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Abstract
The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establish-
ment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a
group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and
peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes
that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular
chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct
cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx
expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with
hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their
importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5,
Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural
peculiarities that differentiate them from the host’s isoforms. In this context, the intrinsic characteristics of these enzymes may aid
the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the
extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines.

Key points
• Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress.
• Functional and structural peculiarities differ pathogen and host enzymes.
• Peroxiredoxins are potential targets to microbicidal drugs.
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Introduction

Microbial pathogen infections trigger several host defense
mechanisms (Medzhitov 2007; Nurnberger et al. 2004), such
as the release of large amounts of reactive oxygen species
(ROS) and nitrogen species (RNS). Among the ROS, hydro-
gen peroxide and superoxide are not powerful oxidants, but
they can be converted to hydroxyl radical which is a highly
reactive species (Halliwell and Gutteridge 2015).
Furthermore, myeloperoxidase can use hydrogen peroxide to
generate highly microbicidal species, such as hypochlorous
acid (Winterbourn et al. 2016). Host organisms also produce
nitric oxide radicals and derived oxidants (Prolo et al. 2014),
such as peroxynitrite, a powerful oxidizing hydroperoxide
(Radi 2018). Additionally, the oxidation of amino acids, nu-
cleotides, and lipids generate high levels of organic
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hydroperoxides (OHPs) over the course of the host response.
Noteworthy, some evidences indicate that microbicidal drugs
can enhance superoxide and hydrogen peroxide production
(Dwyer et al. 2014; Lam et al. 2020; Repolês et al. 2020).
Therefore, pathogens must remove these oxidants for estab-
lishment in a host.

Pathogenic organisms express several antioxidant enzymes
to counteract oxidative insults (Staerck et al. 2017). Among
them, catalases (Cat) specifically decompose hydrogen perox-
ide and peroxynitrite, while glutathione peroxidases (Gpx)
and peroxiredoxins (Prx) can decompose several kinds of hy-
droperoxides, including hydrogen peroxide, peroxynitrite, and
OHPs (Staerck et al. 2017). Therefore, antioxidant enzymes
gain importance with the emergence of microbial strains re-
sistant to multiple drugs, a global health threat, and the search
for novel biological targets is a worldwide concern (Fisher
et al. 2017). Since that some evidence indicates that microbi-
cidal drugs can enhance superoxide and hydrogen peroxide
production (Dwyer et al. 2014; Lam et al. 2020; Repolês et al.
2020), the search for antioxidant enzyme inhibitors raises as a
possible alternative approach. Prx members are important tar-
gets due to their diversity and structural differences between
isoforms found in pathogenic microbial organisms and hosts.
Here, we aim to review several aspects of Prx enzymes such as
abundance, substrate diversity, and structural/functional pecu-
liarities that place them as potential targets for novel strategies
to combat microbial infections.

Abundance and distribution
of peroxiredoxins in microbial cells

Prx are the main scavengers of hydroperoxides in several or-
ganisms (Condeles et al. 2020; Seaver and Imlay 2001;
Winterbourn and Hampton 2008) and especially in some mi-
crobial pathogens that lack both catalase and Gpx
(Mastronicola et al. 2014; Richard et al. 2011). The signifi-
cance of Prx in bacteria is highlighted by the number of dif-
ferent isoforms expressed, ranging from three to ten enzyme
isoforms, representing some of the most abundant proteins in
several bacteria. Additionally, bacterial Prx are found in the
cytosol, associated with the cell membrane or with DNA, in
the periplasmic space and even in biofilms (Cha et al. 1995;
Enany et al. 2014; Hicks et al. 2010; Murphy et al. 2005;
O'Riordan et al. 2012). It is important to mention that bacterial
Prx are naturally abundant in basal conditions. Nonetheless,
immune cells such as macrophages or neutrophils impose ox-
idative insults that can enhance Prx levels in Salmonella
typhimurium and Mycobacterium avium (Francis et al. 1997;
Zhu et al. 2008). Additionally, Prx are upregulated by distinct
bactericidal drugs, such as amikacin, ciprofloxacin, kanamy-
cin, tetracycline, vancomycin among others (Chen et al. 2013;
Kumar et al. 2013; Li et al. 2018; Vranakis et al. 2012).

The number of Prx isoforms is also elevated in eukaryotic
organisms, achieving up to six isoforms in fungi (Park et al.
2000; Rocha et al. 2018; Skrzypek et al. 2017) and three to
five in protozoans (Richard et al. 2011). Several isoforms are
distributed throughout diverse cellular compartments, such as
the cytosol, mitochondria, nucleus, peroxisomes, protozoan
glycosomes, and they are even exported outside cells (Park
et al. 2000; Richard et al. 2011; Rocha et al. 2018; Urban et al.
2005; Vallejo et al. 2012). In fungi, extracellular Prx isoforms
are also associated with the hypha/cell wall and biofilm (Choi
et al. 2003). It is important to highlight that biofilm confers
resistance to bacteria and fungi against host immune defenses
and antimicrobial drugs (Lynch and Robertson 2008) and the
extracellular location of some Prx in pathogenic microorgan-
isms makes these enzymes promising targets for diagnostic
tests and vaccines (Fereig et al. 2017; O'Riordan et al. 2012;
Rodrigues et al. 2020).

Prx are also abundant in microbial eukaryotes, such as fun-
gi and protozoans. Saccharomyces cerevisiae, a model yeast
for genetic and biochemical studies, is an opportunistic path-
ogen in immunocompromised individuals (Souza Goebel
et al. 2013). In this yeast, the abundance of Prx isoforms can
attain ~ 1% of the total soluble proteins in the cell and are
much mo r e abundan t t h an c a t a l a s e s and Gpx
(Ghaemmaghami et al. 2003). Proteomic approaches of rep-
resentative fungi and protozoans revealed a high amount of
Prx in these microorganisms (de Godoy et al. 2012; Kaneva
et al. 2018).

Similarly to observed in bacteria, Prx expression levels are
enhanced in pathogenic fungi and protozoans in response to
oxidative burst and to antimicrobial agents. In Candida
glabrata, the expression of the Prx is strongly enhanced when
insulted by the oxidative stress promoted by the host immune
system (Gutierrez-Escobedo et al. 2020). In Trypanosoma
cruzi, ectopic overexpression of Prx isoforms enhances the
resistance of the pathogen against peroxynitrite and hydrogen
peroxide produced bymacrophages and pathogen metabolism
(Piacenza et al. 2008). Concerning the antimicrobial drugs, it
was observed an increased Prx expression for a wide range of
antimicrobial drugs, such as amphotericin B, antimony,
benznidazole, camphene thiosemicarbazide, caspofungin, flu-
conazole, fludioxonil, itraconazole, miltefosine, and others
(Andrade et al. 2008; Das 2018; Gautam et al. 2016;
Gautam et al. 2008; Shishodia et al. 2019; Silva et al. 2018;
Vediyappan et al. 2010). Overall, the data presented in this
section highlight the importance of Prx for microbial pathogen
survival under oxidative stress conditions.

Catalytic mechanism of Prx

Prx are Cys-based peroxidases that efficiently decom-
pose several kinds of hydroperoxides, achieving rate
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constants up to 108 M−1 s−1 (Reyes et al. 2011; Tairum
et al. 2016). The catalytic cysteine (named peroxidatic
cysteine, CP) reduces the hydroperoxide and is oxidized
to sulfenic acid (CP-SOH) (Hall et al. 2011). Thr (or
Ser) and Arg are found with CP in the active site of
all Prx, composing a triad that is essential to the cata-
lytic power of Prx enzymes (Fig. 1) (Hall et al. 2010;
Poole and Nelson 2016). The catalytic triad Thr can be
substituted by Ser in some Prx, with structural and
functional consequences, but with no effect on reactivity
under low concentrations of hydroperoxides (Tairum
et al. 2016). Interestingly, catalytic Ser is more frequent
in Bacteria than in Archaea or in Eukarya domains of
life, but the evolutive reasons for this distribution are
not clear to date (Tairum et al., 2021, in press).

CP is very reactive to most hydroperoxides due to the
active site microenvironment (Hall et al. 2010). Thr/Ser
and Arg of the catalytic triad activate CP and orientate
the substrate in the active site for optimal reactivity
(Fig. 1) through a SN2 mechanism (Hall et al. 2010).
The oxidation of CP by hydroperoxide is common to all
Prx, while the subsequent steps define two groups.
Some Prx have only one catalytic cysteine (1-Cys
Prx), while a second cysteine residue (named resolving
cysteine, CR) is involved in the catalysis of another
group (2-Cys Prx) by forming a disulfide bond (CP-S-
S-CR). 2-Cys Prx can be further divided into atypical, in
which both cysteines are in the same subunit; and typ-
ical, that have a homodimer as minimal catalytic unit
due to CP and CR are in different chains (Perkins
et al. 2015).

Common aspects, structural variability,
and alternative functions of Prx

All Prx enzymes display the thioredoxin-fold (Trx-fold) that is
composed of four β-sheets surrounded by three α-helices, a
structure that is shared with several other redox proteins from
the thioredoxin super-family (Hall et al. 2011). Prx enzymes
evolved from a common Trx ancestor, with the addition of
secondary structural elements (Copley et al. 2004). They are
subdivided into six classes: AhpC-Prx1, BCP-PrxQ, Tpx,
Prx5, Prx6, and AhpE (Fig. 2a–f) based on amino acid resi-
dues in the active site and structure (Nelson et al. 2011). The
AhpC-Prx1 class is mostly composed of the typical 2-Cys Prx,
while the atypical 2-Cys Prx are distributed in three classes:
BCP-PrxQ, Prx5, and Tpx. Proteins displaying the 1-Cys Prx
mechanism are mainly present in the Prx6 group, but there are
also 1-Cys Prx in the BCP-PrxQ, Prx5, and AhpE classes
(Nelson et al. 2011).

The oligomeric states of these enzymes are also very di-
verse: monomers, dimers, decamers, and other quaternary spe-
cies (Fig. 3) ( Hall et al. 2011; Jang et al. 2004; Nelson et al.
2011; Tairum et al. 2016). The Prx dimers can assemble in
two different ways: A-type (Fig. 3a), presenting unique

Fig. 1 Catalytic triad of Prx. Polar interactions among Arg, Thr/Ser, and
CP (yellow lines) stabilize the Sγ in the deprotonated (thiolate) form.
Polar interaction among Arg, Thr/Ser, and substrate (black lines)
orientate the hydroperoxide towards the thiolate of CP. The
crystallographic structure of yeast Prx (PDB = 3SBC) is represented as
cartoon (light gray), highlighted amino acids are represented as balls and
sticks and colored as follows: carbon = light gray, oxygen = red, nitrogen
= blue, and sulfur = yellow

Fig. 2 The common Trx-fold and structural variations among the six Prx
classes. Prx from different organisms as representatives of the six classes
are derived from a common Trx-fold (PDB = 2J23) (center of image). (a)
AhpC-Prx1, yeast Tsa1 (PDB = 3SBC); (b) BCP-PrxQ, Xylella fastidiosa
BCP (PDB = 3IXR); (c) Prx5, P. falciparum AOP (PDB = 1XIY); (d)
Tpx, E. coli Tpx (PDB = 3HVV); (e) Prx6, P. aeruginosa LsfA (PDB =
6P0W); (f) AhpE, M. tuberculosis AhpE (PDB = 4X0X). The structures
are represented as cartoon, in which the α-helixes that compose the Trx-
fold are represented in red and the β-sheets are colored in yellow.
Additional elements specific to each class are shown in blue. The
structures are represented as monomers for clarity
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globular domain, and B-type (Fig. 3b), in which the central β-
sheets of both monomers are aligned (Poole and Nelson
2016). Members of the BCP-PrxQ, Prx5, Tpx, and AhpE
classes can form A-type dimers, but there is a wide variation
at this organization level. Most proteins of the BCP-PrxQ
class are monomers, with a few of them as A-type dimers.
Representatives of the Prx5 group are detected as monomers
and dimers, and some bacterial members possess Prx5 fused
to a glutaredoxin molecule and can form tetramers (Kim et al.
2003; Nelson et al. 2011). The Tpxmembers are found only as
A-type dimers. Finally, the AhpE members assemble as A-
type dimers that can further associate as octamers (tetramers of
dimers) (Hall et al. 2011).

The B-type dimer is present in members of the AhpC-Prx1
and Prx6 classes, representing the minimum catalytic unit of
AhpC-Prx1, since CP and CR are present in different mono-
mers. Interestingly, AhpC-Prx1 and Prx6 enzymes can further
assemble into tetramers, octamers, decamers, dodecamers, or
high molecular weight species (Poole et al. 2011; Poole and
Nelson 2016). Additionally, AhpC-Prx1 enzymes with Thr in
the catalytic triad possess the particularity of switching be-
tween oligomeric states in a redox-dependent manner:
decamers in the reduced form (Fig. 3c) and dimers in the
disulfide state (Tairum et al. 2016).

The diverse structural features among Prx classes might
represent an opportunity for the characterization of inhibitors
used as drugs in the combat of pathogens. Part of the diversity

of proteins of the six Prx classes resides in the amino acid
composition of the active sites (Hall et al. 2011). Tpx and
AhpE members are found almost exclusively in prokaryotes
and BCP-PrxQ is absent in animals (Poole and Nelson 2016).
For the other three classes, specific features can be taken into
account to design molecules that specifically target enzymes
from pathogens and not from the hosts.

The amino acid sequences of microbial Prx isoforms (bac-
teria, fungi, and protozoans) differ considerably from host
enzymes (mammals and plants), ranging from 35 to 60% of
identity (data not shown). Some of these different residues are
found in the active site. These differences can be explored for
obtaining specific inhibitors. To illustrate this variation, the
structure of representative proteins from pathogens and hosts
of the subclasses AhpC-Prx1, BCP-PrxQ, Prx5, and Prx6
were overlapped (Fig. 4). Notably, some of the differences
between host and pathogen protein surfaces are close to Cp

(Fig. 4a–d). AhpC-Prx1 from eukaryotes possesses a C-
terminal α-helix and other specific features involved in the
increased susceptibility of CP to hyperoxidation that are absent
in most prokaryotic proteins (Wood et al. 2003) (Fig. 4a). The
catalytic triad Thr residue is replaced by a Ser residue in some
pathogenic bacteria (Staphylococcus sp. and Bacillus sp.,
among others), fungi (Saccharomycetales), and protozoans
(Leishmania sp.), but is almost absent in hosts (unpublished
data). This single substitution confers considerable structural
and functional differences between Prx containing Thr or Ser

Fig. 3 Representation of the two types of Prx dimers and the quaternary
structures diversity of peroxiredoxins. Structures are represented as
cartoons, and each monomer is represented by a different color. (a) A-
type dimers present in the BCP-PrxQ, Tpx, Prx5, and AhpE classes. The
A-type is represented by yeast Ahp1 (PDB = 4OWY), and the monomers
are colored in light green and green. (b) B-type dimers are found in the
classes AhpC-Prx1 and Prx6 (light gray and dark blue) (PDB = 3SBC).

Some dimeric Prx from the AhpC-Prx1 and Prx6 classes can assemble
into toroidal structures formed by pentamers of dimers (decamers) (PDB
= 3SBC). (c) Under oxidative or heat stresses, some Prx can organize in
high molecular weight (HMW) species as spherical (d) or filamentous
multimers (e). The HMWcomplexes are illustrative and were constructed
using the yeast Prx coordinates (PDB = 3SBC). The monomers of the
dimers are represented in dark blue and light gray for clarity
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(Tairum et al. 2016). The Thr/Ser substitution may also pro-
vide a different microenvironment to ligands targeted to Prx
from pathogens (Fig. 4a). For some pathogenic bacteria, such
as Haemophilus influenzae, Neisseria meningitidis, and
Vibrio cholerae, the differences among the Prx5 isoforms
are accentuated as a consequence of a glutaredoxin domain
fused to the C-terminal region (Fig. 4c), a feature that is not
observed in animal and plant isoforms (Kim et al. 2003).

Besides the peroxidase activity, some peroxiredoxins
present additional functions. At high hydroperoxide con-
centrations, CP is hyperoxidized to sulfinic acid (CP-
SO2H), resulting in loss of peroxidase activity and con-
comitant acquisition of chaperone (holdase) function. In
parallel, these 2-Cys Prxs undergo structural rearrange-
ments to form high molecular weight species (HMW),
presenting a spherical or filamentous organization (Fig.
3 d and e) (Hall et al. 2009; Jang et al. 2004; Saccoccia
et al. 2012; Tairum et al. 2016). A C-terminal α-helix,
which is restricted to eukaryotic isoforms with rare excep-
tions (e.g., Helicobacter pylori AhpC), facilitates CP

hyperoxidation by impairing disulfide formation (Hall
et al. 2009). Molecular chaperone activity has also been
described in Prx from some microorganisms previously

exposed to heat shock without the requirement of Cp

hyperoxidation (Kamariah et al. 2018; Morais et al.
2017; Saccoccia et al. 2012; Teixeira et al. 2015). In ad-
dition, a BCP-PrxQ from Deinococcus radiodurans and a
Prx6 from Anabaena sp. also present molecular chaperone
activity (Cho et al. 2019; Mishra et al. 2017).

Another additional function displayed by some mem-
bers of the Prx6 class is a calcium-independent phospho-
lipase A2 activity (PLA2), which is unrelated to the per-
oxidase function (Bannitz-Fernandes et al. 2019). The
PLA2 activity of Prx6 depends on a second active site
separated from the peroxidase center and composed of a
catalytic Ser, a His and an Asp (Fig. 5). In pathogens,
PLA2 activity was described in Prx6 enzymes from
Pseudomonas aeruginosa and from Aspergi l lus
fumigatus, two respiratory airway pathogens. These phos-
pholipase activities might be related to the metabolism of
surfactants in the lungs during colonization by damaging
phospholipids from the host cell membrane or nutrient
acquisition (Bannitz-Fernandes et al. 2019). Besides the
peroxidase function, these additional activities of some
Prx groups may support the ideal condition for organism
survival, especially microorganisms.

Fig. 4 Conservation of surface residues among Prx from the host and
pathogen. Molecular surfaces of Prx enzymes, depicting the common
amino acids between host and pathogen (white), the different ones
(pink), and the active site catalytic CP (orange). Conserved residues
were considered the same amino acid or amino acids presenting similar
physicochemical properties. (a) Molecular surface of human AhpC-Prx1
(Prx2; PDB: 1QMV) was used as template and compared to the
homologue isoform from S. typhimurium (UniProt ID: P0A251). C-

terminal α-helix that are absent in most prokaryotes is colored in light
green. Position of Thr/Ser in the active site is highlighted in red. (b) BCP-
PrxQ from X. fastidiosa (PDB: 3IXR) compared with the plant Citrus
sinensis (NCBI ID: XP_006474598.1). (c) The structure of Prx5 from
H. influenzae (PDB: 1NM3) and human Prx5 (UniProt ID: P30044).
The additional Grx domain present in some pathogenic bacteria is
colored in purple. (d) Human Prx6 (PDB: 1PRX) compared with its
bacterial counterpart from P. aeruginosa (UniProt ID: A0A0H2ZEH5)
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Peroxiredoxin reductants

To perform catalysis efficiently, Prx requires appropriate re-
ductants for fast turnover and the Trx system is the most fre-
quently employed. The Trx system comprises thioredoxin
(Trx), thioredoxin reductase (TrxR), and NADPH as electron
source (Oliveira et al. 2010). Although Trx enzymes are high-
ly conserved, TrxR enzymes are distinct between
microorganisms/plants and mammals and have been explored
as drug targets (Koch et al. 2013). In both cases, TrxR are
obligate dimers, but the enzymes present low molecular
weight (molecular mass of monomers ~ 33 kDa) in bacteria,
fungi, and plants. In mammals, TrxR possesses ~ 50 kDa per
monomer and contains a selenocysteine residue (Oliveira et al.
2010). Below, we describe variations found in the reduction of
Prx enzymes from the canonical Trx system.

AhpC-Prx1

A specialized Trx system in bacteria, named AhpF, is dedicat-
ed to the reduction of AhpC-Prx1 enzymes. AhpF is a
multidomain enzyme, containing a TrxR portion fused to
two Trx domains in a single polypeptide. Although AhpF
can use either NADH or NADPH as the electron donor,
NADH is the preferred reductant (~ 100×), in contrast to the
canonical TrxR that preferentially uses NADPH (Poole and
Ellis 1996).

Mycobacterium tuberculosis presents another specialized
system for the reduction of some AhpC-Prx1 isoforms.
This system comprises AhpD, a bacterial protein with
thioredoxin-like activity, but without significant structural
homology to Trx. It acts together with dihydrolipoamide
succinyltransferase (SucB) and dihydrolipoamide dehy-
drogenase (Lpd), also using electrons from NADH (Bryk
et al. 2002).

Protozoans from the Trypanosoma and Leishmania genera
present a unique thiol-disulfide network that is able to reduce
AhpC-Prx1 members (so-called in trypanosomatids as
tryparedoxin peroxidase, TxnPx) (Netto et al. 2016;
Piacenza et al. 2008). The system uses NADH as an electron
donor and includes the enzymes tryparedoxin (Txn), an oxi-
doreductase homologue of thioredoxin, and tryparedoxin re-
ductase (TR), a flavoenzyme structurally similar to the high
molecular weight TrxR. The system also comprises
trypanothione (TSH), an abundant low molecular weight thiol
that is only present in trypanosomatids (Jaeger and Flohe
2006). In this case, peroxiredoxin disulfide is directly reduced
by Txn, which is restored to the reduced state by
trypanothione. The oxidized trypanothione molecules are re-
duced by TR using NADH.

Prx5

Prx5 enzymes can be reduced by the glutathione (GSH) sys-
tem, which is composed of glutaredoxin (Grx), GSH, gluta-
thione reductase (GR), and NADPH. GSH forms a mixed
disulfide with CP-SOH, which is then reduced by Grx,
regenerating reduced Prx. A second GSH molecule recovers
reduced Grx, generating oxidized glutathione (GSSG), which
is then reduced by glutathione reductase using electrons from
NADPH. It is worth to highlight that Prx domain is fused to a
Grx domain (Fig. 5c) in some bacterial Prx5 enzymes, which
appears to confer higher reducing efficiency to the system
(Kim et al. 2003).

Prx6

For some Prx6, the GSH system was proposed to turnover the
enzyme (Pedrajas et al. 2016). The Prx6 class is mostly com-
posed of 1-Cys Prx enzymes and so distinct agents directly

Fig. 5 Catalytic triads of
peroxidase and PLA2 activities of
a representative Prx6 enzyme.
The active sites of the two
functions performed by members
of the Prx6 class are independent.
The LsfA structure (PDB =
6P0W) is represented as cartoon
and each monomer present a
different color (pale green and
light pink). Corresponding
residues for each catalytic triad
are represented as spheres and
colored as follows: C = green or
pink (peroxidase or
phospholipase catalytic triad,
respectively), N = blue, O = red,
and S = light orange
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reduce CP-SOH intermediate. Although several biological re-
ductants have been tested, most of them failed to reduce mi-
crobial Prx6, including Trx system (Longo et al. 2020; Rocha
et al. 2018). Prx1 from S. cerevisiae is an exception, being
reduced by the mitochondrial Trx system (Pedrajas et al.
2000). In contrast, ascorbate is a general reductant for Prx6
enzymes (Anschau et al. 2020). We demonstrated that the
sulfenic acids in yeast Prx1 and mammalian Prx6 are reduced
by ascorbate, the only biological and non-thiolic reductant
described for peroxiredoxins so far (Monteiro et al. 2007).
Later, we determined that Prx6 isoforms from pathogenic mi-
croorganisms, such as bacteria (LsfA, P. aeruginosa) are re-
duced by ascorbate at moderate rates (Anschau et al. 2020).

AhpE

Like Prx6 class, most AhpE enzymes are 1-Cys Prx and the
identities of the biological reductants are still controversial.
We have previously demonstrated that AhpE from
M. tuberculosis can be reduced by ascorbate (Monteiro et al.
2007). Additionally, M. tuberculosis presents a thiolic enzy-
matic system that is involved in AhpE reduction. This system
was only described in the actinobacteria group and is repre-
sented by mycoredoxin (Mrx1), mycothiol disulfide reductase
(MR), and a low molecular weight thiolic compound named
mycothiol (MSH) (Hugo et al. 2014).

The unique aspects of some of the reductive systems of
various Prx enzymes from microorganisms, without counter-
parts in the hosts, are frequently considered as important che-
motherapeutic targets (Budde and Flohe 2003; Jaeger and
Flohe 2006). In fact, inhibitors for peroxiredoxin reducing
systems in bacteria and fungi have already been identified
(Koshkin et al. 2004; Marshall et al. 2019) and inhibitors for
the Prx trypanosomatid reducing system have recently shown
promising results in preclinical studies (Tunes et al. 2020).

Substrate diversity and protective roles
of peroxiredoxins

Prx enzymes display lower specificity towards hydroperox-
ides, decomposing them with high efficiency. For instance,
Prx enzymes from several microbial pathogens decompose
hydrogen peroxide and peroxynitrite very efficiently, at rate
constants from 104 to 108 M−1 s−1 (Pineyro et al. 2011; Reyes
et al. 2016; Tairum et al. 2016). The reduction of OHPs by Prx
is also efficient (up to 108M−1 s−1) and important for pathogen
survival (Estelle et al. 2020; Jacobson et al. 1989; Reyes et al.
2011). The vast majority of studies used synthetic organic
molecules such as tert-butyl (t-BOOH) and cumene (CHP)
hydroperoxides to mimic biological OHPs and members of
all Prx classes efficiently decompose these molecules
(Akerman and Muller 2005; Baker and Poole 2003;

Parsonage et al. 2008; Tairum et al. 2016). Table 1 summa-
rizes different kinds hydroperoxides used to challenge distinct
Prx classes.

It is important to note that OHPs are bulkier than hydrogen
peroxide or peroxynitrite, so Prx active sites are large and
hydrophobic to accommodate such distinct molecules. In fact,
some studies demonstrate that even bulky substrates are effi-
ciently decomposed by Prx. For instance, M. tuberculosis
AhpE achieves rate constants of approximately 108 M−1 s−1

over arachidonic acid hydroperoxide (15-HpETE), a very
bulky hydroperoxide produced by reticulocytes, eosinophils,
and T-lymphocytes (Reyes et al. 2011). Interestingly, arachi-
donic acid is an integrant of cell membranes and AhpE was
detected in the membrane fraction ofM. tuberculosis (Gu et al.
2003). In H. pylori, AhpC and BCP efficiently decompose
OHP, making the pathogen tolerant to oxidative stress
(Baker et al. 2001). In the fungus Paracoccidioides
brasiliensis, a Prx6 isoform can decompose linoleic hydroper-
oxide more efficiently than t-BOOH and CHP (3-8-fold
higher, respectively) (Longo et al. 2020). Accordingly,
linoleic and linolenic acid hydroperoxides are also of high
importance in infection by pathogens due to their pronounced
microbicidal effect (Estelle et al. 2020). Together, the infor-
mation presented in this section demonstrates the substrate
versatility of Prx, indicating the role of these enzymes in cell
protection, including against oxidative stress generated by
OHPs.

Effects of Prx inactivation in pathogenic
microorganism cells

Silencing of Prx usually renders cells more sensitive to hydro-
peroxides insults (Castro et al. 2020; Comtois et al. 2003;
Cosgrove et al. 2007; Hillmann et al. 2016; Missall et al.
2004; Rocha et al. 2018; Teixeira et al. 2015). Their impor-
tance in hydroperoxide decomposition can be associated with
DNA protection. In fact, the first bacterial peroxiredoxins de-
scribed (AhpC from Escherichia coli and S. typhimurium)
were identified by observing that strains lacking ahpc genes
presented high mutation rates, while strains overexpressing
AhpC suppressed DNA alterations (Storz et al. 1987). This
protective role was later related to the ability of AhpC to
decompose OHPs (Jacobson et al. 1989), a phenomenon also
observed in other bacterial species and eukaryotic microor-
ganisms. For instance, ΔahpC from Bacteroides fragilis pre-
sents five times more mutations than the wild-type strain
(Rocha and Smith 1999). Although the deletion of one or
more Prx isoforms in the yeast S. cerevisiae is not lethal, it
compromises genome stability (Ogusucu et al. 2009). In
Candida albicans, the Δtsa1 strains also present increased
mutation rates, indicating that Prx contributes to genome sta-
bility (Urban et al. 2005). The protective role of Prx in DNA
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integrity was also observed under nitrosative stress in
Trypanosoma brucei. Defective strains in the enzyme uracil-
DNA glycosylase (UNG), a component of the base excision
DNA repair system, exhibit reduced infectivity and increased
levels of DNA damage (Yague-Capilla et al. 2019). Notably,
surviving cells of the T. bruceiΔung strain present increased
expression of AhpC-Prx1 peroxiredoxin (Tryp1), which is
correlated with peroxynitrite detoxification (Yague-Capilla
et al. 2019).

Prx also provide protection through a mechanism related to
their chaperone/holdase activity. As explained before, the ac-
quisi t ion of chaperone activi ty can occur by CP

hyperoxidation (Jang et al. 2004). Since almost all bacterial
AhpCs are resistant to CP hyperoxidation (Wood et al. 2003),
the acquisition of chaperone activity to these microorganisms
probably involves a redox independent mechanism, which is
dependent on thermal insults (Jang et al. 2004), but still poorly
understood. Only few descriptions of chaperone activities of
bacterial Prx isoforms have been performed to date
(Buranajitpakorn et al. 2011; Kamariah et al. 2018). The chap-
erone function of E. coli AhpC was mostly investigated in
cell-free systems. In one case, no evidence of heat shock pro-
tection by AhpC in Xanthomonas campestris was obtained
(Buranajitpakorn et al. 2011).

In fungi, the acquisition of chaperone function was de-
scribed for the two cytosolic isoforms of the AhpC-Prx1 class.
Tsa1 and Tsa2 undergo transitions from peroxidase to chap-
erone in response to oxidative stress and thermal insults.
Additionally, null individual mutants or the double mutant
Δtsa1/Δtsa2 present a significant reduction in cell viability
compared with the wild-type strain when subjected to heat
shock (Jang et al. 2004). A decrease in cell survival as a
consequence of thermal insult has also been reported in
Cryptococcus neoformansΔtsa1mutant (Missall et al. 2004).

In protozoans, the AhpC-Prx1 enzymes from Schistosoma
mansoni and Leishmania infantum were described to switch
from peroxidase to chaperone in response to oxidative stress
or heat shock (Saccoccia et al. 2012; Teixeira et al. 2015).
Furthermore, genetic inactivation of the L. infantum mito-
chondrial AhpC-Prx1 isoform (Δmtxnpx) rendered cells a
thermosensitive phenotype. High levels of protein aggregation
were detected at 37°C (Teixeira et al. 2015), which is compat-
ible with the physiological temperature of mammalian hosts.

Besides inactivating Prx by genetic approaches, pharmaco-
logical inhibitors represent an alternative to investigate the
roles of these proteins in pathogens. However, only a few
microbial peroxiredoxin inhibitors have been identified to
date. For instance, showdomycin is a potent C-glycosyl nu-
cleoside antibiotic isolated from Streptomyces showdoensis
that was detected as a ligand of AhpC catalytic cysteines from
Staphylococcus aureus (Bottcher and Sieber 2010). In proto-
zoans, conoidin A was initially described as an inhibitor of
host cell invasion by the pathogenic protozoan Toxoplasma

gondii; this compound was later shown to bind covalently to
cysteine residues of TgPrxII, a peroxiredoxin from the AhpC-
Prx1 subclass. Conoidin A also prevents the growth of
Plasmodium falciparum and increases the sensitivity of the
parasite in host cells to chloroquine, an antimalarial drug
(Haraldsen et al. 2009). Both conoidin A and showdomycin
are bulky molecules with large hydrophobic backbones,
which may mimic large biological substrates, as OHPs.
Therefore, inactivating Prx isoforms may be a promising ap-
proach to enhance the death of pathogens resistant to multiple
drugs.

Prx as virulence factors

Since Prx play important roles in pathogen survival, they may
represent virulence factors. In fact, enzymes from five of the
six Prx classes have been described as virulence factors in
pathogens (Table 2). No studies have yet been performed to
examine the involvement of AhpE enzymes in virulence. The
role of different Prx classes in the virulence of the pathogenic
microorganisms is summarized below.

AhpC-Prx1

AhpC-Prx1 isoforms were associated with Helicobacter
cinaedi and H. pylori virulence, since ahpC mutants
(ΔahpC) could not to colonize mice stomach and were more
susceptible to killing bymacrophages (Charoenlap et al. 2012;
Olczak et al. 2003). Moreover, H. cinaedi lacking the ahpC
gene presented a reduced ability to colonize the intestine of
both wild-type and defective in interleukin-10 (IL-10) mice
(Charoenlap et al. 2012).

In the pathogenic marine bacterium Vibrio vulnificus,
AhpC is related to both the bacterial capacity to grow during
infection of human intestinal cells and the ability to infect
mice (Baek et al. 2009). Infecting wild-type mice with a
ΔahpC strain of Listeria monocytogenes diminishes bacterial
virulence. This ΔahpC strain was virulent when infecting
mice with iNOS deficiency, indicating that AhpC protects
bacteria from nitric oxide-derived oxidants, such as
peroxynitrite (Dons et al. 2014).

AhpC-Prx1 members from the Mycobacterium genus
are indirectly related to the actions of catalase and isoni-
azid (INH), a drug largely employed in the treatment of
tuberculosis. Mycobacterium tuberculosis is able to grow
inside host macrophages using diverse strategies to detox-
ify distinct ROS and RNS. In addition, some strains of
M. tuberculosis present INH resistance that is related to
catalase (KatG) mutations (Rintiswati et al. 2011). INH is
a prodrug that requires “activation” by KatG to inhibit
enoyl-acyl carrier protein reductase from M. tuberculosis
by the formation of an isonicotinoyl-NAD adduct (Yu

5709Appl Microbiol Biotechnol (2021) 105:5701–5717



et al. 2003). Mutants of KatG are defective in the activa-
tion of INH and in the elimination of hydrogen peroxide.
Therefore, increased levels of AhpC compensate the loss

in KatG activity and are relevant in M. tuberculosis resis-
tance to INH (Sherman et al. 1996).

Catalase (KatA) and AhpC also have compensatory roles
in S. aureus, especially during aerobic growth, even though

Table 2 Prx enzymes and
virulence Prx class Virulence

factor
Protein(s) Organism Reference

AhpC-Prx1 Yes AhpC Helicobacter cinaedi Charoenlap et al. 2012

Yes AhpC Helicobacter pylori Olczak et al. 2003

Yes Prx Listeria monocytogenes Dons et al. 2014

Yes AhpC Mycobacterium bovis Wilson et al. 1998

No AhpC Mycobacterium
tuberculosis

Heym et al. 1997

No AhpC Mycobacterium
tuberculosis

Kaufmann et al. 2001

No AhpC Porphyromonas gingivalis Johnson et al. 2004

No AhpC Salmonella typhimurium Taylor et al. 1998

No AhpC Staphylococcus aureus Cosgrove et al. 2007

Yes AhpC Streptococcus pyogenes Brenot et al. 2005

No AhpC Streptococcus pyogenes Brenot et al. 2005

Yes AhpC1 Vibrio vulnificus Baek et al. 2009

No Tsa1 Candida albicans Urban et al. 2005

Yes Tsa1/Tsa2 Candida glabrata Gutierrez-Escobedo et al.
2020

Yes Tsa1 Cryptococcus neoformans Missall et al. 2004

Yes Prx Entamoeba histolytica Davis et al. 2006

Yes mTXPx Leishmania infantum Castro et al. 2011

No GPrx Leishmania infantum Castro et al. 2020

Yes Prx Plasmodium berghei Usui et al. 2015

Yes TXNPx Trypanosoma cruzi Piñeyro et al. 2008

BCP-PrxQ Yes BCP Brucella melitensis Zygmunt et al. 2006

No Prx1 Helicobacter pullorum Parente et al. 2017

Yes BCP Helicobacter pylori Wang et al. 2005

Tpx Yes Tpx Enterococcus faecalis La Carbona et al. 2007

Yes Tpx Helicobacter pylori Olczak et al. 2003

Yes Tpx Mycobacterium
tuberculosis

Hu and Coates 2009

No Tpx Salmonella enterica Horst et al. 2010

Yes TpxD Streptococcus pneumoniae Hajaj et al. 2012

Prx5 Yes Prx5 Brucella abortus Hu et al. 2019

Yes Prx5-Grx Neisseria meningitidis Aljannat et al. 2020

Yes Prx3 Vibrio vulnificus Lim et al. 2014

Yes Aps f3 Aspergillus fumigatus Hillmann et al. 2016

Prx6 Yes LsfA Pseudomonas aeruginosa Kaihami et al. 2014

Yes Prx1 Aspergillus fumigatus Rocha et al. 2018

No PrxB Aspergillus fumigatus Rocha et al. 2018

No PrxC Aspergillus fumigatus Rocha et al. 2018

No Tsa3 Cryptococcus neoformans Missall et al. 2004

Yes MoPrx1 Magnaporthe oryzae Mir et al. 2015
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these enzymes are not required for bacterial virulence in mice
or for survival of the bacteria in human neutrophils (Cosgrove
et al. 2007). AhpC deletion did not affect the virulence of
Porphyromonas gingivalis and S. typhimurium in murine
models (Johnson et al. 2004; Taylor et al. 1998). Curiously,
Streptococcus pyogenes ΔahpC was less virulent in one of
two murine models tested, suggesting a differential immune
response according to the host’s genetic background or related
to infection technique (Brenot et al. 2005).

In the fungus C. glabrata, deletion of tsa2 gene has a pro-
found impact on virulence compared with the Δtsa1 strain,
while Tsa1 and Tsa2 are highly induced when challenged by
neutrophils and are important for both the survival and growth
of this pathogen in the immune cells (Gutierrez-Escobedo
et al. 2020). Similarly, mice infected with C. neoformans
Δtsa1 strains are able to survive for a longer period than
animals infected with wild-type pathogenic yeast. The levels
of the pathogen in the lung and in the brain of animals infected
with the mutant strain were significantly lower (Missall et al.
2004). In contrast, C. albicans Tsa1 is an important compo-
nent against oxidative stress, but it has no impact on virulence
(Urban et al. 2005).

In T. cruzi, overexpression of two AhpC-Prx1 isoforms
made the pathogen more efficient against the oxidative de-
fenses of macrophages, indicating virulence role of both en-
zymes (Leitsch et al. 2018). In Plasmodium berghei, Δ prx1
cells were not able to survive in a murine model (Usui et al.
2015). For Entamoeba histolytica, nonvirulent strains had low
expression levels of AhpC-Prx1 and overexpression of this
enzyme rendered higher resistance to oxidative stress and par-
tially restored pathogenicity to this strain, while gene deletion
in virulent strains lead to avirulence (Davis et al. 2006).
Deletion of the mitochondrial isoform of L. infantum de-
creased the long-term persistence of the pathogen in the liver
and spleen of guinea pigs compared to the wild-type strain
(Angelucci et al. 2016; Castro et al. 2011). Conversely, exper-
iments using the L. infantum strain with a deletion of the
glycosomal isoform Prx showed that this enzyme is dispens-
able for virulence in mice (Castro et al. 2020).

BCP-PrxQ

The H. pyloriΔbcpmutant has a significantly lower ability to
colonize and survive in mouse stomach than the wild-type
strain, mainly after 3 weeks of infection (Wang et al. 2005).
In contrast, Helicobacter pullorum Δprx1 and wild-type
strains show no differences when challenged with hydrogen
peroxide and peroxynitrite, or during macrophage infection
(Parente et al. 2017). Brucella melitensis expresses a BCP-
PrxQ required for bacterial virulence in the caprine host,
which is probably related to its capacity to survive inside host
macrophages (Zygmunt et al. 2006). The BCP-PrxQ from the
phytopathogen Candidatus Liberibacter asiaticus is able to

repress the recognition of some pathogen-associated molecu-
lar patterns (PAMPs) in tobacco. This BCP-PrxQ can also
protect bacteria from lipid peroxidation, preventing the forma-
tion of oxylipin (Jain et al. 2018), a class of oxygenated de-
rivatives of polyunsaturated fatty acids that contribute to plant
defense.

Tpx

Concerning the Tpx class, the H. pylori Δtpx strain has a
reduced capacity to colonize mouse stomach, revealing its
importance during infection (Olczak et al. 2003). It is worth
mentioning that isoforms from three different Prx classes are
related to the virulence ofH. pylori. Deletion of the tpx gene of
Enterococcus faecalis affects survival during macrophage in-
fection and dependence on virulence in a mouse peritonitis
model (La Carbona et al. 2007). Mice infected with the
ΔtpxD strain of Streptococcus pneumoniae showed signifi-
cantly longer survival. However, this difference is not ob-
served during blood infection, which is probably related to
the high oxygen levels in the respiratory system (Hajaj et al.
2012). The inactivation of the tpx gene of Salmonella enterica
makes bacteria more sensitive to hydrogen peroxide than the
single mutants of the other Prx. During macrophage infection,
theΔtpx strainmutant wasmore sensitive, while no difference
was detected in a mice infection model (Horst et al. 2010).
Mycobacterium tuberculosismutants lacking tpx cannot grow
in organs of infected mice, fail to induce an inflammatory
response, and show low resistance to macrophage infections.
Additionally, Tpx is able to protectM. tuberculosis against the
RNS generated bymacrophages, as demonstrated by infecting
iNOS knockout host cells (Hu and Coates 2009). This finding
is important since M. tuberculosis AhpC-Prx1 isoforms are
unable to exert virulence effects.

Prx5

Studies on the virulence of members from the Prx5 class are
scarce. Vibrio vulnificus strain lacking the prx5 isoform causes
a delay in mice death by intragastric infection (Lim et al.
2014). Remarkably, a Prx5-Grx fusion of N. meningitidis
has been related to virulence, as verified using an ex vivo
human whole blood model of meningococcal bacteremia
(Aljannat et al. 2020). As mentioned before, the bacterial
Prx5-Grx enzymes have no counterparts in the host and may
represent an important target for drugs. In fungi, an isoform
from Prx5 subfamily has also been characterized as a viru-
lence factor in A. fumigatus (Hillmann et al. 2016).

Prx6

Only one bacterial Prx6 has been related to virulence so far.
LsfA from P. aeruginosa is able to specifically protect
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bacteria against the oxidative burst promoted by the macro-
phages. The authors used an acute pneumonia model to infect
mice with the mutant lacking the lsfa gene strain and observed
an improved survival rate compared with those infected with
wild-type strain (Kaihami et al. 2014).

Virulence studies were also performed onmembers of Prx6
subfamily in fungi. Aspergillus fumigatus presents three Prx6
enzymes. Experiments using the individual mutant strains for
each isoform revealed that the absence of only one of them
(Prx1) caused lower mortality rates compared with the wild-
type. Additionally, the organs of animals infected with the
Δprx1 strain have an elevated rate of pathogenic cell death
and high levels of immunological defense cells (Rocha et al.
2018). For Magnaporthe oryzae, the lack of a Prx6 class en-
zyme impacts virulence in a rice seedling root model (Mir
et al. 2015).

Although no obvious general rule emerges from these stud-
ies, several Prx from five subfamilies are involved in virulence
of distinct pathogens. The obvious role of Prx in virulence is
related to pathogen protection from the host’s oxidative re-
sponses. However, the demonstration of the role of Prxs en-
zymes in virulence may be hampered by the fact that some
pathogens have a large repertoire of antioxidant enzymes. On
the other hand, Prx have additional activities such as phospho-
lipase and chaperone that can also be involved in pathogen
virulence. Therefore, two key points are probably relevant to
understand the complex mechanisms underlying virulence: (i)
investigating the cooperation among antioxidant enzymes to
fight oxidative insults in different developmental stages and in
different cell compartments and (ii) the role of each Prx activ-
ity during microbial infection and colonization.

Concluding remarks

The relevance of Prx in microorganism’s response to oxida-
tive stress has been demonstrated since their discovery in
S. typhimurium and E. coli in the 1980’s. Over the years,
Prx have been biochemically and structurally characterized
in diverse microorganisms, along with the identification of
reducing and oxidizing substrates, and structural peculiarities.
It has become clear that Prx enzymes display unique and key
roles in the establishment and progression of infectious dis-
eases. In fact, a number of Prx enzymes among bacteria, fungi,
and protozoans present virulence properties, which may be
related to any peroxiredoxin function (e.g., peroxidase, phos-
pholipase, chaperone, or cell signaling to eukaryotes). Despite
these enzymes being important for pathogen survival, few
studies have applied knowledge on Prx to fight pathogenic
microorganisms. An obstacle to applications like inhibitors
or vaccines is that only a small number of molecules capable
of efficiently and selectively inhibiting Prx enzymes is known.
Overall, Prx should be regarded as an important alternative for

the development of new therapeutical approaches to overcome
the globally relevant growing resistance of pathogenic micro-
organisms to antimicrobials.
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