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We give new proofs of several known results about pertur-
bations of matrix pencils. In particular, we give a direct and 
constructive proof of Andrzej Pokrzywa’s theorem (1983), in 
which the closure of the orbit of each Kronecker canonical 
matrix pencil is described in terms of inequalities for invari-
ants of matrix pencils. A more abstract description is given 
by Klaus Bongartz (1996) by methods of representation the-
ory. We formulate and prove Pokrzywa’s theorem in terms of 
successive replacements of direct summands in a Kronecker 
canonical pencil.
First we show that it is sufficient to prove Pokrzywa’s theo-
rem in two cases: for matrices under similarity and for each 
matrix pencil P −λQ that is a direct sum of two indecompos-
able pencils. Then we calculate the Kronecker canonical form 
of pencils that are close to P − λQ. In fact, the Kronecker 
canonical form is calculated for only those pencils that belong 
to a miniversal deformation of P −λQ. This is sufficient since 
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all pencils in a neighborhood of P − λQ are reduced to them 
by a smooth strict equivalence transformation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

For each complex Jordan matrix A, Den Boer and Thijsse [13] and, independently, 
Markus and Parilis [35] describe all Jordan matrices J such that each neighborhood of A
contains a matrix that is similar to J . Pokrzywa [37] extends their results to Kronecker 
canonical pencils A −λB (A, B ∈ Cm×n): he describes the set of all Kronecker canonical 
pencils K−λL such that each neighborhood of A −λB contains a pencil whose Kronecker 
canonical form is K − λL. Pokrzywa formulates and proves his theorem in terms of 
inequalities for invariants of matrix pencils. A more abstract solution of this problem is 
given by Bongartz [9, Section 5, Table I] by methods of representation theory (see also 
[5,7,8,10]).

The main purpose of this paper is to give a direct and constructive proof of Pokrzywa’s 
theorem using García-Planas and Sergeichuk’s miniversal deformations of matrix pencils 
[27].

Instead of pencils A − λB, we consider matrix pairs (A, B). We study them up to 
equivalence transformations

(A,B) �→ (SAR, SBR), S and R are nonsingular matrices.

For each pair A = (A, B), its orbit 〈A〉 is the set of all pairs that are equivalent to A.
Let Pm,n be the set of orbits of pairs of m ×n complex matrices. Pokrzywa’s theorem 

describes the following partial ordering on Pm,n: 〈A〉 � 〈B〉 if and only if 〈A〉 is contained 
in the closure of 〈B〉. Thus,

〈A〉 � 〈B〉 if and only if A can be transformed by an arbitrarily small 
perturbation to a pair that is equivalent to B.

(1)

An orbit 〈B〉 immediately succeeds 〈A〉 (many authors write that 〈B〉 covers 〈A〉; see 
[22]) if 〈A〉 < 〈B〉 and there exists no 〈C〉 such that 〈A〉 < 〈C〉 < 〈B〉.

The partially ordered set Pm,n is visually represented by its Hasse diagram (also called 
the closure graph), which is the directed graph whose vertices are the orbits from Pm,n

and there is an arrow 〈A〉 −→ 〈B〉 if and only if 〈B〉 immediately succeeds 〈A〉.

Example 1.1. Each pair of 1 × 2 matrices is equivalent to exactly one of the pairs

([0 0], [0 0]), ([1 0], [λ 0]) with λ ∈ C, ([0 0], [1 0]), ([1 0], [0 1])
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(they are the Kronecker canonical pairs of 1 × 2 matrices for equivalence; see (4)). The 
Hasse diagram of P1,2 is

〈([1 0], [0 1])〉

〈([1 0], [λ 0])〉 〈([0 0], [1 0])〉

〈([0 0], [0 0])〉

(2)

By (1), for each arrow 〈A〉 −→ 〈B〉 there exists an arbitrarily small perturbation ΔA
such that A + ΔA is equivalent to B; we position ΔA on the corresponding arrow of 
(2):

〈([1 0], [0 1])〉

〈([1 0], [λ 0])〉

([0 0],[0 ε])

〈([0 0], [1 0])〉

([0 ε],[0 0])

〈([0 0], [0 0])〉

([ε 0],[ελ 0]) ([0 0],[ε 0])

in which ε is an arbitrarily small complex number.

The Hasse diagram of P2,3 is given in [24]. The Hasse diagram of Pm,n with arbitrary m
and n is constructed by the software StratiGraph [23,29,40], which is based on Pokrzywa’s 
theorem. The Hasse diagrams for congruence classes of 2 ×2 and 3 ×3 complex matrices 
and for *congruence classes of 2 × 2 complex matrices are constructed in [18,25]. The 
Hasse diagrams for matrix polynomials are constructed in [20].

The main theorem of the paper is Theorem I from Section 2, which is another form 
of Pokrzywa’s theorem. Theorem I gives six types of replacements of direct summands 
such that a Kronecker pair A is transformed to a Kronecker pair B by a sequence of 
replacements of these types if and only if 〈A〉 < 〈B〉. Two principal tools in our proof of 
Theorem I are the following:

(a) Theorem 4.1, which states that each immediate successor of the orbit of a Kro-
necker pair A is the orbit of a pair that is obtained from A by an arbitrarily small 
perturbation of only one of its subpairs of the form
(i) (P, Q), which is an indecomposable Kronecker pair (see (4)) or the direct sum 

of two indecomposable Kronecker pairs, and
(ii) (I, J), in which J is a Jordan matrix with single eigenvalue.
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Thus, it is sufficient to prove Theorem I for (P, Q) and (I, J); we do this in Sections 5
and 6.

(b) García-Planas and Sergeichuk’s miniversal deformations of matrix pairs under 
equivalence; they are given in [27] and are presented in Section 3. In Section 5, 
we calculate the Kronecker canonical form of pairs that are close to a pair (P, Q)
from (i). In fact, we calculate the Kronecker canonical form of only those pairs that 
belong to the miniversal deformation of (P, Q) given in [27], which is sufficient since 
all pairs close to (P, Q) are reduced to such pairs by smooth equivalence transfor-
mations. This simplifies the calculation cardinally since miniversal perturbations do 
not change many entries. For example, all matrices that are close to the Jordan 
block J3(λ) and those of them that form a miniversal deformation of J3(λ) are of 
the form

[
λ 1 0
0 λ 1
0 0 λ

]
+
[∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]
and

[
λ 1 0
0 λ 1
0 0 λ

]
+
[0 0 0

0 0 0
∗ ∗ ∗

]
,

respectively, in which the stars are complex numbers.

A miniversal deformation of each Kronecker canonical pair (A, B) was first constructed 
by Edelman, Elmroth, and Kågström [21]. We use García-Planas and Sergeichuk’s 
miniversal deformation given in [27] since it is simpler: it consists of pairs of the form 
(A +X, B + Y ), in which all nonzero entries of X and Y are non-repeating independent 
parameters. For example the miniversal deformations of (I3, J3(λ)) in [21] and [27] are 
families of matrix pairs

(
I3,

[
λ 1 0
0 λ 1
0 0 λ

]
+
[
a 0 0
b a 0
c b a

])
and

(
I3,

[
λ 1 0
0 λ 1
0 0 λ

]
+
[0 0 0

0 0 0
c b a

])
, (3)

in which a, b, c ∈ C.
The article is organized as follows. In Section 2 we formulate Theorem I about se-

quences of replacements that transform a Kronecker pair A to a Kronecker pair B such 
that 〈A〉 < 〈B〉, and Theorem II that describes when B is an immediate successor of 
〈A〉. In Section 3 we recall miniversal deformations of matrix pairs under equivalence 
given in [27]. In Section 4 we reduce the proof of Theorem I to the case of pairs that are 
direct sums of two indecomposable pairs and to the case of pairs of the form (I, J), in 
which J is a Jordan matrix with a single eigenvalue. Theorem I is proved for these pairs 
in Sections 5 and 6. Theorem II is proved in Section 7.
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2. Main theorems

All matrices that we consider are complex matrices and each matrix pair consists of 
matrices of the same size. For each positive integer n, we define the matrices1

Ln :=

⎡⎣1 0 0
. . . . . .

0 1 0

⎤⎦ , Rn :=

⎡⎣0 1 0
. . . . . .

0 0 1

⎤⎦ ((n− 1)-by-n),

Jn(λ) :=

⎡⎢⎢⎢⎣
λ 1 0

λ
. . .
. . . 1

0 λ

⎤⎥⎥⎥⎦ (n-by-n, λ ∈ C).

We also define the matrices

0↖ :=
[
1 0 . . . 0

0

]
, 0↗ :=

[
0 . . . 0 1

0

]
, 0↙ :=

[
0

1 0 . . . 0

]
, 0↘ :=

[
0

0 . . . 0 1

]
,

whose sizes will be clear from the context.
The matrix pairs

Ln := (Ln, Rn), LT
n := (LT

n , R
T
n ), Dn(λ) :=

{
(In, Jn(λ)) if λ ∈ C

(Jn(0), In) if λ = ∞
(4)

are called indecomposable Kronecker pairs. Leopold Kronecker proved that each matrix 
pair A is equivalent to a direct sum of such pairs. This direct sum is called the Kro-
necker canonical form of A; it is uniquely determined by A, up to permutation of direct 
summands.

2.1. First main theorem

The closures of orbits of Kronecker pairs are described in the following theorem.

Theorem I. Let A and B be nonequivalent Kronecker pairs. Then 〈A〉 < 〈B〉 if and only 
if B can be obtained from A by a sequence of permutations of direct summands and listed 
below replacements (i)–(vi) of direct summands, in which m, n ∈ {1, 2, . . . } and λ ∈
C∪∞. The notation P ←

↩Q means that P is replaced by Q. For each replacement P ←
↩Q, 

we also give a pair that is obtained from P by an arbitrarily small perturbation (which is 
defined by an arbitrary nonzero complex number ε) and whose Kronecker canonical form 
is Q.

1 For each nonnegative integers p and q, we denote by 0pq the zero matrix of size p × q. In particular, 
L1 = R1 = 001. If M is an m × n matrix, then M ⊕ 00q = [M 0mq ] and M ⊕ 0p0 =

[
M
]
.
0pn



JID:LAA AID:15660 /FLA [m1L; v1.297] P.6 (1-45)
6 V. Futorny et al. / Linear Algebra and its Applications ••• (••••) •••–•••
(i) LT
m ⊕ LT

n ←
↩ LT

m+1 ⊕ LT
n−1 in which m + 2 � n, via the pair([

LT
m 0
0 LT

n

]
,

[
RT

m ε0↖
0 RT

n

])
,

which is obtained by perturbation of LT
m ⊕ LT

n .
(ii) Lm ⊕ Ln ←

↩ Lm+1 ⊕ Ln−1 in which m + 2 � n, via([
Lm 0
0 Ln

]
,

[
Rm 0
ε0↖ Rn

])
.

(iii) LT
m ⊕ Dn(λ) ←

↩ LT
m+1 ⊕ Dn−1(λ) (if n = 1, then the summand D0(λ) is omitted), 

via([
LT
m 0
0 In

]
,

[
RT

m ε0↗
0 Jn(λ)

])
if λ ∈ C,

([
LT
m ε0↘
0 Jn(0)

]
,

[
RT

m 0
0 In

])
if λ = ∞.

(iv) Lm ⊕Dn(λ) ←
↩ Lm+1 ⊕Dn−1(λ), via([

Lm 0
0 In

]
,

[
Rm 0
ε0↖ Jn(λ)

])
if λ ∈ C,

([
Lm 0
ε0↗ Jn(0)

]
,

[
Rm 0
0 In

])
if λ = ∞.

(v) Dm(λ) ⊕Dn(λ) ←
↩ Dm−1(λ) ⊕Dn+1(λ) in which m � n, via(

Im+n,

[
Jm(λ) ε0↖

0 Jn(λ)

])
if λ ∈ C,

([
Jm(0) ε0↖

0 Jn(0)

]
, Im+n

)
if λ = ∞.

(vi) LT
m ⊕Ln ←

↩ Dr1(μ1) ⊕ · · · ⊕Drk(μk), in which μ1, . . . , μk ∈ C ∪∞ are distinct and 
r1 + · · · + rk = m + n − 1, via the pair⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α1

0
. . . α2
. . . 1

0 ...
0 αm

1 0

0
. . . . . .

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 β1 β2 . . . βn

1
. . .
. . . 0 0

1
0 1

0
. . . . . .

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

that is defined by ∏
μi �=∞

(x− μi)ri = c0 + c1x + · · · + cr−1x
r−1 + xr, (6)

ε(c0, . . . , cr−1, 1, 0, . . . , 0) = (−β1, . . . ,−βn, α1, . . . , αm), (7)
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in which ε is any nonzero complex number.

Pokrzywa [37, Theorem 3] describes the closures of orbits of Kronecker canonical 
pencils in the form of systems of inequalities for invariants of matrix pencils (see also 
[12, Theorem 2.1] and [22, Theorem 3.1]). Nevertheless, he formulates Lemma 5 in [37]
in the form of replacements of direct summands of Kronecker pairs; such replacements 
are also given in [6, Section 5.1] and [16, Theorem 2.2]. In the proof of Lemma 5 in [37], 
Pokrzywa also gives arbitrarily small perturbations that produce these replacements.

We will show that the statements (i)–(vi) of Theorem I follow from Theorems 5.1–5.6
by Theorems 4.1 and 6.1.

2.2. Second main theorem

The following theorem was first given by Edelman, Elmroth, and Kågström [22, The-
orem 3.2] in the form of coin moves; see also [28, Theorem 2.4] and [5]. We derive it from 
Theorem I in Section 7, which can be read independently of Sections 3–6.

Theorem II. Let A be a Kronecker pair. An orbit O immediately succeeds 〈A〉 if and 
only if O is the orbit of a pair that is obtained from A by exactly one of the following 
replacements, which are special cases of the replacements (i)–(vi) of Theorem I:

(i′) LT
m⊕LT

n ←
↩ LT

m+1 ⊕LT
n−1 (m +2 � n) such that if A contains LT

m⊕LT
k ⊕LT

n with 
m < k < n, then n −m = 2,

(ii′) Lm ⊕Ln ←
↩ Lm+1 ⊕Ln−1 (m + 2 � n) such that if A contains Lm ⊕Lk ⊕Ln with 

m < k < n, then n −m = 2,
(iii′) LT

m⊕Dnλ
(λ) ←

↩ LT
m+1⊕Dnλ−1(λ) (if A contains pairs of the form LT

m and Dn(λ)), 
in which m := max{m | LT

m in A} and nλ := max{n | Dn(λ) in A},
(iv′) Lm ⊕ Dnλ

(λ) ←
↩ Lm+1 ⊕ Dnλ−1(λ), in which m := max{m | Lm in A} and nλ :=

max{n | Dn(λ) in A},
(v′) Dm(λ) ⊕ Dn(λ) ←

↩ Dm−1(λ) ⊕ Dn+1(λ) (m � n) such that A does not contain 
Dm(λ) ⊕Dk(λ) ⊕Dn(λ) with m � k � n and m < n,

(vi′) LT
m ⊕ Ln ←

↩ Dr1(μ1) ⊕ · · · ⊕ Drk(μk) (μ1, . . . , μk ∈ C ∪ ∞ are distinct and r1 +
· · · + rk = m + n− 1), in which m := max{m | LT

m in A}, n := max{n | Ln in A}, 
and if Dk(λ) is contained in A then λ = μi for some i and ri � k.

Remark 2.1. Theorems I and II generalize the following known description (see [22, 
Section 2]) of the closures of orbits of Jordan matrices. Let J and J ′ be non-similar 
Jordan matrices.

• 〈J〉 < 〈J ′〉 if and only if J ′ can be obtained from J by a sequence of permutations 
of Jordan blocks and replacements of pairs of direct summands
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Jm(λ) ⊕ Jn(λ) (λ ∈ C, m � n) by Jm−1(λ) ⊕ Jn+1(λ). (8)

• 〈J ′〉 immediately succeeds 〈J〉 if and only if J ′ is obtained from J by a permutation 
of Jordan blocks and exactly one replacement (8) such that J does not contain 
Jm(λ) ⊕ Jk(λ) ⊕ Jn(λ) with m < n and m � k � n.

2.3. Third main theorem

Define the matrices whose sizes will be clear from the context:

Δr(ε) :=
[
0...0 ε 0...0

0

]
, ∇r(ε) :=

[
0

0...0 ε 0...0

]
, (9)

in which ε is an arbitrary nonzero complex number that is located in the rth column. 
We often write Δr and ∇r omitting ε. Set Δ0 = ∇0 := 0.

The lower cone of an orbit 〈A〉 is the set 〈A〉∨ of all orbits 〈B〉 such that 〈A〉 � 〈B〉. 
Theorems 5.1–5.6 are used in the proof of Theorem I; however, they are also imply the 
following theorem.

Theorem III. • If A is an indecomposable Kronecker pair, then 〈A〉∨ is the one-element 
set {〈A〉}.

• The direct sums of two indecomposable Kronecker pairs have the following lower 
cones (in which ε is an arbitrary nonzero complex number):

(i) The cone 〈LT
m ⊕ LT

n 〉∨ with 1 � m � n consists of the orbits of

LT
m+r ⊕ LT

n−r, in which r � 0 and m + r � n− r. (10)

Each pair (10) is the Kronecker canonical form of([
LT
m 0
0 LT

n

]
,

[
RT

m Δr(ε)
0 RT

n

])
.

(ii) 〈Lm ⊕ Ln〉∨ with 1 � m � n consists of the orbits of

Lm+r ⊕ Ln−r, in which r � 0 and m + r � n− r. (11)

Each pair (11) is the Kronecker canonical form of([
Lm 0
0 Ln

]
,

[
Rm 0

Δr(ε)T Rn

])
.

(iii) 〈LT
m ⊕Dn(λ)〉∨ with m � 1, n � 1, and λ ∈ C ∪∞ consists of the orbits of

LT
m+r ⊕Dn−r(λ), in which 0 � r � n. (12)
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Each pair (12) is the Kronecker canonical form of([
LT
m 0
0 In

]
,

[
RT

m Δn−r+1
0 Jn(λ)

])
if λ ∈ C,

([
LT
m ∇n−r+1
0 Jn(0)

]
,

[
RT

m 0
0 In

])
if λ = ∞.

(iv) 〈Lm ⊕Dn(λ)〉∨ with m � 1, n � 1, and λ ∈ C ∪∞ consists of the orbits of

Lm+r ⊕Dn−r(λ), in which 0 � r � n. (13)

Each pair (13) is the Kronecker canonical form of([
Lm 0
0 In

]
,

[
Rm 0
ΔT

r Jn(λ)

])
if λ ∈ C,

([
Jn(0) ∇T

r
0 Lm

]
,

[
In 0
0 Rm

])
if λ = ∞.

(v) 〈Dm(λ) ⊕Dn(λ)〉∨ with 1 � m � n and λ ∈ C ∪∞ consists of the orbits of

Dm−r(λ) ⊕Dn+r(λ), in which 0 � r � m. (14)

Each pair (14) is the Kronecker canonical form of(
Im+n,

[
Jm(λ) ΔT

r
0 Jn(λ)

])
if λ ∈ C,

([
Jm(0) ΔT

r
0 Jn(0)

]
, Im+n

)
if λ = ∞.

(vi) 〈LT
m ⊕ Ln〉∨ with m � 1 and n � 1 consists of 〈LT

m ⊕ Ln〉 and the orbits of

Dr1(μ1) ⊕ · · · ⊕ Drk(μk),
r1 + · · · + rk = m + n− 1,

μ1, . . . , μk ∈ C ∪∞ are distinct. (15)

Each pair (15) is the Kronecker canonical form of the pair (5) determined by (6)
and (7).

2.4. Fourth main theorem

Let A be a Kronecker pair whose direct summands are arranged as follows:

A =LT
m1

⊕ LT
m2

⊕ · · · ⊕ LT
ms

⊕
t⊕

i=1

(
Dki1(λi) ⊕Dki2(λi) ⊕ · · · ⊕ Dkisi

(λi)
)

⊕ Lns
⊕ Lns−1 ⊕ · · · ⊕ Ln1 ,

m1 � · · · � ms, ki1 � · · · � kisi (i = 1, . . . , t), n1 � · · · � ns.

(16)

The numbers s, t, s can be zero, which means that the corresponding direct summands 
in (16) are absent. By the following theorem, each immediate successor of 〈A〉 is the 
orbit of a pair that is obtained by an arbitrarily small perturbation of only one pair of 
conformally located upper diagonal blocks of A.
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Theorem IV. Let A = ([Aij ], [A′
ij ]) be a Kronecker pair of form (16) partitioned into 

blocks Aij and A′
ij such that the pairs of diagonal blocks (A11, A′

11), (A22, A′
22), . . . are 

the direct summands

LT
m1

, . . . ,LT
ms

, Dk11(λ1), . . . , Dk1s1
(λ1),

. . . , Dkt1(λt), . . . , Dktst
(λt), Lns , . . . ,Ln1

(17)

of (16). Then each immediate successor of 〈A〉 is the orbit of some matrix pair that is 
obtained from A by an arbitrarily small perturbation of only one pair (Aij , A′

ij) with 
i < j of its upper diagonal blocks.

Theorem I implies Theorem IV since all perturbations in (i)–(vi) applied to (16)
are upper block-triangular. We move backwards in the next sections: we first give an 
independent proof of Theorem 4.1, which is a weak form of Theorem IV. Using it, we 
prove Theorem I in Sections 5 and 6.

3. Preliminaries

3.1. Miniversal deformations of matrices

Vladimir Arnold [2] defines a deformation of a square complex matrix A as a matrix 
A(y1, . . . , yt) of the same size with entries that are power series of complex variables 
y1, . . . , yt convergent in a neighborhood of (0, . . . , 0) with A(0, . . . , 0) = A. A deformation 
is linear if its entries are linear polynomials:

A(y1, . . . , yt) = A + A1y1 + · · · + Atyt, A,A1, . . . , At ∈ Cn×n.

Arnold also considers a deformation A(y1, . . . , yt) as a family of matrices with parameters 
y1, . . . , yt. If all matrices A +X close to A can be reduced to matrices from this family by 
a similarity transformation S(X)−1(A +X)S(X) in which S(X) is a deformation of the 
identity matrix whose parameters are the entries of X, then the deformation A(y1, . . . , yt)
is called versal. A versal deformation A(y1, . . . , yt) with the minimum number t is called 
miniversal.

For example, all matrices J3(λ) + X that are close to J3(λ) can be reduced to the 
form [

λ 1 0
0 λ 1
0 0 λ

]
+
[ 0 0 0

0 0 0
y1 y2 y3

]
(18)

by similarity transformations that are close to the identity and depend analytically on 
the entries of X. The matrix (18) is a linear miniversal deformation of J3(λ).

Let us formulate Arnold’s theorem. We denote by 0↑pq (respectively, 0↓pq, 0←pq, and 0→pq) 
the p × q matrix, in which all entries are zero except for the entries of the first row 
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(respectively, last row, first column, and last column) that are stars. We usually omit 
the indices p and q. For example, the second summand in (18) is 0↓33.

We arrange the Jordan blocks in a Jordan matrix with a single eigenvalue λ as follows:

Jk1,...,ks
(λ) := Jk1(λ) ⊕ · · · ⊕ Jks

(λ), k1 � k2 � · · · � ks.

Define the matrix with stars:

J̃k1,...,ks
(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Jk1(λ) + 0← 0← . . . 0←

0↓ Jk2(λ) + 0← ···
...

... ··· ··· 0←

0↓ . . . 0↓ Jks
(λ) + 0←

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Arnold’s linear miniversal deformations of Jordan matrices are given in the following 
theorem, which is proved in [2, Theorem 4.4]; see also [3, Section 3.3] and [4, §30].

Theorem 3.1 (Arnold [2]). Let a Jordan matrix be written in the form

J = Jk11,...,k1s1
(λ1) ⊕ · · · ⊕ Jkl1,...,klsl

(λl),
ki1 � ki2 � · · · � kisi ,

λ1, . . . , λl ∈ C are distinct.

Then all matrices J + X that are sufficiently close to J can be simultaneously reduced 
by some similarity transformation

J + X �→ S(X)−1(J + X)S(X), S(X) is analytic
at 0 and S(0) = I,

(20)

to the form

J̃ := J̃k11,...,k1s1
(λ1) ⊕ · · · ⊕ J̃kl1,...,klsl

(λl), (21)

in which the stars are replaced by complex numbers that depend analytically on the entries 
of X at 0. The number of stars is minimum that can be achieved by similarity transfor-
mations of the form (20); this number is equal to the codimension of the similarity class 
of J .

A constructive proof of Theorem 3.1 by elementary transformations is given by Kli-
menko and Sergeichuk [31]. Many applications of miniversal deformations are given by 
Mailybaev [26,32–34]; he constructs a smooth similarity transformation (20) in the form 
of Taylor series. The radius of a neighborhood of J in which all matrices J + X are 
reduced to the form (21) by transformations (20) is calculated in [11].
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3.2. Miniversal deformations of matrix pairs

Denote by Zpq the p × q matrix with p � q, in which the first q− p entries of the first 
row are the stars and the other entries are zeros:

Zpq :=

⎡⎣∗ . . . ∗ 0 . . . 0
. . .

...
0 0

⎤⎦ , p � q;

we usually omit the indices p and q.
Arnold’s notion of miniversal deformations of matrices under similarity is naturally 

extended to matrix pairs under equivalence. A linear miniversal deformation of complex 
matrix pencils was first constructed by Edelman, Elmroth, and Kågström in the article 
[21], which was awarded the SIAM Linear Algebra Prize 2000 for the most outstanding 
paper published in 1997–1999. Their miniversal deformations contain repeating parame-
ters (see (3)), which complicates their use in the proof of Theorem I. We use the following 
miniversal deformations.

Theorem 3.2 (García-Planas, Sergeichuk [27, Theorem 4.1]). Let A be a Kronecker pair 
of form (16), in which λ1, . . . , λt−1 ∈ C are distinct and λt = ∞. Then all matrix pairs 
A +X that are sufficiently close to A can be simultaneously reduced by some equivalence 
transformation

A + X �→ R(X )−1(A + X )S(X ),
matrices R(X ) and S(X )

are analytic at (0, 0),
R(0, 0) = I, and S(0, 0) = I,

(22)

to the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LT
m1

0
LT
m2

···
LT
ms

0

0↓
0↓
...
0↓

0→ ... 0→

I 0 0

J̃0 0→ ... 0→

0
Lns 0

···
Ln2

Ln1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RT
m1

Z ... Z

RT
m2 ···

...
··· Z
RT

ms

0↑
0↑
...
0↑

0

0↑
0↑
...
0↑

J̃ 0 0← ... 0←

I 0

0

Rns
ZT ... ZT

··· ···
...

Rn2 ZT

Rn1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

in which

J̃ :=
t−1⊕

J̃ki1,...,kisi
(λi), J̃0 := J̃kt1,...,ktst

(0)

i=1
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(see (19)) and the stars are replaced by complex numbers that depend analytically on the 
entries of the pair X at (0, 0). The number of stars is minimum that can be achieved by 
equivalence transformations of the form (22).

Thus, the family of matrix pairs (23) is a linear miniversal deformation of the Kro-
necker matrix pair (16). The summands of each of the types in (16) and the corresponding 
horizontal and vertical strips in (23) can be absent.

By a miniversal pair we mean a matrix pair that is obtained from (23) by replacing 
its stars by complex numbers. We use the Frobenius matrix norm

‖[aij ]‖ :=
√∑

ij
|aij |2, aij ∈ C. (24)

For a matrix pair A = (A, A′), we write ‖A‖ :=
√
‖A‖2 + ‖A′‖2 and define its neigh-

borhood

Nr(A) := {B | ‖B − A‖ < r},

in which r is a positive real number.

Remark 3.1. Let A be the matrix pair from Theorem 3.2. Let Nr(A) be its neighborhood, 
in which all pairs are reduced to the form (23) by an analytic transformation A + X �→
A + X̂ from (22). Since it is analytic, there is a positive c ∈ R such that

‖X̂ ‖ � c‖X‖ for all A + X ∈ Nr(A).

Hence, each pair in Nr(A) is equivalent to a miniversal pair from Ncr(A). Thus, if a 
Kronecker pair B is equivalent to a pair in an arbitrarily small neighborhood of A, then 
B is equivalent to a miniversal pair in an arbitrarily small neighborhood of A. We use 
this fact in the proof of Theorem I.

Miniversal deformations were also constructed for matrices under congruence [17] and 
*congruence [19], for pairs of symmetric matrices under congruence [15], for pairs of skew-
symmetric matrices under congruence [14], and for matrix pairs under contragredient 
equivalence [27].

3.3. Weyr canonical form

The Weyr characteristic of a square matrix A for an eigenvalue λ is the non-increasing 
sequence (m1, m2, . . . ), in which mi is the number of Jordan blocks Jl(λ) of size l � i in 
the Jordan form of A.

Let A be a matrix with the single eigenvalue 0, and let (m1, m2, . . . ) be its Weyr 
characteristic for 0. In the proof of Theorem 6.1, we use the fact that A is similar to the 
matrix
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W =

⎡⎢⎢⎢⎣
0m1 F1 0

0m2

. . .

. . . Fk−1
0 0mk

⎤⎥⎥⎥⎦ , Fi :=
[
Imi+1

0

]
, (25)

which is permutation similar to the Jordan canonical form of A. Sergeichuk [39] sug-
gested to call W the Weyr canonical form of A. Now this term is generally accepted; see 
historical remarks in [36, pp. 80–82]. Each matrix with distinct eigenvalues λ1, . . . , λs is 
similar to a Weyr matrix (λ1I +W1) ⊕ · · · ⊕ (λsI +Ws), in which W1, . . . , Ws are of the 
form (25).

Applying the permutation of rows and columns of (19) that transform Jk1,...,ks
(λ)

to its Weir canonical form, Klimenko and Sergeichuk [30] obtain a matrix in which all 
stars are on the main diagonal and under it. Thus, if we replace each Jordan matrix 
Dki1(λi) ⊕ · · · ⊕ Dkisi

(λi) in (16) by the transpose of its Weyr canonical form, and use 
such matrices instead of J and J0 in (23), then we obtain a matrix in which all stars 
are on the main diagonal and over it. The obtained matrix defines an upper triangular 
miniversal deformation of a Kronecker pair in which Weyr matrices are used instead of 
Jordan matrices.

4. A direct proof of a weak form of Theorem IV

Due to the following theorem, which is a weak form of Theorem IV, it suffices to prove 
Theorem I for all matrix pairs (16) with two direct summands and for all matrix pairs 
of the form Dk1(λ) ⊕ · · · ⊕ Dkl

(λ).

Theorem 4.1. Let A = ([Aij ], [A′
ij ]) be a Kronecker pair of form (16) partitioned such 

that the pairs of diagonal blocks (A11, A′
11), (A22, A′

22), . . . are the direct summands (17). 
Write

Di := Dki1(λ1) ⊕ · · · ⊕ Dkisi
(λi), i = 1, . . . , t.

Then each immediate successor of 〈A〉 is the orbit of some matrix pair obtained from 
A by an arbitrarily small perturbation of only one pair (Aij, A′

ij) with i < j that is not 
contained in D1, . . . , Dt, or of only one pair (Aij , A′

ij) from D1, . . . , Dt.

Proof. Besides the partition of the matrices of A = (A, A′) into the blocks Aij and A′
ij , 

we also consider the partition of A and A′ into the superblocks obtained by joining all 
strips that correspond to the same eigenvalue. Thus, the diagonal superblocks form the 
matrix pairs

LT
m , . . . , LT

m , D1, . . . , Dt, Ln1 , . . . , Lns
.

1 s
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Let 〈B〉 be an immediate successor of 〈A〉. Then there exists a sequence

B1 = (B1, B
′
1), B2 = (B2, B

′
2), . . . (26)

of pairs from 〈B〉 that converges to A. All matrix pairs close enough to A are reduced 
to the miniversal form (23) by a smooth equivalence transformation that preserves A. 
Hence, all pairs (26) can be taken in the miniversal form (23), which is upper superblock 
triangular.

We say that a block (superblock) of Bi or B′
i in (26) is perturbed if it differs from the 

corresponding block (superblock) of A or A′.

Case 1: There are infinite many pairs (26), in which at least one upper diagonal 
superblock is perturbed.

Then there is a partition

A =
([

M O
0 N

]
,

[
M ′ O′

0 N ′

])
M and M ′ are m×m′,

O and O′ are zero (27)

that is coarser than the partition into superblocks, with the property: O or O′ is per-
turbed infinitely many times in the sequence (26). We can suppose that O or O′ is 
perturbed in each pair (26).

Let the partition

Bi =
([

Mi Oi

0 Ni

]
,

[
M ′

i O′
i

0 N ′
i

])
be conformal with (27). Write ξi := (‖Oi‖ + ‖O′

i‖)−1, in which ‖ · ‖ is the Frobenius 
matrix norm (24). Define the equivalent pair

B̂i :=
[
Im 0
0 ξ−1

i I

]
Bi

[
Im′ 0
0 ξiI

]
=
([

Mi ξiOi

0 Ni

]
,

[
M ′

i ξiO
′
i

0 N ′
i

])
∈ 〈B〉.

Then ‖ξiOi‖ + ‖ξiO′
i‖ = 1, and so the set of matrix pairs (ξiOi, ξiO′

i) is compact. Chose 
a fundamental subsequence (ξikOik , ξikO

′
ik

) and denote its limit by (Q, Q′). Consider the 
pair

X :=
([

M Q
0 N

]
,

[
M ′ Q′

0 N ′

])
.

We have 〈B〉 � 〈X 〉 since all B̂ik ∈ 〈B〉 and B̂ik → X as k → ∞.
Make additional partitions of X into blocks conformally to the partition of A =

([Aij ], [A′
ij ]) in the theorem. Choose in (Q, Q′) the nonzero pair (X, X ′) of conformal 

blocks X and X ′ such that all columns of Q to the left of X and all blocks of Q exactly 
under X are zero, and all columns of Q′ to the left of X ′ and all blocks of Q′ exactly 
under X ′ are zero:
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X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 ∗ ∗
M2 0 X ∗

0 M3 0 0 ∗
N1 0

0 N2
0 N3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M ′
1 0 0 ∗ ∗
M ′

2 0 X ′ ∗
0 M ′

3 0 0 ∗
N ′

1 0
0 N ′

2
0 N ′

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Write

Y =
([

M Y

0 N

]
,

[
M ′ Y ′

0 N ′

])

:=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 0 0
M2 0 X 0

0 M3 0 0 0
N1 0

0 N2
0 N3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M ′
1 0 0 0 0

M ′
2 0 X ′ 0

0 M ′
3 0 0 0

N ′
1 0

0 N ′
2

0 N ′
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then

(Ia ⊕ ε−1I ⊕ ε−2Ic)X (Ib ⊕ εI ⊕ ε2Id)
as ε→0−−−−−−→ Y,

in which a × b is the size of M1 and M ′
1, and c × d is the size of N3 and N ′

3. This implies 
that 〈X 〉 � 〈Y〉. Since

Yε :=
[
Im 0
0 ε−1I

]
Y
[
Im′ 0
0 εI

]
=
([

M εY
0 N

]
,

[
M ′ εY ′

0 N ′

])
as ε→0−−−−−→ A,

we have that 〈Y〉 � 〈A〉. Therefore, 〈B〉 � 〈X 〉 � 〈Y〉 � 〈A〉.
In order to prove that Y is a desired pair, it suffices to prove that 〈Y〉 �= 〈A〉 (which 

implies 〈B〉 = 〈Y〉 > 〈A〉 because 〈B〉 is an immediate successor of 〈A〉).
On the contrary, suppose that 〈Y〉 = 〈A〉. Since Yε is equivalent to Y, we have 

Yε ∈ 〈A〉 for each ε. Hence there exist nonsingular matrices, which we take in the form 
I + Rε and I + Sε, such that

Yε = (I + Rε)A(I + Sε) = A + RεA + ASε + RεASε.

By Lipschitz’s property for matrix pairs (see [38] or [1]), we can choose the matrices Rε

and Sε and a positive constant c ∈ R such that

‖Rε‖ < εc and ‖Sε‖ < εc for all ε, (28)

in which ‖ · ‖ is the Frobenius matrix norm (24).
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The pair Yε is in the miniversal form (23) for (27) since all nonzero entries of Q and 
Q′ are at the places of some stars. By the construction of miniversal deformation (23), 
which is given in [27, Theorem 4.1], the pair

ΔYε := Yε −A = ε

⎛⎜⎝
⎡⎢⎣ 0

0 0 0
0 X 0
0 0 0

0 0

⎤⎥⎦ ,
⎡⎢⎣ 0

0 0 0
0 X′ 0
0 0 0

0 0

⎤⎥⎦
⎞⎟⎠ = RεA + ASε + RεASε (29)

does not belong to the space

T := {RA + AS |R and S are nonsingular matrices}

(which is the tangent space to 〈A〉 at A). Thus,

dε := min
{
‖Yε −A−RA−AS‖

∣∣R and S are square matrices
}
�= 0.

(which is the distance from Yε to the affine space {A + RA + AS | R, S}).
Let R′ and S′ be such that

d1 = ‖Y1 −A−R′A−AS′‖ = ‖ΔY1 −R′A−AS′‖.

By (29), ΔYε = εΔY1, and so εd1 = ‖ΔYε − (εR′)A −A(εS′)‖ = dε. By (28),

εd1 � ‖ΔYε −RεA−ASε‖ = ‖RεASε‖ � ‖Rε‖‖A‖‖Sε‖ � ε2c2‖A‖.

This leads to a contradiction since εd1 � ε2c2‖A‖ does not hold for a sufficiently small 
ε.

Case 2: There is only a finite number of pairs (26) in which at least one upper diagonal 
superblock is perturbed.

Let A(1), A(2), . . . be the pairs of diagonal superblocks of A, then A = A(1)⊕A(2)⊕· · · . 
We can suppose that all upper diagonal superblocks are not perturbed, and so Bi :=
B(1)
i ⊕B(2)

i ⊕ · · · , in which B(1)
i , B(2)

i , . . . are the pairs of perturbed diagonal superblocks 
of Bi in (26).

Since all Bi ∼ B (the symbol ∼ means “equivalent”), we can suppose that B(l)
1 ∼

B(l)
2 ∼ · · · for each l. Since A � B, we have A(l) � B(l)

1 ∼ B(l)
2 ∼ · · · for some l. Then all

Ci := A(1) ⊕ · · · ⊕ A(l−1) ⊕ B(l)
i ⊕A(l+1) ⊕ · · ·

are equivalent and 〈Ci〉 = 〈C1〉 > 〈A〉. Moreover, 〈B〉 � 〈C1〉 because

B(1)
i ⊕ · · · ⊕ B(l−1)

i ⊕ B(l)
1 ⊕ B(l+1)

i ⊕ · · · as i→∞−−−−−−→ C1.

There is no intermediate orbit between 〈A〉 and 〈B〉, and so 〈B〉 = 〈C1〉. �
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5. Perturbations of direct sums of two indecomposable Kronecker pairs

5.1. Perturbations of LT
m ⊕ LT

n

Theorem 5.1. For the Kronecker pair

LT
m ⊕ LT

n , m � n, (30)

its miniversal deformation from Theorem 3.2 is given by the matrix pair⎛⎜⎝
⎡⎢⎣LT

m 0

0 LT
n

⎤⎥⎦ ,
⎡⎣RT

m
α1 . . . αn−1

0
0 RT

n

⎤⎦
⎞⎟⎠ , (31)

in which

(α1, . . . , αn−1) = (∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
m

). (32)

(a) If the stars in (32) are complex numbers that are not all zero, then (31) is equivalent 
to one of the pairs

LT
m+r ⊕ LT

n−r, m + r � n− r, r � 1. (33)

(b) Each pair (33) is equivalent to a pair of the form([
LT
m 0
0 LT

n

]
,

[
RT

m Δr(ε)
0 RT

n

])
, (34)

in which Δr(ε) is defined in (9) and ε is an arbitrary nonzero complex number.
(c) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-

hood of (30) consists of the pairs

LT
m+r ⊕ LT

n−r, m + r � n− r, r � 0.

Lemma 5.1. Each pair of n × (n − 1) matrices of the form

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗
0 1

. . .

0
. . . ∗
. . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
1 ∗ . . .

1
. . . ∗
. . . ∗

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ (35)
0 0 0 1
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is reduced to LT
n by simultaneous additions of columns from left to right and simultaneous 

additions of rows from the bottom to up.

Proof. Consider the subpair P of (35) obtained by removing the last row and last column 
in the matrices of the pair (35). Reasoning by induction on n, we suppose that the subpair 
P is reduced to LT

n−1 by simultaneous additions of columns of its matrices from left to 
right and simultaneous additions of rows from the bottom to up. We obtain (35) in 
which all entries that are marked by stars are zero except for some entries of the last 
columns. We make zero the entries of the last column in the first matrix by adding the 
other columns simultaneously in both matrices; then we make zero the stars of the last 
column in the second matrix by adding the last row. �
Proof of Theorem 5.1. (a) Let the stars in (32) be complex numbers that are not all 
zero, and let αs be the first nonzero entry. Then

1 � s < n−m. (36)

Let (C, D) be the matrix (31); we will reduce it by simultaneous elementary transforma-
tions to the form (33). We usually specify only transformations with one of the matrices 
C and D; it is understood that we make the same transformations with the other matrix. 
We divide the first horizontal strips of C and D by αs, then multiply the first vertical 
strips by αs, and obtain (32) with αs = 1. Consider the obtained pair

(C,D) =
([

C11 C12
C21 C22

]
,

[
D11 D12
D21 D22

])

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 m−1 1 s s+m−1
1
0 ···

··· 1
0

1
0 ···

··· 1
0 1

0 0 1
0 ··· 0 ···

··· 0 ··· 1
0 0 1

0 ···
··· 1
0

,

1 m−1 1 s s+m−1
0 0 ... 0 1 ∗ ... ∗ ∗ ... ∗ 1
1 ···

··· 0
1 m

0 1
1 ···

··· 0
1 0 s

0 1 0 s+1
0 ··· 1 ···

··· 0 ··· 0
0 1 0 s+m

1 ···
··· 0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

We denote by 0 the entries in (37) that are transformed to −1 and then are restored to 
0 during the following simultaneous elementary transformations, which make zero the 
entry “1” under αs:
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• The strip [D11 D12] is subtracted from the substrip formed by rows s +1, s +2, . . . , s +
m in the strip [D21 D22]. Thus, the block (1, 1) is subtracted from the rectangle in 
the block (2, 1) (see (37)).

• Then the substrip formed by columns s +1, . . . , s +m −1 in 
[
D12
D22

]
is added to 

[
D11
D21

]
. 

Thus, the rectangle in the block (2, 2) is added to the rectangle in the block (2, 1)
restoring it.

We obtain

(C,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 ···

··· 1
0

1
···
1

1
1
0 ···

··· 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ... ∗ 0 ... 0 1 ∗ ... ∗
1 0

···
1

0
1 ···

··· 0
1 0

∗ ... ∗ ∗ ... ∗
1 0

···
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

in which the stars denote complex numbers. Interchanging the first and second vertical 
strips, then the first and second horizontal strips, we obtain

(C,D) =

⎛⎝⎡⎣C11 C12 C13
C21 C22 C23
C31 C32 C33

⎤⎦ ,
⎡⎣D11 D12 D13
D21 D22 D23
D31 D32 D33

⎤⎦⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 ···

··· 1
0 1

0 1
0 1

0 ···
··· 1
0

0 ∗ ... ∗ 1
0 ··· ··· 0 ···

··· ∗ ··· 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 ···

··· 0
1 0

1 ∗ ∗ ... ∗ ∗ ... ∗
1 0

1
···

1
∗ ∗ ... ∗ ∗ ... ∗

∗ ··· ··· 1 0
··· ∗ ···
∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (39)

in which we replace by stars some zero entries of the blocks C32 and D32.
Using transformations from Lemma 5.1, we make zero all stars in D33; the forms 

of the other blocks do not change. Make zero row 1 of D32 by adding rows 2, 3, . . . of 
horizontal strip 2 to row 1 of strip 3 simultaneously in C and D. Make zero row 1 of C32
by adding column 1 of vertical strip 3 simultaneously in C and D. Then, adding rows 
3, 4, . . . of strip 2 to the row 2 of strip 3, we make zero row 2 of D32. Adding column 2 
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of vertical strip 3, we make zero row 2 of C32, and so on until we obtain (39) in which 
all stars in horizontal strips 3 of C and D are zero.

Using Lemma 5.1, we make zero all stars in D22. Multiplying horizontal strips 2 in 
C and D by an arbitrarily small number and then dividing vertical strips 2 by the 
same number, we make the entries of D23 arbitrarily small; these transformations do not 
change the other blocks. We obtain the pair that is equivalent to the initial perturbed 
pair (31) and that is obtained from LT

m+s ⊕ LT
n−s by an arbitrarily small perturbation, 

in which s as in (37) and satisfies (36). If m + s > n − s, then we interchange LT
m+s

and LT
n−s and reduce the obtained pair by equivalence transformations to its miniversal 

form.
We obtain ⎛⎜⎝

⎡⎢⎣LT
m′ 0

0 LT
n′

⎤⎥⎦ ,
⎡⎣RT

m′
∗ · · · ∗

0
0 RT

n′

⎤⎦
⎞⎟⎠ ,

in which the stars are sufficiently small complex numbers. By (36),

m < m′ := min(m + s, n− s) � n′ := max(m + s, n− s).

We repeat this procedure until we obtain a pair⎛⎜⎝
⎡⎢⎣LT

m(l) 0

0 LT
n(l)

⎤⎥⎦ ,
⎡⎣RT

m(l)
∗ · · · ∗

0
0 RT

n(l)

⎤⎦
⎞⎟⎠ (40)

in which all stars are zero, and m < m(l) � n(l). Thus, (40) is of the form (33).

(b) Let LT
m+r ⊕ LT

n−r be the pair (33); we must prove that it is equivalent to (34). 
We divide the first horizontal strips of (34) by ε, then multiply the first vertical strips 
by ε, and obtain the pair (37) in which all stairs are zero. The obtained pair is reduced 
as above to (38) in which all stairs are zero. This pair is permutation equivalent to 
LT
m+r ⊕ LT

n−r.

(c) This statement follows from (a), (b), Theorem 3.2, and Remark 3.1. �
Example 5.1. If m = 2 and n = 8 in (31), then (α1, . . . , α7) = (∗, ∗, ∗, ∗, ∗, 0, 0). The pairs([

LT
2 0
0 LT

8

]
,

[
RT

2 Δr(ε)
0 RT

8

])
with ε �= 0 and r = 1, 2, 3, 4, 5

are equivalent to LT
3 ⊕LT

7 , LT
4 ⊕LT

6 , LT
5 ⊕LT

5 , LT
6 ⊕LT

4 , LT
7 ⊕LT

3 , respectively. We obtain 
both LT

3 ⊕LT
7 and LT

7 ⊕LT
3 since they are not reduced one to the other by equivalence 

transformations that are close to the identity; whereas the pairs that are close to A are 
reduced to the form (23) by smooth transformations (22) that are close to the identity.
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5.2. Perturbations of Ln ⊕ Lm

Theorem 5.2. For the Kronecker pair

Lm ⊕ Ln, m � n, (41)

its miniversal deformation from Theorem 3.2 is given by the matrix pair (CT , DT ), in 
which (C, D) is the pair (31).

(a) If the stars in (32) are complex numbers that are not all zero, then (CT , DT ) is 
equivalent to one of the pairs

Lm+r ⊕ Ln−r, m + r � n− r, r � 1. (42)

(b) Each pair (42) is equivalent to a pair of the form([
Lm 0
0 Ln

]
,

[
Rm 0

Δr(ε)T Rn

])
,

in which Δr(ε) is defined in (9) and ε is an arbitrary nonzero complex number.
(c) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-

hood of (41) consists of the pairs

Lm+r ⊕ Ln−r, m + r � n− r, r � 0.

Proof. This theorem is obtained from Theorem 5.1 by matrix transposition. �
5.3. Perturbations of LT

m ⊕Dn(λ)

Theorem 5.3. For the Kronecker pair

LT
m ⊕Dn(λ), λ ∈ C ∪∞, (43)

the matrix pair (23) of its miniversal deformation without stars in the diagonal blocks is

LT
m ⊕Dn(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
⎡⎢⎢⎣LT

m 0

0 In

⎤⎥⎥⎦ ,
⎡⎣RT

m
α1 . . . αn

0
0 Jn(λ)

⎤⎦
⎞⎟⎟⎠ if λ ∈ C

⎛⎜⎜⎝
⎡⎢⎣LT

m
0

α1 . . . αn

0 Jn(0)

⎤⎥⎦ ,
⎡⎢⎢⎣RT

m 0

0 In

⎤⎥⎥⎦
⎞⎟⎟⎠ if λ = ∞

(44)

in which (α1, . . . , αn) = (∗, . . . , ∗).
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(a) Let the stars in (44) be complex numbers that are not all zero, and let αs be the 
first nonzero element in (α1, . . . , αn). Then (44) is equivalent to the pair

LT
m+n−s+1 ⊕Ds−1(λ). (45)

(b) Each pair (45) with s ∈ {1, . . . , n} is equivalent to a pair of the form([
LT
m 0
0 In

]
,

[
RT

m Δs(ε)
0 Jn(λ)

])
if λ ∈ C([

LT
m ∇s(ε)
0 Jn(0)

]
,

[
RT

m 0
0 In

])
if λ = ∞

(46)

in which Δr(ε) and ∇r(ε) are defined in (9) and ε is an arbitrary nonzero complex 
number.

(c) The set of Kronecker canonical forms of all pairs obtained by perturbations of the 
blocks (1, 2) in (43) consists of the pairs

LT
m+r ⊕Dn−r(λ), in which 0 � r � n.

Proof. Let (A, B) be the pair (43) with λ = ∞. Write

Zp :=

⎡⎣0 1

. .
.

1 0

⎤⎦ (p-by-p).

Since (RT
m, LT

m) = Zm(LT
m, RT

m)Zm−1, we have that (B, A) is equivalent to the pair (43)
with λ = 0. Therefore, it suffices to prove the theorem for λ ∈ C.

Let (A, B(λ)) be the pair (43) with λ ∈ C. By Lemma 5.1, the pair (A, B(λ) −λA) is 
equivalent to (A, B(0)). Therefore, it suffices to prove the theorem for λ = 0. In the rest 
of the proof, we set λ = 0. Then (44) in which α1, . . . , αn ∈ C is

(C,D) =
([

C11 C12

C21 C22

]
,

[
D11 D12

D21 D22

])

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
. . .
. . . 1

0

0
1

1
0 . . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 α2 ... αn

1
. . .
. . . 0 0

1
0 1

0
. . .

0 . . . 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (47)
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(a) Each matrix that commutes with Jn(0) has the form

Kn :=

⎡⎢⎢⎢⎢⎢⎣
κ1 κ2

. . . κn

κ1
. . . . . .
. . . κ2

0 κ1

⎤⎥⎥⎥⎥⎥⎦ , κ1, . . . , κn ∈ C. (48)

The equivalence transformation

(Im ⊕K−1
n )(C,D)(Im−1 ⊕Kn), κ1 �= 0 (49)

replaces (α1, . . . , αn) by

(α1, . . . , αn)Kn = (α1κ1, α1κ2 + α2κ1, . . . , α1κn + · · · + αnκ1) (50)

and does not change the other entries of C and D. Let αs be the first nonzero entry in 
(α1, . . . , αn). Using transformations (50), we make (α1, . . . , αn) = (0, . . . , 0, 1, 0, . . . , 0)
with “1” at the position s.

Let first s = 1. Then

(Zm ⊕ In)(C,D)(Zm−1 ⊕ In) = (RT
m+n, L

T
m+n) ∼ (LT

m+n, R
T
m+n),

which is a pair of the form (45).
Let now s � 2. The “1” under αs = 1 is the (s − 1, s)th entry of the block D22 (see 

(47)). We make zero this entry of D22 by the following elementary transformations:

• Case 1: m < s. We subtract the rows 1, 2, . . . , m of the first horizontal strip from 
the rows s − 1, s − 2, . . . , s −m of the second horizontal strip, respectively, in C and 
D. Then we add the columns s − 1, s − 2, . . . , s −m + 1 of the second vertical strip 
to the columns 1, 2, . . . , m − 1 of the first vertical strip in C and D. For example, if 
m = 3, n = 6, and s = 5, then

(C,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0

1
0 0 1 0 0
0 0 1 0
0 0 0 1

1
1

,

0 0 1
1 0
0 1

0 1
0 0 0 1 0
0 0 0 1
0 0 0 0 1

0 1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

we denote by 0 the zero entries that are transformed to −1 and then are restored to 
0.
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• Case 2: m � s. We subtract the rows 1, 2, . . . , s − 1 of the first horizontal strip from 
the rows s − 1, s − 2, . . . , 1 of the second horizontal strip, respectively, in C and D. 
Then we add the columns s −1, s −2, . . . , 1 of the second vertical strip to the columns 
1, 2, . . . , s − 1 of the first vertical strip in C and D. For example, if m = 5, n = 4, 
and s = 3, then

(C,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0 1
0 1

0
0 0 1 0
0 0 0 1

1
1

,

0 0 1
1 0

1 0
1 0

1
0 0 0 1
0 0 0 0 1

0 1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, for each s the pair (C, D) is reduced to the pair (C ′, D′) that is ob-
tained from (47) by replacing (α1, . . . , αn) by (0, . . . , 0, 1, 0, . . . , 0) with αs = 1 and 
by replacing the entry “1” under αs by 0. Then (Zm ⊕ In)(C ′, D′)(Zm−1 ⊕ In) =
(RT

m+n−s+1, L
T
m+n−s+1) ⊕ (Is−1, Js−1(0)) ∼ LT

m+n ⊕ Ds−1(0), which is a pair of the 
form (45).

(b) The pair (46) with λ = 0 is the pair (47) in which (α1, . . . , αn) = (0, . . . , 0, ε, 0, . . . ,
0) with ε �= 0 at the place s. Reasoning as in part (a), we reduce it to the pair (45).

(c) Because of the statement (a), it is sufficient to prove that all pairs in a sufficiently 
small neighborhood of LT

m⊕Dn(0) that are obtained by perturbations of its blocks (1,2) 
are reduced to the form (44) with λ = 0 by transformations (22). To keep matters clear, 
let us prove it for m = 3 and n = 2; that is, for the pairs⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1 0 x11 x12
0 1 x21 x22
0 0 x31 x32

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣

0 0 y11 y12
1 0 y21 y22
0 1 y31 y32

0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ , (51)

in which all xij and yij are sufficiently small complex numbers. We successively make 
(x31, x32) = (0, 0) by adding rows of the second strip, (y31, y32) = (0, 0) by adding the 
second column, (x21, x22) = (0, 0) by adding rows of the second strip, (y21, y22) = (0, 0)
by adding the first column, and (x11, x12) = (0, 0) by adding rows of the second strip. 
We obtain (51), in which all xij and yij are zero except to y11 and y12. �
5.4. Perturbations of Lm ⊕Dn(λ)

Theorem 5.4. For the Kronecker pair

Lm ⊕Dn(λ), λ ∈ C ∪∞, (52)
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the matrix pair (23) of its miniversal deformation without stars in the diagonal blocks is

Lm ⊕Dn(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝
⎡⎣ Lm 0

0 In

⎤⎦ ,
⎡⎢⎣ Rm 0

α1...
αn

0 Jn(λ)

⎤⎥⎦
⎞⎟⎠ if λ ∈ C

⎛⎜⎝
⎡⎢⎣ Lm 0

α1...
αn

0 Jn(0)

⎤⎥⎦ ,
⎡⎣ Rm 0

0 In

⎤⎦
⎞⎟⎠ if λ = ∞

(53)

in which (α1, . . . , αn) = (∗, . . . , ∗).
(a) Let the stars in (53) be complex numbers that are not all zero, and let αr be the 

last nonzero element in (α1, . . . , αn). Then (44) is equivalent to the pair

Lm+r ⊕Dn−r(λ). (54)

(b) Each pair (54) with r ∈ {1, . . . , n} is equivalent to a pair of the form([
Lm 0
0 In

]
,

[
Rm 0

Δr(ε)T Jn(λ)

])
if λ ∈ C([

Lm 0
∇r(ε)T Jn(0)

]
,

[
Rm 0
0 In

])
if λ = ∞

in which ε is an arbitrary nonzero complex number.
(c) The set of Kronecker canonical forms of all pairs obtained by perturbations of the 

blocks (1, 2) in (52) consists of the pairs

Lm+r ⊕Dn−r(λ), in which 0 � r � n.

Proof. The mapping

A �→
[
Im−1 0

0 Zn

]
AT

[
Im 0
0 Zn

]
, Zn :=

⎡⎣0 1

. .
.

1 0

⎤⎦ (n-by-n)

transforms the matrices from Theorem 5.3 to the matrices from Theorem 5.4. �
5.5. Perturbations of Dm(λ) ⊕Dn(λ)

Theorem 5.5. For the Kronecker pair

Dm(λ) ⊕Dn(λ), m � n, λ ∈ C ∪∞, (55)

the matrix pair (23) of its miniversal deformation with stars only in the blocks (1, 2) is
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
Im+n,

[
Jm(λ) A

0 Jn(λ)

])
if λ ∈ C,

([
Jm(0) A

0 Jn(0)

]
, Im+n

)
if λ = ∞,

A :=

⎡⎣ α1
... 0

αm

⎤⎦ , (56)

in which α1, . . . , αm are stars.
(a) Let α1, . . . , αm in (56) be complex numbers that are not all zero. Let αr be the last 

nonzero element in this sequence. Then (56) is equivalent to the pair

Dm−r(λ) ⊕Dn+r(λ). (57)

(b) Each pair (57) with r ∈ {1, . . . , m} is equivalent to the pair (56), in which 
(α1, . . . , αm) = (0, . . . , 0, ε, 0, . . . , 0) and ε is an arbitrary nonzero complex number in 
the r-th position.

(c) If a given Kronecker pair K is equivalent to a pair in an arbitrarily small neigh-
borhood of (55), then K has the form Dm−r(λ) ⊕Dn+r(λ) with r ∈ {0, . . . , m}.

Proof. This theorem follows from Theorem 6.2 by the reasons that are given at the 
beginning of Section 6. �
5.6. Perturbations of LT

m ⊕ Ln

Theorem 5.6. For the Kronecker pair

LT
m ⊕ Ln, (58)

the matrix pair (23) of its miniversal deformation is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α1

0
. . . α2
. . . 1

0 ...
0 αm

1 0

0
. . . . . .

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 β1 β2 . . . βn

1
. . .
. . . 0 0

1
0 1

0
. . . . . .

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (59)

in which all αi and βj are stars.
(a) Let the stars in (59) be complex numbers that are not all zero. Let

(−β1, . . . ,−βn, α1, . . . , αm) = ε(c0, . . . , cr−1, 1, 0, . . . , 0︸ ︷︷ ︸
l�0

), ε �= 0,

c + c x + · · · + c xr−1 + xr = (x− λ )r1 · · · (x− λ )rs
(60)
0 1 r−1 1 s



JID:LAA AID:15660 /FLA [m1L; v1.297] P.28 (1-45)
28 V. Futorny et al. / Linear Algebra and its Applications ••• (••••) •••–•••
with distinct λ1, . . . , λs ∈ C. Then (59) is equivalent to the pair

Dr1(λ1) ⊕ · · · ⊕ Drs(λs) ⊕Dl(∞). (61)

(b) Each pair (61) with distinct λ1, . . . , λs ∈ C, positive r1, . . . , rs, and l � 0 is 
equivalent to the pair (59), in which α1, . . . , αm, β1, . . . , βn are determined by (60) and 
an arbitrary nonzero ε ∈ C.

(c) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-
hood of (58) consists of (58) and the pairs

Dr1(λ1) ⊕ · · · ⊕ Drt(λt), r1 + · · · + rt = m + n− 1

with distinct eigenvalues λ1, . . . , λt ∈ C ∪∞.

Let us denote by Pα1...αm

β1 ... βn
the pair (59) in which α1, . . . , αm, β1, . . . , βn are complex 

numbers.

Lemma 5.2. If (C, D) = Pα1...αm

β1 ... βn
, then (DT , CT ) ∼ Pβn ... β1

αm...α1
.

Proof. We have the equivalences of pairs

(DT , CT ) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

Rm 0
β1
...
βn

0 RT
n

⎤⎥⎥⎥⎦ ,
⎡⎢⎣ Lm 0

0
α1 . . . αm

LT
n

⎤⎥⎦
⎞⎟⎟⎟⎠

∼

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣R

T
n

β1
...
βn

0

0 Rm

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎣LT

n
0

α1 . . . αm

0 Lm

⎤⎥⎥⎦
⎞⎟⎟⎟⎠

∼

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣L

T
n 0

βn

...
β1

0 Lm

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎣RT

n

αm . . . α1

0
0 Rm

⎤⎥⎥⎦
⎞⎟⎟⎟⎠ = Pβn ... β1

αm...α1
,

in which the third pair is obtained from the second by reversing the order of rows in 
each horizontal strip and reversing the order of columns in each vertical strip. �
Proof of Theorem 5.6. (a)&(b) By Theorem 3.2, there is a neighborhood of (58), in 
which each pair is equivalent to the pair

Pα1...αm

β ... β (62)

1 n
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for some α1, . . . , αm, β1, . . . , βn.

Case 1: αm �= 0 in (62). In this case, Pα1...αm

β1 ... βn
∼ (Im+n−1, Φ) with

Φ :=

⎡⎢⎢⎣
−cm+n−2 . . . −c1 −c0

1 0 0
. . .

...
0 1 0

⎤⎥⎥⎦ , (63)

(c0 . . . , cm+n−2) := α−1
m (−β1, . . . ,−βn, α1, . . . , αm−1) (64)

because

Pα1...αm

β1 ... βn
(Qm−1 ⊕ Zn) = (Qm ⊕ Zn−1)(Im+n−1,Φ), (65)

in which

Qp :=

⎡⎢⎢⎢⎢⎢⎢⎣
αm αm−1 αm−2

. . .

αm αm−1
. . .

αm
. . .

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ (p-by-p), Zp :=

⎡⎣0 1

. .
.

1 0

⎤⎦ (p-by-p).

For example, if m = n = 4, then (65) takes the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1
0 1 0 α2
0 0 1 α3
0 0 0 α4

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1β2β3β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α4 α3α2
α4α3

α4

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α4 α3 α2 α1

α4 α3 α2

α4 α3

α4

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I7,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c6 −c5 −c4 −c3 −c2 −c1 −c0

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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in which

α4(c0, c1, c2, c3, c4, c5, c6) = (−β1,−β2,−β3,−β4, α1, α2, α3).

The Jordan canonical form of (63) is Jr1(λ1) ⊕· · ·⊕Jrs(λs) with distinct λ1, . . . , λs ∈
C; its characteristic polynomial is

(x− λ1)r1 · · · (x− λs)rs = c0 + c1x + · · · + cm+n−2x
m+n−2 + xm+n−1

= α−1
m (−β1 − β2x− · · · − βnx

n−1 + α1x
n + α2x

n+1 + · · · + αmxm+n−1).
(66)

We have proved that

Pα1...αm

β1 ... βn
∼ (I,Φ) ∼ Dr1(λ1) ⊕ · · · ⊕ Drs(λs) if αm �= 0, (67)

which is a pair of the form (61) with l = 0. This proves the statement (a) in Case 1.
By (67), each pair (61) with distinct eigenvalues λ1, . . . , λs ∈ C and l = 0 is equivalent 

to Pα1...αm

β1 ... βn
defined by (66). Since (64) holds, Pα1...αm

β1 ... βn
is the pair (59) defined by (60)

with ε = αm. The pair Pα1...αm

β1 ... βn
is also equivalent to the pair (59) defined by (60) with 

an arbitrary nonzero ε since([
LT
m P
0 Ln

]
,

[
RT

m Q
0 Rn

])[
Im−1 0

0 δIn

]
=
[
Im 0
0 δIn−1

]([
LT
m δP
0 Ln

]
,

[
RT

m δQ
0 Rn

])
(68)

for an arbitrary nonzero δ. This proves the statement (b) if all λi �= ∞.

Case 2: αk �= 0 = αk+1 = · · · = αm for some k < m in (62). Let us show that

Pα1...αm

β1 ... βn
= Pα1...αk 0...0

β1 ... βn
∼ Pα1 ... αk

β1 ... βn
⊕ (Jm−k(0), Im−k) if αk �= 0. (69)

For clarity, we first prove (69) in the following special case:

P α1 α2 0 0
β1β2β3β4

∼ P α1 α2
β1β2β3β4

⊕ (J2(0), I2) if α2 �= 0. (70)

The first pair in (70) is

(C,D) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1
0 1 0 α2
0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α2 �= 0.

It is sufficient to make zero the entry (2, 2) of C; i.e., to prove that
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(C,D) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1
0 0 0 α2
0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(71)

since the pair 
([ 0 1

0 0

]
,
[ 1 0

0 1

])
in the squares is a direct summand. We make this zero 

preserving the other entries by the following sequence of elementary transformations 
with (C, D):

• Substituting column 7 multiplied by α−1
2 from column 2, we make zero the entry 

(2, 2) of C: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ 0 α1
0 0 0 α2
0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ 0 β1 β2 β3 β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0

∗ 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This transformation may spoil the entries denoted by ∗ in columns 2 of C and D; 
we restore them as follows.

• We restore column 2 of C by adding column 1 (multiplied by a scalar) to column 2. 
This transformation spoils entry (2, 2) of D; we restore it and the entries denoted by 
stars in column 2 of D by adding row 3 to rows 1, 2, and 7. We obtain⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ∗ α1
0 0 ∗ α2
0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0

∗ 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

• We restore column 3 of C by adding columns 1, 6, and 7, which spoils column 3 of 
D. We restore it by adding row 4 and obtain (71), which proves (70).

The equivalence (69) for an arbitrary pair (C, D) = Pα1...αm

β1 ... βn
with αk �= 0 = αk+1 =

· · · = αm is proved in the same way: we make zero the entry (k, k) of C by adding 
the last column, which may spoil the entries (1, k), . . . , (k − 1, k) of C; they are made 
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zero by adding columns 1, . . . , k − 1. This spoils column k of D; we restore it by row 
transformations. This spoils column k+1 of C; we restore it by column transformations, 
and so on, until we obtain the equivalence (69).

By (69) and Case 1,

Pα1...αm

β1 ... βn
= Pα1...αk 0...0

β1 ... βn
∼ Dr1(λ1) ⊕ · · · ⊕ Drs(λs) ⊕Dm−k(∞),

α−1
k (−β1 − · · · − βnx

n−1 + α1x
n + · · · + αkx

n+k−1) =
s∏

i=1
(x− λi)ri .

This proves the statement (a) in Case 2. This also proves the statement (b) in Case 2 
for ε = αk; it holds for an arbitrary nonzero ε due to (68).

Case 3: α1 = · · · = αm = 0 in (62); that is, (C, D) = P 0 ... 0
β1 ... βn

. Let

β1 = · · · = βp−1 = 0 �= βp, βq �= 0 = βq+1 = · · · = βn (1 � p � q � n).

By Lemma 5.2 and Case 2, we have

(DT , CT ) ∼ Pβn ... β1
0 ... 0 = P0...0 βq ... βp 0...0

0 ... 0

∼ Dr1(μ1) ⊕ · · · ⊕ Drs−1(μs−1) ⊕Dm+n−q(0) ⊕Dp−1(∞),

in which μ1, . . . , μs−1 are distinct nonzero complex numbers; this direct sum is deter-
mined by

(x− μ1)r1 · · · (x− μs−1)rs−1xm+n−q = β−1
p (βq + βq−1x + · · · + βpx

q−p)xm+n−q. (72)

If p < q, we set λ1 := μ−1
1 , . . . , λs−1 := μ−1

s−1, and find that

(C,D) ∼ Dr1(λ1) ⊕ · · · ⊕ Drs−1(λs−1) ⊕Dm+n−q(∞) ⊕Dp−1(0). (73)

Replacing x by x−1 in the polynomials (72), we obtain consistently

(x−1 − λ−1
1 )r1 · · · (x−1 − λ−1

s−1)rs−1 = β−1
p (βq + βq−1x

−1 + · · · + βpx
−(q−p)),

(x− λ1)r1 · · · (x− λs−1)rs−1 = β−1
q (βp + βp+1x + · · · + βqx

q−p),

(x− λ1)r1 · · · (x− λs−1)rs−1xp−1 = −β−1
q (−βpx

p−1 − βp+1x
p − · · · − βqx

q−1).

The last equality is the second equality in (60) that is determined by the first equality in 
(60) with ε = −βq. The direct sum (73) is the direct sum (61). This proves the statement 
(a) in Case 3. This also proves the statement (b) in Case 3 for ε = −βq; it holds for an 
arbitrary nonzero ε due to (68).

(c) This statement follows from (a), (b), Theorem 3.2, and Remark 3.1. �
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6. Perturbations of Jordan matrices

By Lipschitz’s property (see [38] or [1]), each matrix that is obtained by an arbitrar-
ily small perturbation of In is reduced to In by equivalence transformations that are 
close to the identity transformation. Hence, each pair that is obtained by an arbitrarily 
small perturbation of (In, B) is reduced to a pair of the form (In, C) by equivalence 
transformations that are close to the identity transformation.

Hence, the theory of perturbations of matrix pairs with a nonsingular first matrix, 
with respect to equivalence transformations, is reduced to the theory of perturbations of 
square matrices with respect to similarity. By Theorem 4.1, it reduces to the theory of 
perturbations of Jordan matrices with a single eigenvalue.

The closures of orbits of Jordan matrices under similarity have been described by 
Den Boer and Thijsse [13], and by Markus and Parilis [35]; see also [22, Theorem 2.1]. 
In this section, we describe the closures of orbits of Jordan matrices in the form that is 
used in Theorem I. The proof is based on the Weyr canonical form of matrices under 
similarity.

Theorem 6.1. Let J be a Jordan matrix with a single eigenvalue λ.

(a) If J is a Jordan block, then 〈J〉 has no successors.
(b) Let J have at least two Jordan blocks. Write it as follows:

J = P ⊕ Jp(λ) ⊕ Jq(λ) ⊕Q for some p � q, (74)

in which P is a direct sum of Jordan blocks of sizes � p and Q is a direct sum of 
Jordan blocks of sizes � q (P and Q can be absent). Define the Jordan matrix

Jp,q := P ⊕ Jp−1(λ) ⊕ Jq+1(λ) ⊕Q, (75)

in which Jp−1(λ) is absent if p = 1. Then 〈Jp,q〉 immediately succeeds 〈J〉, and each 
immediate successor of 〈J〉 is 〈Jp,q〉 for some p and q.

Lemma 6.1. Let J and J ′ be Jordan matrices with a single eigenvalue λ. Let (m1, m2, . . . )
and (m′

1, m
′
2, . . . ) be their Weyr characteristics (see Section 3.3). Write

si := m1 + · · · + mi and s′i := m′
1 + · · · + m′

i for all i. (76)

Then

〈J〉 � 〈J ′〉 ⇐⇒ si � s′i for all i. (77)
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Example 6.1. Let

J = J3(λ) ⊕ J4(λ) ⊕ J4(λ), J ′ = J3(λ) ⊕ J3(λ) ⊕ J5(λ).

Then

m1 = m2 = m3 = 3, m4 = 2, m5 = 0, m6 = m7 = · · · = 0,
m′

1 = m′
2 = m′

3 = 3, m′
4 = 1, m′

5 = 1, m′
6 = m′

7 = · · · = 0,

and so

s1 = 3, s2 = 6, s3 = 9, s4 = 11, s5 = s6 = · · · = 11,
s′1 = 3, s′2 = 6, s′3 = 9, s′4 = 10, s′5 = s′6 = · · · = 11.

Hence, 〈J〉 � 〈J ′〉, 〈J〉 � 〈J ′〉, and so 〈J〉 < 〈J ′〉.

Proof of Lemma 6.1. Let J be a Jordan matrix with a single eigenvalue λ. Then 〈J −
λI〉 = 〈J〉 − λI and we must prove (77) only for λ = 0.

⇐=. Let W and W ′ be Weyr canonical matrices of the same size with the sin-
gle eigenvalue 0 (see Section 3.3). Let their Weyr characteristics (m1, m2, . . . , mk) and 
(m′

1, m
′
2, . . . , m

′
k) satisfy s1 � s′1, s2 � s′2, . . . . Then for each sufficiently small ε the Weyr 

canonical form of εW ′ +W is W ′. If εi → 0, then εiW ′ +W → W . Hence 〈W 〉 � 〈W ′〉.

=⇒. Let J be a Jordan matrix with the single eigenvalue λ = 0. Let J ′ be a Jordan 
matrix such that each neighborhood of J contains a matrix whose Jordan canonical form 
is J ′. This means that there is a convergent sequence

A1, A2, . . . → J (78)

in which all Ai are similar to J ′. All Ai have the same characteristic polynomial f(x). 
Since the coefficients of characteristic polynomial continuously depend on the matrix 
entries, f(x) is also the characteristic polynomial of J . Hence, f(x) = xn, and so J ′ is 
nilpotent.

Since all Ai are similar to J ′, they have the same Weyr canonical form

S−1
i AiSi =

⎡⎢⎢⎢⎢⎣
0m′

1
F ′

1 0

0m′
2

. . .

. . . F ′
k−1

0 0m′
k

⎤⎥⎥⎥⎥⎦ , F ′
i :=

[
Im′

i+1
0

]
,

in which (m′
1, m

′
2, . . . ) is the Weyr characteristic of J ′. Applying the Gram–Schmidt 

orthogonalisation process to the columns of Si, we obtain a unitary matrix Ui = SiRi, 
where Ri is a nonsingular upper-triangular matrix. Then
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U−1
i AiUi = R−1

i · S−1
i AiSi ·Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1

V
(i)
1 ∗ . . . ∗

0m′
2

V
(i)
2

. . .
...

0m′
3

. . . ∗

. . . V
(i)
k−1

0 0m′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

in which every V (i)
j is an m′

i ×m′
i+1 matrix with linearly independent columns.

The set of matrices U1, U2, . . . is bounded since each entry of a unitary matrix has 
modulus � 1. Hence this set has a limit point, which we denote by U . Deleting some Ai

in (78) if necessarily, we obtain Ui → U . Since each Ui is unitary, we have UiU
∗
i = I, 

and so UU∗ = I. Hence U is unitary and

U−1
i AiUi → U−1JU =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1

V1 ∗ . . . ∗

0m′
2

V2
. . .

...

0m′
3

. . . ∗

. . . Vk−1
0 0m′

k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

V
(i)
1 → V1, . . . , V (i)

k−1 → Vk−1. Note that the columns of some Vi can be linearly depen-
dent.

Therefore,

m1 = nullity J = nullityU−1JU � m′
1.

Since

U−1J2U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1

0 V1V2 0

0m′
2

0
. . .

0m′
3

. . . Vk−2Vk−1

. . . 0
0 0m′

k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

we have

m1 + m2 = nullity J2 = nullityU−1J2U � m′
1 + m′

2,

and so on, which proves “=⇒” in (77). �
Proof of Theorem 6.1. (a) Let J = Jp(λ) and 〈J〉 � 〈J ′〉. By (77), m′

1 � m1 = 1. Since 
m′

1 is the number of Jordan blocks, J ′ is a Jordan block. Since J and J ′ have the same 
size, J ′ = Jp(λ) = J .
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(b) For each matrix X, we denote by (m1(X), m2(X), . . . ) its Weyr characteristic and 
write si(X) := m1(X) + · · ·+mi(X). Let A, B, and C be square matrices with a single 
eigenvalue. Since mi(A ⊕ B) = mi(A) + mi(B), we have si(A ⊕ B) = si(A) + si(B). 
Thus, si(A ⊕B) � si(A ⊕ C) if and only if si(B) � si(C). By (77),

〈A⊕B〉 � 〈A⊕ C〉 ⇐⇒ 〈B〉 � 〈C〉. (79)

Let (m1, m2, . . . ) and (m̃1, m̃2, . . . ) be the Weyr characteristics of the matrices (74)
and (75). Then m̃p = mp − 1, m̃q+1 = mq+1 + 1, the other m̃i = mi, and so

s̃p = sp − 1, s̃p+1 = sp+1 − 1, . . . , s̃q = sq − 1, the other s̃i = si (80)

in the notation (76). Let us prove three facts.
Fact 1: 〈J〉 < 〈Jp,q〉. This inequality follows from (79) and the inequality 〈Jp(λ) ⊕

Jq(λ)〉 < 〈Jp−1(λ) ⊕ Jq+1(λ)〉, which holds by (77) and (80).
Fact 2: if J ′ is a Jordan matrix with the single eigenvalue λ, then

〈J〉 < 〈J ′〉 =⇒ 〈J〉 < 〈Jp,q〉 � 〈J ′〉 for some p, q. (81)

Due to (79), it is sufficient to prove (81) for J and J ′ that have no common Jordan 
blocks. By the assumptions of Theorem 6.1(b), J has at least two Jordan blocks. Let us 
show that (81) holds for p and q such that

J = Jp(λ) ⊕ Jq(λ) ⊕Q, p � q,

in which all Jordan blocks of Q are of size � q.
By 〈J ′〉 � 〈J〉 and Lemma 6.1, s′i � si for all i. By Fact 1, 〈Jp,q〉 > 〈J〉. We must 

prove that 〈J ′〉 � 〈Jp,q〉; i.e., s′i � s̃i for all i. Due to (80), it suffices to prove that

s′p < sp, s′p+1 < sp+1, . . . , s′q < sq. (82)

Since J and J ′ do not have common Jordan blocks, J ′ does not contain Jp(λ), and so

s1 = m1 = · · · = mp > mp+1�

s′1 = m′
1 � · · · � m′

p = m′
p+1

Thus, mp � m′
p.

If mp = m′
p, then

s1 = m1 = · · · = mp > mp+1=

s′ = m′ = · · · = m′ = m′

1 1 p p+1
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Hence, s1 = s′1, s2 = s′2, . . . , sp = s′p, sp+1 = sp + mp+1 < s′p + m′
p+1 = s′p+1, which 

contradicts sp+1 � s′p+1.
Therefore, mp > m′

p, sp = sp−1 +mp > s′p−1 +m′
p = s′p, and so sp > s′p, which proves 

(82) if p = q.
Let p < q. Then J has only one Jp(λ), which means that mp = mp+1 + 1. Since 

mp > m′
p, we have mp − 1 � m′

p, and so

mp − 1 = mp+1 = mp+2 = · · · = mq�

m′
p = m′

p+1 � m′
p+2 � · · · � m′

q

We obtain consistently sp > s′p, sp+1 = sp + mp+1 > s′p + m′
p+1 = s′p+1, . . . , sq =

sq−1 + mq > s′q−1 + m′
q = s′q, which proves (82) if p < q.

Fact 3: if J ′ is a Jordan matrix with the single eigenvalue λ, then

〈J〉 < 〈J ′〉 � 〈Jp,q〉 =⇒ J ′ = Jp,q

up to permutations of Jordan blocks in J ′.
On the contrary, let 〈J〉 < 〈J ′〉 < 〈Jp,q〉 for some J ′. By Fact 2, we can take J ′ = Jp′,q′

for some p′ � q′.
Write t(J) := (t1, t2, . . . ), in which ti is the number of i × i Jordan blocks in J . 

Then n(J) := t1 + t2 + · · · is the number of Jordan blocks in J . If t = (t1, t2, . . . ) and 
t′ = (t′1, t′2, . . . ) are infinite sequences of nonnegative integers with t1 + t2 + · · · < ∞ and 
t′1 + t′2 + · · · < ∞, then we write

t′
l
≺ t if t′1 = t1, . . . , t′k−1 = tk−1, tk < tk for some k � 1;

t′
r
≺ t if t′k < tk, t′k+1 = tk+1, t′k+2 = tk+2, . . . for some k � 1.

By Fact 2, the inequality 〈Jp′,q′〉 < 〈Jp,q〉 implies that Jp,q is obtained from Jp′,q′ by 
a sequence of replacements of type J ←

↩Js,r:

Jp′,q′ ←
↩ (Jp′,q′)r1,s1 ←
↩ ((Jp′,q′)r1,s1)r2,s2 ←
↩ · · · ←
↩ Jp,q. (83)

Therefore,

(i) n(Jp′,q′) � n(Jp,q),

(ii) if n(Jp′,q′) = n(Jp,q), then t(Jp′,q′) 
l
� t(Jp,q), and

(iii) t(Jp′,q′) 
r
� t(Jp,q)

since the analogous statements hold for each of the replacements (83).
Let n(Jp′,q′) > n(Jp,q). Then J = J1(λ) ⊕ · · · and p = 1. Hence q � p′, and so 

t(Jp′,q′) 
r
� t(Jp,q), which contradicts (iii).
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Thus, n(Jp′,q′) = n(Jp,q). If p′ < p, then (ii) does not hold. If q′ > q, then (iii) does 
not hold. Hence, p � p′ � q′ � q, which contradicts (p′, q′) �= (p, q) and proves Fact 3.

Facts 2 and 3 prove Theorem 6.1(b). �

The following theorem ensures Theorem 5.5.

Theorem 6.2.
(a) Let α1, . . . , αm be complex numbers that are not all zero. Let αr be the last nonzero 

element in this sequence. Then the matrix

⎡⎢⎢⎢⎣ Jm(λ)
α1
...

αm

0

0 Jn(λ)

⎤⎥⎥⎥⎦ , m � n, λ ∈ C (84)

is similar to

Jm−r(λ) ⊕ Jn+r(λ). (85)

(b) If a given Jordan matrix J is similar to a matrix in an arbitrarily small neigh-
borhood of

Jm(λ) ⊕ Jn(λ), m � n, λ ∈ C,

then J has the form Jm−r(λ) ⊕ Jn+r(λ) with r ∈ {0, . . . , m}.

Proof. (a) Let A be the matrix (84). Using similarity transformations

A �→
[
Km 0
0 In

]
A

[
K−1

m 0
0 In

]
, Km :=

⎡⎢⎢⎢⎢⎢⎣
κ1 κ2

. . . κm

κ1
. . . . . .
. . . κ2

0 κ1

⎤⎥⎥⎥⎥⎥⎦ , κ1 �= 0,

we make (α1, . . . , αn) = (0, . . . , 0, 1, 0, . . . , 0) with “1” at the position r, preserving the 
other entries of A (compare with (49) and (50)). In the obtained matrix
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r+1 m 1 m−r

λ 1
... 1

··· ··· 0
λ 1 1 r

λ 1 0 r+1
λ ··· 0

··· 1
...

λ 0 m

0 0 λ 1 1
0 ··· λ ···

··· 0 ··· 1
0 λ 1 m−r

λ ···
··· 1
λ n

(86)

we make zero the entry “1” to the left of αr = 1 by the following similarity transforma-
tions (every 0 denotes the zero entry that first is transformed to −1 and then is restored 
to 0; compare with (37)):

• Make zero the entry “1” to the left of αr = 1 by subtracting columns 1, 2, . . . , m − r

of the second vertical strip from columns r+1, r+2, . . . , m of the first vertical strip, 
respectively. Thus, the marked (m − r) × (m − r) subblock in the (2, 2)th block of 
the matrix (86) is subtracted from the marked (m − r) × (m − r) subblock in the 
(2, 1)th block.

• Make the inverse transformations of rows, adding rows r + 1, . . . , m of the first 
horizontal strip to rows 1, . . . , m − r of the second horizontal strip, restoring the 
(m − r) × (m − r) subblock in the (2, 1)th block.

The (m − r) × (m − r) marked subblock in the (1, 1)th block of the obtained matrix is 
a direct summand, and so the obtained matrix is permutation similar to (85).

(b) This statement follows from Theorem 6.1(b). �
7. Theorem II follows from Theorem I

Theorem II is formulated in terms of coin moves and proved sketchily by Edelman, 
Elmroth, and Kågström [22, Theorem 3.2]. In this section we derive Theorem II from 
Theorem I.

It is sufficient to prove the following statement:

Let a Kronecker pair B be obtained from a Kronecker pair A by some re-
placement (j) from Theorem I, where j ∈ {i, ii, . . . , vi}. Then 〈B〉 immediately 

′
(87)
succeeds 〈A〉 if and only if (j) is the replacement (j ) from Theorem II.
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Case 1: (j) is the replacement (ii):

Lm ⊕ Ln ←
↩ Lm+1 ⊕ Ln−1, in which m + 2 � n. (88)

=⇒. Let 〈B〉 immediately succeed 〈A〉. We must prove that (88) is the replacement 
(ii′). To the contrary, let (88) be not the replacement (ii′); that is, A contains Lm⊕Lk⊕Ln

with m < k < n and n −m � 3.
If k −m � 2, then (88) is the following composition of replacements of type (ii):

Lm ⊕ Lk ⊕ Ln ←
↩ Lm+1 ⊕ Lk−1 ⊕ Ln ←
↩ Lm+1 ⊕ Lk ⊕ Ln−1.

By Theorem I,

〈Lm ⊕ Lk ⊕ Ln〉 < 〈Lm+1 ⊕ Lk−1 ⊕ Ln〉 < 〈Lm+1 ⊕ Lk ⊕ Ln−1〉,

and so 〈B〉 is not an immediate successor of 〈A〉.
If k−m = 1, then n − k � 2 and (88) is the following composition of replacements of 

type (ii):

Lm ⊕ Lk ⊕ Ln ←
↩ Lm ⊕ Lk+1 ⊕ Ln−1 ←
↩ Lm+1 ⊕ Lk ⊕ Ln−1.

Thus, 〈B〉 is not an immediate successor of 〈A〉 too.
⇐=. Let B be obtained from A by replacement (ii′). Let B can be also obtained from 

A by a sequence

A = A1
ϕ1�−→ A2

ϕ2�−→ A3
ϕ3�−→ · · · ϕp�−→ Ap+1 = B

of replacements of types (i)–(vi). In order to show that 〈B〉 is an immediate successor of 
〈A〉, we must prove that p = 1.

Let

A =
s⊕

i=1
LT
mi

⊕
s⊕

i=1
Lni

⊕
t⊕

i=1

(
Dki1(λi) ⊕ · · · ⊕ Dkisi

(λi)
)
,

m1 � · · · � ms, n1 � · · · � ns, ki1 � · · · � kisi (i = 1, . . . , t),

(89)

in which λ1, . . . , λt ∈ C ∪∞ are distinct (see (16)).
All replacements ϕ1, . . . , ϕp are not of

• type (vi) since A and B have the same number s of summands of type LT
m, but (vi) 

decreases the number s and this number cannot be restored by (i)–(v);
• type (iii) since it increases the number m1 + · · · + ms whereas this number is not 

changed by (i), (ii), (iv), and (v);
• type (iv) since it increases n1 + · · · + ns̄;
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• type (v) with λ = λi since it increases 
∑

p<q(kiq − kip) whereas this number is not 
changed by (i) and (ii);

• type (i) since it decreases 
∑

i<j(mj −mi).

Therefore, all ϕ1, . . . , ϕp are replacements of type (ii). Since each replacement (ii′) is not 
the composition of several replacements of type (ii), p = 1, and so 〈B〉 is an immediate 
successor of 〈A〉. We have proved (87) in Case 1.

Case 2: (j) is the replacement (i). The statement (87) is proved by transposing the 
matrices in Case 1.

Case 3: (j) is the replacement (iv):

Lm ⊕Dn(λ) ←
↩ Lm+1 ⊕Dn−1(λ). (90)

=⇒. To the contrary, suppose that (90) is not (iv′); that is, m < m or n < nλ. If 
m < m, then (90) is the composition of replacements of types (ii) and (iv):

Lm ⊕ Lm ⊕Dn(λ) ←
↩ Lm ⊕ Lm+1 ⊕Dn−1(λ) ←
↩ Lm+1 ⊕ Lm ⊕Dn−1(λ).

If n < nλ, then

Lm ⊕Dn(λ) ⊕Dnλ
(λ) ←

↩ Lm+1 ⊕Dn(λ) ⊕Dnλ−1(λ)

←
↩ Lm+1 ⊕Dn−1(λ) ⊕Dnλ

(λ).

By Theorem I, 〈B〉 is not an immediate successor of 〈A〉.
⇐=. Let B be obtained from A by replacement (iv′). Let B can be also obtained from 

A by a sequence A = A1
ϕ1�−→ A2

ϕ2�−→ · · · ϕp�−→ Ap+1 = B of replacements of types (i)–(vi).
All replacements ϕ1, . . . , ϕp are not of

• type (vi), which decreases the number s (see (89));
• type (ii), which increases lexicographically (n1, n2, . . . , ns);
• types (i) and (iii), which change the sequence (m1, m2, . . . , ms);
• type (v), which decreases lexicographically (ki1, ki2, . . . , kisi) if λi = λ.

Therefore, all ϕ1, . . . , ϕp are of type (iv). Since each replacement (iv′) is not the compo-
sition of several replacements of type (iv), p = 1, and so 〈B〉 immediately succeeds 〈A〉.

Case 4: (j) is the replacement (iii). The statement (87) is proved by transposing the 
matrices in Case 3.

Case 5: (j) is the replacement (v):

Dm(λ) ⊕Dn(λ) ↩ Dm−1(λ) ⊕Dn+1(λ), in which m � n. (91)
←
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=⇒. To the contrary, suppose that (91) is not (v′); that is, A contains Dm(λ) ⊕Dk(λ) ⊕
Dn(λ) with m � k � n and m < n. Then 〈B〉 is not an immediate successor of 〈A〉 since 
if m � k < n then

Dm(λ) ⊕Dk(λ) ⊕Dn(λ) ←
↩ Dm−1(λ) ⊕Dk+1(λ) ⊕Dn(λ)

←
↩ Dm−1(λ) ⊕Dk(λ) ⊕Dn+1(λ),

and if m < k � n then

Dm(λ) ⊕Dk(λ) ⊕Dn(λ) ←
↩ Dm(λ) ⊕Dk−1(λ) ⊕Dn+1(λ)

←
↩ Dm−1(λ) ⊕Dk(λ) ⊕Dn+1(λ).

⇐=. Let B be obtained from A by replacement (v′), and let B can be also obtained 
from A by a sequence A = A1

ϕ1�−→ A2
ϕ2�−→ · · · ϕp�−→ Ap+1 = B of replacements of types 

(i)–(vi). All replacements ϕ1, . . . , ϕp are not of types (i)–(iv) and (vi) since they change 
m1, . . . , ms or n1, . . . , ns (see (89)).

Therefore, all ϕ1, . . . , ϕp are of type (v). Since each replacement (v′) is not the com-
position of several replacements of type (v), p = 1, and so 〈B〉 immediately succeeds 〈A〉.

Case 6: (j) is the replacement (vi):

LT
m ⊕ Ln ←

↩ Dr1(μ1) ⊕ · · · ⊕ Drq (μq), (92)

in which μ1, . . . , μq ∈ C ∪∞ are distinct and r1 + · · · + rq = m + n − 1.
=⇒. To the contrary, suppose that (92) is not (vi′).
If m < m, then

LT
m ⊕ LT

m ⊕ Ln ←
↩ LT

m ⊕Dr1+m−m(μ1) ⊕ · · · ⊕ Drq (μq)

←
↩ LT

m ⊕Dr1(μ1) ⊕ · · · ⊕ Drq (μq),

and so 〈B〉 is not an immediate successor of 〈A〉. Hence m = m and, analogously, n = n.
If some λi /∈ {μ1, . . . , μq} (see (89)), then

LT
m ⊕ Ln ⊕Dki1(λi) ←

↩ LT
m ⊕ Ln+ki1

←
↩ Dr1(μ1) ⊕ · · · ⊕ Drq (μq) ⊕Dki1(λi),

and so 〈B〉 is not an immediate successor of 〈A〉. Hence q � t (see (89)) and we can 
rearrange μ1, . . . , μq such that μ1 = λ1, . . . , μt = λt.

Let ri < kisi for some i; for definiteness, for i = 1. Then μ1 = λ1,

LT
m ⊕ Ln ⊕Dk1s1

(μ1) ←
↩ LT

m ⊕ Ln+k1s1−r1 ⊕Dr1(μ1)

←
↩ Dr2(μ2) ⊕ · · · ⊕ Drq (μq) ⊕Dk1s1

(μ1) ⊕Dr1(μ1),
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and so 〈B〉 is not an immediate successor of 〈A〉. Hence, r1 � k1s1 , . . . , rt � ktst .
⇐=. Let B be obtained from A by a replacement

ϕ : LT
ms

⊕ Lns ←
↩ Dr1(μ1) ⊕ · · · ⊕ Drq (μq), q � t (93)

of type (vi′); that is, μ1 = λ1, . . . , μt = λt, and k1s1 � r1, . . . , ktst � rt.
Let B can be also obtained from A by a sequence A = A1

ϕ1�−→ A2
ϕ2�−→ · · · ϕp�−→ Ap+1 =

B of replacements of types (i)–(vi). Exactly one replacement ϕu : Au → Au+1 is of 
type (vi) since ϕ increases 

∑
kij and decreases s by one. The preceding replacements 

ϕ1, . . . , ϕu−1 do not change s and s. Let

A′ := Au =
s⊕

i=1
LT
m′

i
⊕

s⊕
i=1

Ln′
i
⊕

t′⊕
i=1

(
Dk′

i1
(λi) ⊕ · · · ⊕ Dk′

is′i
(λi)
)
,

m′
1 � · · · � m′

s, n′
1 � · · · � n′

s, k′i1 � · · · � k′is′i (i = 1, . . . , t′), t′ � t.

We can suppose that ϕu is not a product of replacements. Then ϕu is of type (vi′) due 
to part “=⇒”; that is,

ϕu : LT
m′

s
⊕ Ln′

s ←
↩ Dρ1(ν1) ⊕ · · · ⊕ Dρq′ (νq′), q′ � t′,

in which ν1 = λ1, . . . , νt′ = λt′ , and k1s1 � ρ1, . . . , kt′st′ � ρt′ .
If m′

s > ms, then ms has been increased by some ϕl with l < u of type (iii). However, 
this ϕl decreases 

∑
kij , which cannot be restored because of the condition k1s1 � r1, 

. . . , ktst � rt. Hence m′
s � ms. Analogously, n′

s � ns.
If m′

s < ms, then 
∑

i,j k
′
ij +

∑
i ρi <

∑
i,j kij +

∑
i ri and this inequality cannot 

be transformed to the equality by replacements ϕu+1, . . . , ϕp of types (i)–(v). Hence 
m′

s = ms and, analogously, n′
s = ns.

If ρ1 < r1, then k′11 + · · · + k′1s′1 + ρ1 < k11 + · · · + k1s1 + r1, and this inequality 
cannot be transformed to the equality by replacements ϕu+1, . . . , ϕp of types (i)–(v). 
Hence ρ1 � r1 and, analogously, ρi � ri for all i. Using m′

s = ms and n′
s = ns, we find 

that t′ = t and ρi = ri for all i. Therefore, ϕu is the replacement ϕ from (93). It is easy 
to check that u = p = 1 and ϕ1 = ϕ.
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