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Abstract 

In this article we consider the problem of estimating the intensity of a non-homogeneous point 
process on the real line. The approach used is via wavelet expansions. &timators of the intensity 
are proposed and their properties are studied, including the case of threshold versions. Properties 
for the non-homogeneous Poisson process follow as special cases. An application is given for the 
series of daily Dow Jones indices. Extensions to more general settings are also indicated. 

keywords. Intensity, non-internally correlated point processes, point processes, Poisson processes, 
sure inference, threshold, wavelets. 

1. INTRODUCTION 

In this article we consider the problem of estimating the intensity of a point process {N{t), t E 
JR} denoted by PN(t) . This topic has been discussed in several works, and we mention Brillinger 
(1975, 1978), Snyder (1975), Rathbun and Cressie (1994) and Helmers and Zitikis (1999). 

Contrary to the approach adopted in several works, we do not assume that the intensity PN(t) 
is within a family of parametric models PN (t; 0), so that the only issue there is the estimation 
of the unknown parameter vector 0. The approach that will be used in this work is via wavelet 
expansions, as in Donoho et al. (1996). Wavelets provide a way of estimating intensities for non­
homogeneous point processes, due to their ability to smooth with a variable bandwidth. We will 
focus on processes on the real line, but extensions to higher dimensions and more general spaces 
are possible. Other papers on wavelets and point processes are Brillinger (1997), Timmermann 
and Nowak (1997), Kolaczyk (1999a, 1999b) and Besbea et al. (2002). 

In order to maintain the general character of the work, we develop an analysis of inference 
which allows us to obtain substitutes to the confidence intervals and bands for parameters and 
functions, respectively, without relying on the distributions (exact or asymptotic) of the respective 
estimators. Since the intervals and bands obtained through this analysis are extremely cautions 
we decided to call it sure inference analysis. We define the concept of inferential sequence, which 
is central to this analysis. 

To solve the problem of estimation of the intensity of a point process we adopt the following 
approach. We expand the restriction of the intensity function to the interval where we know the 
points of a trajectory of the underlying process in a wavelet series. We then propose unbiased 
estimators for the coefficients of this expansion as well as estimators for the variance of each 
estimator. We also obtain an inferential sequence for the wavelet coefficients for non-internally 
correlated point processes and Poisson process as a particular case. From the estimators of the 
coefficients we obtain an unbiased estimator for the intensity function. The propositions of interest 
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a.re proved for special classes of point processes, satisfying Assumptions A and B, to be introduced 
below. 

The plan of the article is as follows. Ia Section 2 we provide some background on point processes 
a.ad wavelets. Ia Section 3 we define the classes of point process satisfying Assumptions A and B. 
This section also establishes the sure inference analysis. In section 4 we propose a way of estimating 
the intensity function and derive some properties of the estimators, specializing for the case of a 
non-internally correlated point processes. Threshold estimators a.re studied in Section 5 and an 
application is given in Section 6. We close the work with some further considerations in Section 7. 

2. BACKGROUND 

Ia this section we provide some background material on point processes on the real line and 
on wavelets which will be used in the sequel. 

2.1. Notation. We first introduce some notation that will be necessary. We will work with 
Lebesgue measurable functions, h : IR'" - IR which are bounded in bounded intervals of !Rm or, 
equivalently, which are integrable in the sense of Lebesgue and bounded on bounded intervals of 
!Rm. Let us call this class of functions r,m. Denote by L the class of functions which are Lebesgue 
integrable over bounded intervals of !Rm. 

We will use the notation la,bl, a= (a1, ... ,a,n) , b = (b1, ••• ,bm) to represent a.ny of the 4m 
possible intervals of!Rm which can be written in the form n;:1 ja;,b;I, where ja;,b;I represents one 
of the intervals (a;,b;), (a; , b;], [a,,b;} or [a,,b;] of the real line. We also use the notation )(c for 
the characteristic function (or indicator) of a set C (xc(x) = I .... x EC II )(c(x} = 0 +-> x '1. C). 
Lebesgue measure on !Rm will be indicated simply by t independently of the dimension m. If it 
is necessary to emphasize the dimension we will write l m. The u-algebra of Lebesgue measurable 
sets in !Rm is denoted by A111-. 8111"' is used for the u-algebra of Borel sets. Functions that differ 
over a subset of zero measure of their common domain or of common extensions of their domain 
a.re, naturally, when necessary, considered identical. 

2.2. Point Processes. We denote by N(A) the number of events of a. certain sort that occur in 
AC IR. If A= (a,.B), we write N(a,.B] instead of N((a,.BI}. We also denote by N the integer 
valued function defined by the equalities N(t) = N(0, t], if t > 0, N(O) = 0 and N(t) = -N(t, OJ 
if t < 0. Clearly N(o,.BJ = N(.B) - N(a). Let {· · ·, T-2 :5 T_ 1 :5 To :5 T 1 :5 T2 :5 ·· ·}denote the 
times at which the events occur. Then N(t) = 11, if and only if T,._ 1 :5 t < r,.. 

Provided probabilities of the form 

P(N(a1,.Bi] = n1, . . . ,N(ak,.Bk] = nk) 

a.re defined and consistent, for all k E IN" = { 1, 2, . . . } , and all n1, . . . , nk non-negative integers, we 
can define an appropriate probability space (n, A, P), such that there exists a measurable mapping 
from this space into (JRz, B 11z), defining then a stochastic point process that will nlso be called 
N . See Cramer and Leadbetter (1967) and Daley and Vere-Jones (1988) for details and alternative 
definitions. 

One important point process is the (non-homogeneous) Poisson process, for which we arc given 
a. non-decreasing, right-continuous function A(t), such that whenever (a,, .Bd n (a, , .B,] = ¢, for all 
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if,. j, 

As a consequence of this formula, the random variables N (a;, .B, I form a completely independent 
set, or equivalently, eveuts in disjoint intervals are independent. An important special case is when 
A(t) = .>.t, .>. being the mean intensity of the process. 

Another important point process is the doubly stochastic point process, when we start with a 
realization A(t) of a process, assumed to be stationary, non-decreasing, continuous from the right, 
and then generate a Poisson process with intensity A(t). 

Define dN(t) = N(t + dt) - N(t). A basic assumption is that there exist boundedly finite 
measures Mk such that 

that is, E(TI~=• N) = Mk . 
We will be often dealing with integrals of the form 

J ,p(t)dN(t) = L tp(T;), 
J 

Suppose that 'Pi, I $ i $ k, are (essentially) bounded measurable functions, with compact 
support. Then, 

E{j ,P1(t1)dN(t1) " ·! 'Pk(tk)dN(tk)} = J 'P1(t1)" ' 'Pk(tk)di',,h(t1, .. ,,tk)­

In particular, we have the following theorem. (See Daley and Vere-Jones, 1988). 

Theorem 2.1. (Campbell's Theorem) Let N such that EN(A) < oo for all bounded set A that 
belongs !o 811. Thi:11, for all bounded measurable ft!.nction VJ, with compact support, we have 

E{j ,p(t)dN(t)} = j ,p(t)EdN(t). 

2.3. Intensity and Product Density. Suppose that there exists a positive real number 6 and a 
constant 1(6 > 0 such that for all intervals C:!,. C IR. with length IC:!,.I < 6, all integers n > 1 and all 
t E m, not only the relation 

(l) 

holds, but also the limit 

(2) Jim -
1

1

1
P{N(il) =I}= PN(t) 

1.0.1-0.ce.o. C:!,. 

exists uniformly in t. Inequality (I) implies that 

P{N(C:!,.) > l} $ K6(L IC:!,.ji) = O(IC:!,.12). 
;~2 

Notice that if inequality (1) were valid for n = 1 then we would have P{N(C:!,.) = l}/IC:!,.I $ K6 
and hence, if it would exist, PN (t) would be a bounded function on JR. Notice also that (2) implies 



that 'Ix E Ill, P{N({x}) =I}= 0, otherwise there would exist t E Ill for which the limit PN(t) 
would be infinite. 

Due to uniformity, relation (2) is equivalent to 

P{N(t.) = I}= PN(t)lt.l + Ot,6(lt.l), 

for an infinitesimal Ot,6(z) with the following properties: 
'le> 0, 36 > 0, 'It E Ill, Vt. C rn.,t Et., (0 <It.I< o)-, 101,.::.(IL:.ll l :5 !It.I and 01,.::.(0) = 0, 
that is, 
'lc: > 0, 36 > 0, (0 < z < o)-, sup lot,6 (z)I :5 !z < c:z and 01,.::.(0) = 0. 

IE:Ul . .0. C IR 
tE.0. ,1.0.1•• 

The quantity sup lo1,6 (z)I = o(z) is a non-negative infinitesimal independent oft and t. . 
t(:-1\ . .0.CD\ 
tEA ./AI• • 

In this sense, we also write lot,6(IL:.IJI :5 o(lt.l) . 
For the easy of notation, we will write o1 instead of o,,6, 
We say that PN(t) is the intensity of occurrence of events at t ime t. 
Suppose now that there exists a positive real number tS and a constant k6,m such that for all 

intervals t.1, •• • , Am of the real line with lengths O < lt.d < o, 1 :5 i :5 m, all integers n; ~ I and 
all vectors (t1, . • . , tn) E IRm with t; i t1 for i i j, 1 :5 i :5 m, 1 :5 j :5 m , both properties below 
are valid: 

m 

(3) if (n1, ... , nm) i (1, ... , 1) then P{N(L:.;) = n,, 1 :5 i :5 m} :5 k6,m II IL:.dn, 
j:::;:-) 

and for t. = (IL:.1 I, .. . , It.mil E (JR:;.)m, I; E A;, 1 :5 i :5 m, there exists the limit 

(4) lim ~P{N(L:.;) = 1, 1 :5 i :5 m} = Pm(t1, . .. , tm), 
6 -o TT lt.;I 

i=l . 

uniformly int= (t1, .. . , tm), 
Observe that for m = I the symbol t. has two different meanings, t he interval and the lengt h, 

but this will be of no harm. 
The above limit measures the intensity of the joint occurrence of events in the dist inct instants 

t 1 , • • • ,tm. We might call it the joint intensity. Since under the rela tions (3) and (4) i t is also 
1 m 

valid that lim -m--E{ TT N(t.;)} = Pm(t1, .. . , tm), Pm is called product density of order 
6-0 n lt.d i=l 

i=l 
m. Relation (4) implies that 

m 

P{N(t.;) = 1, 1 :5 i :5 m} = Pm(ti, ... ' tm) II lt.d + 01,n ::, .::.,(t.) 

for 01.n:'!., .::., (t.) an infinitesimal such t ha t 

sup 
t(:IR"'-C'" .fl;r:,, 2 A , CR"' 
•en::.1 6 j ,1.o.,1-"'• ·1:s,:s:'" 

i:;;;::l 

lo m (z)I = o(z), 
1,n 6 , 

·-· 
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where z = (z1, ... , zm) E (IR~)m, is another infinitesimal which is independent oft E IR.m - £m 

and [I;':1 ll.; c IR.m, that satisfies ;(ti.) --, 0 when ll.--, O. Here we denote by £m the set 
[Illl.d 
l=l 

{(t1, ... , tm) E IR.mlt, = t; for some i ,f. j}. 

Again, for the easy of notation, we write o1 instead of o = 
t,TI A , 

1,1 

We can also define cumulants for N(t); and in particular, we define the limit covariance, for 
u ,f. v, by 

( ) 
_ li Cov (N, N)(ll.1 x ll.2) 

q2 u,v -A~o lll.11ill.2I · 

Whenever P2(u,v), p1(u) and 112(v) exist, we write 

q2(u, v) I' Cov (N, N)(ll.1 X ll.2) 
A

1
~0 lll.tllll.21 

I' E(N(ll.i)N(ll.2)) )" E(N(ll.1)) E(N(ll.2)) 
A
1
~o lll.11ill.2I - ti:~o lll.11 lll.21 

P2(u, v) - Pl (u)P2(v). 

2.4. Point Processes and Infinitesimals. In this section we will present some useful results. 

Proposition 2.1. Under conditions (1) and (2), we have 

P{N(ll.) = l} :5 E{N(ll.)} :5 P{N(ll.) =I}+ O(lll.12), 
P{N(ll.) = l} - A :5 Var {N(ll.)} :5 P{N('ll.) = I}+ B , 

where A and B are O(lll.12) whenever sup PN(t) is finite. 
IEA 

Therefore we can write 

and 

E{N(ll.)} = PN(t)lll.l + o,(lll.l) 

Var {N(ll.)} = PN(t)lti.l + 01(lll.l). 

These o1 = o1,A may depend on t and ll. but their absolute values are bounded by other o's 
which are independent of t. 

Proposition 2.2, Under the hypotheses (8) and (4) we have, form ~ I, 

P{N(ll.;) = I, 1 :5 i :5 m} :5 E {fr N(ll.;)} 
•=I 

:5 P{N(ll.;) = 1, I :5 i :5 m} + k6,m {;g ( l _ 1lti.d) 
2 

- I} Di lll.;I. 
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Theorem 2.2. Let em as before, 'Pan E c~ dN(ti) )-integrable function over rn_m-em, Pm the 

m-th order product deruity and p1 = PN the interuity function of a point pmcess N that satisfies 
(S} and (4). Then, if Pm EL, m ~ 1, we have 

lm--c- '{)E (;a dN(t;)) = f"lfl.--c•• 'PPm ;a dt; . 

We observe that this theorem shows that if the intensity function or the product density Pm is 
a .e.!t] defined as an uniform limit and it is Lebesgue-integrable over limited IR.m·intervals, then 

it is also the Radon-Nikodym derivative of E (iJi N) with respect to f.. Clearly, £ 1 = 0 and 

£2 = D = {(x,x) E R 2 Jx ER} is the diagonal set of IR2
. 

Proofs and further results can be found in de Miranda and Morettiu (2003a} and de Miranda 
(2003b). 

2.5. Wavelets. Wavelets are building block functions localized in time or space. They are obtained 
from a single function t/J(t), called the mother wavelet, by translations and dilations. The mother 
wavelet t/l(t) satisfies the conditions 

(5) 

(6) 

and may also satisfy 

(7) 

1-: t/,(t)dt = 0, 

1-: I 1/J(t) I dt < oo, 

1
00 i ,l,(w) 12 

-I -1-dw < oo, 
-oo w 

where ¢(w) is the Fourier transform of 1/J(t), that is, 

,i,(w) = 1-: t/,(t}e-i"'1dt. 

Given a mother wavelet t/l(t), for all real numbers a,b(a f, O}, we construct a wavelet by 
translation and dilation of t/J(t), 

t/,(n,bl(t) -J a 1-1/2 t/l(t - b) 
- a ' 

where a represents the dilation parameter and b the translation parameter. 

For some very special choices of t/1 and a, b, the set { 1p<n,bJ} constitute an orthonormal basis for 
L 2(m). In particular, if we choose a= ri, b = k2-i, j,k E 'll, then there exists t/,, such that 

(8) t/Jt,;(t) = t/,(n,bl(t) = 2i/2t/,(2it - k), 
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constitute an orthonormal basis for L2 (JR). 

There are many different forms of ,p(t) all of which satisfy the conditions (5), (6) and (7). 
The oldest and simplest example of a function 1/J for which the t/Jk,; defined by (8) constitute an 
orthonormal basis for £ 2 (.Di) is the Haar function, 

(9) 

From (9), we have 

{ 

1, 0 $ t < 1/2 
t/,(Hl(t) = -1 , 1/2 $ t < 1 

0, othenvise. 

"'k~)(t) = -2il2, 2-i(k + ½) $ t < 2-J(k + 1) 
{ 

2il2 , r'k$t<2-'(k+½) 

0, othenvise. 

One way to find a wavelet function is by the use the dilation equation 

ef>(t) = v'2Llk<f>(2t - k), 
k 

where ef>(t) is the so-called scaling function (or father wavelet), satisfying f~"" ef>(t)dt = 1. Then 
the mother wavelet t/J(t) is obtained from the father wavelet through 

,t,(t) = v'2LhH'1(2t - k), 
k 

with hk = (-lJkl1-k , called the quadrature mirror filter relation, where the coefficients lk and hk 
arc the low-pass and high-pass filter coefficients given by the formulas 

lk = v'21: ef>(t)ef>(2t - k)dt 

and 

hk = v'21: ,/J(t)ef>(2t - k)dt, 

respectively. 

For the Haar wavelet, 

hence, 

and 



Consequently, 

1b(t) = V2({1/V2)¢(2t) - (l/V2)¢{2t - 1)), 

and (9) is obtained. 
Another way to construct wavelet bases is applying multi-resolution analysis. See Meyer {1992). 
Except for some special cases, there are no analytic formulas for computing wavelet functions. 

An important result due to Daubechies guarantees, for all r, the existence of orthonormal bases 
for L2 (JR) of the form 21l21/J(r)(2ix - k), j, k E 'lZ, having the following properties: the support of 
1/.l(r) is the interval IO, 2r + lj, 

'P(r) has l-yr J continuous derivatives and the positive constant -y is approximately 1 /5. The Haar 
basis is a special case where r = 0. In this work we assume that ¢ and tJ, are (essentially) bounded 
with compact support. See Daubechies (1992). 

We close this section with some comments on wavelet and Fourier analysis. The functions in a 
wavelet basis are indexed by two parameters, while in the Fourier basis we have only one parameter, 
the frequency. So a wavelet function is localized in time and they are good building block for signals 
which have non-smooth features and features which change over time. For these kinds of signals, 
Fourier transform coefficients are not. well suited. Intuitively, scale can be thought as "inverse 
frequency", as shown by the following argument (Priestley, 1996). As j increases the scale factor 
2i also increases and there is a shrinking in time that shows that. scale has been reduced. At the 
same time, the oscillations in the mother wavelet increase and exhibit a "high frequency" behavior. 
On the other hand, as j decreases and scale increases we obtain a "low frequency" behavior. The 
analysis to be presented below is in time-scale, requiring appropriate interpretations. See Morettin 
( 1999) for details. 

3. ASSUMPTIONS AND SURE INFERENCE ANALYSIS 

3.1. Assumptions. We make now two assumptions in order to include a larger class of point 
processes. From now on we do not impose uniformity of the defining limit for the intensity given 
by equation (2). 

Assumption B. A point process N satisfies Assumption B when not only its expectation 
measure is absolutely continuous in relation to Lebesgue measure, EN « e, that is, when there 
exists dEN /de E :c1, but also the following relation holds: Vt E JR Vt::,. C JR, 6. interval, t E 6., 
EN(t::.) = P{N(t::.) = l} + o,,6 (16.1). 

We notice that for such processes there exists PN, the defining limit of the intensity and 
dEN/dt = PN a.e.!t] . In fact, the following result holds. 

Theorem 3.1. Let N be a point process that satisfies Assumption B. Then the intensity defining 
limit PN exists and dEN/dt = PN a.e.[tj. 



Proof For all t E JR, we compute the defining limit PN(t): 

PN(t) = lim P{N(t.) = 1} = lim EN(t.) - 0 1(161) = 
,~t~. It.I ,~f~. It.I 

dEN "' 
Let f = dt' ,p(x) = f f(y)dy, t. = la,bl, a< b, hi= b- t and h2 = t- a. Thus, 

C 

Now, 

,p(t + hi) - op(t - h2) 

hi+ h2 

,p(t + hi) - ,p(t) h1 + ,p(t - h2) - ,p(t) h2 
h1 h1 + h2 -h2 h1 + h2 

h1 h2 
(f(t) + o1(hi))-h h + (f(t) + o,(-h2))-h h 

I+ 2 I+ 2 

= f(t) + (o,(hi) hi ':\
2 

+ 01(-h2) hi~ hi), 

9 

where, by Lebesgue differentiation theorem, o1 is an infinitesimal a.e.[f] (this means that the set 
of t's such that o1 is not an infinitesimal hw; zero Lebesgue measure). 

Since O $ h,";h, $ l and O $ h,h_;h, $ 1, we have 

. op(t + h1) - ,p(t - h2) 
hm h h = f(t) + 0 a.e.[l]. ,, ,-o I+ 2 

""2-0 

dEN 
Thus, PN(t) = dt a.e.[t]. ■ 

Assumption A. A point process N satisfies Assumption A when it is under Assumption 8 and 
the equality 

E(N X N)(A n D) = EN1ri(A n D) 

holds for all A E AR, , where D is the diagonal set of JR2 and rr1 is the first canonical projection. 
We observe that this condition is equivalent to say that the measure E(N x N) restricted to 

diagonal, E(N x N)ID : AD - JR, is the induced measure over the diagonal by the measure EN 
over the straight line through rr1, that is, E(N x N)ID = EN1r,. 

Definition 3.1. A point process is called non-internally correlated (NIC) if and only if for all A 
and B disjoint Lebesgue measurable sets we have Cov(N(A), N(B)) = 0. 

Clearly, Poisson processes are particular cases of NIC point processes.For Poisson processes, 
complete independence of the random variables N(Ai), . .. , N(Ak), for all k E JN• , is assumed, 
where A 1, .•. , Ak are disjoint measurable sets, while for a NIC point process we only need to 
assume zero covariance for all pairs of random variables N(Ai), N(A2) , 

For point processes satisfying Assumption B, we have the following proposition. 

Proposition 3.1. If N satisfies Assumption B then, for all EdN-integrable function, ,p, we have 
f ,pdEN = f ,PPNdt. 
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Proof Immediate, since PN = dEN/dt a.e.llJ- ■ 

For point processes satisfying Assumption A we have t he following proposition. 

Proposition 3.2. If N satisfies Assumption A then, for all functions 'Pl integrable with respect 
to the covariance measure Cov (N, N), we have: 

/ 
'f'1dCov (N, N) = { 'Pl dCov (N, N) + { 'PPNdt, <p(t) = 'Pl (t, t). 

JIR.2 -D JIR. 
Proof It is enough to prove that JD 'Pi dCov (N, N) = Jill. 'f'PNdt. 

l <p1dCov(N,N) L <p1d(E(N x N)- EN x EN) 

= L <p1dE(N X N) - l <p1d(EN X EN) 

f f dEN dEN JD <p1T1dE(N X N)- JD 'Pl de® dtdf X df 

{ 'f'1T1d(EN1r1) - 0 = 1 ,pdEN = { 'PPNdL 
jD ,.-i(DJ }JR 

since l2(D) = e X f(D) = 0. ■ 

We will also write J ip(t)pN(t)dt = j <p(t)Var (dN(t)) 

where the right hand side means JJD 'P1(u, v)Cov (dN(u),dN(v)), D being diagonal set of rrl2 and 
r,?(t) = 11'1 (t, t). . 

The following Proposition is useful for · the calculation of covariances of random variables asso­
ciated to point process that are written as integrals. 

Proposition 3.3. Let X and Y be random variables defined by the stochastic intc_qrals X = JA fdN 
and Y = J 8 gdN, D diagonal set of JR 2, 1r1 the first canonical projection and A, BE AR such that 
(supp f n A) x (supp g n B) is bounded. For N under Assumption A we have 

Cov (X, Y) = 1 f ® g Cov (dN, dN) + 1 fgpNdt. 
(Ax BJ- D wt((Ax B)nD) 

If Cov (dN, dN) « dt x dt, i.e., there exists q2 E £2
, dCov (N, N) = q2(u, v)dudv, 

Cov (X, Y) = 1 f(u)g(v)q2(u, v)dudv + 1 f(t)g(t)pN(t)dt. 
(AxBJ-D ,.-1 ((A x B)nD) 

If N is NIC then 

Cov (X, Y) = 1 f(t)g(t)pN(t)dt. 
w1((AxB)nD) 

Proof Since 

E(XY) = E (! LxB f(u)g(v)dN(u)dN(v)) = J LxB f(u)g(v)E(dN(u)dN(v)) 



and also 

E(X)E(Y) = ( f(u)EdN(u) ( g(v)EdN(v) = jr ( f(u)g(v)EdN(u)EdN(v), 
JA ls JAxB 

we have 

Cov (X, Y) !' ( f(u)g(u) [E(dN(u)dN(v)) - EdN(u)EdN(v)] 
JAxB 

Jr f f(u)g(v)Cov (dN(u), dN(v)). 
JAxB 

Thus by Proposition 3.2 it follows that 

Cov (X, Y) = j' f f(u)g(v)Cov (dN(u), dN(v)) 
JA x B-D 

+ 1 J(t)g(t)Var (dN(t)) 
w1((AxB)nD) 

Jr f f(u)g(v)q2 (u, v)dudv + 1 f(t)g(t)pN(t)dt. 
JAxB-D ,.,((AxB)nD) 

If N is NIC, then q2(u, v) = 0 and the proposition is established. 
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Observe that, since Pois5011 processes are special cases of NIC pomt processes, the Lhird equality 
above is fulfilled for Poisson processes. 

Assumption Band Assumption A are suitable for immediate generalization for point process on 
rn.m. We have proved (see de Miranda, 2003b) that form= I these assumptions are equivalent. 

3.2. Sure Inference Analysis. Let us assume that X : 11 - m. is an unbiased estimator for 
x and that Var (X) = 11?- Suppose also that we have sequences of non-negative estimators and 
finite variances, respectively, V,. and V,. for all n ~ 1 such that Vi = Var (X), V,.+1 = Var V,. and 
EV,. = V,.. Then, by Chebychev's inequality we will have for A1 > 0, P{X(w) E [x - A1t11,x + 
A111i]} ~ 1 -1/A? and, equivalently, P{x ft [X(w)- A1t11,X(w) + A1t11]} $ 1/.X?- Let 11,. = v'v.: 
and u,. = ./Vn. We can write similarly P{V,. ¢ [V,.(w) - An+I ~. V,.(w) + An+1 ~]} $ 
l/(.X,.+i)2, for all n ~ 1. IL may happen, as it is often in practice, that we do not know the value of 
111 and use u1 (w) and X (w) to form confidence intervals for x when the distribution of X : 11 - m. 
is known. In these situations, after some analysis, it could be concluded, "with probability p", that 
x belongs to the interval [X(w) - A1u1(w), X(w) + .X1u1(w)]. We are interested in the situation 
where we do not know the distribution of X and we want to decrease the uncertainty due to the 
replacement of 111 by u1(w). 
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Since P{u1 ¢ [Jmax{O, V1(w) - A2.,,IV;}, J(11(w) + A2,/li'; I}$ 1/A~, we have 

p { U1 $ Jv,(w) + Anl½} } - p { u, > Jvi(w) + ,;v;} 
~ l - p { UJ ¢ 1Jmox{O, Vi (w) - A2v"½}, Jv,(w) + A2.Ji'2]} 

l 
~ 1- A2· 

2 

Let L(w,A1,A2) = A1 Jv1(w) + A2v'V2, A(w,A1,A2) = X(w)- L(w,A1,A2) and B(w,A1,A2) = 
X(w) + L(w, A1, A2). 

Moreover, let 

n+ = {w E n1u1 $ /Vi (w) + A2.Ji'2}, 

n° {w Enix E IX(w) - AJO'J, X(w) + A10'1]}, 

n 1 {w Enix E IX(w) - L(w,A1,A2),X(w) + L(w,A1,A2)]}. 

We then have P(n°) ~ (1 - -i;) and P(n+) ~ (1 -1i)· 
Therefore, since L(w,A1,A2) ~ A10'1 when u1 $ ,/~~-1(-w~)-+_A_2_,/li';_2, it follows that (n+ nn1) ::> 

(n+ n n°) and WC can write 

P{x E [A(w,A1 , A2), B(w,A1,A2)]} = P(n1) 

~ P(n1 n n+) ~ P(n° n n+) 

> P(n°) + P(n+) - 1 > 1 - .2.. - .2... 
- - Ar A~ 

The inequality abov~ allows us to ~btain conclusions such as: with at least. probability (1 - f7 - -b), 
. ,------ ,------ I 2 

x belongs to the interval [X(w)- A1 Jv1(w) + A2JVi ,X(w) + A1 Jv1(w) + A2.,,IV; ]. 
This interval can be replaced in practice by 

[x(w)- A1 ✓li1(w) + A2JV2(w) ,X(w) + A1/V1(w) + A2JV2(w)] 

and this replacement brings some uncertainty. This uncertainty is the reason why we will use " " 
and say that "with at least probability p", x belongs to the later interval above. We can continue 

the process of analyzing the worst case and get probabilities of the form 1 - '£ -b for intervals of 
/;) . 

the form]X(w) - Lm(w, A1, ... , Am), X(w) + Lm(w, A1, . . . , Am)] with 

Lm(w, Ai, . . . , Am) = >-1 ✓ V1(w) + >-2/ •• +Am-I Jvm-1(w) + Am ffm. 

Definition 3.2. The triple (X, (Vn)nelW, (\/n)nelN") fanned by a random variable X : n - lll, a 
sequence of positive numbers (Vn)neN· and a sequence of random variables (Vn : n - lll)nelN·, is 
an inferential sequence for x E IR if and only if tile following are valid: 



(i) EX= x, Vi= Var(X), 
(ii) '<In E IN" Vn+I = Var (\In), 

(iii) '<In E IN" EVn = Vn , 
(vi) '<In E IN" Vn(!1) CIR+ · 
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We will use the notation (X, Vn, Vn) to represent an inferential sequence and, occasionally, we 
will simply say that the sequences V" and Vn form an inferential sequence for x . Observe that this 
definition implies the fact that all random variables, that is, X and I\, n ~ 1, have finite means 
and variances, which is a necessary condition to apply Chebychev's inequality for each of them. 

Theorem 3.2. (On the inferential sequence of random variables.) Let (X, Vn, Vn) be an 
inferential sequence for x E JR and an = Jll,;", for all n E IN" . // 

Lm(w, A1, . .. , Am)= A1 ✓ V1(w) + A2l •• +Am-I /vm-1(w) + Am Fm. 
A; E JR:;_ for 1 $ i $ m, m E IN", then 

m l 
P(x E [X(w) - Lm(w, A1, ... , Am), X(w) + Lm(w, A1, ... , Am)]} ~ 1 - L Af • 

i=l I 

Proof By induction. If m = 1, then 
1 

P{x E [X(w) - A1a1, X(w) + A1a1I} = 1 - P(x rt [X(w) - A1a1, X(w) + A1a11} ~ 1 - A2 , 
I 

by Chebychev's inequality. 
For the facility of notation, let Ak(w) = X(w) - Lk(w, A1, . • . , Ak) and Bk(w) = X(w) + 

f,k(W, Al , ••• , Ak). 
Assuming that the statement is valid form - 1, m ~ 2, we have 

P{x E [Am(w), Bm(w)I} ~ P{x E [Am(w), Bm(w)] I\ Vm-1 $ Vm-1 (w) + Am /v.:} 

~ P{xE[Am-1(w),Bm-1(w)] /\ Vm-1$Vm_i(w)+Am/v.:} 

since [Am-1(w), Bm-1(w)j C [Am(w), Brn(w)j when Vm-1 $ Vm-1 (w) + Amv'v.;. 
Thus, P(x E [Am(w),Bm(w)]} 

~ P(x E [Am_i(w), Bm-1(w)I} + P{Vm-1 $ Ym-1(w) + Am/v.:} - 1 

~ (1-'I: ,\)+(1--;--)-1 = 1-f \, 
i=l A, Am i= 1 .X, 

since P(Vm-1 $ Vm-1(w) + AmJv.;;°} ~ 
" r,;- " r,;- 1 

1- P{Vm-11/. IVm-1(w)-AmVVm, Vm-1(w) +AmVVm]} ~ 1- ~-
m 

In this way the statement is also valid for m and the induction is completed. ■ 

If we substitute Vm(w) by Vm some uncertainty will be introduced in our analysis. Of course, 
this kind of uncertainty can be eliminated if we know the value of a;, (V;), for some J or some 
upper bound for a J. 
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We remark that with the use of this analysis we can obtain confidence intervals with at "least 
probability p" for x, whatever the distribution of X is. Moreover, this analysis is more conservative 
than the one made assuming that the distribution of X is known. 

As random variables are estimators of real numbers, stochastic processes can be understood as 
estimators of functions. 

If X : !1 x JR ...... IR is a stochastic process which is an unbiased estimator for the function 
x : JR --. rn., that is, such that EX and x are equal (E(X(w, t)) = x(t) for all t E JR), and we 
have sequences of non-negative estimators (stochastic process in this case) Vn : !1 x JR ...... JR, and 
variance functions, Vn : JR ...... ffi. for n 2: l, such that 

V1 = Var (X) : JR-+ JR , Vn+l = Var (1/n) and EVn = V.,, 
t--, Var (X(t) : n ...... IR) 

We can develop a sure inference analysis to obtain "at least probability p" confidence bands in a 
completely similar way to that presented above for random variables. 

From now on, I is simply an arbitrary set. 

Definition 3.3. The triple (X, (Vn)neJN•, (Vn)neIN·) formed by a stochastic process X : !1 x / ...... IR, 
a sequence of Junctions (Vn : / ...... IR)neJN· and a sequence of stochastic processes (V., : !1 x / -+ 

JR)neJN• is said to be an inferential sequence for x : / ...... JR if and only if: 

(i) EX= x, Vi = Var(X), 
(ii) 'vn E IN" Vn+l = Va1-(Vn), 

(iii) 'vn E IN" EVn = Vn, 
(vi) Vn E IN" Vn(!1 x /) C JR+· 

Theorem 3.3. (On the inferential sequence of stochastic processes.) Let (X, Vn, Vn) be 
an inferential sequence for x : I --. JR. Let for all m E IN", Lm : !1 x / x (JR~)m --+ ffi.+ be given by 

Lm(w, t, A1 , •. :, Am)= AI ½(w, t) + A2 ✓- .. + Arn-1 /vm-1 (w, t) + Am JVm(t), 

then, for all t E J and all m_ E IN", we have 

m 1 
P{x(t) E [X(w,t) - Lm(w, t, A1, . . . , Am),X(w, t) + Lm(w, t, AJ, .. . , Am)!} 2: 1 - L A2 • 

i=l 1 

Proof It is sufficient to see that, for each fixed t, we have that 

(X(t), (Vn(t))n£1N", (Vn(l))nEIN") 

is an inferential sequence for x(t). 

See de Miranda (2003c) for a detailed presentation of this subject. 

4. ESTIMATION OF THE INTENSITY 

■ 

Let N be a point process over the measurable space (JR, But), with unknown intensity function 
PN• 

Let {1/Ji.; : i,j E 7l} be an orthonormal wavelet basis of the form 1/J;,;(t) = 2il21µ(2it - i) or 
t/J;,;(t) = 2il2w(2it-iT) for some mother wavelet 1/J obtained, if necessary by the composition of a 
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standard wavelet with an affine transformation, such that its support is [0, T]. Let <I> be the father 
wavelet corresponding to ,JJ. 

Similarly, let {<l>k,li, t/Ji,i : i, k E 7.l, j ~ ti,j, li E 7.l} be an orthonormal wavelet basis that 
contains all the scales beyond some fixed integer ti. 

It is extremely pleasant to adopt the following notation. Let d71, = {z E 7l,: z ~ d},d E 7l, u 
{-oo} and Zc(ti) = 7l U (71, xli 7l) ifti E 71,. If ti= -oo, then Ze(li) = 71,

2
• 

Let us use Greek letters for indexes in Ze(ii) and we shall write ,JJ,, = </>,,,l; if and only if 1J E 7l, 
and 1Pa = ,JJ,.j if and only if 1J = (i, j) E 7l,

2
• 

Thus, the wavelet expansions 

J(t) = L L h;flP;,j(t) 
iE7L jE7L 

and 

/(t) = L "/k<l>k,li(t) + L L h;;,JJ;,i(t) 

will be simply written 

with the coefficients eta given by 

kE7L iE7L jE,, 7L 

I= L a,,,JJ., 
l'/EZe(li) 

J, (I:; Ct('P(),JJ,,dt = L J, aet/JetJ,,,dt 
II C ( II 

I:;a, < 'Pc,t/J,, >= a • . 
( 

Our aim is to obtain the restriction of PN to [O, T] based on the points of a trajectory of the 
process that are contained in this interval. Define 

= { PN if t E (0, T), 
p O otherwise. 

From now on we assume that p E L2[0, T). Therefore for the wavelet expansion of p we have 

(10) 

with 

(11) 

The main purpose is t-0 estimate p through the expansion ( 10) and for this we need to estimate 
the wavelet coefficients 13,, given by (11). 
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We set q = dCov (N, N)/df if Cov (N, N) « l2. If we do not have Cov (N, N) « l2, we 
may replace 112(u, v)dudv by dCov (N, N) in the statements of the theorems and propositions that 
follow. 

Although for point process on the real line Assumptions A and B are equivalent, we have 
made explicit in the theorems that follow, what assumption, in its defining form, was necessary 
to derive the claimed conclusions. This is so done because these theorems are suitable for direct· 
generalization for !Rm and, for point process on !Rm, this distinction between assumptions may be 
necessary. In this way we have made our choice to state the theorems in a form that they can be 
directly generalized. 

4.1. Estimation of the Wavelet Coefficients. We propose the following estimator of /3~: 

fJ~ = 1T lj;~dN(t). 

The main properties of this estimator are given in the following theorem. 

Theorem 4.1 . If N satisfies Assumption B, then 

(i) the estimator /Jq is unbiased. 
If N satisfies Assumption A then 

(ii) for all 1/ and{, 

(12) Cov(/J~, /J{) = J k 1j;~(u)lj;{(v)q2(u, v)dudv + 1T 1/l~(u)v,{(u)p(u)du, 

where C = I0, T)2 
- {(x,x) E IR.2 : 0 ~ x ~ T}. 

(iii) In particular, 

(13) 

Proof. (i) Since 

fJ~ is unbiased. 

(ii) Apply proposition 3.3 for X = fJ~, Y = /J{ and A= B = I0, T]. 
(iii) Immediate from (ii). 

Assume that N is a NIC point process. In this case Q2(u,v) = 0 and (12) becomes 

(14) 

■ 



and (13) reduces to 

(15) Var(O~) = 1T tf,~(t)p(t)dt = 1T tf,~(t)E{dN(t)} = E 1T 1/!~(t)dN(t). 

This leads us to propose the following expressions as estimators of (14) and (15), 

Cov(0~,6<) = 1T 1/!~(t)tf,{(t)dN(t) 

and 

(16) 

r<'.spcctively, which are obviously unbiased. 
Let us use the following notation for a sequence of estimators and variances: 

\.'(,o = fJ{, ~.o = 6(, \.'(,n+I = Var(V(,n), n?: 0. 

By direct substilulion of (10) into (15) we obtain 

Var(O() = IT 1/Ji(t) L/3~tf,,1(t)dt = L/3~ IT 1/Ji(t)•Mt)dt. 
lo ~ ~ lo 

Defining 

we have that ( 15) can be written as 

(17) 
~ 

Now, let us compute the variance of the estimator (16): 

½.2 = Var(Vp) = Var (1T t/Jl(t)dN(t)). 

Thus, by Proposition 3.3 with / = g = I/Ji we have 

½.2 = J fc t/Ji(u)t/Jf(v)q2(u, v)dudv + 1T 1/!t(u)p(u)du. 

Since '12 ( u, v) = 0 for a NIC point process, we have 

½.2 = 1T t/Jt(t)p(t)dt = 1T t/Jl(t)EdN(t) = E 1T t/Jl(t)dN(t). 

As before, define 
• 4 1

T 
V<.2 = 

0 
t/1< (t)dN(t), 

17 
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which is an unbiased estimator of Vp. If we write 

Kl 4 = 1T 1/Jl(t)1b,,(t)dt, 
' 0 

we have, similarly to ~.1, 

Ve.2 = LIJ,,Kl,4• 
'1 

Defining 

K~ m = 1T 1/i:"(t)1/,,,(t)dt, 
... , 0 ... 

K(,m = 1T 1/le (t)dN(t), 

we get the following result. 

Theorem 4 .2. If N is a NIC point process, satisfying Assumption A , then 

Ve,n = LIJ,,Kl.2• n ~ 1, ~.n = Ke,2•, n ~ 0, 

are sequences such that ~.n is an unbiased estimator of Ve,n, Ve,n+I = Var(~,n) and v(,O = P(­

Proof First let us prove that V(,o = P( and that the estimators arc unbiased. For n = 0, since 

Ve.o = K(, 1 = 1T 1/ldt)dN(t) = Pe 
. 0 

we have that 
. T · T 

E(V(,O) = E 11/Jdt)dN(t) = 1 1/l((t)p(t)dt = 

r •Ji((t)p(t)dt = r 1/Je(t) LIJ,,1/J,,(t)dt = LIJ,, r ,Pq,P(dt = 
111 111 l'1 l'1 111 

LIJ,, < ,/;(,1/1,, > = /Je = ~ .o• 
'1 

For n ~ 1 we obtain 

E(V(,n) = E(Kp•) = E 1T ,t,f (t)dN(t) = 

{T ,pf(t)p(t)dt = {T ,t,f<t) LIJ,,,p,,(t)dt = 
lo lo ,, 

LIJ,, 1T ,µf(t),p,,(t)dt = LIJ,,Kl,2• = v(,n • 

l'1 0 '1 
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We turn now to the sequence of variances. For n = 0 we have from 11{,0 = /J{ and (17) that 

For n ~ 1, using proposition 3.3 with f = g = ,J,f, we write 

Var (¼,n) = Var (J<{,2") = Var ( foT ,J,f (t)dN(t)) 

= j fc v,f{u)v,f{v)q2(u, v)dudv + foT 1/Jr+' (t)p(t)dt. 

Since q~(u, v) = 0, we obtain 

■ 

We remark that for all n and(, ~.n+l is finite, due to the essentially boundedness of V,{ as well 
as compactness of its support. 

Theorem 4.3. {Inferential sequence for the wavelet coefficients.) Under the condition of 
Theorem 4.2, we have: for all { E Ze(ti) the sequences ¼,n and V{,n , n ~ 0 form an inferential 
sequence of rondom variables.for /3{ . 

Proof Given the preceding theorem, it is enough to prove that V{ E Ze(li) Vn E IN" ¼,n(O) C 
JR.., . Since Vw E fl 

¼,n(w) = (foT ,J,t(t)dN(t)) (w) = foT ,J,f(t)dN..,(t) ~ 0, 

the theorem follows. ■ 

Therefore, in the case of a NJC point process N, the estimators for /3{ and the respective and 
successive variances are easy to compute, being all of the form J: ,J,r (t)dN(t), and for a particular 
trajectory with m points in the interval [O, Tj, at times ro, r1, .. . , Tm-I, this expression reduces to 

r;;:;j1 "'r (ri), 
In order to obtain the successive variances, for simulation purposes in an actual problem, it may 

be be necessary to know the values K2,2. , which depend on the particular wavelet family used. 
For the Haar family, the following result is valid. The proof will not be given and it is available 

from the authors. See de Miranda {2003a). 
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Proposition 4.1. For the Ilaar wavelets re-scaled to the interval IO, T} with llwco,o) II = 1, the 
K2_2• are written as: 

(i) IH, T/ E 71. Xt; 71., { = (x1,Yil, T/ = (x2,Y2) then: 
For n > 0 we have 
(a) If Yi < 0 and Y2 < 0, then 

{ 

2c2·-•u,+Y2/2)r-c2·-1-112) 

K2,2• = 
0 

when x1 = x2 = 0, 

otherwise. 

(b) If Yi ~ 0 or Y2 ~ 0, then 

{ 

2«2•-1 -l)y1+112/2)T-(2"- 1 -l/2) 

K;_2• = _2«2•- 1 -1)y,+11212>rc2•-1-112i 

0 

whenever A or B are valid, 

whenever C is valid, 

othenuise, 

where A is (Y1 ~ 0 > Y2 I\ 0 $: x1 $ 2Y• - 1), 
B is (y1 > ·y2 ~ 0 I\ O $ x 2 $ 2Y> - l /\ 2Y• -v•x2 $ x 1 < 2v1-Y2 + 2Y• -112-1) 
andC is(y1 > Y2 ~ 01\0 $ x2 $ 2Y2 -l/\2Y•-112x2+2Y•-112 - 1 $ x 1 < 2v1- 112 (x2+l)) . 

For n = 0 we have 
(a) lfy1 ~ 0 or Y2 ~ 0 then 

(b) If Yi < -0· and Y2 < 0; then 

(ii) IH , T/ E 71., then 
(a) For fi ~ 0, 

(b) For ti < 0, 

otherwise. 

ifX1 = X2 = 0, 

otherwise. 

when O $ T/ $ 2n - l, 

othwerwise. 

~ 
K2.2• = 6( ,'16'1,o ( ;,) T. 

(iii) JH = X1 E 7l and T/ = (x2, Y2) E 'll Xt; 'll, then 

{ 

2«2• - •ti)+112/2Jr-<2•-112> when ti$ Y2 < 0 and xi = 0, 

K2,2• = 
0 otherwise. 



(iv) If~= (x1,Y1) E 'll, Xt; 'll, and 1/ = X2 E 'Tl, then 
(a) For n ;:: 1 we have 

for Y1 < 0 and x, = x2 = 0, 

2«2•-
1-1)v,+ti/2lT-(2"-1

-1/2) for(yi;:: 0,0 ~xi~ 2v1 -1, 

0 

(b) For n = 0, we have 

and x2 = 0) or (ti ;:: 0, 0 ~ 1/ ~ 2ti - 1 
and 2v,-ti1/ ~ x 1 < 2v,-t,(TJ + 1)), 

otherwise. 

otherwise. 
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4.2. Estimation of the Intensity Function. We are now in position to estimate the intensity 
function p through a synthesis procedure using the estimates of the wavelet coefficients. 

Theorem 4.4. Let p = L'leZ,(ti) /J~,/)'1. 

If N satisfies Assumption B , then 

(i) the function f, is an unbiased estimator for the intensity function p. 
If N satisfies Assumption A, then 

(ii) the variance of p is given by 

Var(p) = ~ (/ k 1/J~(u)1/J((v)l/2(u, v)dudv + foT 1/)~(t),/J((t)p(t)dt) ,p~VJ{• 

If N satisfies Assumption A and it is a NIC point process, then 
(iii) 

Var(p) = L (for 1/)~(t),/J<(t)p(t)dt) 1/J~'P(, 
'1,( 0 

(iv) and an unbiased estimator for Var(p) u 

Proof (i) Since E is a continuous linear functional, 

~ ~ 
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(ii) Var(p) = E(I:'1(11" -/3")1/J")2 = E (E< E"(iJ" - /3")(iJ( - /3()'1/,'1,µ<) = 

= L( L'1 Cov(iJ,,,/J()1P,,¢{• 

Therefore, in the general case, 

(iii) For a l\TJC point process, since q2(u, v) = 0, the above expression reduces t.o the sum of the 
second term inside the parentheses. 

(iv) Immediate, since p(t)dt = EdN(t). ■ 

Inferential sequences for p can be obtained using the result of the following theorem. 

Theorem 4.5. (Inferential Sequence for the Intensity.) let 1/ = (111, •.. , 1/2") E (Ze(t'i))2" 

be an element of the cartesrnn product of Ze(ei) by itself 2" times, and N a NIC point process that 
satisfies Assumption A. Let 

( 

T 2" ) 2" 

Vn(fi) = L II 1/JT/,pdt II ,JJ,,, 
T/E(Ze(li))2" 1 I= I l=l 

and 

( 

T 2" ) 2" 
Vn(P) = L 1 II ,JJ,,,dN II '1/,'1., for a/In~ 1. 

'1E(Ze(li))2" O l=l l=l 

Then V" (p) and \i" (p) are sequences of variances and estimators, respectively, such that: 
(i) E(p) = p, V1(p) = Var(p) . 
(ii) 'In E IN" Vn+1(p) = Var(\in(p)). 

(iii) 'In E JN" Vn(p) is an unbiased estimator for Vn(fi) . 
(iv) 'In E IN" Vn(p)(f! X [O, Tl) C IR+ 

That is, (p, Vn(fi), Vn(P) ) is an inferential sequence of stochastic processes for the intensity p. 

Proof {i) Immediate. 
(ii) Since E is a linear continuous functional, we have 

Var(Vn(fi)) = Var L 1 II t/J'11dN II ,JJ.,, 
( ( 

T 2" ) 2" ) 

T/E(Ze(li))2" O l=l l=l 

L Cov (1T IT !/J.,,dN, 1T IT W{mdN) IT 'P'1, ii 'P{m • 

f/.(E(Ze(li))2" O l=l O m=l l=l m=l 

Using Proposition 3.3 we have 
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(iii) Equality EVn(P) = Vn(P) follows from the linearity and continuity of E, Campbell's theorem 
and Proposition 3.1. 
(iv) Since 'r/n E IN", \/w E n, \It E [O, T], 

Vn(p)(w,t)= L 1 Ill/1'7,dN.., Ill/1'7,(t)= 
( 

T 2" ) 2" 

>7E(Ze(ti)l'" O l=l l=l 

T ( 2" ) ( 2" ) T ( 2" ) I: 1 n~ rr~w ~= I: 1 n~~W~= 
11E(Ze(ti))1 " O 1=1 j =I 11E(Ze(li))'" O l = l 

T (2" ) = 1 I: rr 1/1,,,1/1'7,(t) dN.., = 
O >7E(Zc(li))1 " l= I 

= 1T L (2ii 1/J,,,1/J,,,(t)) (2ii 1P(m1P{m(t)) dN.., = 
0 >7,{E(Zc(li))'"-1 l = l m=l 

the theorem is proved. 

5. ESTIMATION UNDER THRESHOLDING 

Let /ll, = {z E 'llld $ z $ e}, d,c E 7lu {-oo} u {+oo} ; Ze(li)1 = 
'll U ('ll x ti 'll1) if li E 'll and Ze( li)J = 'll x { z E 'lllz :::, J} if li = -oo. 

We shall use the notation 

(18) PJ = L iJ,,1/1'7 = 'f:,iJ'71/I,,, 
>7EZe(ti), j~J 

■ 

for the estimated intensity function using wavelets 1/111 with scales up to the J -th order, J ~ 0, 
noticing that when T/ is an ordered pair it is represented by ( i, j). Observe that if J < li then the 
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intensity function is estimated only by wavelets tb,,,t; and if li = -oo the expansion contains only 
re-scaled wavelets from the mother wavelet. 

The notation 

(19) faI,. = L T (/3,,, >.Jvar(/3,,)) /3,,t/J,, = LT (/J,,, >.Jvar(/J,,)) /3,,1/1,, 
,,ezc(ti), ;,sJ 

will be used for the estimated intensity formed from wavelet coefficients undergoing a tresholding 
procedure. 

A threshold function T : IR x IR+ -+ IR is a measurable function such that O :S T(x, y) :S l 
and, for each y, T(x, y) = I if lxl 2:: y, T(x, y) is non-decreasing over [0, y] and non-increasing over 
[-y,0]. 

We hope that the use of T as the extreme of the interval [O, T] and as a threshold function 
T(x, y) will bring no harm in understanding what follows. 

Denote by esssupA /(essinfA /) the essential supremum (infimum) of a funct.ion J defined 
on the set A. For the easy of notation we will write ess sup,,/ instead of ess SUPsupp,i., f = 
esssupzesupp,:,, f(x), where supp t/J,, indicates the support of the wavelet t/J,,. If J = E,,ezc(ti) o:,,1/1,,, 
we shall write /J = E,,ez,(ti), a,,t/J,, and /J.>, = E,,ezc(ti)J T(a,,, L(>., 11))0,,t/J,, L : IR+ x 
Ze(ti)J-+ IR+ · 

Definition 5.1. We will say that the function f is essentially a-Holderian in AC IR if and only 
if there exist two constants, K and a, and a set D C IR, t(D) = 0, such that for all x and y in 
A - D we have lf(x) - J(y)I :S !(Ix - yl 0

, a> 0. 

This definiLion can be extended immediately for a function/ : X -, Y , where (X,.A,µ) is a 
measure space and (X,d1 ) , (Y,d2 ) are metric spaces. 

Definition 5.2. Define ess limx-y J(x) = L, when there exists a set DC IR, l(D) = 0, such that 
the limit, when x-+ y, of the function JIA - D {restriction off lo A - D ), is the real number L. 

Analogously, we can extend the concept of essential limit, define essentially differentiable func­
tions, etc. 

5.1. Convergence rate and bounds for the bias. The results that follow give upper bounds 
for the magnitude of the bias, measured in the L2 norm, of the estimators (18) and (19), in the 
case of p being essentially a-Holderian. 

Theorem 5.1. Let {w,,111 E Ze(li)} , li :S 0, li E Llu{-oo} be an orthonormal wavelet basis such 
that supp t/Jco.O) = [O, T] and t/Jco.o) is essentially bounded. 

Let N be a point process satisfying Assumption B. Suppose that p, the intensity Junction of N 
restricted to [0, T], is essentially a -Holderian with constants K and o: > 0. Then, 

(20) 

for all J 2:: 0, where M = max{lcssinf10,r11/Jco.oJI. esssup)O,TI 1/Jco.o)}-
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Proof For all p and J 2". 0 the following equality holds: 

T/ j5,J 

111).BT/ - E(/3'1))1"'1 + L .BT/1/!'111
2 = II L .BT/1/1'1112 = L .B~-

j5,J >1E11.2,j>J r,E'll.2,j>J >1E1Z2 ,j>J 

Now, we will find for each 1/, lower and upper bounds for /3'1. Let 1/l;r = max{v,>1, O}, w;; = 
ma.x{-1"'1, O} and supp ,J,T/ = [aT/, bT/] . Since pis non negative, 

Analogously, 

,BT/= I 1/JT/pdt = I v,;pdt - I 1/J;;pdt 

$ j v,;ess supT/pdt - j v,;;ess infT/pdt = 

= f (1/lt -1/l;;)ess inf'lpdt + j w;(ess sup'lp-ess inf'lp)dt = 

= ess inf'lp / 1/,T/dt + (ess sup'lp- ess inf'lp) j v,;dt 

$ 0 + K(bT/ - ¾Y'(bT/ - aT/)ess sup'lv,; = 

.BT/ 2". j v,;ess inCT/pdt - j 1/J;;ess supT/pdt 

2': 0- K(b,1 - aT/)0 j 1/J;;dt 2". -/((bT/ - a>1)0 + 12i12 iess infco,oJ1P(o,o)I• 

Let M = ma.x{ess SUP[o,TIVl(o,o), -ess inf10.T(Vl(o,o)}- Then we can write 

If.I I< I<M(b - a )0+12;/2 - I<M (lsupp1/Jco,o)l)o+1 2i/2 
/J') - T/ T/ - 2i ' 

,B~ $ K2 M21supp1/lco,o) 12(o+l)r(2o+l)j. 

Since the j-th scale has at most 2; non null coefficients, 

L ,B~ $ L2i(J<2M21supp1/l(o,o)l2(o+l)r(2o+l)j) = 
>1E'll2 ,j>J i>J 

= J<2 M21supp1/l(o,o)l2(<>+1) L r2oj = 
i>J 

(2-2o)J+l = K2M2isupp·'· 12(<>+1)-'---a..,,--,-, 
'1'(0,0) (1 - 2-20) 
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Now, if 0: > l and A C JR is a real line interval, every essentially 0:-1-Iolderian function is constant 
on A-D since, being x and y E A-D, x < y, we can write 1/(y)-J(x)I $ I;;'.;0

1 
1/(x;+i)-J(x;)I $ 

z:;7;01 K(x;+1 - x,)"' $ K(maxo:,i:,n-1 (x;+1 - x;))"'-1 I:7:01(x;+1 - X;) = K(maxo:,i:,n-1(x;+1 -
Xi))0

-
1(y - x), where x = xo < x 1 < ... < Xn = y and for all i, 0 $ i $ n, x; E A - D. Since 

Ve> 0 we can choose these points such that maxo<;<n-t (x;+1 - Xi) < e (otherwise we would have 
an interval contained in D and this would not ob-;;y l(D) = 0) we have '<le > 0 1/(y) - J(x)I < E 

and hence J(y) = J(x) for all x and yin A - D. 
Since p is essentially constant, we have /3~ = f ,J,~pdt = 0 for all J 2: 0, hence 

llp-E(p,)112 = L ,8~=0. 
ne7J.2.j>J 

■ 

The preceding theorem guarantees at least an exponential decay with J for the bias of fi,. The 
following two theorems show that in case of thresholding, the square of the bias is bounded by a 
sum of two parts. One corresponding to the exponencial decay with J and another corresponding 
to the threshold. In theorem 5.2 the expansion in made using wavelets re-scaled from a mother 
wavelet only. For this reason it was necessary to assume the existence of the esscncial limit at zero 
for 1/lco,o)• Theorem 5.3 assumes that the expansion is made using father and mother wavelets. 

Theorem 5.2. Under the conditions of Theorem 5. J and the additional assumption that N is a NIC 
point process satisfying Assumption A , that Ze(fi) = 'U} and there exists csslimt-o IP(o,o)(t) = L, 
we have that for every threshold function T and A 2: 0, 

(21) 
K2 M2lsupp,J,(o,0Jl2(0+1) ( l ) J+1 

IIP - E(fiI>.)112 
$ (l _ 2_20) 22a X(o,11(0:) 

+ A2(k1 + 2<J+l) - l)ess sup P, 
(O,T) 

for some constant k1 E IR. 

Proof We have that 

IIP- E(fiI>.)112 = II Lfi~ip~ - E(L T(iJ~, AJVar(iJ~))iJ~ip~)ll 2 = 
n j:,J 

= II Lfi~,JJ~ + L(,B~ - E(T(iJ~,AJVar(iJ~))iJ~)),t,~112
, 

j>J jSJ 

therefore 

(22) lip- E(pL)ll2 = L fJ~ + L(fin - E(T(iJn, AJVar(iJ~niJn))2
• 

j>J j$J 

Now, 
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Let v = /3,, - T(/3,,, >.Jvar(/3,,))/3,,. It follows that v is a random variable such that v = 0 if 

1/J,,1 ~ >.Jvar(/3,,), 0 $ V $ /3,, if O $ /3,, < >.Jvar(/3,,) and /3,, $ V $ 0 if ->.Jvar(/3,,) < /3,, $ 0. 

Separating the integral J vdP into two integrals over the intervals (->.Jvar(/3,,), 0] and I0, >.JVar(/3,,)), 
we get 

Similarly, 

It follows that. 

IE(v}l2 $ >.2Var (/3,,) max{ (P((->.JVar(/3,,), 0]})2 , (P([0, >.JVar(/3,,))))2 } 

and we obtain 

(23) 

Since for NIC point processes, 

= ess sup,,p $ ess sup[o.r]P, 

we can write, for 1/ E 71} and non negative m, 

L Var (/3,,) $ L ess sup,,p $ 2mess SUP[o.T]P, 
U=m) LJ=m) 

due to the existence of exactly 2m wavelets with scalr. m and with supports that are not disjoint 
of I0, T]. In this way, 

J 

(24} L Var(/3,,) $ ess sup{o,rJP( L 2m) = (2J+I - l)ess SUP[o,T]P· 
0$j$J m=O 

For negative j , we are only interested in those 1/ of the form (O,j}. This is so due to the fact 
that, for 1J = (i,j), i "IO we have SUPPVl(,.j) n I0, T] = ¢,. Since 

Var(/3,,) = j 1/J;pdt = for 1/J;pdt, 

we obtain 
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Since i = 0, 

1T 1T2' 
(25) Var(P~) $ ess SUP[o.T]P 

O 
2;1/J[o.oi(2it)dt = ess sup(o,TJP 

O 
1/lfo,oi(x)d:c. 

From the existence of the essential limit css limz-o+ t/l(o,oi(x) = L , we have that there exists 
D C JR. , f(D) = 0, such that for all E > 0, there exists a r, > 0 such that for all x E [0, TJ - D we 
have the implication O < x < r, - iP(o,oi(x) E (L - E:, L + E:). So, for all j with 2iT < r, we have 

. 1T2' 2 
Var(/1~) $ ess sup(o,T}P 

O 
1/lco.oi(x)d:c 

$ (ess SUP[o,T}P)2iTmax{(L - E:)2
, (L + E:)2

}. 

Let j. be the greatest integer j such that 2iT < o. Then 

{26) L Var(P~) $ 2;.+1(ess SUP(o,TJP)Tma."<{(L - E:)2 , (L + £)2} . 

~=(O.j),j$j. 

The iuequalities (25) and (26) imply that 

Let 

L Var(P~) $ (ess SUP(o,T}P)2i•+1Tma.x{{L - t:}2, (L + £)2
} 

~ .j<O 

-I 21T 

+(ess SUP[o,rJP) L 1 1/1[0 ,oi(x)d:c. 
j=j.+I 0 

· . - 1 2'T 

k1 =2;.+•rmax{(L-E)2 ,(L+E)2}+ L 1 1/l[o.o)(x)dx. 
; ~;.+1 0 

Then using (24) we write 

$ >.2 (k1 + 2J+t - l)ess SUP[o,-rJP• 

Finally, from Theorem 5.1, (22) and (23) we deduce 

· T 2 < K 2 M 2 1suppv,co.o)l2(a+I) ( l )J+I 
IIP- E(PJ,-\)11 - (l - 1; 220) 220 X(o,11(0 ) 

+>.2(k1 + 2J+I - l)ess sup(o.rJP· 

■ 
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Theorem 5.3. Let { 1/.>~1'7 E Ze(fi)}, li E '/1,, ti s; 0 be an orthononnal wavelet basis such that 
suppt/Jco,o) = [O, Tl and 1/Jco,oJ is essentially bounded. Let N be a NIC point point process under 
Assumption A with p essentially a-Holderian with constants K and a > 0. Then, for every 
thresholding function T and A ?: 0 we have 

, K2M2lsupp,J,(00Jl2(0+1) ( I )J+I 
IIP- E(fiL)ll2 

S: (I - 2-2~) 220 X(o,11(a) 

+A2(k1 + 2J+t - l}ess sup[O,TJP, 

for some constant k1 E IR.. 

Proof It is enough to notice that, in this case, 

L .B~ + L E(v)2 s; L .B~ + L A2Var(/J~). 
~EZc(li)-Zc(li), ~EZe(li)J ~EZc(li)-Ze(li)J ~EZe(li)J 

T ~T 

1 li/2 2 2 li 1 2 = ess SUP(o,T)P (2 } 'P(O,O) (2 t}dt = ess _SUP(o,T)P <l>co,O) (x )dx , 
. 0 0 

by Theorem 5.1 we establish the inequality with 

■ 

For Haar wavelets both Theorem 5.2 and 5.3 reduce lo the following proposition. 

Proposition 5.1. Under the hypothesis of Theorem 5.2 or Theorem 5.9, for the Haar wavelet 
family, we have 

Proof For the Haar wavelets, M = T- 112 = L. So for all E > 0, 
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+>.2 (zi-+1rmax{(T-1' 2 + E:)2, (r- 112 -E:)2}) ess SUP[o.T]P 

+>.2 
( . t 2irr-1 + 21

+
1 -1) ess SUP[o.T]P 

J=J.+l 

K2'J'2o+I ( I ) J+I 
= (I - 1/220) 220 X(o.11(0) 

+A2 ( . E 2; +2i-+1max{(l +E:T112 )2, (1-E:T112)2} +21+1 -1) esssup(o.TJP· 
J=J.+I 

Letting E: - 0 we get (27). Moreover if ti E 'll we have 

2l'T -1 2J7• 

k1 = 1 fdx + L 1 f dx = 
0 i=li 0 

and (27) follows. 

Next proposition gives us a way to choose the "optimal" value for J . 

■ 

Proposition 5.2. Under the hypotheses of Theorem., 5.2 or 5.3, given A ?: 0, we can choose J 
such that 

lip- E(fiL)11 2 
::; g(A) = min(A, B), 

with 

( 
l ) t0 J+l 

A= ko - X(o,11(0) + A2(k1 + 2t0 Jx1o.,1(o)+I - 1) ess supp, 
220 (O,TJ 

( 
I ) ral+I 

B = ko - X(o,11(0) + A2 (k1 + 2f•lx<o.,1(o)+I - I) ess supp, 
2

20 
(o,TJ 

k - K2 M2jsupp1,\o,0Jl2(0+1) 
o- (1-2-20) ' 

k1 given in the proof of Theorem 5.2 or Theorem 5.3, 

tn(2oko/esssup(o,TJ p) - 2fnA 
a= (2o+ l)ln2 - I, 

and, in case of o ::; I, J will be [aJ or [al, depending on which of these two values minimizes 
g(A); otherwise, that is, o > 1, J will be zero and A= B = g(A) = A2(k1 + l)esssup(o,TJ p. 

Proof From Theorem 5.2 or Theorem 5.3, we have for o E (0, JI 
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Extend f : IN x IR+ -+ IR to f : IR+ x IR+ -+ JR. Then 

of ( ( I )) ( I ) J+I 2 J+I oJ (J, A)= ko ln 22a 22a + A (£n2)2 css SUP10,TJP, 

:; (J, A) = ko ( in ( 
2
!

0
)) 

2 
( 

2
!

0
) J+l + A2(ln2)22J+less SUP(o,T]P, 

hence the second derivative is positive for all J and A. The first derivative is zero if and only if 

(J + 1)(20: + 1) = l092 (A2 

20
ko ) , 

ess SUP(o,TJP 

which yields the value of a above. Since, for a given A, f(J, A) has only a critical point which is a 
minimum point, f(J,A) will assume its minimum value over the integers for J = fal or J = [aj. 
If o: > 1, then IIP - E(faL)ll 2 $ A2 (k1 + 2J+i - J )ess sup(o,TJP the minimum of which occurs for 
J=O. ■ 

5.2. Inferential sequences for the estimated intensities. We close this section with some 
properties of PJ and P),~· 

Theorem 5.4. If N satisfie., Assumption B, then 

(i) PJ is an asymptotically unbiased estimator for the intensity function p. 
For N under Assumption A: 

(ii) Var(pJ) = Lze(ti), Lze(ti), (J fc 1P,i(u),/,((v)92(u, v)dudv)1/J,i1P( 
T + Lze(ti), LZe(li), Uo 1P,i(t),t,((t)p(t)dt)1/J,i1P( · 

0

/{N i;, a NIC point process satisfying Assumption A, then 

(iii) Var(f>J) = :Eze(ti), L ze(li), (I{ 1/J,i(t),t,((t)p(t)dt) 1P,i1P(, and 

(iv) Var(pJ) = Lze(ti) , L ze(li), (I{ 1/J,i(t),t,( (t)dN(t)) 1P,i1P( is an unbiased estimator for Var(pJ ). 

Proof 
(i) limJ-oo E(f>J) = limJ- oo E(L,i,;SJ /J,i1/J,i) = 

= limJ-oo L,i,;SJ E(/J,i1/J,i) = limJ-oo L,i,;SJ .B,i1P,i = L,i .B,i1/J,i = p, in L2 [0, Tj . 

(ii) , (iii) and (iv): it is sufficient to repeat the argument of the proof of Theorem 4.4, observing 
that 17,{ E Ze(li)J. ■ 

Theorem 5.5. (Inferential sequence for pJ . ) Let 11 = (111, ... , 1/2•) E (Ze(li)J )2" and let N be 
a NIC point process under Assumption A. Let, for all n;;:: 1, 
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and 

( 

T 2" ) 2" 

Vn(fiJ) = L 1 IT ,J,0 ,dN IT 1Po,· 
oE(Ze(ti),)2 " O (=I l=I 

Then, Vn(PJ) and Vn(PJ) are, respectively, sequences of variances and estimators such that 

(i) E(p;) = PJ, Vi(p;) = Var(p;) 
(ii) Vn+1(p;) = Var(Vn(fiJ)) 

(iii) Vn(PJ) is an unbiased estimator for V,,(p;). 
(iv) \in(p;) is non-negative. 

Briefly, the sequence (p;, Vn(PJ ), Vn(PJ )) constitutes an inferential sequence of stochastic pro­
cesses for PJ = LoEZe(li), /30 ,J,0 , the approximation of the intensity by wavelets up to the J-th 
scale. 

Proof 
(i) Immediate; Theorem 5.4 (iii} and (iv). 
(ii) Just replace Ze(li) by Zc(li); in the proof of Theorem 4.5. 

(iii) Same argument of the proof of Theorem 4.5. 
(iv) Just replace Ze{li) by Ze(li); in the proof of Theorem 4.5. ■ 

The preceding Theorems 5.4 and 5.5 give us all the relevant information about PJ, that is, its 
asymplotical unbiasedness, its variance function in the general case and the inferential sequence 
for PJ in case of NIC point processes. Now, we turn our aLLe11tion to the threshold case. Observe 
that preposition 5.3 deals with tht: case of an arbitrary threshold function. Due to this, only upper 
bounds for the variance function were obtained. Assuming the hard threshold, we can derive the 
equalities in proposition 5.4 and obtain the important result for NIC point processes given by 
Theorem 5.6, i.e., an inferential sequence for PL,· 
Proposition S.3. If N satisfies Assumption A, then, for all threshold functions, we have 

(i) IIEPJ - Ep}>.112 -> 0, when A - 0, for p and 'IP(o.o) satisfying the hypothesis of Theorem 
5.2 or 5.3. 

(ii) Var(pL) $ L{.oEZe(ti>, (J f c lw0 (u),J,{(v)IE(dN(u)dN(v)) l,J,0 ,/,{I 

+ L{.oEZe(ti), (!: 11'1.(t),J,{(t)lp(t)dt) l1Ji.t/id + L{,oEZe((i)J ll1PoPll1ll1P{Pllil,J,,,,J,el-

/f N is also a NIC point process, we have: 

(iii) Var(p}>.) $ Lo,{EZe(t,), (I: lvi.(t)v,{(t)lp(t)dt + 2ll1PoPllill,J,ePll1) l,J,. v,{I. 

(iv) M¼lr(fi}>.) = 
Lo,{EZe(ti), ( 2 J: 11/Jo(t)ldN(t) J{ l1/1e(t)ldN(t) - J{ liP0 (t)t/l{(t)lclN(t)) l1Po1Pd 

is an unbiased estimator for the right hand side of the above inequality. 

Observe that (iii) and (iv) give bounds that are independent of A. 

Proof (i) Due to the argument used in the proofs of Theorems 5.2 and 5.3, we can write 
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Therefore, the left hand side of the inequality tends to zero as A -+ 0. 

(ii) Write T., to represent T(/3.,, AJVar(/3.,)) and x., = T.,/3.,. Then 

Var(fiL,) = E(pL, - E(fi),)_))2 = E( L x.,,J,., - L £(:i:.,)tb.,)2 = 
Ze(li) J Ze(li)J 

= E( L (:i:., - E(:i:.,))(:i:e - £(:i:{)),J,.,,/1{) = L Cov(:i:.,,:i:e),J,.,,J,e . 

Therefore, 

Now, 

'l,{EZe(li)J 'l,(EZe(li)J 

Var(fi).>J $ L ICov(:i:.,, :i:e)ll,J,.,,t,(i. 
'l,{EZe(li), 

ICov(:i:.,,:i:e)I $ IE(i'.,i'e/3.,/3()1 + IE(t.,/3.,)IIE(Te/3<)1 

$ EIT.,Te /3.,/3(1 + EIT.,/3.,IEITe/Jd 

$ El/3.,/3(1 + El/3.,IEI/Jd, 

S3 

since IT.,1 $ 1 and !Tel $ 1. From {3., = J ,t,.,dN(t) we have 1/3,,1 $ J l,J,.,ldN(t) and, consequently, 
El/3,,1 $ J l,J,l.,pdt = ll1/1.,plli- Analogously, El/3(1 $ \1,/,ePlb - . 

From 

we have 

El/3.,/Jel $ j [ 11/1.,(u),J,e(v)IE(dN(u)dN(v)) + j l , l,J,.,(u),J,((v)IE(dN(u)dN(v)), 

D1 = [O,TJ2 n D. 
Now, since N is under Assumption A, 

! I 11/J.,(u),J,e(v)IE(dN(u)dN(v)) = I l,J,.,,J,(idE(N x N)lo = IT ltb.,(u),J,{(u)lp(u)du. 
lo, lo, lo 

Therefore 
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and 

+ L (1T l1/lry{11)1/.i{(u)lp(u)du + ll1/Jqpll1 ll1/.i{Pli1) l1/.iq1/.i(i. 
q,{EZc(li)J O 

(iii) For a NIC point process N we have dt:<.7t;N> = p2(u,v) = p(u)p(v), u 'f' v. Let p"(u,u) = 
p2(u) and p"(u,v) = 7>2(11,v), u ,/ v. Then 

j fc 1wn(u)1J,<(v)IP2(u, v)dudv = LT LT 11/.in(u)1/.i{(v)lp"(u, v)dudv = 

= LT l1/.iq(11)ip(u)du 1T 11/.i((v)lp(v)dv = ll1/.inPll1ll1/.>EPll1-

The conclusion follows by direct substitution inlo expression (ii). 

(iv) Since ll1/.>nPll1 = J[ 11/lqlpdt = E J: 11/lqldN(t), we can write 

E (LT 11,!,qldN(t) 1T 11/J<ldN(t))- Cov (LT lit>nldN(t), LT 11/.i<ldN(t)). 

By Proposition 3.3 for NIC point processes, the covariance in the right hand side of lhe above 
equation is equal to J[ li,!,nllt/l<IPdl = E J[ l,J,qtJ,{idN(t), hence 

( 

1' T ) T 
llwqPll1ll1/J<Pili = E L !1/JqldN(t) 111"<idN(t) -E 111/lqt/l<ldN(t). 

and 

LT 11/Jn(t)tJ,{(t)jp(t)dt + 2111PnPlldl1/.><Pll1 = 

= E ( 2 LT 11/.iqldN(t) LT l~<ldN(t) - LT l1/Jn1/.iddN(t)) • 

Summing for all T/ e { in Ze(ti)1, the proposition is established. 
■ 
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Proposition 5.4. Let N satisfying Assumption A. If we choose T(x, y) = 1 when lxl 2'.' y and 
T(x, y) = 0 othenuise, and if we let 

TZe(ei}1 = {71 E Ze(ii)1IT(/J11 , >-✓ Var(/J11 )) = l}, 

then 

(i) Var(p1,_) = L 11,{eTZ•(l i), (J fc1/111(u)1/i{(v)q2(u,v)dudv+ J{ 1/111(t)1/i{(t)p(t)dt) 1/1111/1{· 

If N is also a NIC point process, we have {ii) and {iii} below: 

(ii) Var(fi).>.) = L 11,{eTZe(li), U{ i/111(t)iJ,{(t)p(t)dt)1/i111/i{· 

(iii) Var(JiL) = L'1,{ETZe(l i), (f{ iJ,11(t)iJ,{(t)dN(t))iJ,11'1/J{ is an unbiased estimator for Var(pL). 

Proof Since 

P).>. = L T(/J11, >-Jvar(P11))P111/111 = L P111/111, 
17EZe(li) J 17ETZe(li)J 

it is sufficient to repeat the argument used in the proof of Theorem 4.4. ■ 

Theorem 5.6 . (Inferential sequence for P).>.-) Let N be a NIC point process under Assump• 
tion A and let T(x, y) = 1 when lxl 2'.' y and T(x, y) = 0 otherwise. Let TZe(Ci)J = {~ E 

Ze(li}1IT(iJ<,>.JVar(/J{)) = l} and11= (711, ••• ,1J2•) E (TZe(ei)1)2" . 1'hen, 

and 

Vn(P),>.) = L 1 II 1/111,EdN II 1/111,, for all n ~ 1, 
( 

T 2" ) 2" 

17E(TZ<(li),)'" O l =l l=I 

are, respectively, sequences of variances and estimators such that 

(i) E(ff,>.) = p1,_, Vi (iih) = Var(fiJ.>.), 
(ii) Vn+t<fi).>.) = Var(Vn(P'hll, 

(iii) Vn(P),>.) is an unbiased estimator for Vn(P).>.)· 
(iv) Vn<fi).>.) is non-negative. 

That is, the sequence (pI,_, Vn<fi).>.) , Vn<fi'h)), n ~ 1, constitutes an inferential sequence of 
stochastic processes for the function pJ >.• wavelet threshold approximation of the intensity till the 

J-th order scale, withL: lR+ x Ze((i)1°-+ lR+ defined by L(>.1 71) = >.Jvar(/311 ), T(x,y) = 1 when 
lxl ~ y and T(x, y) = 0 othenuise. 

Proof 

(i) Immediate; Proposition 5.4 {ii) and (iii}. 
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(ii) , (iii) and (iv) Immediate. ■ 

6. AN APPLICATION 

We will present here an application of the results obtained in the former sections. The 
intensity of a point process derived from the daily log-returns of the Dow-Jones Industrial Average 
will be estimated. To form a point process from these returns, we will agree that an event has 
occurred if and only if the absolute value of the log-return is greater than a given threshold level. 
A set of T = 4225 returns will be used, corresponding to the period of time from January 2nd 1986 
to September 26 , 2002, and the threshold level will be 0.01452 which corresponds to 1.28 times the 
standard deviation of these returns. 

This procedure generates 558 events, which we assume to be a realization of a NIC point process 
with intensity PN(t) . Since it is necessary to limit the number of wavelet coefficients that will be 
estimated and used for the synthesis of p, our choice is made of a set of coefficients that encompass 
exactly all coefficients of all scales of order less than or equal to a positive number J. If the 
intensity were constant we would expect (558/4225)c events within an interval of length c. Under 
this assumption one will expect to have 558/26 "' 8 events laying inside the support of each 
wavelet of the sixth scale and if the intensity at some time interval is half of the average intensity 
this number may drop to 4. Information based on a wavelet with few points laying within its 
support may be misleading. This heuristic argument led us to choose all wavelets until the fifth 
order for our synthesis procedure. 

An important advantage of our estimation method is that we have direct access to the variance 
of iJ~, through ½r(/3~), for each I) individually, and not by an estimation that depends on the 
whole set of wavelet coefficients of a given scale or any subset of the set of all wavelet coefficients. 
We observe that when one uses an estimator of Var(/3~), for a given !J, based on the variance of 
the values of all iJ{, that may belong to the same scale of /3~ or to a bigger set of coefficients, what 
really is being done is to calculate an estimator of the variance of the coefficients within this set 
and most of this variance, probably, is due to the diversity of the indexes fs, that is, of all distinct 
/3{ 's in this set, and this variance may not have any or little relation with the variance of /3~ for 
that particular I) of interest. 

It is worth noting that when the process is under the presence of noise it may happen that 
the whole set of coefficients is affected and the variance of the coefficients of higher-order scales 
is a measure of the intensity of the noise point process. In fact if the noise point process that 
is added to N is a homogeneous NIC point process with intensity A, then the variance of the 
coefficients that belong to the J-th order scale is an asymptotically unbinsed estimator of A, that 
is, E{Var(/Jco,J),--·,/3(2,_1_1))}-. A, as J ..... oo. In this case we can still obtain the estimated 
intensity of the process N by synthesis based on the measured process and then subt;acting from 
this estimated intensity the estimated intensity of the noise. See de Miranda (2003a). 

We have used in this application the Haar wavelet system. Let IA be the indicator function of 
a set A. Thus 

and 
2i/2 

1/l(i.j) = Tl/2 (/{iT/2i,(2i+l)T/21+1 ) - /((2i+l)T/2J+l,(i+l)T/2•)), 



2 2i 
VJ(i,j) = ""f /[iT/21,(i+l)T/2')· 

The estimators fi~ and Var(P~) were obtained through the formulas 

P(i,j) = J VJ(i,j)dN(t) = L VJ(i,j)h) = 
,., esupp,;c;,1> 

= ;~: (#fn: E [iT/2i, (2i + l)T/2i+1
)}- #{rk E [(2i + l)T/2i+1, (i + l)T/21)}) 

and 

Var(/3;,;) = j t/JLdN(t) = L t/JL(rk) = 
nESUppo/1; ,J 

= f (#{rk E [iT/2i, (i + l)T/21)}) . 

Analogously, we have obtained /3o and VarPo- Observe that 

• 1 1 #{rkE[O,T]} 
/3o¢co,o) = Tl/2 Tl/2 #h E [O, Tl} = T 

is the mean intensity, 558/4225, that is, the mean value of p. 

37 

The threshold function chosen was T(x, y) = 0 for !xi < y and T(x, y) = 1 for !xi ~ y . We 
recall that for ). = 3 we have (using Chebyshev's inequality) a "confidence level" of at least 
1 - (1/3)2 = 8/9 or approximately 88, 8% whatever the distribution of /3~ is. 

In Figure 1 we show the number of counts and in Figure 2 the estimated intensity. We clearly. 
see the non-stationary character of the process. In Figures 3 and 4 we have the estimated standard 
deviation and the respective threshold version, as given by Theorem 5.4 and Proposition 5.4. 
Figures 5 and 6 show the estimated intensity and thresholded estimated intensity, respectively, with 
their (non-negative) confidence bands. Again, these last figures confirm the non-homogeneity of 
the fitted NIC point process. In Figures 5 and 6 the bands are computed adding (and subtracting) 
µ times the standard deviation function to (respectively from) the intensity function, bounded 
inferiorly by zero. If we do not assume that N is a NIC point process, the estimated intensity and 
its threshold version are still the ones presented, but we cannot in this case compute the bands. 

7. FURTHER COMMENTS 

In this work we dealt with the problem of estimating the time-variable intensity of a nonho­
mogeneous point process on the real line, specializing for the case of a NIC point process. The 
generalization for point process on IR.m, using for example wavelets on IR.m given by tensor prod­
ucts of wavelets on IR., can be directly done. A more general treatment is possible and this will be 
pursued elsewhere. 

Another situation of interest might be that where a point process occurs under noisy conditions. 
We have a primary point process N that is the object of our study and to this it is summed another 
point process that will be called the noise process, R. The resulting point process M is the one 
effectively observed. We write M = N + R and by this we mean that for all A c 8 11 , M(A) = 
N(A) + R(A). It is also assumed that N and R are independent. The target is to estimate the 
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intensity of N, which will depend on the estimate of the intensity of the noisy process. Similar 
rei;ults lo those obtained here can be derived. See de Miranda (2003a). 
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FIGURE 5. Estimated intensity with non-negative bands (µ = 3) 
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