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Abstract We consider a special class of idempotent of semisimple group algebras which we call essential. We
give some criteria to decide when a primitive idempotent is essential; then we consider group algebras of cyclic
group over finite fields, establish the number of essential idempotents in this case and find a relation among
essential idempotents in different algebras. Finally we apply this ideas to coding theory and compute examples
of codes with the best known weight.

1 Introduction

In our first section we discuss a special kind of primitive idempotents in the semisimple group algebra of a finite
group, that we call essential, which were primary motivated by the study of coding theory but that might be of
interest in their own right. These idempotents were considered by Bakshi, Raka and Sharma in [2], where they
were called non-degenerate, in the special case of group algebras of cyclic groups over finite fields.

In the third sectionwe give some results relating this type of idempotents to special codes thatwere extensively
studied in the literature and proceed, in the following section, to establish a correspondence between essential
idempotents of related group algebras. Finally, we give examples to show that essential idempotents can be used
to produce examples of codes of maximum weight in a rather simple way.

Some of the results we survey have already been published; these we quote with a reference. The new ones
are given with the corresponding proofs.

We first discuss briefly some basic definitions in coding theory and their relations to group algebras.
Let F denote a finite field with q elements. A linear code of length n over F is a proper subspace of F

n .
Given two words x = (x1, x2, . . . , xn) and y = (y1, y2, . . . yn) in a code C, the Hamming distance from x

to y is the number of coordinates in which these elements differ; i.e. :

d(x, y) = |{i | xi �= yi , 1 ≤ i ≤ n}|.
Given a code C, its minimal distance is the number

d(C) = min{d(x, y) | x, y ∈ C, x �= y}.
For a rational number a we denote by �a� the greatest integer m such that m ≤ a. The first important result

in coding theory is the following.
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Theorem 1 Let C be a code with minimal distance d and set κ = �(d − 1)/2�.
Then, it is possible to detect up to d − 1 errors and correct up to κ errors.

The number κ above is called the error-correcting capacity of the code. A q-ary code over a field with q
elements, of length n and dimension m, having minimal distance d is called a q-ary (n, M, d)-code.

A natural goal, when designing a code is to look for efficiency (in the sense that it should contain a large
number of words, so it can transmit enough information) and also a large minimum distance, so that it can correct
a big number of errors. Unfortunately, these goals conflict with each other, since the ambient space F

n is finite.
The problem of maximizing one of the parameters (n, M, d) when the other two are given is known as the main
problem of Coding Theory.

A special class of linear codes was introduced in 1957 by E. Prange [30]. Originally these codes were
introduced because they allowed for efficient implementation, but they also have a rich algebraic structure and
can be used in many different ways. Many practical codes in use are of this kind.

Given a word x = (x1, x2, . . . , xn) ∈ F
n its right shift is the word (xn, x1, . . . , xn−1). A linear code C is

cyclic if, for every word in the code its right shift is also in the code. Notice that this implies that if a given word
(x1, x2, . . . , xn) is in the code, then all words obtained by circular permutations are also in the code.

The map

ϕ : F
n → F[X ]

(Xn − 1)

given by ϕ(a0, a1, . . . , an−2, an−1) = a0 + a1X + . . . + an−2Xn−2 + an−1Xn−1 is a linear isomorphism and
it is easy to see that a linear code C of length n over F is cyclic if and only if its image ϕ(C) is an ideal of the
factor ring F[X ]/(Xn − 1).

Since this ring, in turn, is isomorphic to the group algebra of the cyclic group Cn , of order n, over Fq , one
can think of cyclic codes as ideals of FqC .

S.D. Berman in 1967 [4] and MacWilliams in 1970 [22] introduced independently the notion of an Abelian
code: one such code, over a field F is an ideal of the group algebra FA of a finite Abelian group A.

It is then natural to further extend this definition. A group code over a field F is an ideal of the group algebra
FG of a finite group G.

These codes have been extensively studied by many authors for example, among others, in [7,13,14,18–
20,24,29,30].

2 Codes and Group algebras

All groups considered throughout this paper will be finite, and we shall always assume that all fields F are such
that char(F) � |G|.

For an element α in the group algebra FG, the weight of α is the number of elements in its support; i.e., if
α = ∑

g∈G αgg, then

ω(α) = |{g ∈ G | αg �= 0}.
Given an ideal I ⊂ FG the weight distribution of I is the map which assigns, to each possible weight t , the

number of elements of I having weight t .
Given two elements α = ∑

g∈G αgg and
∑

g∈G βgg, regarding FG as a vector space with basis G, the
Hamming distance from α to β is

d(α, β) = |{g | αg �= βg, g ∈ G}| = ω(α − β, 0),

and thus, for an ideal I in FG, we have that

d(I ) = min{ω(α) ∈ I | α �= 0} = ω(I ),

the minimum weight of I .
Since we are always assuming that char(F) � |G|, the group algebra FG is semisimple

(see [27, Theorem 3.4.7]) meaning that every ideal is a direct summand or, equivalently, that every ideal is
generated by an idempotent element.
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Moreover, FG can be written as a (unique) direct sum of a finite number of two-sided ideals {Ai }1≤i≤r ,
called the simple components of FG, which are simple algebras, and also a direct sum (in more than one way)
of minimal left ideals.

This implies that there exists a unique family {e1, . . . , er } of orthogonal idempotents in FG which are central,
such that none of them can be written as a sum of two non-zero central idempotents, and such that

∑r
i=1 ei = 1.

These are called the primitive central idempotents of FG.
Each two-sided ideal of FG is a direct sum of some of the simple components and thus, every central

idempotent is a sum of primitive central idempotents called its constituents.
Each decomposition as direct sums of left ideals determines a family of non-central idempotents with similar

properties, called a family of primitive idempotents of FG.
There is a natural way of exhibiting idempotents of FG from subgroups of G. If H is a subgroup of G, then

the element

Ĥ = 1

|H |
∑

h∈H
h

is an idempotent and it is central if and only if H is normal in G.
As shown in [27, Proposition 3.6.7]wehave that (FG)(1−Ĥ ) = �(G, H), the kernel of the natural projection

π : FG → F[G/H ] and it is easy to see that (FG)Ĥ ∼= F[G/H ] via the map ψ : (FG)Ĥ → F[G/H ] defined
by gĤ 
→ gH ∈ G/H , so

FG = (FG)Ĥ⊕ ∼= (FG)[G/H ] ⊕ �(G : H).

and

dimF

(
(FG) · Ĥ) = [G : H ].

In particular, if we take H to be G ′, the commutator subgroup of G we have the following.

Proposition 1 ([27, Prop. 3.6.11]) Let FG be a semisimple group algebra. Then

FG = (FG)Ĝ ′ ⊕ �(G : G ′),

where (FG)Ĝ ′ ∼= F[G/G ′] is the sum of all commutative components of FG and �(G : G ′) is the sum of all the
non commutative ones.

Also, it is easy to see that if τ is a transversal of H in G, i.e. a complete set of representatives of cosets of H
in G, then

{t Ĥ | t ∈ τ }
is a basis of (FG)Ĥ over F.

Hence, an element in the ideal (FG)Ĥ is of the form α = ∑
t∈τ at t Ĥ which means that, when written in the

basis G of FG, it has the same coefficient along all the elements of the form th for a fixed t ∈ τ and any h ∈ H .
Thus, this kind of ideals defines repetition codes, which are not particularly interesting.

In the case of the rational group algebra of a finite Abelian p-group G, it is known that the set of primitive
idempotents of QG is the set of all elements of the form

e = Ĥ − Ĥ∗,

where H, H∗ are pairs of subgroups of G such that H ⊂ H∗ and the factor group H∗/H is cyclic of order p,
together with the element Ĝ which is called the principal idempotent of QG [16, Theorem VII.1.4].

In [14] we gave necessary and sufficient conditions for this same formulas to describe the set of primitive
idempotents of the group algebra of a finite Abelian group over a finite field. Information about these kind of
ideals is well-known.

Proposition 2 [12] Let G be a finite group and F a field such that char(F) does not divide |G|. Let H and H∗
be normal subgroups of G such that H ⊂ H∗ and set e = Ĥ − Ĥ∗. Then:
(i) dimF (FG)e = |G/H | − |G/H∗|
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(ii) w((FG)e) = 2|H |.
(iii) If A is a transversal of H∗ in G and τ a transversal of H in H∗ containing 1, then

B = {a(1 − t)Ĥ | a ∈ A, t ∈ τ \ {1}}
is a basis of (FG)e over F.

Since Ĥ − Ĥ∗ = (Ĥ − Ĥ∗)H we have that (FG)((Ĥ − Ĥ∗) ⊂ (FG)Ĥ so, from the point of view of coding
theory these ideals give also repetition codes.

These results suggest that, though minimal ideals of group algebras have been the subject of several papers
on coding theory, they might not be good candidates to obtain interesting codes.

3 Essential idempotents

As noted above, if H is normal subgroup of G, then Ĥ is a central idempotent and, as such, a sum of primitive
central idempotents.

Let e be a primitive central idempotent of FG. Then:

• If e is not a constituent of Ĥ we have eĤ = 0.
• If e is a constituent of Ĥ we have eĤ = e.

In this last case, we have that (FG)e ⊂ (FG)Ĥ and thus the minimal code (FG)e is a repetition code.
We are interested, of course, in codes which are not of this type.

Definition 1 A primitive idempotent e in the group algebra FG, is called an essential idempotent if eĤ = 0,
for every subgroup H �= (1) in G.

A minimal ideal of FG is called an essential ideal if it is generated by an essential idempotent and non
essential otherwise.

Notice that, if e is a central idempotent, then the map π : G → Ge, given by π(g) = g · e is a group
epimorphism. We can use this map to characterize essential idempotents.

Proposition 3 Let e ∈ FG be a primitive central idempotent. Then e is essential if and only if the map π : G →
Ge, is a group isomorphism.

Though the proof of this result is very simple, it has an interesting consequence, whose proof is also almost
immediate.

Corollary 1 ([9, Corollary 2.4]) If G is Abelian and FG contains an essential idempotent, then G is cyclic.

Hence, if G is Abelian but not cyclic, all the minimal ideals of A give repetition codes.
On the other hand, as we show below, ifG is cyclic, then FG always contains essential idempotents. To do so,

assume that G is cyclic of order n = pn11 · · · pntt . Then, G can be written as a direct product G = C1 × · · · ×Ct ,
where Ci is cyclic, of order p

ni
i , 1 ≤ i ≤ t . Let Ki be the minimal subgroup of Ci ; i.e. the unique subgroup of

order pi in Ci and denote by ai a generator of this subgroup, 1 ≤ i ≤ t . Set

e0 = (1 − K̂1) · · · (1 − K̂t )

=
⎛

⎝1 − (1 + a1 + · · · + a
p
n1−1
1

1 )

p1

⎞

⎠ · · ·
⎛

⎝1 − (1 + at + · · · + a
pnt−1
t

t )

pt

⎞

⎠ .

Then e0 is a non zero central idempotent and it is easy to see that a primitive idempotent e ∈ FG is essential
if and only if e · e0 = e [9, theorem 2.6]. This implies that e0 is the sum of all essential idempotents of FG and
thus (FG)e0 is the sum of all the essential ideals of FG.

Since e0 �= 0 it follows that, when G is cyclic, FG always contains essential idempotents.
Let F be a field, G a finite Abelian group and e �= Â an idempotent in FG. Set

He = {g ∈ G | ge = e}.
Clearly, He is the unique maximal subgroup of G such that Hee = e and it can be shown easily that He = G

if and only if e = Ĝ, the principal idempotent of FG. Actually, He is the kernel of the irreducible representation
associated to the simple component (FG)e.
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Theorem 2 ([9, Theorem 3.1]) Let e �= Ĝ be a primitive idempotent of FG andψ : FG → F[G/He] the natural
projection. Then, the element ψ(e) is an essential idempotent of F[G/He].

This result readily shows that G/He is cyclic.
Let G1 and G2 denote two finite groups of the same order, F a field, and let γ : G1 → G2 be a bijection. Denote
by γ : FG1 → FG2 its linear extension to the corresponding group algebras.

Clearly, γ is a Hamming isometry; i.e., elements corresponding under this map have the same Hamming
weight. Ideals I1 ⊂ FG1 and I2 ⊂ FG2 such that γ (I1) = I2 are thus equivalent, in the sense that they have the
same dimension and the same weight distribution. In this case, the codes I1 and I2 are said to be permutation
equivalent and were called combinatorially equivalent in [30].

The subgroup He constructed above can be used to prove the following.

Theorem 3 ([9, Theorem 3.3]) Every minimal ideal in the semisimple group algebra FA of a finite Abelian
group A is permutation equivalent to a minimal ideal in the group algebra FC of a cyclic group C of the same
order.

For quite some time after the introduction of Abelian codes by Berman and MacWilliams, there was no
evidence that non cyclic Abelian groups could provide better codes than those which are cyclic. The results
above show that such codes should be searched among those which are non minimal and they do exist; see
[18,23] and [29].

In our last section we will also give examples of codes from metacyclic groups that are not equivalent to
Abelian ones.

Let F be a field and Cn a cyclic group of order n such that char(F) � n. A well-known method to determine
the primitive idempotents of FCn is the so-called Galois descent. We shall give a criteria to determine essential
idempotents from this point of view and, as a consequence, compute the number of these idempotents in FCn . If
ζ denotes a primitive root of unity of order n, then F(ζ ) is a splitting field for Cn , and the primitive idempotents
of FCn are given by

ei = 1

n

n−1∑

j=0

ζ−i j g j , 0 ≤ i ≤ n − 1.

For each element σ ∈ Gal(F(ζ i ) : F) set

σ(ei ) = 1

n

n−1∑

j=0

σ(ζ−i ) j g j , 0 ≤ i ≤ n − 1.

Recall that two primitive idempotents of F(ζ )Cn are equivalent if there exists σ ∈ Gal(F(ζ i ) : F) which
maps one to the other. Let e1, . . . , et be a set of representatives of classes of primitive idempotents (reordering,
if necessary).

Then, the set of primitive elements of FCn is given by the formulas

εi =
∑

σ∈Gal(F(ζ i ):F)

σ (ei ), 1 ≤ i ≤ t.

Notice that, for each fixed index i we have:

εi =
∑

σ∈Gal(F(ζ i ):F)

σ (ei ) = 1

n

∑

σ∈Gal(F(ζ i ):F)

n−1∑

j=0

σ(ζ−i ) j g j

= 1

n

n−1∑

j=0

∑

σ∈Gal(F(ζ i ):F)

σ (ζ−i ) j g j = 1

n

n−1∑

j=0

trF(ζ i )|F(ζ−i j )g j ,

where trF(ζ i )|F denotes the trace map of F(ζ i ) over F.
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Let Cn = 〈g〉 denote a cyclic group of order n. If i is a positive integer such that (n, i) = 1, then the map
ψi : Cn → Cn defined by g 
→ gi is an automorphism of C that extends linearly to an automorphism of FCn ,
which we shall also denote by ψi :

∑

g∈Cn

agg
ψi

→

∑

g∈Cn

agψi (g). (1)

Lemma 1 If εi = 1
n

∑n−1
j=0 trF(ζ i )|F(ζ−i j )g j is an essential idempotent, then ζ i is a primitive root of unity of

order precisely equal to n.

Proof Assume, by way of contradiction, that o(ζ i ) = d < n and set r = n/d. Then

1 = ζ id = ζ i(2d) = · · · = ζ i(r−1)d ,

so

εi = 1

n

d−1∑

j=0

trF(ζ i )|F(ζ−i j )(1 + gd + g2d + · · · + gd(r−1))g j

=
⎛

⎝1

n

d−1∑

j=0

trF(ζ i )|F(ζ−i j )g j

⎞

⎠ 〈̂gd〉.

Hence, εi · 〈̂gd〉 = εi , so εi is not essential. ��
Theorem 4 Let Cn be a cyclic group of order n and F a field such that char(F) � n. Given two essential
idempotents εh, εk ∈ FCn, there exists an integer i with (n, i) = 1 and the automorphism ψi : FCn → FCn
defined as above is such thatψi (εh) = εk . Conversely, if ε is an essential idempotent andψi is an automorphism
as above, then ψi (ε) is also an essential idempotent.

Proof Write

εh = 1

n

n−1∑

j=0

trF(ζ h)|F(ζ−h j )g j and εk = 1

n

n−1∑

j=0

trF(ζ k)|F(ζ−k j )g j

It follows again from the lemma that (h, n) = (k, n) = 1 so, there exist integers r, s such that

h ≡ s · k( modn) and k ≡ r · h( modn).

Also, F(ζ h) = F(ζ k) hence, to simplify notations, we shall write trF(ζ h)|F = trF(ζ k)|F simply as tr .
Now, writing � = s j we have

ψs(εh) = 1

n

n−1∑

j=0

tr(ζ−h j )gs j = 1

n

n−1∑

�=0

tr(ζ )−(rh)�g� = εrh = εk .

Since for every such automorphism ψi we have that ψi (Ĥ) = Ĥ for every subgroup H of Cn , the converse
follows immediately ��

Now we can give another description of essential idempotents.

Theorem 5 An idempotent εi = 1
n

∑n−1
j=0 trF(ζ i )|F(ζ−i j )g j is an essential idempotent if and only if ζ i is a

primitive root of unity of order precisely equal to n.
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Proof Necessity is just the content of the lemma above.
To prove the converse, notice that exists at least one essential idempotent in FCn , which must be of the form

εh = 1

n

n−1∑

j=0

trF(ζ h)|F(ζ−h j )g j , with (h, n) = 1.

For every integer k, with (k, n) = 1, the proof of the previous theorem shows that there exists another integer
r such that ψr (εh) = εk . Hence, for every such k, the idempotent ek is essential. ��

We are ready to compute the number of essential idempotents in the group algebra of a cyclic group.
Let ϕ denote Euler’s totient function. Notice that, according to Theorem 5 there are ϕ(n) possibilities for an

idempotent of the form εi = 1
n

∑n−1
j=0 trF(ζ i )|F(ζ−i j )g j to be essential, one for each exponent i such that ζ i is

primitive of order n. However, two expressions of this type, for idempotents eh, ek , can give the same idempotent.
Write them in the form

εh =
∑

σ∈Gal(F(ζ h):F)

σ (eh), εk =
∑

σ∈Gal(F(ζ k ):F)

σ (ek).

Notice that, since ζ h and ζ k are primitive roots of order n, we have that F(ζ h) = F(ζ k) = F(ζ ).
Clearly, the above idempotents are equal if and only if there exists an automorphism σ ∈ Gal(F(ζ ) : F)

such that σ(eh) = ek . Since the elements of Gal(F(ζ ) : F) do not fix idempotents of F(ζ )Cn , there are precisely
|Gal(F(ζ ) : F)| idempotents of FCn equal to ei .

Hence, we have proved the following.

Theorem 6 The number of essential idempotents in the group algebra FCn is precisely

ϕ(n)

|Gal(F(ζ ) : F)| .

4 Binary Codes of a special type

In this section we show that essential idempotents play a deceive role in the construction of some important
classes of binary codes.

Recall that a binary linear code of dimension k and length n is called simplex if a generating matrix for the
code contains all possible non zero columns of length k. Since these are 2k − 1 in number, this matrix must be
of size k × (2k − 1) so, we must have n = 2k − 1.

Theorem 7 ( [9]) Let C be a binary linear code of dimension k and length n = 2k − 1. Then C is a simplex code
if and only if it is cyclic and essential.

Our next result needs the following elementary lemmas, whose proofs can be found in [10].

Lemma 2 Let C be a binary linear code of length n and dimension k. Let f = Xk+ak−1Xk−1+· · ·+a1X+a0 ∈
F2[X ] be an irreducible polynomial of order 2k − 1. Then, it is possible to order the non zero elements of C as
{v1, . . . , v2k−1} so that

vt = ak−1vt−1 + · · · a1vt−k+1 + a0vt−k,

where the subindexes are taken modulo 2k − 1

Lemma 3 Let Fq be a finite field with q elements,

f = Xk − ak−1X
k−1 − · · · − a1X − a0 ∈ Fq [X ]

an irreducible polynomial of order qk − 1 and for each arbitrary sequence (x0, . . . , xk−1) of elements of Fq .
Set:

x� = ak−1x�−1 + · · · + a0x�−k, for � ≥ k.
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Let W be the set of all sequences constructed in this way and Cqk−1 = 〈g〉 a cyclic group of order qk − 1. Then,
the set

I =
⎧
⎨

⎩

qk−2∑

j=0

x j g
j | (x0, . . . , xqk−2) ∈ W

⎫
⎬

⎭
,

is an essential ideal of FqCqk−1.

Lemma 4 Let C be a cyclic code of length n and dimension k. Then

∑

v∈C
w(v) = nqk−1(q − 1).

If C is of constant weight, then

w(C) = nqk−1(q − 1)

qk − 1
.

Let C be binary a code of length n and dimension k with elements ordered as in Lemma 2. Write its elements
in coordinates, as rows of a matrix:

M =
⎡

⎢
⎣

v1,1 v1,2 . . . v1,n
v2,1 vi,2 . . . vi,n

. . .

⎤

⎥
⎦ .

We shall be interested in those codes for which this matrix contains no column equal to 0. More precisely,
we give the following.

Definition 2 Let C = {v1, . . . , vm} be a linear code, whose elements we write as vi = (vi,1, vi,2, . . . vi,n),
1 ≤ i ≤ k − 1, 1 ≤ i ≤ k − 1. We say that C contains no zero column if, for each index j, 1 ≤ j ≤ n, there
exists at least one vector vi ∈ C such that vi, j �= 0.

Now, we can state the following.

Theorem 8 Let C be a binary linear code of constant weight, without zero columns. Then C is equivalent to a
cyclic code which is either essential or a repetition of an essential one.

5 A correspondence

Let Fq be the finite field with q elements, C = Cn the cyclic group of order n, with generator g and assume that
(q, n) = 1. Throughout this section, m will always denote the multiplicative order of q in the unit groupU (Zn).
Also, we set N = qm − 1 and � = N/n. Notice that the multiplicative order of q, modulo N is also m because,
if s < m is a positive integer such that N |(qs − 1), then also n|(qs − 1), a contradiction.

If F is any field such that char (F) � |C |, e is a primitive idempotent of FC and � : F[X ] → (FC)e denotes
the morphism given by �( f ) = f (ge),∀ f ∈ F[X ], it is easy to see that

(FC)e ∼= F[X ]
(p(X))

,

where p ∈ F[X ] is the generator of Ker(�) and thus the minimal polynomial of ge over F. As e is primitive,
(FC)e is a field and hence p(X) is irreducible in F[X ].
Proposition 4 With the notation above, if e is an essential idempotent, then the dimension of (FqC)e is precisely
m.
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Proof On the one hand, it is clear that dim[(FqC)e] equals the degree of p. On the other hand, as ge is a root

of p, all the distinct root of this polynomial are ge, gqe, . . . gq
r−1

e, where r is the least positive integer such that
gq

r
e = ge [21, Theorem 3.33]. It follows, from Proposition 3, that also gq

r = g and hence, that gq
r−1 = 1. So,

r is the least positive integer such that qr ≡ 1 (mod n) and thus, the order of q inU (Zn). Since deg(p) = r , the
result follows. ��
Theorem 9 Let C denote a cyclic group of order n and generator g and let e0 be the sum of all essential
idempotents in FqC. Then:
(i) dim(FqC)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.
(i i) There exist precisely ϕ(n)/m essential idempotents in FqC.

Proof Let n = pn11 · · · pntt be the factorization of n as a product of prime integers and let Ci denote the cyclic
group of order pi ni , 1 ≤ i ≤ t . Recall that e0 = (1 − K̂1) · · · (1 − K̂t ), where Ki is the only subgroup of order
pi in Ci , 1 ≤ i ≤ t .

First, we claim that if R is a finite dimensional algebra over Fq , taking dimensions over Fq , we have
dim(RCi · (1 − K̂i )) = dim(R).ϕ(pnii ).

In fact, notice that RCi · K̂i ∼= R[Ci/Ki ] so dim(RCi · K̂i ) = |Ci |/|Ki | = dim(R).pni−1
i . Also,

RCi = RCi · K̂i ⊕ RCi · (1 − K̂1)

and thus

dim(RCi (1 − K̂i )) = dim(R).(|Ci | − dim(FqCi · K̂i ))

= dim(R)(pnii − pni−1
i ) = dim(R).ϕ(n).

We shall prove (i) by induction on t . The case when t = 1 follows immediately from the claim above, setting
i = 1 and R = Fq .

Now, assume that the statement is true for t − 1 and set

R = Fq [C1 × · · · × Ct−1](1 − K̂1) · · · (1 − K̂t−1).

Then,

dim(FqC)e0 = dim(RCt .(1 − K̂t ) = dim(R).ϕ(pntt ))

= ϕ(pn11 · · · pnt−1
t−1 )ϕ(pntt ) = ϕ(n).

If F is a finite field with q elements we have |Gal(F(ζ ) : F)| = o(q) = m so (i i) follows immediately from
Theorem 6. ��

Since Fq contains q elements and dim(FqC)e = m, it follows that (FqC)e is a field with qm elements. If
we denote by Ue = U ((FqC)e), the group of invertible elements of (FqC)e, we have that Ue is a cyclic group
of order |Ue| = qm − 1 = N . Let γ be a generator of Ue.

As e is essential, we have that C ∼= Ce, so Ce is a subgroup of order n of Ue and the coset γ (Ce) is a
generator of the factor groupUe/Ce, which is of order �. Hence, � is the least positive integer such that γ � ∈ Ce.
Thus, there exists an integer k, with 1 ≤ k ≤ n − 1, such that γ � = gke. Also, we can write

Ue = {g jγ i | 0 ≤ j ≤ n − 1, 0 ≤ i ≤ � − 1}.
In the particular case when n = qk − 1 for some positive integer k we have that m = k and then N = n and

� = 1. This implies that

(FC)e = {0} ∪ {g j e | 0 ≤ j ≤ n − 1}, (2)

showing that, in this case, all non-zero elements of an essential ideal are of equal weight.
Denote by Cn and CN the cyclic groups of orders n and N , with generators g and h respectively. In what

follows, we compare essential idempotents in FqCn and FqCN

First, note that N = �n and thus 〈h�〉 is a subgroup of CN of order n, hence isomorphic to Cn . Let σ be such
an isomorphism and denote also by σ : Fq〈h�〉 → FqCn the isomorphism induced linearly by σ .
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The set {1, h, . . . , h�−1} is a transversal of 〈h�〉 and thus, every element α ∈ FqCN can be written uniquely
in the form

α =
�−1∑

i=0

αi h
i with αi ∈ Fq〈h�〉, 0 ≤ i ≤ � − 1. (3)

We wish to prove the following.

Theorem 10 With the notations above, given an essential idempotent e ∈ FqCn there exists an element β ∈ Ue

such that {e, β, . . . β�−1} is a transversal of Cn · e in Ue and the element

eN = 1

�

�−1∑

i=0

σ−1(β i )hi

is an essential idempotent of FqCN .

Conversely if eN = ∑�−1
i=0 αi hi is an essential idempotent of FqCN , then e = �.σ (α0) is an essential

idempotent of FqCn and the set {σ(α0), σ (α1), . . . , σ (α�−1)} is a transversal of Cn · e in Ue.

To do so, we need an elementary fact about cyclic groups. We begin with the following.

Lemma 5 Let n and N be positive integers such that n|N and let i be an integer such that (n, i) = 1. If � = N/n,
then the equation

�.X ≡ �.i ( mod N )

has precisely ϕ(N )/ϕ(n) invertible solutions in ZN .

Proof Notice that N = n�, so X is a solution of the equation of the statement if and only if it is a solution of
the equation X ≡ i ( mod n). Since this equation has the unique root X = i in Zn , it follows that the solutions
of the given equation, in ZN , are i, i + n, i + 2n, . . . i + (� − 1)n.

Let N1 denote the greatest divisor of N that has the same prime divisors as n, and write N = N1N2. By the
Chinese Remainder Theorem we have that

ZN ∼= ZN1 ⊕ ZN2

as rings. Denote by φ this isomorphism, which maps an element a ∈ ZN to a pair (a′, a′′) , where a′, a′′ denote
the classes of a modulo N1 and N2 respectively.

Since �n = N , the set of solutions i, i + n, i + 2n, . . . i + (� − 1)n, in ZN is the same as the set i + nZN .
Claim 1. φ(nZN ) = nZN1 ⊕ ZN2 . To prove our claim, we shall show that, given integers a1, a2, there exists

a unique integer a, 0 ≤ a ≤ � − 1 such that

na ≡ na1 ( mod N1),

na ≡ a2 ( mod N2).

In fact, the first equation is equivalent to the congruence a ≡ a1 ( mod N1/n) and, since n is invertible
modulo N2 the second equation is equivalent to the congruence a ≡ n−1a2 ( mod N2). Hence the given system
is equivalent to

a ≡ a1 ( mod N1/n),

a ≡ n−1a2 ( mod N2).

Since (N1/n, N2) = 1, the Chinese Remainder Theorem shows that this system has a unique solution modulo
N1N2/n = �.
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Claim 2. φ(i + nZN ) = {(i + a1n, a2) | 0 ≤ a1 ≤ N1/n − 1, 0 ≤ a2 ≤ N2 − 1}.
To see this, it is enough to notice that

{i + a2 | 0 ≤ a2 ≤ N2 − 1} = {a2 | 0 ≤ a2 ≤ N2 − 1} in ZN2

and use Claim 1 above.
Proof of Lemma. By Claim 2 an element i + an ∈ i + nZN is invertible in ZN if and only if i + a1n is

invertible in ZN1 and a2 is invertible in ZN2 .
As (i + a1n, N1) = 1 all elements of this form are invertible in ZN1 , hence they are N1/n in number. The

number of invertible elements in ZN2 is ϕ(N2).
Thus, the total number of invertible elements is N1/n.ϕ(N2). As n and N1 have the same prime divisors,

N1/n = ϕ(N1)/ϕ(n) and ϕ(N1)ϕ(N2)/ϕ(n) = ϕ(N )/ϕ(n), as stated. ��
Lemma 6 Let CN be a cyclic group of order N, Cn a subgroup of CN of order n and set � = N/n. Given a
generator g of Cn there exist precisely ϕ(N )/ϕ(n) elements x which are generators of CN and such that x� = g.

Proof Let g be a generator of Cn . If t0 is any generator of CN , the element t�0 is a generator of Cn . Hence, there
exists a positive integer i such that (i, n) = 1 and g = t i�0 .

A generator t of CN such that t� = g must be of the form t = t X0 , with X invertible in ZN and t�X0 = t�i0 ;
i.e., X must be an invertible solution of the equation

�.X ≡ �.i ( mod N ).

The result now follows from the previous lemma. ��
Proof of Theorem 10. Let e be an essential idempotent of FCn . Then, g−1e is a generator of the subgroup Cne,
of order n in Ue. By Lemma 6, there exists a generator β ∈ Ue such that β� = g−1e. Set

eN = 1

�

�−1∑

i=0

σ−1(β i )hi .

Recall that the isomorphism σ : Fq〈h�〉 → FqCn is such that σ(h�) = g so σ−1(g) = h�. We compute

σ−1(β)h.eN = σ−1(β)h.
1

�

�−1∑

i=0

σ−1(β i )hi = 1

�

(
�−1∑

i=1

σ−1(β i )hi + σ−1(β�)h�

)

= 1

�

(
�−1∑

i=1

σ−1(β i )hi + σ−1(e)

)

= eN .

Hence, we also have

[σ−1(β)h] j .eN = eN for every integer j.

Then

e2N =
(
1

�

�−1∑

i=0

σ−1(β i )hi
)

eN = 1

�

�−1∑

i=0

σ−1(β i )hi .eN = 1

�
�.eN = eN .

Thus, eN is an idempotent.
We have shown above that σ−1(β)h.eN = eN so also hi eN = σ−1(β−i )eN for every integer i . We shall use this
remark to prove that the set

J = {0} ∪ {hi eN | i ∈ Z}
is an ideal of FqCN .
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First, we claim that, given k1, k2 ∈ Fq and i1, i2 ∈ Z then either k1hi1eN + k2hi2eN = 0 or there exists an
integer i such that k1hi1eN + k2hi2eN = hi eN . In fact, using the remark above, we have

k1h
i1eN + k2h

i2eN = k1σ
−1(β−i1)eN + k2σ

−1(β−i2)eN = σ−1(k1β
−i1 + k2β

−i2)eN .

As β ∈ Ue it follows that k1β−i1 + k2β−i2 ∈ FqCn · e = {0} ∪Ue. If k1β−i1 + k2β−i2 �= 0, it is inUe which
is generated by β, so there exists an integer i such that k1β−i1 + k2β−i2 = β−i , proving the claim.

Since CN = 〈h〉 it now follows immediately that J is an ideal. Notice that, given the description of the
elements in J , it follows that J is a field with unit eN ,

We now observe that FqCN · eN = J . In fact, since eN ∈ J it follows that FqCN · eN ⊂ J . Also, it is clear
that J ⊂ FqCN · eN . Since FqCN · eN = J is a field, it is a minimal ideal, so eN is primitive.

To prove that eN is esencial we use Proposition 3 and show that the map π : CN → CNeN given by
π(hi ) = hi eN is injective (and hence, also an isomorphism). In fact, if hi eN = h j eN then σ−1(β−i )eN =
σ−1(β− j )eN so σ−1(β−i − β− j )eN = 0. If β−i − β− j �= 0 then hkeN = 0 for some integer k, a contradiction.
As 0 ≤ i, j ≤ N − 1 this implies i = j .

To prove the converse we notice that, given an essential idempotent en in FqCn and a generator β ofU (FqCn ·
en), it was shown that the element

eN = 1

�

�−1∑

i=0

σ−1(β i )hi

is an essential idempotent of FqCN . Since we have shown in Theorem 9 that there exist ϕ(n)/m essential
idempotents in FqCn and there are ϕ(N )/ϕ(n) possible choices for β, as shown in Lemma 6, so the number of
essential idempotents of FqCN that can be constructed in this way is

ϕ(n)

m
· ϕ(N )

ϕ(n)
= ϕ(N )

m
.

As this is precisely the number of essential idempotents of FqCN , it follows that all of them are of this form.
The fact that the set {σ(α0), σ (α1), . . . , σ (α�−1)} is a transversal of Cn · e inUe now follows again from the

proof of the direct direction. �

6 Examples

In this section we offer some examples of interesting codes that can be constructed easily using group algebras
and essential idempotents. C. Garca Pillado, S. Gonzlez, C. Martnez, V. Markov, and A. Nechaev, [15] showed
that if a group G can be written as a product G = AB where both A and B are Abelian, then central idempotents
generate codes that are equivalent to Abelian ones. Hence, we focus below on ideals generated by non-central
idempotents.
Example 1. Let D9 = 〈a, b | a9 = 1 = b2, bab = a−1〉 be dihedral group of order 18, set H0 = 〈a〉, H1 = 〈a3〉
and H0 = {1}. Then

e11 =
(
1 + b

2

)

Â, e22 =
(
1 − b

2

)

Â, e j = Ĥ j − Ĥ j−1, j = 0, 1

are the primitive central idempotents of Fq D ([12, Theorem 3.3]).
Set f = e11 − e22 and consider the ideal I = Fq D9 · f .
It is possible to show that if the characteristic of Fq is different from 2,3,5 and 7, then dim[I ] = 2 and

w(I ) = 15. The weight of this code is the same as that of the best known code of same dimension (see [17]), for
example in the case when the field is F11.

Also, it is possible to prove that these codes are not equivalent to any Abelian code [1, Example 4]. For
detailed proofs, see [1].
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Example 2. Let us consider the metacyclic group

G = 〈a, b | a9 = 1, b3 = 1, ba = a4b〉.
Olteanu and Van Gelder [25] gave an example of a binary [27,18,2]-code constructed as a left ideal of F2G,
generated by the non central idempotent e = a−1ba+ aba−1 which was obtained using the program PrimitiveI-
dempotentsNilpotent of the GAP program Wedderga [32].

Since G ′ = 〈a3〉, using Proposition 1 it is easy to see that

F2G ∼= F2 ⊕ 4F4 ⊕ M3(F4),

where the only non commutative component is generated by the idempotent e′ = 1 − Ĝ ′ = a3 + a6. Since the
dimension of this simple component over F2 is already 18, it cannot contain a proper left ideal of that dimension.
Actually, it is possible to verify, via hand calculations, that the given element is not even an idempotent.

This is due to a small gap in the GAP program. A possible way to repair this gap consists in replacing the
last part of the source code:

### Construct the idempotents
L := List ( Product3Lists ([T_odd,T_even,T_E]) , i −> (AverageSum(FG,b_odd])∗beta∗eps)^i ) ;
return L;
end) ;

by the following:

### Construct the idempotents

b_summ := One(FG)∗b_odd;
for i in [2 . .Order(b_odd) ] do

b_summ := b_summ+((One(FG) )∗b_odd)^ i ;

od;

b_hat := (Order(b_odd)∗One(FG) ) −̂1∗b_summ;

L := List ( Product3Lists ([T_odd,T_even,T_E]) , i −> (b_hat∗beta∗eps)^i ) ;
return L;
end) ;

After this correction, the program gives three non central idempotents in the component:

e1 = a3 + a−1ba + a−3 + ab−1a−1 + aba−1 + a−1b−1a,

e2 = b + a3 + b−1 + a−3 + ab−1a−1 + aba−1,

e3 = b + a3 + b−1 + a−1ba + a−3 + a−1b−1a.

each of which gives a [27,6,6]-code over F2.
The oversight on this example as well as the correction to the GAP program were given by R. Budaibes [6].

It should be noted that this example has already been quoted in [8].
Example 3. Consider the group

G = 〈x, y, t1; x3 = y3 = t3 = 1, s = [x, y] = t〉.

This is an instance of a family of p-groups such that G/Z(G) ∼= Cp × Cp, where Z(G) denotes the center
of G and Cp the cyclic group of order p, that was characterized in [11] and whose use in Coding Theory was
explored in in E. Taufer’s PhD thesis [31].
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We have that |G| = 27 and G ′ = {1, s, s2} and it is not difficult to show that, also in this case,

FG ∼= F ⊕ 4F4 ⊕ M3(F4),

and that the central idempotent which is a generator of the non commutative component is e = 1− Ĝ ′ = s + s2.
Then, e1 = (1 + x + x2)(1 + y)e is an idempotent inside the non commutative component and

{e1, ye1, y2e1, se1, yse1, y2se1} is a basis of the ideal it generates.
This ideal contains 36 words whose weight is 12 and 27 words whose weight is 16. Thus, it is a two-weight

code, and it has the best known weight for binary codes of this dimension, according to [17].
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