degeneracies from the
MCMC, in Fig. A2, we plot the fractional changes in model data
vectors ( M−Mfid

Mfid
) when varying individual parameters to 1σ above

(solid lines) or below (dash lines) from their fiducial values listed in
Table 1. The positive correlation trend between Q1 and ns is clearly
due to their opposing effects on the model vector, especially in ξ−,
as shown in the second column of Fig. A2 (red versus purple curves).

The significant positive correlation between Q1 and S8 explains
the tendency towards parameter projection effects discussed in
Section 3.1 and Section 3.3. This correlation is straightforward to
understand. An increase in S8 boosts the overall amplitude of matter
clustering, whereas increasing the amount of feedback suppresses the
clustering signal on small scales. The opposite correlation directions
between Q1 with �m (−0.33) and with σ 8 (0.54) are driven by the
significant negative coupling between �m and σ 8.

Regarding the negative correlation observed between Q1 and the
galaxy bias parameters,13 this correlation is actually driven by the
common degeneracies of Q1 and bi

g with S8. Ideally there should
be almost no correlation between Q1 and bi

g because the variation
of Q1 is mostly affecting the cosmic shear observables, whereas the
galaxy bias parameters only affect galaxy–galaxy lensing and galaxy
clustering (see Fig. A2). However, when cosmology is allowed to
vary, Q1 and bi

g appear correlated because of their correlation with
cosmological parameters (mostly in �m and σ 8).14

13In Fig. A1 we pick the galaxy bias parameter of the second tomographic
bin b2

g as a demonstration; however, the parameter correlations between Q1

and other tomographic bins bi
g show similar results.

14The same logic also explains why there are tight correlations between pairs
of bias parameters (bi

g and b
j
g ). In principle, each bias parameter governs

different portions of the model vector via the tomography bin division (if
there are no photo-z uncertainties when dividing lens galaxies), and thus
should have no correlation. The observed high correlations among the bias
parameters are driven by the fact that they have a similar impact on �m and
σ 8.
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Figure A1. Marginalized 2D posterior distributions between Q1 with parameters that show apparent parameter degeneracies, from the likelihood simulated
analysis with the DMO mock data vector as input. The fiducial parameter values are indicated by the cross grey lines. The correlation coefficients are provided
in the legend.

Figure A2. The fractional changes in model vectors when varying each of the individual cosmological or baryonic parameters to 1σ above (solid lines) or below
(dash lines) their fiducial values listed in Table 1. We only select two tomographic bins for each of the observables as demonstration, with the bin information
indicated on the bottom right corner of each panel. For galaxy–galaxy lensing, the first number is for lens tomographic bin; the second number for source. The
darker grey bands in galaxy–galaxy lensing and clustering panels mark data points that are excluded throughout this work. The lighter grey bands in the cosmic
shear panels highlight data points that are excluded in the original DES Y1 analysis, but are now included in this work. When varying cosmological parameters,
we carefully adjust the As parameter in COSMOLIKE in order to keep σ 8 fixed.
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