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Abstract

In this article we consider the problem of estimating the intensity of a non-homogeneous point
process on the real line. The approach used is via wavelet expansions. Estimators of the intensity
are proposed and their propertics are studied, including the case of threshold versions. Properties
for the non-homogeneous Poisson process follow as special cases. An application is given for the
series of daily Dow Jones indices. Extensions to more general settings are also indicated.
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1. INTRODUCTION

In this article we consider the problem of estimating the intensity of a point process {N(t),t €
IR} denoted by pn{t). This topic has been discussed in several works, and we mention Brillinger
(1975, 1978), Snyder (1975), Rathbun and Cressie (1994) and Helmers and Zitikis (1999).

Contrary to the approach adopted in several works, we do not assume that the intensity py(t)
is within a family of parametric models py(t; @), so that thc only issue there is the estimation
of the unknown parameter vector §. The approach that will be used in this work is via wavelet
expansions, as in Donoho et al. (1996). Wavelets provide a way of estimating intensities for non-
homogeneous point processes, due to their ability to smooth with a variable bandwidth. We will
focus on processes on the real line, but extensions to higher dimensions and more general spaces
are possible. Other papers on wavelets and point processes are Brillinger (1997), Timmermann
and Nowak (1997), Kolaczyk (1999a, 1999b) and Besbea et al. (2002).

In order to maintain the general character of the work, we develop an analysis of inference
which allows us to obtain substitutes to the confidence intervals and bands for parameters and
functions, respectively, without relying on the distributions (exact or asymptotic) of the respective
estimators. Since the intervals and bands obtained through this analysis are extremely cautions
we decided to call it sure inference analysis. We define the concept of inferential sequence, which
is central to this analysis.

To solve the problem of estimation of the intensity of a point process we adopt the following
approach. We expand the restriction of the intensity function to the interval where we know the
points of a trajectory of the underlying process in a wavelet series. We then propose unbiased
estimators for the coefficients of this expansion as well as estimators for the variance of each
estimator. We also obtain an inferential sequence for the wavelet coefficients for non-internally
correlated point processes and Poisson process as a particular case. From the estimators of the
coefficients we obtain an unbiased estimator for the intensity function. The propositions of interest
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are proved for special classes of point processes, satisfying Assumptions A and B, to be introduced
below.

The plan of the article is as follows. In Section 2 we provide some background on point processes
and wavelets. In Section 3 we define the classes of point process satisfying Assumptions A and B.
This section also establishes the sure inference analysis. In section 4 we propose a way of estimating
the intensity function and derive some properties of the estimators, specializing for the case of a
non-internally correlated point processes. Threshold estimators are studied in Section 5 and an
application is given in Scction 6. We close the work with some further considerations in Section 7.

2. BACKGROUND

In this section we provide some background material on point processes on the real line and
on wavelets which will be used in the sequel.

2.1. Notation. We first introduce some notation that will be necessary. We will work with
Lebesgue measurable functions, h : R™ — R which are bounded in bounded intervals of IR™ or,
equivalently, which are integrable in the sense of Lebesgue and bounded on bounded intervals of
IR™. Let us call this class of functions £™. Denote by L" the class of functions which are Lebesgue
integrable over bounded intervals of R™.

We will use the notation |a,b|, a = (@1,...,am), b = (by,...,bm) to represent any of the 4™
possible intervals of IR™ which can be written in the form []}2, [ai, bi|, where |a;, b;| represents one
of the intervals {ai,b;), (ai,bi], (ai,b:} or [ai,bi] of the real line. We also use the notation xc for
the characteristic function (or indicator) of aset C (x¢c(z) =1z € C A xc(z) =0z &C).
Lebesgue measure on IR™ will be indicated simply by £ independently of the dimension m. If it
is necessary to emphasize the dimension we will write ¢,,. The o-algebra of Lebesgue measurable
sets in R™ is denoted by Arm. Brm is used for the a-algebra of Borel sets. Functions that differ
over a subset of zero measure of their common domain or of common extensions of their domain
are, naturally, when necessary, considered identical.

2.2. Point Processes. We denote by N(A) the number of events of a certain sort that occur in
AC R If A= (a0l we write N(a,(] instead of N({a,S]). We also denote by N the integer
valued function defined by the equalities N(t) = N(0,¢], if ¢t > 0, N(0) = 0 and N(t) = - N(t,0}
ift < 0. Clearly N(a,8] = N(8) — N(a). Let {--- ,7_3 <7_y €79 <11 <7y <.} denote the
times at which the events occur. Then N(¢) = n, if and only if 7,1 < ¢ < 7n.

Provided probabilities of the form

P(N(anﬁl] = n1,.-.,N(&k,ﬁk] = nk)

are defined and consistent, for all k € IN* = {1,2,...}, and all n,,..., nx non-negative integers, we
can define an appropriate probability space (2, A4, P), such that there exists a measurable mapping
from this space into (JR?, Bgrz), defining then a stochastic point process that will also be called
N. See Cramér and Leadbetter (1967) and Daley and Vere-Jones (1988) for details and alternative
definitions.

One important point process is the (non-homogeneous) Poisson process, for which we are given
a non-decreasing, right-continuous function A(t), such that whenever (o4, 8i] N (@, 8;] = ¢, for all
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[A(85) ~ Afay)]™

R,‘!

k
P(N(a1,81]) =n1,...,N(ak, Be] = nx) = H ( exp{A(a;) - /\(B))}) .

i=1

As a consequence of this formula, the random variables N(a;, 8,] form a completely independent
set, or equivalently, events in disjoint intervals are independent. An important special case is when
A(t) = At, X being the mean intensity of the process.

Another important point process is the doubly stochastic point process, when we start with a
rcalization A(t) of a process, assumed to be stationary, non-decreasing, continuous from the right,
and then generate a Poisson process with intensity A(t).

Define dN(t) = N(t + dt) — N(t). A basic assumption is that there exist boundedly finite

measures A such that
E{dN(t,)---dN(tx)} = Mx(dt,y, ..., dtx),

that is, E([Tr, N) = M.
We will be often dealing with integrals of the form

[etwane = o).
3

Suppose that ;,1 < i < k, are (essentially) bounded measurable functions, with compact

support. Then,
E{ [ ere)an() - [ ou@)aN @) = [ or(e) - oulea)dbate, .. o).

In particular, we have the following theorem. (See Daley and Vere-Jones, 1988).
Theorem 2.1. (Campbell’s Theorem) Let N such that EN(A) < oo for all bounded set A that
belongs to Br. Then, for all bounded measurable function yp, with compact support, we have

£ [ vtwan(0) = [ewEan .

2.3. Intensity and Product Density. Suppose that there exists a positive real number & and a
constant K's > 0 such that for all intervals A C IR with length |A| < 4, all integers n > 1 and all
t € IR, not only the relation

W P{N(A) = n} < Ks|AI"
holds, but also the limit

" 1 _ _
N a B & IV(A) = 1} =pail)

exists uniformly in ¢. Inequality (1) implies that
P{N(A)> 1} < Ks()_1AP) = O(A).
322
Notice that if inequality (1) were valid for n = I then we would have P{N(4) = 1}/|A| £ K;
and hence, if it would exist, pn(t) would be a bounded function on IR. Notice also that (2) implies



that vz € R, P{N({z}) = 1} = 0, otherwise there would exist ¢ € IR for which the limit px(t)
would be infinite.
Due to uniformity, relation (2) is equivalent to

P{N(A) =1} = pn(t)|A| + or,a([A]);

for an infinitesimal oy A (z) with the following properties: .
Ve>0,36>0,Vte R, VACR,te A, (0 < |A| <8) = |o,a{|Al)] £ £[A] and 0,4 (0) =0,
that is,
Ve>0,30>0,(0<2<8) — sup |oa(z)] € §2z<ezando,a(0)=0.
fEaaims
The quantity sup [o,,a(z)| = o{z) is a non-negative infinitesimal independent of ¢t and A.
teMLACIR
tEA |Almi
In this sense, we also write |0y, A (|A])] < o(|A}).

For the easy of notation, we will write o, instead of 0;,a.

We say that py(t) is the intensity of occurrence of events at time t.

Suppose now that there exists a positive real number § and a constant ks, such that for all
intervals A,,..., A, of the real line with lengths 0 < |A;] < 4, 1 <1 < m, all integers n; > 1 and
all vectors (t1,...,1,) € R™ with ¢; #¢; fori # j, 1 £i <m, | € j £ m, both properties below
are valid:

A3) i (21, nm) # (1,...,1) then P{N(A;) = ny,1 i < m} < kg [ 1A:]™

i=1

and for A = {|A,],...,|Am|) € (R})™, L € A;, 1 < i < m, there exists the limit

1
(4) lim —
ST Il

P{N(A)=1,1<i<m}=pnlts,... tm),

uniformly in £ = (t,...,tm).

Observe that for m = 1 the symbol A has two different meanings, the interval and the length,
but this will be of no harm.

The above limit measures the intensity of the joint occurrence of events in the distinct instants
t1,...,4m. We might call it the joint intensity. Since under the relations (3) and (4) it is also

. E{ﬁ N(Ai)} = pm(tr, ... tm), Pm is called product density of order
i=1

valid that lim —
A0

t

i=1
m. Relation (4) implies that

m
P{N(Ai})=1,15i<m}=pn(t, -"vtm)H |&i] + oy, A, (D)

i=1
for opfim | a.(A) an infinitesimal such that

su o z)l=o0(z
IER"‘—Z’“,H?‘E’A"CR"‘ I l.ﬁ Ai( )' ( )'
tefl[L) A18;1=1;,1€1Em L
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where z = (z1,...,2zm) € (R} )™, is another infinitesimal which is independent of t € R™ — £™

and []i2, A; C IR™, that satisfies ,:(—A) — 0 when A — 0. Here we denote by £€™ the set

IT 1A

=1
{{t1,...,tm) € R™|t; = t; for some 1 # j}.

Again, for the easy of notation, we write o; instead of °, B Ay
l‘=l 1
We can also define cumulants for N(t); and in particular, we define the limit covariance, for

u# v, by
. Cov{N,N)(A; x Ag)
aelwv) = I =R a

Whenever pa(u,v), p1(u) and pa(v) exist, we write
Cov (N, N)(Ay x Ag)

@) = A Al
. E(NAON(AZ) . E(NV(AY) B(N(AY))
= TR AT AT B

p2(u,v) — pr{u)p2(v).

[l

2.4. Point Processes and Infinitesimals. In this section we will present some useful results.

Proposition 2.1. Under conditions (1) and (2), we have

P{N(8) =1} < E{N(A)} < P{N(A) = 1} + O(I5%),
P{N(A)=1} - A< Var{N(A)} < P{N(A) =1} + B,
where A and B are O(|A[?) whenever SUB pn(t) is finite.
te

Therefore we can write
E{N(A)} = pn(tHA] + o (JA])
and

Var {N(4)} = pn(8)IA] + 0.(|8)]).

These 6, = 0y, may depend on ¢t and A but their absolute values are bounded by other o’s
which are independent of ¢.

Proposition 2.2. Under the hypotheses (3) and (4) we have, form > 1,
m
P{N(A))=1,1<i<m}<E {HN(A.-)}

i=1

m 2 m
SP{NA)=1 1<i<m}+ksm {H (T—_liﬁ'i) —1}H|A.~|.

i=1 i=1



m
Theorem 2.2. Let E™ as before , p an E (H dN(t,-)) -integrable function over R™ —E™, p,, the
i=1

m-th order product density and p, = pn the intensity function of a point process N that salisfies
(8) and (4). Then, if pm €L, m > 1, we have

./:llm_cm oF (il'jldN(h)) = ./lnm_cm ©Pm ﬂdti .

=1

We observe that this theorem shows that if the intensity {unction or the product density p,, is
a.e.[f] defined as an uniform limit and it is Lebesgue-integrable over limited IR™-intervals, then

it is also the Radon-Nikodym derivative of £ (]T[ N) with respect to &. Clearly, £! = 0 and
i=1

£? = D = {(x,z) € R*z € R} is the diagonal set_of R,
Proofs and further results can be found in de Miranda and Morettin (2003a) and de Miranda
(2003b).

2.5. Wavelets. Wavelets are building block functions localized in time or space. They are obtained
from a single function ¥(t), called the mother wavelet, by translations and dilations. The mother
wavelet ¥(t) satisfies the conditions

(5) [f¢mm=m
(6) /w | %(t) | dt < oo,
and may also satisfy

(7 ’ /_w 19 "'E(:J’)i Fdw < 00,

where ﬂ;(w) is the Fourier transform of y(t), that is,

d) = [ wgetae

Given a mother wavelet (1), for all real numbers e,b(a # 0), we construct a wavelet by
translation and dilation of ¥(t),

o0 =l a2 90,

where a represents the dilation parameter and b the translation parameter.

For some very special choices of 1 and a, b, the set {1(**)} constitute an orthonormal basis for
L%(IR). In particular, if we choose a = 277, b = k277, j k € Z, then there exists 1, such that
(8) Yrj(t) = wOO(8) = 292y(2t — k),



constitute an orthonormal basis for L2(iR).

There are many different forms of (t) all of which satisfy the conditions (5), (6) and (7).
The oldest and simplest example of a function ¥ for which the ¥y ; defined by (8) constitute an
orthonormal basis for L?(/R) is the Haar function,

1, 0<t<1/2
(9) vy =¢ -1, 1/2<t<1
0, otherwise.

From (9), we have
PR, 27k <t <27k + 1)
o) = 292, 2k + L) <t<2i(k+1)
0, otherwise.

One way to find a wavelet function is by the use the dilation equation
#(t) = V2 lp(2t — k),
k

where ¢(t) is the so-called scaling function (or father wavelet), satisfying ff‘; &(t)dt = 1. Then
the mother wavelet y(t) is obtained from the father wavelet through

V(t) = V2 heg(2t - k),
k

with hg = (=1)l;_, called the quadrature mirror filter relation, where the coefficients {x and hy
are the low-pass and high-pass filter coefficients given by the formulas

L=v2 _/ ® B(t)p(2t — k)dt

and

he =2 / N w(t)p(2t — k)dt,

respectively.

For the Haar wavelet,

) L 0<t<1
#4(0) _{ 0, otherwise,

hence,

l=v2 f B(t)p(2t — k)dt = { 1/ \/g: :t:e(r)c'v Le

and
ho=11 =1/V2, hyi=—-lg=-1/V2.



Consequently,

W(t) = V2((1/V2)é(2t) - (1/V2)8(2t - 1)),

and (9) is obtained.
Another way to construct wavelet bases is applying multi-resolution analysis. See Meyer (1992).
Except for some special cases, there are no analytic formulas for computing wavelet functions.

An important result due to Daubechies guarantees, for all r, the existence of orthonormal bases
for L2(IR) of the form 21/2111(..)(2?1 — k), 3,k € Z, having the following properties: the support of
¥(y) is the interval [0, 2r + 1],

0= [vetez == [b(alda,

Wy has |yr] continuous derivatives and the positive constant +y is approximately 1/5. The Haar
basis is a special case where r = 0. In this work we assume that ¢ and i are (essentially) bounded
with compact support. See Daubechies (1992).

We close this section with some comments on wavelet and Fourier analysis. The functions in a
wavelet basis are indexed by two parameters, while in the Fourier basis we have only one parameter,
the frequency. So a wavelet function is localized in time and they are good building block for signals
which have non-smooth features and features which change over time. For these kinds of signals,
Fourier transform coefficients are not well suited. Intuitively, scale can be thought as “inverse
frequency”, as shown by the following argument (Priestley, 1996). As j increases the scale factor
27 also increases and there is a shrinking in time that shows that scale has been reduced. At the
same time, the oscillations in the mother wavelet increase and exhibit a “high frequency” behavior.
On the other hand, as j decreases and scale increases we obtain a “low frequency” behavior. The
analysis to be presented below is in fime-scale, requiring appropriate interpretations. Sce Morettin
(1999) for details.

3. ASSUMPTIONS AND SURE INFERENCE ANALYSIS

3.1. Assumptions. We make now two assumptions in order to include a larger class of point
processes. From now on we do not impose uniformity of the defining limit for the intensity given
by equation (2).

Assumption B. A point process NV satisfies Assumption B when not only its expectation
measure is absolutely continuous in relation to Lebesgue measure, EN <« ¢, that is, when there
exists dEN/d¢ € fl, but also the following relation holds: ¥t € R VA C R, A interval, t € A,
EN(A) = P{N(4) = 1} + o,a(|4]).

We notice that for such processes there exists py, the defining limit of the intensity and
dEN/dé = py a.e.[f]. In fact, the following result holds.

Theorem 3.1. Let N be a point process that salisfies Assumption B. Then the intensity defining
limit py ezists and dEN/d€ = px a.e.[f].



Proof For all t € IR, we compute the defining limit pn(t):

P{N(A)=1} . EN(A)-o(lA]) _ . EN(4)
0= Ta T T T A ST
FN =
volz) = [ fly)dy, A=la,bl,a<b, hy =b~tand hy =t — a. Thus,
- qim Pt ) —elt - ha)
pn(t) = hlgrf hy T e
Now,
plth)-plt—hs) _ pltti)-plt) h__ plt=—h)—o(t) he
hy + he hy h1 + hy —ha h1 + ha
= () + o)) + (0 + o))

Il

10+ (m(h)h o)),

where, by Lebesgue differentiation theorem, o, is an infinitesimal a.e.{¢] (this means that the set
of t's such that o is not an infinitesimal has zero Lebesgue measure).

Smceosn"ﬁ-—<land0<h—lﬁj;_;51,wehave

g el h,i? T iz(t ) _ () +0 aeld.

hg—0

ae[[] [ ]

Thus, pn(t) =

Assumption A. A point process N satisfies Assumption A when it is under Assumption B and
the equality
E(N x N)(ANnD) = ENm(ANnD)
holds for all A € Aga, where D is the diagonal set of IR? and =, is the first canonical projection.
We observe that this condition is equivalent to say that the measure E(N x N) restricted to
diagonal, E(N x N)|p : Ap — IR, is the induced measure over the diagonal by the measure EN
over the straight line through m;, that is, E(N x N)|p = ENm,.

Definition 3.1. A point process is called non-internally correlated (NIC) if and only if for all A
and B disjoint Lebesgue measurable sets we have Cov(N(A),N(B)) =0

Clearly, Poisson processes are particular cases of NIC point processes.For Poisson processes,
complete independence of the random variables N(A;),..., N(Ax), for all k € IN*, is assumed,
where Aj,..., Ay are disjoint measurable sets, while for a NIC point process we only need to
assume zero covariance for all pairs of random variables N(A,), N(Az2).

For point processes satisfying Assumption B, we have the following proposition.

Proposition 3.1. If N satisfies Assumption B then, for all EAN -integrable function, v, we have
J@dEN = [ gpydt.
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Proof Immediate, since py = dEN/d€ a.e.[€]. |

For point processes satisfying Assumption A we have the following proposition.

Proposition 3.2. If N satisfies Assumption A then, for all functions y, integrable with respect
to the covariance measure Cov (N, N), we have:

f¢1dcov (N,N)= _/ 1dCov (N, N) +/ wpndt, ©(t) = wit,t).
R2-D R
Proof It is enough to prove that ID @1dCov (N, N) = [ wpndt.

[ ¢1dCov (N, V)
D

/ @1d(E(N x N) — EN x EN)
D

[l

_/ ©1dE(N x N) -f @d(EN x EN)
D D

/m.dE(NxN)—/ o dENde de

ftpwld(Ean)—():/ c;:dEN:/ ppndt
D (D) R

since €2(D) = € x £(D) = 0. [ |

It

‘We will also write
[ () (t)dt = j (1) Var (dN(2))

where the right hand side means [, p ¥1(u,v)Cov (dN(u),dN(v)), D being diagonal set of IR? and

w(t) = ¢ (t,1).
The following Proposition is useful for the calculation of covariances of random variables asso-
ciated to point process that are writlen as integrals.

Proposition 3.3. Let X andY be random variables defined by the stochastic integrals X = fA fdAN
andY = fa gdN, D diagonal set of R?, m, the first canonical projection and A, B € AR such that
{supp f N A) x (suppg N B) is bounded. For N under Assumption A we have

Cov(X,Y) = _[ f®g Cov(dN,dN) + / Fopnde.
(AxB)-D m{(AxB)ND)

If Cov (dN,dN) « d€ x d¢, i.e., there exists g2 € 22, dCov (N, N} = ga(u, v)dudv,
Cov(X,Y) = [ F(w)g(v)g2(u, v)dudy + j F(a(t)pn (b)at

(AxB)-D m((AxB)nD)
If N is NIC then

Cov (X,Y) = F(Oa(epn(dt.

-/w| ((Ax B)ND)
Proof Since

E(XY)=E( ] J(w)g(v)dN (w)dN( u)) [ rwewEanaanw)
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and also

E(X)E(Y) = ]A f()EdN(u) jB o(v) EdN(v) = ] /,, _ T)g() EAN BN ),

we have

Cov(X,Y)

/ f [ (w)g(u) [E(AN()dN (3)) - EdN (u)EIN(v))

1

/ f f(u)g(v)Cov (AN (u), dN (v)).

Thus by Propaosition 3.2 it follows that

Cov(X,Y) = //A - f(u)g(v)Cov (dN(u),dN(v))
+ f F(t)g(t)Var (dN (1))
m1((Ax B)ND)
=[] sweenu e [ F®g(Opn(t)dt.
AXB-D m ((AxB)ND)
If N is NIC, then g2(u,v) = 0 and the proposition is established. |

Observe that, since Poisson processes are special cases of NIC pont processes, the third equality
above is fulfilled for Poisson processes.

Assumption B and Assumption A are suitable for immediate generalization for point process on
IR™. We have proved (see de Miranda, 2003b) that for m = 1 thesc assumptions are equivalent.

3.2. Sure Inference Analysis. Let us assume that X : 2 — R is an unbiased estimator for
z and that Var (X) = 7. Suppose also that we have sequences of non-negative estimators and
finite variances, respectively, V and V;, for all n > 1 such that V; = Var(X), V41 = Var V,, and
EV, = V,. Then, by Chebychev's inequality we will have for A; > 0, P{X(w) € [z — Moy, z +
Aioy]} = 1= 1/A2% and, equivalently, P{z & [X (w) — \o1, X (w) + Alal]} < 1/M% Let 00 = VV,
and 6, = \/\1/: We can write similarly P{V, ¢ [V“(w) - z\n.,.n/Vn“,Vn(w) + A1V Var1]} <
1/(Ans1)?, for alln > 1. It may happen, as it is often in practice, that we do not know the value of
0, and use &) (w) and X (w) to form confidence intervals for z when the distribution of X : Q@ — R
is known. In these situations, after some analysis, it could be concluded, “with probability p”, that
z belongs to the interval [X(w) — A181(w), X(w) + MG1(w)]. We are interested in the situation
where we do not know the distribution of X and we want to decrease the uncertainty due to the
replacement of g, by &,(w).
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Since P{o, € q'\/max{o,f’l(w) -2vie}, \/ffl (W) + A2V |} € 1/)2, we have

P{a, 5\/V,(w)+,\2\/72} I—P{cn >\/Vl(w)+\ﬁ/2}

> I—P{a; ¢l max{O,V;(u)—/\2\/\72},\/171(w)+4\2-\/_1/;]}
1
z l—,\—g.

Let L(w, A1, A2) = Ay Va(w) + A2v/Va, Alw, M, Az2) = X(w) = Lw, M, A2) and B(w, A1, Az) =
X(w)+ L{w, A1, A2).

Moreover, let

Q* = {we Qo < VW) + XVIE),
20 = {welze(X(w) - o, X(w)+ Moy},
Q] = {w € ﬂlz € [X(w) = L(U,A],/\:),X(w) * L(W,A],)\z)”-

We then have P(2°) > (1 - 3} and P(@) > (1 - %)
Therefore, since L(w, A1, A2) > Aoy when o) € \/Vl(w) + A2v/V2, it follows that (2* NQY) >
(2* N QP) and we can write
P{z € [A(w, A1, 22), B(w, A1, A2)]} = P(.Ql)
> P(Q'nat) > PN Q)

> P+ PO*) -121- — - 2

AA
The inequality above allows us to obtain conclusions such as: with at least probability (1 - - 31"') .
W 1 2

z belongs to the interval [X (w) — A1y/Vi(w) + XavTz , X (w) + My Vi(w) + XevT5 )

This interval can be replaced in practice by
{X(U) = MY VW) + Ao Va(w) , X (W) + My Va(w) + Aoy Vz(w)]

and this replacement brings some uncertainty. This uncertainty is the reason why we will use “”
and say that “with at least probability p”, = belongs to the later interval above. We can continue

n
the process of analyzing the worst case and get probabilitics of the form 1 — ) 5%, for intervals of

i=1 ™
the form[X (w) — Lm(w, Al - -3 Am), X (W) 4 L (w, A1, ..., Am)] with

Lm(wl’\ll' e :/\m) = )‘l J‘A,i(w) + A?J' e Al‘lfl—:l Vm—l(w) + Am. \4 Vm-

Definition 3.2. The triple (X, (Vo)nem-: (Va)nemw-) formed by a random varisble X : @ — IR, a
sequence of positive numbers (V,)nem- and a sequence of random variables (Vi : Q — IR)pen-, is
an inferential sequence for z € R if and only if the following are valid:
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(i) EX =z, V} = Var (X),
(i) Vn € N* V4 = Var(V,),
(iii) Vn € N* EV, =V,

(vi) Vne N* V,(Q) C R,.

We will use the notation (X, V,,, V,) to represent an inferential sequence and, occasionally, we
will simply say that the sequences V,, and V, form an inferential sequence for z. Observe that this
definition implies the fact that all random variables, that is, X and V,, n > 1, have finite means
and variances, which is a necessary condition to apply Chebychev's inequality for each of them.

Theorem 3.2. (On the inferential sequence of random variables.) Let (X, V,, V,) be an
infercntial sequence for x € R and oy = /V,, for alln € IN*. If

Ln(w, A1y 00 Am) = )‘1\/‘-’1(“) +Ag\/---+A,,.-l Vin-1(@) + Am v/ Ven,
Ai€R] for1<i<m, meN", then

P(z € [X() = Ln( Moo, A X@) # L, Mo A} 213 55
i=1 "1

Proof By induction. If m =1, then
1
.P{:r € [X(w) - Aoy, X(w) + Agd’ll} =1- P{J: -4 [X(w) = Alal,X(w) + A)O’ﬂ} >21- 32
1
by Chebychev’s inequality.
For the facility of notation, let Ag(w) = X(w) — Li(w,Ay,..., k) and Bi(w) = X(w) +
Li(w, Aty o0 Ak)
Assuming that the statement is valid for m — 1, m > 2, we have
P{z € [An(w), Bn(w)]} 2 P{z € [Am(w), Bm(w)] A Vino1 € Vo (@) + Am v/ Vin}
> Pz € [Am-1(w), Bm-1(@)] A Vine1 € Vi1 (@) + AmvV/Vin}
since [Am-1(w), Bm-1(w)] C [Am(w), Bim(w)] when Vj,_y < Vin1(w) + Am vV
Thus, P{z € [An(w), Bm(w)]}

> P{I € [Am-l(w)v Bm—l(w)]} +P{vm-.l < ‘7 —l(w) +’\m\/m} -1
m-=1 1 1 m i
2> (]—ZF)-F(I—A—:)—] = I_ZF'
i m i=]

i=1
since P{Vim-1 € Vin-1(w) + AmvVm} >
- “ 1
1= P{Vin-1 & [Vin-1(w) = AmVVin, V-1 (W) + Amv/Vm | } 2 1 = ST
m
In this way the statement is also valid for m and the induction is completed. |

If we substitute Vi, (w) by Vi, some uncertainty will be introduced in our analysis. Of course,
this kind of uncertainty can be eliminated if we know the value of ¢, (V;), for some J or some
upper bound for a;.
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‘We remark that with the use of this analysis we can obtain confidence intervals with at “least
probability p” for =, whatever the distribution of X is. Moreover, this analysis is more conservative
than the one made assuming that the distribution of X is known.

As random variables are estimators of real numbers, stochastic processes can be understood as
estimators of functions.

If X : xR — IR is a stochastic process which is an unbiased estimator for the function
z : R — IR, that is, such that £X and z are equal (E(X(w,t)) = 2(t) for all ¢ € IR), and we
have sequences of non-negative estimators (stochastic process in this case) V,:0 xR — R, and
variance functions, V,; : R — IR for n > 1, such that

Vi=Var(X): R—R, Vosr = Var (V) and EV, =V,
t— Var(X(t): 2 —1R)
We can develop a sure inference analysis to obtain “at least probability p” confidence bands in a

completely similar way to that presented above for random variables.
From now on, I is simply an arbitrary set.

Definition 3.3. The triple (X, (Vo )nemw-, (Va)nen-) formed by a stochastic process X : Ox1 — R,
a sequence of functions (V, : I — R)nem- and a sequence of stochastic pracesses (V, : @ x 1 —
R)nem- is said to be an inferential sequence for z: I — IR if and only if:

(i) EX =z, Vj = Var(X),

(ii) Vn e N* Voqy = Var(V,),

(iii) Vn € IN" EVp = Vg,

(Vi) Vne IN* V(2 x I) C Ry.
Theorem 8.3. (On the inferential sequence of stochastic processes.) Let (X,V,,V,) be
an inferential sequence for z : I — IR. Let for allm € IN*, L : @ x I x (IR})™ — IR, be given by

Lm(“xt:'\h- < '\m) = M \/‘71'(‘““ t) + ’\2“') cort Ameg \/vm-l(wy t) + /\mv Vm(t)v

then, for allt € I and all m € IN", we have

P{z(t) € [X(w,t) = Lm(w,t, A1, .o, Am ), X (@, 8) + Len(w, 8, 21,0, Am)]} 2 1 = i,\l:

i=1
Proof It is sufficient to see that, for each fixed ¢, we have that
(X (), (Va(t))neme, (Va(t))nem- )
is an inferential sequence for z(t). ]

See de Miranda (2003c) for a detailed presentation of this subject.

4. ESTIMATION OF THE INTENSITY

Let N be a point process over the measurable space (IR, Br), with unknown intensity function

PN- ; ;
Let {¢:; : 4,5 € Z} be an orthonormal wavelet basis of the form ¥; ;(¢) = 27/2¢(27t — i) or

¥;.;(t) = 29/24(27t — iT) for some mother wavelet ¥ obtained, if necessary by the composition of a
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standard wavelet with an affine transformation, such that its support is [0, 7]. Let ¢ be the father
wavelet corresponding to .

Similarly, let {@x.ei,%i; : i,k € Z, § > £,7, ¢i € ZL} be an orthonormal wavelet basis that
contains all the scales beyond some fixed integer .

It is extremely pleasant to adopt the following notation. Let ¢Z = {z € Z:z2>d},d € Z U
{~o0} and Ze(fi) = ZU (Z x4 B) if ti € Z. 1f €i = —00, then Ze(&) = v/

Let us use Greek letters for indexes in Ze(¢i) and we shall write 1y = ¢y ¢ if and only if n € ZZ
and ¥, = ¢;; if and only if n = (1,5) € v/

Thus, the wavelet expansions

JO) =37 ivis(t)
1€EZ jEX
and
f(t) = E Vi, ei(t) + Z Z 8i5i,5(t)
kEZ €ZjELL

will be simply written

f= Z arj"."m

n€Ze(ti)
with the cocfficients a,, given by

[ e

/ (Z{:Qg'ﬁe)wndt'—'; [, ocbeunde

ZO‘( < Ye ¥n >= .
§

Our aim is to obtain the restriction of py to [0, 7] based on the points of a trajectory of the
process that are contained in this interval. Define

_J PN ifte lov T]l
P=1 0 otherwise.

From now on we assume that p € L2[0, 7). Therefore for the wavelet expansion of p we have

(10) P=Zﬁu'¢'m
n
with
T
(11) ﬁ,,=/ﬂp1/1,,dt=/u Pibgdt.

The main purpose is to estimate p through the expansion (10) and for this we need to estimate
the wavelet coefficients 3, given by (11).
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We set ¢ = dCov (N, N)/d¢ if Cov(N,N) < £;. If we do not have Cov (N, N) <« £, we
may replace g2(u,v)dudv by dCov (V, N) in the statements of the theorems and propositions that
follow.

Although for point process on the real line Assumptions A and B are equivalent, we have
made explicit in the theorems that follow, what assumption, in its defining form, was necessary
to derive the claimed conclusions. This is so done because these theorems are suitable for direct
generalization for R™ and, for point process on IR™, this distinction between assumptions may be
necessary. In this way we have made our choice to state the theorems in a form that they can be
directly generalized.

4.1. Estimation of the Wavelet Coefficients. We propose the following estimator of 3,:

T
By =/ Ynd N (2).
0
The main properties of this estimator are given in the following theorem.

Theorem 4.1. If N satisfies Assumption B, then

(1) the estimator ,@n is unbiased.
If N satisfies Assumption A then
(ii) for all7n and &,

. . T
(12) CowlBy fe) = f L W) (v)galt, v)dud + fo o) (0)p(ae) e,

where C = [0,T)? — {(z,z) € R*:0<z < T}.
(iii) In particular,

® - L T
(13) Var(f,) = [ [C B (0)2 (1, v)udky + fo Y2 (u)p(u)du.
Proof. (i) Since

. T T T
EGn) =E [ o) = [ wupn(0d = [ vupit =5,
£, is unbiased.

(ii) Apply proposition 3.3 for X = ,é,,, Y= [3,‘_ and A= B=[0,T]
(iii) Immediate from (ii). n

Assume that N is a NIC point process. In this case ga(u,v) = 0 and (12) becomes

S T T
(14) Cov(fy Be) = jo D) 0e(O)p(t)dt = E jo Un(t)e (AN ()



and (13) reduces to

A T T T
(15) var(y) = [ wiwnode = [ vi0BEN©) =B [ vEano.
This leads us to propose the following expressions as estimators of (14) and (15),

e . T
A jo Un(t) e (AN (1)
and
B T
(16) Var () = fo YR(AN (L),

respectively, which are obviously unbiased.
Let us use the following notation for a sequence of estimators and variances:

Veo = e, Veo = Be, Vet = Var(Ven), n> 0.
By direct substitution of (10) into (15) we obtain

& T T
Varte) = [ 40 T et = 38, [ vRpunlen
n n

Defining

T
K, = [ voutoe,
we have that (15) can be written as
(amn Vea = Var(Bg) = > B,K],.
n

Now, let us compute the variance of the estimator (16):

Vea = Var(Vea) = Var ( / " w?(t)dfv(t)) :
Thus, by Proposition 3.3 with f = g = ¥ we have
Via= [ [ 0o + [ " v p(u)da.
Since ga(u,v) = 0 for a NIC point process, we have
Vi [o " w Oy = /0 T BN = E fo " 0N ).

As before, define
T
%ea= [ (0N (),
0

17
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which is an unbiased estimator of Vg 2. If we write

T
K}, = /0 B (Ebalt)dt,

we have, similarly to V; 1,
V£.2 = ZﬁannA-
n

Defining
T
K= [ wpeuta,

Kem= [ P@ING),
we get the following result. °
Theorem 4.2. If N is a NIC point process, satisfying Assumption A, then
Ven=2 BnKlo n21, Ven=Kean, n20,
n

are sequences such that ‘7e.n is an unbiased estimator of V¢ n, Vens1 = Var(l./f_,.) and ‘7‘5,0 = BE-

Proof First let us prove that 175,0 = /§E and that the estimators are unbiased. For n = 0, since

T
Veo = Kea = [ we(dN(e) = B
0
we have that

T : T
E(Vgo) = E ]ﬂ (AN () = fo Se(t)p(t)dt =

/R Ye(Op(t)dt = fR wg(t)znjﬁ.,zp,,(t)dwgﬂjﬁn jﬂ PnPedt =

> By < Ve, ¥y > = e = Ve
n

For n > 1 we obtain

- T n
EWVen) = BKear) = E [ 0 (0aN(0) =
T n T "
jo o (Op(t)de = /ﬂ (0 5 ) =

' i
34, ]0 B OOt = 3 Bk pn = Ve
n n
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We turn now to the sequence of variances. For n = 0 we have from Vg0 = [§€ and (17) that
Vea =D _BoK{z = Var(Be) = Var(Veo).
n

For n > 1, using proposition 3.3 with f =g = 'c,bf" , we write

A T n
Var (V) = Var (K x) = Var ( fo 42 (t)dN(t))

T
= [ [ 47 @ Ot viduav+ [0 e

Since ¢2(u,v) = 0, we obtain

- T n+l T ntl
Var(Vea) = [ 9 @ptydt = [ wF 7 (6) D Batn(t)dt =
0 0 =

T
S0 [ U a(t)d = 3 B gnes = Vemen:
n ° n
||

We remark that for all n and £, V¢ n41 is finite, due Lo the essentially boundedness of 1 as well
as compactness of its support.

Theorem 4.3. (Inferential sequence for the wavelet coefficients.) Under the condition of
Theorem 4.2, we have: for all § € Ze(€i) the sequences Vi,n and Ve.n, n = 0 form an inferential
sequence of random variables for f¢.

Proof Given the preceding theorem, it is enough to prove that ¥§ € Ze(fi) Vn € N" V; .(Q) C
R.. Since Vw € Q

T T
Ven(w) = (/0 %"(t)dN(t)) (W)=/0 ¥E (8)dNL(8) 2 0,

the theorem follows. | |

Therefore, in the case of a NIC point process N, the estimators for §¢ and the respective and

successive variances are easy to compute, being all of the form fur ¢£" (¢)dN(t), and for a particular
trajectory with m points in the interval [0, T, at times 79,71,...,7m-1, this expression reduces to
Lo ¥¢ (m).
In order to obtain the successive variances, for simulation purposes in an actual problem, it may
be be necessary to know the values Kg 2, Which depend on the particular wavelet family used.
For the Haar family, the following result is valid. The proof will not be given and it is available
from the authors. See de Miranda (2003a).
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Proposition 4.1. For the Haar wavelets re-scaled to the interval [0,T] with ||[¥p0)ll = 1, the

K¢ gn are written as:
() I En€ Zxa T, €= (31,11), 1 = (22,32) then:
For n > 0 we have
(2) If y1 <0 and y2 <0, then

{ 22" 'mitua/DT=(2""'~1/2)  hen T =29 =0,

Kgan =
otherwise.
(b) Ifyr >0 oryz >0, then
A =Dt/ (2" =1/2)  yhenever A or B are valid,

Ky = ¢ —2(@""=Duitna/T@" "' -1/2)  yhenever C is valid,

0 otherwise,

where Ais (1n 20>y A0< 3 <2V — 1),
Bis(y)y >y22 0A0< 1, <2V — AN Vag, < 3y < 2112 +2v:—w—1)

and Cis (y1 > y2 2 0A0 € 79 S W~ 1IN~ Vag, £ 2Ui-Wa—l < g < 2W1—12(75 4 1))

For n = 0 we have
(a) Ify1 >0 orys >0 then
{ b OS T <20 -1,
n
£1

0 otherunise.

(b) Ifya <0 and yz <0, then
( 2+)/2  ifz) = 25 =0,

KE'.: =
0 otherwise.

(1) If€,n € ZZ, then
(a) Forti >0,

a"-1
2[1‘ (_&_)
O¢.n (-,F) when0<n<2" -1,

0 othwerwise.

(b) Forti <O,

iy S
SRt

K¢ 2n = b0 (-T*

i =z € and n = (z2,y2) € Z X¢;i 7, Lthen
(iii) If € Z and Z Z, th
20" /2 T-(2"-1/2)  yhen £i < yp <0 and 2, =0,

K E’ gn =
0 otherwise.
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(iv) Ifé=(z1,0n) EZ Xt Z and p = z2 € 7Z, then
(a) Forn > 1 we have

2@ T+ T-(27 7 -1/2) foryy <0 and 1 =z2 =0,

2" =N/ =12 for (4 >0,0< 7y S — 1,
K{gn = andzz =0) or (6i20,0<n<2% -1
and 2918y < 1, < 290 (n + 1)),

0 otherwise.
(b) For n =0, we have
{ 8,082,020 %9/2 ify, <0,
KJon =
§2n

otherwise.

4.2. Estimation of the Intensity Function. We are now in position to estimate the intensity
function p through a synthesis procedure using the estimates of the wavelet coefficients.

Theorem 4.4. Let ﬁ = 2n€2=(ﬁ) ﬁnva-

If N satisfies Assumption B, then

(i) the function p is an unbiased estimator for the intensily function p.
If N satisfies Assumption A, then
(ii) the variance of p is given by

T
Var(p) = z{: ( / /c Yn(u)¥e(v)g2(u, v)dudv + jo ¢n(¢)¢¢(¢)p(t)dt) Yne.
.

If N satisfies Assumption A and il is a NIC point process, then

(ii)
T
Var () = Z (j Wn(t)e (t)P(L)‘M) Ynte,
né o

(iv) and an unbiased estimator for Var(p) is

e T
Var(p) =3 ( fo wq(t)we(t)dN(t)) Yn¥e.

€

Proof (i) Since E is a continuous linear functional,

E@)=EQQ_ Botn) = _ Byt =p.
n n
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() Var() = B(Z, By = Baln)? = B (T T, By = 6a) B = b)) =
=5 5, Cov(Bn, Be)nve.

Therefore, in the general case,

var(p) =33 ( [ [ ontivetolantunvydudo + [ ! w,,(tmu)p(t)d:) Unbe.
n £ ¢ °

(iii) For a NIC point process, since gz(u,v) = 0, the above expression reduces to the sum of the
second term inside the parentheses.

(iv) Immediate, since p(t)dt = EdN(t). ]

Inferential sequences for p can be obtained using the result of the following theorem.

Theorem 4.5. (Inferential Sequence for the Intensity.) Let 5= (1,...,72n) € (Ze(€i))*"
be an element of the cartesian product of Ze(ti) by itself 2™ times, and N a NIC point process that
satisfies Assumption A. Let

Va(p) = ./0 H '-l‘mpdt) H Un,

nE(Ze(h))"' ( t=1
and

Va(p) =

f Hw,,,dN) 11 ¥nes for altn > 1.

ne(Ze(tu))i (“ =1 =1

Then V,(p) and V() are sequences of variances and estimators, respectively, such that:
(i) E() = p, V(p) = Var (5).
(ii) vn € IN* Vo (p) = Var(Va(p)).
(i1i) Vn € IN" V,.(p) is an unbiased estimator for V,(p).
(iv) Yne IN” V,(3) (2 % [0,7)) C R,
That is, (B, Va(p), Va(p) ) is an inferential sequence of stochastic processes for the inlensity p.

Proof (i) Immediate.
(ii) Since E is a linear continuous functional, we have

( JA Tﬁ%m) me) -

=1

Var(V,(p)) = Var (

nE(Ze(£i)"

Cov ( / H¢,,,dN _/ H wgmdN) 1 ¢ne ]‘[ Ve, -
0. €€(Ze(h))’"

m=1

Using Proposition 3.3 we have



T 2"
Var(Va(8) = Y. (/o 1T ¥ H we,,.pdt) 1 % H Yem =

nE€(Ze(Li))3" =1 m=1

2n+l an +1
= ('/; H ’J’mpdt) H P, = 1 (P
uE(Ze(ln))’"*'

=1

(iii) Equality EV,(p) = Va(p) follows from the linearity and continuity of E, Campbell’s theorem

and Proposition 3.1.
(iv) Since Vn € N", Vw € 2, Vt € [0, T,

5 T 2" 2"
wowo= ([ Tonan) [Tvmto -
{=1

ne(Ze(ti)?™ \70 =

- 5 [(fiw)(fimo)oes £ [ (fosmo) -

ne(Ze(ti))?" ne{Ze(ti))2"

T on
B f 2, (l'[ %wm(z)) dN, =
0 pe(ze(ti))™™ \t=1
T gn-1 o
:/ Z (H 'J’mlﬁm(t)) (H 'ﬁcmt.bgm(t)) de .
m=1

O pee(ze(eiya-t \ =1

= /T 2 (2H w.,.(t)wm) > (zﬂ wem(t)'ﬂen)‘”" *

O eczeteyntt \ =1 ge(ze(tin? \m=1

T -
- jo ( b me(zm) dN, 20,

ne(Ze(ti))2" "t ¢=
the theorem is proved. |

5. ESTIMATION UNDER THRESHOLDING
Let 4Z, = {z € Zld £ z < e}, d,e € ZLU {—00} U {+00} ; Ze(i)y =
ZU(Z %y Zy)iflic Zand Ze(li)y=Z x{z€Z|z< T} ifbli=—
We shall use the notation

(18) Pr= Y Byn=D_ Bybn

neZe(ti)s i<d

for the estimated intensity function using wavelets 1, with scales up to the J-th order, J > 0,
noticing that when 7 is an ordered pair it is represented by (1, 7). Observe that if J < & then the
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intensity function is estimated only by wavelets ¢y ¢ and if £ = —co the expansion contains only
re-scaled wavelets from the mother wavelet.
The notation

(19) Pg,\ = Z T (.ém)\\,‘ V”(Bv)) ﬁnwn = Z T ([}m A VBT(Bﬂ)) [3':"»1’11

neZe(ti)s isJ
will be used for the estimated intensity formed from wavelet cocfficients undergoing a tresholding
procedure.

A threshold function T : IR x IRy — IR is a measurable function such that 0 € T(z,y) € 1
and, for each y, T'(z,y) = 1 if |z| 2 y, Tz, ) is non-decrcasing over [0,y] and non-increasing over
l—ys 0]

We hope that the use of T' as the extreme of the interval [0,T] and as a threshold function
T(x,y) will bring no harm in understanding what follows.

Denote by esssup, f(essinfa f) the essentiel supremum (infimum) of a function f defined
on the set A. For the easy of notation we will write esssup, f instead of esssupgyppy, f =
€SS SUP; esuppu, f (), where supp 1, indicates the support of the wavelet ¥,,. If f = Z,,EZC(,,-) QnPn,
we shall write f5 = ¥, cze), @ty a0d [Ty = 3, ooy, Tl L)) and, L @ Ry x
Ze(f)g — Ry.

Definition 5.1. We will say that the function f is essentially a-Holderian in A C IR if and only
if there exist two constants, K end e, and a set D C IR, é(D) = 0, such that for all x and y in
A—D we have |f(z) = f(y)] £ K|z - y|®,a > 0.

This definition can be extended immediately for a function f : X — Y, where (X, A,u) is a
measure space and (X, d;), (Y, dy) are metric spaces. '

Definition 5.2. Define esslimz_., f(x) = L, when there exists a set D C IR, ¢(D) = 0, such that
the limit, when z — y, of the function fla—p (restriction of f lo A — D), is the real number L.

Analogously, we can extend the concept of essential limit, define essentially differentiable func-
tions, etc.

5.1. Convergence rate and bounds for the bias. The results that follow give upper bounds
for the magnitude of the bias, measured in the L? norm, of the estimators (18) and (19), in the
case of p being essentially a-Holderian.

Theorem 5.1. Let {¢n|n € Ze(4i)}, £i <0, £i € ZU{—00} be an orthonormal wavelet basis such
that supp 0,0y = [0, T] and ¥(o,0) is essentially bounded.

Let N be a point process satisfying Assumption B. Suppose that p, the intensity function of N
restricted to [0, T), is essentially a-Hélderian with constants K and a > 0. Then,

K2M?suppdog) "t ¢ 1\
= 2-%) 728 x(0.11(e),

for all J > 0, where M = max(|essinfiy 1) (0,0, €38 5uP}o 7 Y(0,0)}-

(20) llp - EGI? <
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Proof For all p and J > 0 the following equality holds:

o — EGI? =1 Zanw,, EY Byball? =

i<J
I3 = B+ 3. Batul®=1l Y. Banl’= Y 62
i<d nezZ25>J n€Z2,5>J ne€z?,j>J

Now, we will find for each 5, lower and upper bounds for §,. Let ¢} = max{#,,0}, Y, =
max{—1y,0} and supp ¥, = [ay,by]. Since p is non negative,

o= [vupat= [wipde~ [v7pat

< / ub;' ess sup,pdt — f ¥, ess inf,pdt =
= ’/.(1/1,1,— — 9, )ess inf,pdt + /10;' (ess sup,,p — ess inf,p)dt =

= ess infnpfwndt + (ess sup,p — ess inf,,p)fqb,*,‘dt
L0+ K(by — ay)*(by — ay)ess sup, ¢ =

= K (by — ay)**127/%ess sup(g 6 ¥(0.0)-
Analogously,

By 2 / Yy ess inl,pdt — f ¥, ess sup,pdt

> 0- K(b, —ap)® f P dt > —K (by — ay)®+129/2[ess inf(g,0)¥(0,0]-

Let M = max{ess supjg11¥(0,0), —sS infjo,7)%(0,0)}- Then we can write
a+l

< _ a+19i/2 _ M |SUPP¢.(0_0)| 0i/2

1ol < KM(b, - ay)™+'23/? = K (____2) .

B2 < K2M?|suppiyo,gy|2(a+t2=Re+1)i,
Since the j-th scale has at most 27 non null coefficients,

ST B2 <Y 2 (K2MP|suppyoq) |22 Retl) =
nez? j>J isJ

= 1(2M2lsupp,¢,(o'o)|2(a+l) Z 9=2aj
i>J
2—2::)J+1

= K22 2 ——-——(
= K*M*|supp¥o,0) (°+1)(1_2—2a)'
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Now, if @ > 1 and A C IR is a real line interval, every essentially a-Hdélderian function is constant
on A-Dsince, being rand y € A—D, z < y, we can write | f(y)— f(z)| € Tra 1f(zir1)=F(z)] <
S K(zien — 2:)® € K(maxogicno1(Zie1 — 2:))2 7 icg (Bia1 — 24) = K (maxogicn—1(Tis1 —
z))* Yy —z), wherez =20 <z <...<zn=yand foralli,0<i<n,z; € A- D. Since
Ve > 0 we can choose these points such that maxgci<n—1(Zi41 — i) < € (otherwise we would have
an interval contained in D and this would not obey £(D) = 0) we have Ve > 0 |f(y) — f(z)| < €
and hence f(y) = f(z) forallz and y in A - D.

Since p is essentially constant, we have 8, = [ ¥ypdt =0 for all J > 0, hence

lp-EGAIP= 3 =0
n€Z25>J
|

The preceding theorem guarantees at least an exponential decay with J for the bias of ;. The
following two theorems show that in case of thresholding, the square of the bias is bounded by a
sum of two parts. One corresponding to the exponencial decay with J and another corresponding
to the threshold. In theorem 5.2 the expansion in made using wavelets re-scaled from a mother
wavelet only. For this rcason it was necessary to assume the existence of the essencial limit at zero
for v(0,0)- Theorem 5.3 assumes that the expansion is made using father and mother wavelets.

Theorem 5.2. Under the conditions of Theorem 5.1 and the additional assumption that N is a NIC
point process salisfying Assumption A , that Ze(8i) = Z* and there ezists ess lim,—g Y,0(t) =L,
we have that for every threshold funclion T and A > 0,

X K2M2|suppo,o 2@ 1\
(21) lp - EGIIIP < (1_2_(2,':))’ ('é'g';) X(o,15{e)

+ A%(ky + 247D — 1)ess sup p,
: (0.7]
Jor some constant k) € IR.

Proof We have that

o = EGT\N = IS Ban = B(Y T, Ay Var(By)) o) =
n

i<J
=132 Boton + 3 (By = E(T (B, Ay/ Var(8y))Bn)) ],
i>J i<t
therefore ’ ’
(22) lp— G2 =3 B2+ Y (By — E(T(Bn, M/ Var(Ba))Ba))?.
i>J igd
Now,

B~ E(T (B, M/ Var(B,))By) = E(By = T(Bn, M/ Ver(8,))8,)-
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Let v = ﬁ,, - T(ﬁ,,,z\\/Var(ﬁ,,))ﬁ,,. It follows that v is & random variable such that v = 0 if

1Bal = Ay/Var(By), 0 < v < B, if 0 < B, < A\y/Var(B,) and B, <v<0if -,\,/Var(ﬁ,,) <fy<0.

Separating the integral f vdP into two integrals over the intervals (— A4/ Var (5, B,), 0] and [0, A Var(8,)),
we get

E(v) < A/ Var(B,)P([0, \y/ Var(By))).
E(v) > —A\/Va:(ﬁ,,)P((—)u/Var(,é,,),0]),
It follows that
|E(w)|? < A2Var (B,) max{(P((-Ay/ Var(B,),01))?, (P([0, Ay/ Var(B,))))*}

and we obtain

(23) > (B = E(T(Bys A/ Var (By))B,))* < S AVar (B,)

nisd mi<d
Since for NIC point processes,

Similarly,

Var (8,) = fwnp(t )dt < ess sup“p/w?’dt =

= ess sup,p < ess Supjo, 7P,

we can write, for 7 € Z? and non negative m,

> Var(B) < Y esssup,p < 2™ess supy 1P
{7=m} {i=m}
due to the existence of exactly 2™ wavelets with scale m and with supports that are not disjoint
of [0, 7). In this way,

7
(24) Z Var(8,) < ess supjo, 1yp( Z 2™) = (27*! - 1)ess supjp 7yp-
0gi<d m=0

For negative j, we are only interested in those 5 of the form (0, 7). This is so due to the fact
that, for 7 = (1, 7), i # 0 we have suppyy; j, N [0,T] = ¢. Since

T
Var(3,) = j YRpdt = /0 Y2pdt,

we obtain

T T
Var(f,) < ess supygip / ¥;dt = ess supg P f {2%9(0,0) (2t = iT)} .
0 0
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Sincei =0,

T v T2
(25) Var(8,) < ess sup‘o_ﬂpjo 2J¢(20_0)(2J!)dt = eSS Sup(o TIP ! wfu_m(a:)dx.

From the existence of the essential limit esslim,_.p+ ¥(0,0y(x) = L, we have that there exists
D c R, {(D) = 0, such that for all € > 0, there exists a § > 0 such that for all z € [0,7] - D we
have the implication 0 < < & — Y(0,0)(z) € (L —€,L +¢€). So, for all § with 27T < § we have

X T2
Var(8,) < ess supjp 1P : w(zo,o) (z)dz

< (ess supjo 7)p)2? Tmax{(L ~ €)%, (L +¢€)*).
Let j. be the greatest integer j such that 2T < 4. Then

(26) > Var(B,) < 2-*!(ess supjg ryp)Tmax{(L — €)2, (L + €)?}.
n=(0.5),7<j.

The inequalities (25) and (26) imply that

Z Var(f,) < (ess supo,71p)2* H ' Tmax{(L - €)?, (L + €)*}

.3 <0
2T
+(ess supp,7yp) Z [ b”(oo)(ilc
J=ietl
Let
2T
ky —2’+'Tmax{(L €)?, (L+s)2}+ Z / dz(znln,(x)da;.
J=Je+1

Then using (24) we write

> ,\2Var3)_,\2(z Varﬁ,,)+ZVar,3,,)
0

nasJ <isJ j<o

< A (ky + 27" — 1)ess SUp(o,19P-
Finally, from Theorem 5.1, (22) and (23) we deduce

[lp - E(PJx)lf2 <

KZMZ[SUPN’)(O.O)[""“) 1 J+1
= 1/2%) 7 ) Xoxle)

+)«2(k| + 27+ 1)ess Sup[o,7jP-
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Theorem 5.3. Let {¢n|n € Ze(ti)}, #i € Z, £ < 0 be an orthonormal wavelel basts such that
suppwo,0) = [0,T] and o) is essentially bounded. Let N be a NIC point point process under
Assumption A with p essentially a-Holderian with constants K and o > 0. Then, for every
thresholding function T and A > 0 we have

e = E@S)I? <

K2N12f309p¢ 12(n+ 1) 1 J+1
(0,0) (223 ) X(O.ll (a)

(1-2-2) 2%
+A2(ky + 27+ — 1)ess suppo 11p,
for some constant k, € R.

Proof It is enough to notice that, in this case,

lp-EGIP= > B+ D E@wP< Y B+ Y XVar(B,)

ne€Ze(li)—Ze(ti)y neZe(ti), neZe(li)—Ze(li)y ne€Ze(li)s
.. 5 J ~
From Zy,ez Var(By.¢i) + Zzi5j5_1 Var(f,5) + 2j=0 Var(B; )

T -1 T
< ‘/; #o.li)P dt + (ess suplo_T]p) (Z .[o ¢(2°‘0)(z)dz + (27+ - 1))

j=ti

T T
and g &o,e)p dt < ess suppprpp fy $fo,edt =

T geop
s g .
=ess suplolg;_-]pjo (2472 $lo.0y (27 0)dt = ﬁS‘SUP[o‘nP-[o $to.0)(2)dz ,
by Theorem 5.1 we establish the inequality with

2’7

- 9 -1
i i /0 Shny(@)dz+ 3 /; U 0y ().

=t

For Haar wavelets both Theorem 5.2 and 5.3 reduce to the following proposition.

Proposition 5.1. Under the hypothesis of Theorem 5.2 or Theorem 5.8, for the Haar wavelet
family, we have

(27) llo - EGTI? x(0.1(2) + A2+ Dess sup p.

2 K2T2a+1 ( 1 )J'H
(0.7

= (1=2-%) \ 2%«
Proof For the Haar wavelets, M = T~1/2 = [,_ So for all € > 0,

- K2T—1T2(a+l) 1
lp = EGLLI? < (

J+1
i () e
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+2? (?'*‘Tmax{(T'l/z +e)? (T7V% - 5)2}) €ss sup|o, )P

J=ja+l

K2T?a+! 1\’
= -1z (22—,,) X{o.1)(@)

-1
+? ( z PTT-! + 27+ 1) €ss supjp 7P

-1
+A? ( Z 27 4 2 max{(1 + eT/%)%, (1 - eTV/?)2} + 27+ - 1) €ss supjp,7)P-
1=j.+1

Letting € — 0 we get (27). Moreover if ¢i € ZZ we have

24T - 2T -1
= = —dr = €| _ -
k.-_/o Tel:c:-r;/0 pdz= D 2+24) =3 2 =1

J=li <=1
and (27) follows.

Next proposition gives us a way to choose the “optimal” value for J.

Proposition 5.2. Under the hypotheses of Theorems 5.2 or 5.5, given XA > 0, we can choose J
such that
lip = BTN < g(A) = min(4, B),

with
1\ lal+t
A=ko (Ei?) X(0.1)(@) + A2 (ky + 2lelxen(@)+1 _ 1) esgsup p,
[0
1 [a]+1
B=ky (22_‘)) X(o,x](a) % '\Q(kx + 2lalxenla)+1 _ 1) %sfuﬁp,
0,

_ 1{2M2|Supplb(n,o)|2(°+”
- (1-2-%) J
ky given in the proof of Theorem 5.2 or Theorem 5.8,

ko

&n(2ako/esssupp 1 p) — 2¢nA
- (2a + 1)én2 T
and, in case of a < 1, J will be |a] or [a], depending on which of these two values minimizes
9(X); otherwise, that is, a > 1, J will be zero and A = B = g(A) = A(ky + L)esssupjo 7 p-

Proof From Theorem 5.2 or Theorem 5.3, we have for a € (0,1]

! 1 J+1
llp = EGIAN? < ko (EE) + A%(ky + 274 — 1)ess supjg p = f(J, ).
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Extend f: N x IRy —» IRto f: IRy x IRy — IR. Then

8f 1 1 Y™ s J+1
aJ(J A) = in 3% 7%a + A*(€n2)2" ess supyg 7yp,

1 2 1 J+1 3 il
6J2 (J A) = ( (270)) (-2—2-;) + A%(€n2)“2"" ess supjg 1P,

hence the second derivative is positive for all J and A. The first derivative is zero if and only if

Aess supjo 7P

(J+1)(2a +1) = loga (__ilko_) '

which yiclds the value of a above. Since, for a given A, f(J,A) has only a critical point which is a
minimum point, f(J,A) will assume its minimum value over the integers for J = [a] or J = |a].
If @ > 1, then |lp — E(57,)II> < A%(ky +27*' — 1)ess supjg 7}p the minimum of which occurs for
J=0. ]

5.2. Inferential sequences for the estimated intensities. We close this section with some
properties of #; and 57 ,.
Theorem 5.4. If N salisfies Assumption B, then

(i) ps is an asymptotically unbiased estimator for the intensity function p.
For N under Assumption A:
(ii) Var(ps) = Lz, Zzg(m,(f Jo Yn(u)te (v)az(u, v)dudu)ynise

+ 3 ze(ti)s que‘),(fn Yn(t)e(O)p(t)dt) byt
IUN is a NIC poinl process salisfying Assumption A, then
(i) Var(Bs) = X zeqeiy, 2 ze(eis (foT ”’ﬂ(t)‘l’f(‘)p(‘)dt) Yn¥e, and
(iv) V;r(f?..r) =3 zeqti)s oze(ti) (foT Yn (L) (t)dN(t)) Ynie is an unbiased estimator for Var(py).

Proof =
(i) limy—co B(ps) = ]imJﬂmoo E(En.jSJ Byn) =
= limje Zn._‘iSJ E(Byn) = lim)j— oo ZW.J'SJ Bty = Erp Baym = p, in L*[0,T].

(ii), (iii} and (iv): it is sufficient to repeat the argument of the proof of Theorem 4.4, observing
that n,€ € Ze(&i);. ]

Theorem 5.5. (Inferential sequence for py.) Letn = (n1,...,m20) € (Ze(€i);)*" and let N be
a NIC point process under Assumption A. Let, for alin > 1,

Vo= 3 ([:ﬁwmm)nm

n€(Ze(ti)s)*" t=1
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and

Va(ps) = ( f H wn.dN) IT%a-

nE(Zc(ll).r)’

Then, V,(py) and ‘7,,(;6_,) are, respectively, sequences of variances and estimators such that

(i) E(ps) =ps, Vi(ps) = Ver (55)

(ii) Y’\*—l (ps) = Var (Vn(ﬁ-’))

(3ii) Vin(py) is an unbiased estimator for V,,(py).

(iv) Va(ps) is non-negative.

Briefly, the sequence (py, Va(pys), Vn(ﬁj)) constitutes an inferential sequence of stochastic pro-
cesses for py = Zﬂez:(ﬁh Bn¥n, the approzimation of the intensity by wavelets up to the J-th
scale.

Proof
(i) Immediate; Theorem 5.4 (iii) and (iv).
(ii) Just replace Ze(£i) by Ze(¢i); in the proof of Theorem 4.5.

(iii) Same argument of the proof of Theorem 4.5.
(iv) Just replace Ze(éi) by Ze(¢i); in the proof of Theoremn 4.5. ]

The preceding Theorems 5.4 and 5.5 give us all the relevant information about py, that is, its
asymplotical unbiasedness, its variance function in the general case and the inferential sequence
for py in case of NIC point processes. Now, we turn our altention to the threshold case. Observe
that preposition 5.3 deals with the case of an arbitrary threshold function. Due to this, only upper
bounds for the variance function were obtained. Assuming the hard threshold, we can derive the
equalities in proposition 5.4 and obtain the lmportam result for NIC point processes given by
Theorem 5.6, i.e., an inferential sequence for p7 . 3
Proposition 5.3. IfN satisfies Assumption A, then, for all threshold functions, we have

(i) |1Eps - Eﬁ'_',j).”’ — 0, when A — 0, for p and Yooy satisfying the hypothesis of Theorem
5.20r 5.3
(ii) Var(3],) € Temezeweir, ([ Jo 19n(u)te(v)| E(AN (w)dN (v)) [¥nie]

T
-+ EE.rpEZc(li)_‘ (fo W’n(t)1(’€(t)lp(t)dt) [Wnthe| + Zf,nez,u.-), I1npl 1 [1weplls mibel-
If N is also a NIC point process, we have:

(i) Var(57s) € Tneezeten, (fo WalWWe(Olp(t)dt + 20inpllaliveply ) 1bqvel
(iv) MVar(7,) =
Tneczety, (20 WalDIANE) [ 1We@IN(®) = J7 [9a(0e(O1AN(0)) [p0e]

is an unbiased estimator for the right hand side of the above inequality.
Observe that (iii) and (iv) give bounds that are independent of A.

Proof (i) Due to the argument used in the proofs of Theorems 5.2 and 5.3, we can write



IE@.) — BGI I =

=1 Y BBy~ BT (B M Var(Ba))Bu)all? < N2(ks + 2741 = D)ess supig ryp.
n€Ze(li)y
Therefore, the left hand side of the inequality tends to zero as A — 0.

(ii) Write T, to represent T(8,, \y/ Var(f,)) and &, = T,8,. Then

Var(p],) = BT, — EGTA)? = E( Y. 2ot — Y Elzq)tn)’ =

Ze(bi) s 2e(ti)y
=E( ) (8,-E(@8))(& - E@)Wnve) = ) Covldn,&c)dnte.
nE€Ze(ti)y nE€Ze(ti)s
Therefore,
Var(pf,) < Y 1Cov(&,, #e)llvnvl.
nE€Ze(li)a
Now,

ICoV(&n, &¢)| < |E(TyTenfie) + |E(TnBa)|E(Tefe)l
< EiTnTﬁﬁnﬁél + EJTnéﬂE'TEﬁd

< E|B,f¢| + E|B, | Elfel,
since [T,| £ 1 and |T¢| < 1. From ﬁn = fu’r,,dN(t) we have |ﬁ,.,l < f]w,,ldN(t) and, consequently,
E|8,| £ [1¥lnpdt = |l¥ypll1. Analogously, Elfe! < [lveplls-

[rom
Babic = [ [ wntepeoranian o)
we have
ElBofel < / /C 4 () (0) | E(AN (u)d N () + f fD |46 () ()| E(AN ()dN (),

D, =[0,TPND.
Now, since NV is under Assumption A,

‘T
j f () () BN (u)AN (1)) = j WonbieldE(N x N)|p = j 2 () p(as) s
D, Dy 0

Therefore

ICov(zy, 2¢)| < j jc [ion () ()| B(AN (w)AN (v))+



T
+ jo () e ) p(u)du + [Pl [ 0eplls

and

Varpia) € 30 ( /L wq(u)w(v)w(dzv(u)dw(v))) el

n.{€Ze(li)y

T
+ > (_/o |tl'v.(")¢e('1)lp(u)du+Ilwnpllnllwsplh) [nibel-

néeZe(ti)s

(iii) For a NIC point process N we have d—E%n%:—Nl = p2(u,v) = p(u)p(v), u # v. Let p"(u,u) =
p*(u) and p*(u,v) = p2(u,v), u # v. Then

/_/cl‘l’n(u)if’e(”ﬂpz(u,ﬂ)dudv= /OT ./(;T [ () (u)lp* (u, v)dudy =

T T
= / [n{u)lp(u)du / [e(v)lp(v)dv = |l¥npll2 ¥epll:-
0 ]

The conclusion follows by direct substitution into expression (ii).
(iv) Since |lYngply = fg- [vnlpdt = EfoT |¥nldN(t), we can write

llmpllall¥eplls =

T ! T T T
E‘( fo 0, |dN (1) [o |1}J{1d]\’(l)) — Cov ( [0 [6aldN(2), fo |1/;4|dN(t)).

By Proposition 3.3 for NIC point processes, the covariance in the right hand side of the above
cquation is equal to f;‘r It welpdt = E‘f:hb,,gueldN(t), hence

T T T
Ilwnpilnlllﬁcpfh=E( [O lnldN (2) j wadN(t))—E j el (8),

and

T
/0 om0 (D) + 2l ebeplls =

T T . T
=E(2 fo [, |dN () fn beldN (t) - /; ]gb,,v.bddN(t)).

Summing for all 5 ¢ £ in Ze(¢i) s, the proposition is established.
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Proposition 5.4. Let N satisfying Assumption A. If we choose T(z,y) = 1 when |z| > y and
T(z,y) = 0 otherwise, and if we let

TZe(ti)s = {n € Ze(ti)s|T(By, M/ Var(Bn)) = 1},
then
() Var(37,) = T, cerzectiys (f Jo ¥n(ue (v)ga(u, v)dudv + f: ¢n(t)¢5(t)p(t)dt) Yntbe.

If N is also a NIC point process, we have (ii) and (iii) below:
(ii) Var(5],) = T, ecrzeen, Uy Un(t)e(t)p(t)dt)bove.
(iii) Var(;‘:";_A) = Zv).EETZe(l:')J(fOT Yo (t)Ye (8N (1)) ¥hnte is an unbiased estimator for Var(ﬁi‘\).

Proof Since

Pia= 2 Tl Var(Bo)bovn = >  Butm,
n€Ze(ti)s n€T Ze(ti)s
it is sufficient to repeat the argument used in the proof of Theorem 4.4. |

Theorem 5.6. (Inferential sequence for p’i ze) Let N be a NIC point process under Assump-
tion A and let T(z,y) = 1 when |z| > y and T(z,y) = 0 otherwise. Let TZe(li); = {€ €

Ze(bi)5|T(Be, A/ Var(Be)) = 1} and = (m,...,man) € (TZe(ti),)?". Then,

T 2" 2"
V"(ﬁ?’:a\) = Z ( H l}l,,,Pd!) n ’l’m

ne(TZe(ti))" \"0 ¢=1 =1
and

i T 2" 2"
Valdya) = z (fo I__II%,EdN) Ewm, foralin>1,

n€(TZe(ti)s)?"
are, respectively, sequences of variances and estimators such that
(i) B(B5) = Pl VA(PT,) = Var(p] ),
(i)) Varr(@7) = Var(Va(87,)),

(iii) V,.(ﬁ'fl ) 13 an unbiased estimator for Vn(ﬁ_T,:A).

(iv) Vﬂ(ﬁi\) is non-negalive.

That is, the sequence (BT, Va(57,) , Va(37,)), n > 1, constitutes an inferential sequence of
stochastic processes for the function p_’,'. »» Waovelet threshold approzimation of the intensity till the
J-th order scale, with L : Ry x Ze(€i)y — R,. defined by L(\,n) = )\\/Var(ﬁ,,), T(z,y) = 1 when
|z} > y and T(x,y) = 0 otherwise.

Proof
(i) Immediate; Proposition 5.4 (i) and (iii).
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(ii) , (iii) and (iv) Immediate. [ ]

6. AN APPLICATION

We will present here an application of the results obtained in the former sections. The
intensity of a point process derived from the daily log-returns of the Dow-Jones Industrial Average
will be estimated. To form a point process from these returns, we will agree that an event has
occurred if and only if the absolute value of the log-return is greater than a given threshold level.
A set of T = 4225 returns will be used, corresponding to the period of time from January 2nd 1986
to September 26, 2002, and the threshold level will be 0.01452 which corresponds to 1.28 times the
standard deviation of these returns.

This procedure generates 558 events, which we assume to be a realization of a NIC point process
with intensily px(t). Since it is necessary to limit the number of wavelet coefficients that will be
estimated and used for the synthesis of j, our choice is made of a set of cocfficients that encompass
exactly all coefficients of all scales of order less than or equal to a positive number J. If the
intensity were constant we would expect (558/4225)c events within an interval of length ¢. Under
this assumption one will expect to have 558/2% =~ 8 events laying inside the support of each
wavelet of the sixth scale and if the intensity at some time interval is half of the average intensity
this number may drop to 4. Information based on a wavelet with few points laying within its
support may be misleading. This heuristic argument led us to choose all wavelets until the fifth
order for our synthesis procedure.

An important advantage of our estimation method is that we have direct access to the variance
of ﬁﬂ, through V;f'(ﬁq), for each 7 individually, and not by an estimation that depends on the
whole set of wavelet coefficients of a given scale or any subset of the set of all wavelet coefficients.
We observe that when one uses an estimator of Va.r(,@,,), for a given 7, based on the variance of
the values of all ,35, thet may belong to the same scale of 8, or to a bigger set of coefficients, what
really is being done is to calculate an estimator of the variance of the coefficients within this set
and most of this variance, probably, is due to the diversity of the indexes £'s, that is, of all distinct
Be’s in this set, and this variance may not have any or little relation with the variance of ﬁ,, for
that particular 5 of interest.

It is worth noting that when the process is under the presence of noise it may happen that
the whole set of coefficients is affected and the variance of the coefficients of higher-order scales
is a measure of the intensity of the noise point process. In fact if the noise point process that
is added to N is a homogeneous NIC point process with intensity A, then the variance of the
coefficients that belong to the J-th order scale is an asymptotically unbiased estimator of A, that
is, E{Var (B0,43,--++827-1,n}} — A, as J — co. In this case we can still obtain the estimated
intensity of the process N by synthesis based on the measured process and then subtracting from
this estimated intensity the estimated intensity of the noise. See de Miranda (2003a).

We have used in this application the Haar wavelet system. Let T4 be the indicator function of
aset A. Thus

Vo0 =T Y% (Lozsmy - Iirs2my) + b0y =T~ ooy, T = 4225
and
2i/2
Yig) = T2 (T2 @ienyrsorery = J@ienTrarss G40)T29)) »
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23
Vg = E:I{.'r/zi,(.--mr/y)-

The estimators ﬁ,, and V;r(ﬁ,,) were obtained through the formulas

Biigy = jw(i,j)dN(t) = S Yupln) =

T ESUPPY(i,5)

= ;]l—ﬁ (#{m € [(T/27,(2i + DT/2*)} — #{m € (20 + DT/, (i + 1)T/2%)})

and

Vald) = [Wave = 5 e =

T ESUPPY:,;

j ' '
- 2? (#{m € i/, (i + 1)T/2)}).
Analogously, we have obtained ﬁo and Varfl. Observe that
7 €[0,T
mmtine o)y = HEcloT)
is the mean intensity, 558/4225, that is, the mean value of p.

The threshold function chosen was T(z,y) = O for |2| < y and T(z,y) = 1 for |z| > y. We
recall that for & = 3 we have (using Chebyshev’s inequality) a “confidence level” of at least
1 — (1/3)? = 8/9 or approximately 88,8% whatever the distribution of ﬁ,, is.

In Figure 1 we show the number of counts and in Figure 2 the estimated intensity. We clearly
see the non-stationary character of the process. In Figures 3 and 4 we have the estimated standard
deviation and the respective threshold version, as given by Theorem 5.4 and Proposition 5.4.
Figures 5 and 6 show the estimated intensity and thresholded estimated intensity, respectively, with
their (non-negative) confidence bands. Again, these last figures confirm the non-homogeneity of
the fitted NIC point, process. In Figures 5 and 6 the bands are computed adding (and subtracting)
¢ times the standard deviation function to (respectively from) the intensity function, bounded
inferiorly by zero. If we do not assume that N is a NIC point process, the estimated intensity and
its threshold version are still the ones presented, but we cannot in this case compute the bands.

Bod.0) =

7. FURTHER COMMENTS

In this work we dealt with the problem of estimating the time-variable intensity of & nonho-
mogeneous point process on the real line, specializing for the case of a NIC point process. The
generalization for point process on R™, using for example wavelets on R™ given by tensor prod-
ucts of wavelets on IR, can be directly done. A more general treatment is p0351ble and this will be
pursued elsewhere.

Another situation of interest might be that where a point process occurs under noisy conditions.
We have a primary point process N that is the object of our study and to this it is summed another
point process that will be called the noise process, R. The resulting point process M is the one
effectively observed. We write M = N + R and by this we mean that for all A C Bg, M(A) =
N(A) + R(A). 1t is also assumed that N and R are independent. The target is to estimate the
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intensity of N, which will depend on the estimate of the intensity of the noisy process. Similar
results Lo those obtained here can be derived. See de Miranda (2003a).
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FIGURE 4. Estimated standard deviation under threshold (A = 3)
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