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all pencils in a neighborhood of P — AQ are reduced to them
by a smooth strict equivalence transformation.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

For each complex Jordan matrix A, Den Boer and Thijsse [13] and, independently,
Markus and Parilis [35] describe all Jordan matrices J such that each neighborhood of A
contains a matrix that is similar to J. Pokrzywa [37] extends their results to Kronecker
canonical pencils A—AB (A, B € C™*™): he describes the set of all Kronecker canonical
pencils K — AL such that each neighborhood of A—AB contains a pencil whose Kronecker
canonical form is K — AL. Pokrzywa formulates and proves his theorem in terms of
inequalities for invariants of matrix pencils. A more abstract solution of this problem is
given by Bongartz [9, Section 5, Table I] by methods of representation theory (see also
[5,7,8,10]).

The main purpose of this paper is to give a direct and constructive proof of Pokrzywa’s
theorem using Garcia-Planas and Sergeichuk’s miniversal deformations of matrix pencils
[27].

Instead of pencils A — AB, we consider matrix pairs (A, B). We study them up to
equivalence transformations

(A,B) — (SAR,SBR), S and R are nonsingular matrices.

For each pair A = (A, B), its orbit (A) is the set of all pairs that are equivalent to A.

Let Py, be the set of orbits of pairs of m x n complex matrices. Pokrzywa’s theorem
describes the following partial ordering on P, ,: (A) < (B) if and only if (A) is contained
in the closure of (B). Thus,

(A) < (B) if and only if A can be transformed by an arbitrarily small

(1)

perturbation to a pair that is equivalent to B.

An orbit (B) immediately succeeds (A) (many authors write that (B) covers (A); see
[22]) if (A) < (B) and there exists no (C) such that (A) < (C) < (B).

The partially ordered set Py, ,, is visually represented by its Hasse diagram (also called
the closure graph), which is the directed graph whose vertices are the orbits from Py,
and there is an arrow (A) — (B) if and only if (B) immediately succeeds (A).

Example 1.1. Each pair of 1 x 2 matrices is equivalent to exactly one of the pairs

([00[,[00), ([10],[A0]) with A e C, ([00],[10]), ([10],[01])

Please cite this article in press as:, Perturbation theory of matrix pencils through miniversal
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(they are the Kronecker canonical pairs of 1 X 2 matrices for equivalence; see (4)). The
Hasse diagram of Py o is

(([1 0], [0 1]))
(([1 0], [A 0])) (([o-0], [T 0)) (2)
(([00], [0 0]))

By (1), for each arrow (A) — (B) there exists an arbitrarily small perturbation AA
such that A 4+ AA is equivalent to B; we position AA on the corresponding arrow of

(2):

(([10], 0 1]))
/ \
(10 01,16"<) (10°21,[0_0)
\
(([L 0], [A 0D)) (([o-0], [10))
/
(I Ol o) ([0 01, o)
\ /
(([0-0], [0 0D))

in which e is an arbitrarily small complex number.

The Hasse diagram of Py 3 is given in [24]. The Hasse diagram of Py, ,, with arbitrary m
and n is constructed by the software StratiGraph [23,29,40], which is based on Pokrzywa’s
theorem. The Hasse diagrams for congruence classes of 2 x 2 and 3 x 3 complex matrices
and for *congruence classes of 2 x 2 complex matrices are constructed in [18,25]. The
Hasse diagrams for matrix polynomials are constructed in [20].

The main theorem of the paper is Theorem I from Section 2, which is another form
of Pokrzywa’s theorem. Theorem I gives six types of replacements of direct summands
such that a Kronecker pair A is transformed to a Kronecker pair B by a sequence of
replacements of these types if and only if (A4) < (B). Two principal tools in our proof of
Theorem I are the following:

(a) Theorem /.1, which states that each immediate successor of the orbit of a Kro-
necker pair A is the orbit of a pair that is obtained from A by an arbitrarily small
perturbation of only one of its subpairs of the form

(i) (P,Q), which is an indecomposable Kronecker pair (see (4)) or the direct sum
of two indecomposable Kronecker pairs, and
(ii) (I,J), in which J is a Jordan matrix with single eigenvalue.

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
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Thus, it is sufficient to prove Theorem I for (P, Q) and (I, J); we do this in Sections 5
and 6.
(b) Garcia-Planas and Sergeichuk’s miniversal deformations of matrix pairs under

9,

equivalence; they are given in [27] and are presented in Section 3. In Section
we calculate the Kronecker canonical form of pairs that are close to a pair (P, Q)
from (i). In fact, we calculate the Kronecker canonical form of only those pairs that
belong to the miniversal deformation of (P, Q) given in [27], which is sufficient since
all pairs close to (P, Q) are reduced to such pairs by smooth equivalence transfor-
mations. This simplifies the calculation cardinally since miniversal perturbations do
not change many entries. For example, all matrices that are close to the Jordan
block J3(A) and those of them that form a miniversal deformation of J3(A) are of

the form

respectively, in which the stars are complex numbers.

A miniversal deformation of each Kronecker canonical pair (A, B) was first constructed
by Edelman, Elmroth, and Kagstrom [21]. We use Garcia-Planas and Sergeichuk’s
miniversal deformation given in [27] since it is simpler: it consists of pairs of the form
(A+ X, B+Y), in which all nonzero entries of X and Y are non-repeating independent
parameters. For example the miniversal deformations of (I3, J3())) in [21] and [27] are
families of matrix pairs

A 10
I,|0 X 1
0 0 A

in which a,b,c € C.
The article is organized as follows. In Section 2 we formulate Theorem I about se-

quences of replacements that transform a Kronecker pair A to a Kronecker pair B such
that (A) < (B), and Theorem II that describes when B is an immediate successor of
(A). In Section 3 we recall miniversal deformations of matrix pairs under equivalence
given in [27]. In Section 4 we reduce the proof of Theorem I to the case of pairs that are
direct sums of two indecomposable pairs and to the case of pairs of the form (I, J), in
which J is a Jordan matrix with a single eigenvalue. Theorem I is proved for these pairs
in Sections 5 and 6. Theorem II is proved in Section 7.

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
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2. Main theorems

All matrices that we consider are complex matrices and each matrix pair consists of
matrices of the same size. For each positive integer n, we define the matrices!

1 0 07 0 1 0
Ln = .. . .. ) , Rn = .. . . . ((TL — 1)—by—n),
0 1 0l 0 0 1
A 1 0
A
In(A) == (n-by-n, A € C).
SR
L0 A

We also define the matrices

« _[10...0] . fo..01] . [ 0 o [ o0
0 '—{ 0 } 0 '—[ o |9 =1l10..0" Y =10. 01|

whose sizes will be clear from the context.
The matrix pairs

._ T ._ (T pT I Jn(V) ifAEC
Erm = o f) P = {<Jn(o>71n) e Y

are called indecomposable Kronecker pairs. Leopold Kronecker proved that each matrix
pair A is equivalent to a direct sum of such pairs. This direct sum is called the Kro-
necker canonical form of A; it is uniquely determined by A, up to permutation of direct
summands.

2.1. First main theorem

The closures of orbits of Kronecker pairs are described in the following theorem.

Theorem 1. Let A and B be nonequivalent Kronecker pairs. Then (A) < (B) if and only
if B can be obtained from A by a sequence of permutations of direct summands and listed
below replacements (1)—(vi) of direct summands, in which m,n € {1,2,...} and X\ €
CUoo. The notation P 1 Q means that P is replaced by Q. For each replacement P 1 Q,
we also give a pair that is obtained from P by an arbitrarily small perturbation (which is
defined by an arbitrary nonzero complex number € ) and whose Kronecker canonical form

is Q.

! For each nonnegative integers p and ¢, we denote by 0pq the zero matrix of size p X ¢. In particular,

Ly = Ry = 001. If M is an m X n matrix, then M @ 0pq = [M  Omgq] and M @ 0y = [OM}.
on

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
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Q) L ecl | L &L\ in which m + 2 < n, via the pair

LY 0 RT &0
o || ¢ rT|)
which is obtained by perturbation of LT @& LI
(i) L ® Ly | Ling1 @ Lyp—1 in which m +2 < n, via

L, O R, O
0 Ln ’ 60\ Rn ’
(iii) LL ® Dp(N) | LL 41 @ Dp1(N) (if n =1, then the summand Dy(\) is omitted),
via

([ 2] [ 2ol mee ([ o] [ 2])rm
(iv) Lo ©@Dn(N) | Lint1 ® Dp1(N), via
(AR N (AP RIS

(V) Din(A) @ Dp(N) | Din—1(A) @ Dyg1(A) in which m < n, via

<1m+n, {J”TO(A) jn(’&)D ifrec, <[Jm0(0) jfg)} ,Im+n) i\ = oo,

(vi) LL @ L, | Dy (1) ® -+ ® Dy (i), in which pa, ..., pu, € CUoo are distinct and
ri+---+r,=m-+n—1, via the pair

[1 aq 0 Bi B2 ... Bn]
0 . Qo 1
. 0 .
1 -0 0
0 am | s 1 (5)
1 0 0 1
L 1 0] | 0 1]

that is defined by

H (x— )" =cotcrx+-+epz" tFa (6)
i F00
e(eoy v vyro1,1,0,...,0) = (=1, -y —Pr, ALy ooy Qi )y (7)

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
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in which € is any nonzero complex number.

Pokrzywa [37, Theorem 3] describes the closures of orbits of Kronecker canonical
pencils in the form of systems of inequalities for invariants of matrix pencils (see also
[12, Theorem 2.1] and [22, Theorem 3.1]). Nevertheless, he formulates Lemma 5 in [37]
in the form of replacements of direct summands of Kronecker pairs; such replacements
are also given in [6, Section 5.1] and [16, Theorem 2.2]. In the proof of Lemma 5 in [37],
Pokrzywa also gives arbitrarily small perturbations that produce these replacements.

We will show that the statements (i)—(vi) of Theorem I follow from Theorems 5.1-5.6
by Theorems 4.1 and 6.1.

2.2. Second main theorem

The following theorem was first given by Edelman, Elmroth, and Kagstrom [22, The-
orem 3.2] in the form of coin moves; see also [28, Theorem 2.4] and [5]. We derive it from
Theorem I in Section 7, which can be read independently of Sections 3-6.

Theorem II. Let A be a Kronecker pair. An orbit O immediately succeeds (A) if and
only if O is the orbit of a pair that is obtained from A by exactly one of the following
replacements, which are special cases of the replacements (1)—(vi) of Theorem I:

(i) £heocl | L. &Ll | (m+2 < n) such that if A contains L1, & LT & LT with
m<k<mn, thenn—m =2,

(") Lm ®Ln | L1 ® L1 (m+2 < n) such that if A contains Ly, ® Ly, © L,, with
m<k<mn, thenn—m=2,

(iii") LL®Dn, (N) | LL 1 ®Dg,—1(N) (if A contains pairs of the form LL, and Dy, (X)),
in which m := max{m| LY in A} and n) = max{n|D,()) in A},

(iv') Lm @ Dp, () 1 Lms1 @ Dry—1(N), in which m := max{m|L,, in A} and my :=
max{n|D,()\) in A},

(V') Din(A) @ Dp(A) ] Di—1(A) ® Dpyr(A) (m < n) such that A does not contain
Din(A) & Di(X) & Dy (A) with m < k< n and m <mn,

(vi') LL® Lz | Dy (1) ® - @& Dy (pr) (1, .., € CUoo are distinct and ry +
sty =m+n— 1), in which m = max{m| LT in A}, n:=max{n|L, in A},

and if Di(A) is contained in A then A\ = p; for some i and r; > k.

Remark 2.1. Theorems I and II generalize the following known description (see [22,
Section 2]) of the closures of orbits of Jordan matrices. Let J and J’ be non-similar
Jordan matrices.

o (J) < (J'yif and only if J' can be obtained from J by a sequence of permutations
of Jordan blocks and replacements of pairs of direct summands

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
miniversal deformations, Linear Algebra Appl. (2021), https://doi.org/10.1016/j.1aa.2020.12.009
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o (J')y immediately succeeds (J) if and only if J’ is obtained from J by a permutation
of Jordan blocks and exactly one replacement (8) such that J does not contain
(A ® Ji(A) @ Jp,(A) with m < n and m < k < n.

2.8. Third main theorem

Define the matrices whose sizes will be clear from the context:

e i B CE P B ®

in which ¢ is an arbitrary nonzero complex number that is located in the rth column.
We often write A, and V,. omitting . Set Ay = Vo := 0.

The lower cone of an orbit (A) is the set (A)Y of all orbits (B) such that (A) < (B).
Theorems 5.1-5.6 are used in the proof of Theorem I; however, they are also imply the
following theorem.

%

Theorem IIL. o If A is an indecomposable Kronecker pair, then (A)Y is the one-element

set {(A)}.

e The direct sums of two indecomposable Kronecker pairs have the following lower
cones (in which e is an arbitrary nonzero complex number):

(i) The cone (LT @ LTYV with 1 < m < n consists of the orbits of
Lho oLl . inwhichr >0 andm+r <n—r. (10)
Each pair (10) is the Kronecker canonical form of
(s 1% %))
o LTl o RT '
(ii) (L ® L)Y with 1 < m < n consists of the orbits of
Lotr ® Ly, inwhichr>20andm+r<n—r. (11)
Each pair (11) is the Kronecker canonical form of
L, 0 Ry, 0
(I 2] [aker 2])
(iii) (LT © D,(\)Y withm > 1, n > 1, and X € C U oo consists of the orbits of

Ll @®Dp_r(N), in which0<r < n. (12)

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
miniversal deformations, Linear Algebra Appl. (2021), https://doi.org/10.1016/j.1aa.2020.12.009




LAA:15660

V. Futorny et al. / Linear Algebra and its Applications ess (sees) eso—ses 9

FEach pair (12) is the Kronecker canonical form of
LT o RL A1) . LY V. .1 RL 0 oy
({ 0 IJ’ [ o Lo ) PECS 0 o o0 1)) T
(iv) (L @ Dp(A\))Y withm > 1, n>1, and A € C Uoco consists of the orbits of

Lotr ® Dp_r(N), in which 0 < r < n. (13)

Each pair (13) is the Kronecker canonical form of

L, 0 R, 0 , Jo(0) VI [I, 0 ey
([0 IJ’[A,T Jn(A)DWEC’ ({ 0 Ln|'|0 Rn|) A=
(V) ADie(N) @& Dpu(N))Y with 1 <m < n and X € C U oo consists of the orbits of
Din—r(A) ® Dpgr (), in which 0 < r < m. (14)

FEach pair (14) is the Kronecker canonical form of

<1m+n, {J’”O(A) Jf(a)b ifrec, <[Jm0(0) Jf(%)] ,Im+n) if A = oc.

(vi) (LL @ L£,)Y withm > 1 and n > 1 consists of (LT @ L,,) and the orbits of

rm+--+rp=m+n-—1,

Dy (1) @ -+ @ Dr (n), Hi,..., e € CUoo are distinct.

(15)

Fach pair (15) is the Kronecker canonical form of the pair (5) determined by (6)
and (7).

2.4. Fourth main theorem

Let A be a Kronecker pair whose direct summands are arranged as follows:

A=Lh oL], &---aL]

&P (Pr (M) & D (M) &+ & Di, (W) 16)

® L, ® Ly, ® @ Ly,
my <o <my, ki <o < (i=1,..,8), n <o <ns

The numbers s,t¢,5 can be zero, which means that the corresponding direct summands
in (16) are absent. By the following theorem, each immediate successor of (A) is the
orbit of a pair that is obtained by an arbitrarily small perturbation of only one pair of
conformally located upper diagonal blocks of A.

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
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Theorem IV. Let A = ([Ayj],[A};]) be a Kronecker pair of form (16) partitioned into
blocks Ai; and Aj; such that the pairs of diagonal blocks (A1, A1;), (Aaz, Asy), ... are
the direct summands

£T

my

o Lh L Dy (M), Dy, (M),

M (17)
cos D )seevs Dis, M)y Loy Ly

of (16). Then each immediate successor of (A) is the orbit of some matriz pair that is
obtained from A by an arbitrarily small perturbation of only one pair (Aij,A’ij) with
1 < j of its upper diagonal blocks.

Theorem I implies Theorem IV since all perturbations in (i)—(vi) applied to (16)
are upper block-triangular. We move backwards in the next sections: we first give an
independent proof of Theorem 4.1, which is a weak form of Theorem IV. Using it, we
prove Theorem I in Sections 5 and 6.

3. Preliminaries
3.1. Mingversal deformations of matrices

Vladimir Arnold [2] defines a deformation of a square complex matrix A as a matrix
A(yi,...,y:) of the same size with entries that are power series of complex variables
Y1, - - -,y convergent in a neighborhood of (0, ...,0) with A(0,...,0) = A. A deformation
is linear if its entries are linear polynomials:

A(yl,...,yt):A+A1y1+"'+Atyt, A,A17...7At GCnxn.

Arnold also considers a deformation A(yi, ..., y:) as a family of matrices with parameters
Y1, - -,y If all matrices A+ X close to A can be reduced to matrices from this family by
a similarity transformation S(X)™'(4+ X)S(X) in which S(X) is a deformation of the
identity matrix whose parameters are the entries of X, then the deformation A(yy, ..., y:)
is called versal. A versal deformation A(yi,...,y;) with the minimum number ¢ is called
mingversal.

For example, all matrices J3(A) + X that are close to J5(\) can be reduced to the

form
A1 0 0 0 O
0O X 1|+]0 0 O (18)
0 0 A Y1 Y2 Y3

by similarity transformations that are close to the identity and depend analytically on
the entries of X. The matrix (18) is a linear miniversal deformation of J3(}\).
Let us formulate Arnold’s theorem. We denote by OIT)q (respectively, O},q, 054> and 0.7)

the p X ¢ matrix, in which all entries are zero except for the entries of the first row

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
miniversal deformations, Linear Algebra Appl. (2021), https://doi.org/10.1016/j.1aa.2020.12.009
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(respectively, last row, first column, and last column) that are stars. We usually omit
the indices p and ¢. For example, the second summand in (18) is 0§3.
We arrange the Jordan blocks in a Jordan matrix with a single eigenvalue A as follows:

Ty ks (A) = Ty (A) @ -+ @ T, (), ky <kg <--- < k.

Define the matrix with stars:

Ty (V) + 0 0 0c 7
_ 0t T, (A) + 0
ey k(A 1= (19)
O(*
L 0 o Tk (A) + 0%

Arnold’s linear miniversal deformations of Jordan matrices are given in the following
theorem, which is proved in [2, Theorem 4.4]; see also [3, Section 3.3] and [4, §30].

Theorem 3.1 (Arnold [2]). Let a Jordan matriz be written in the form

kip < kg <0 < ks,
I = Tk (A1) B @ Ty, (M), A1, 1 s Al é C are distinct.

Then all matrices J + X that are sufficiently close to J can be simultaneously reduced
by some similarity transformation

S(X) is analytic

T+ X o SX)TI+X)SX), 4 nd S(0) = 1,

(20)

to the form

J = jkn,“.,klsl AM)@-- @ jk“,...,klsl (A1), (21)

in which the stars are replaced by complex numbers that depend analytically on the entries
of X at 0. The number of stars is minimum that can be achieved by similarity transfor-

mations of the form (20); this number is equal to the codimension of the similarity class
of J.

A constructive proof of Theorem 3.1 by elementary transformations is given by Kli-
menko and Sergeichuk [31]. Many applications of miniversal deformations are given by
Mailybaev [26,32-34]; he constructs a smooth similarity transformation (20) in the form
of Taylor series. The radius of a neighborhood of J in which all matrices J + X are
reduced to the form (21) by transformations (20) is calculated in [11].

Please cite this article in press as: V. Futorny et al., Perturbation theory of matrix pencils through
miniversal deformations, Linear Algebra Appl. (2021), https://doi.org/10.1016/j.1aa.2020.12.009
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3.2. Mingversal deformations of matrix pairs

Denote by Z,, the p x ¢ matrix with p < ¢, in which the first ¢ — p entries of the first
row are the stars and the other entries are zeros:

* ... x 0 ... 0
Zpq = oo, PSG
0 0

we usually omit the indices p and q.

Arnold’s notion of miniversal deformations of matrices under similarity is naturally
extended to matrix pairs under equivalence. A linear miniversal deformation of complex
matrix pencils was first constructed by Edelman, Elmroth, and Kéagstrom in the article
[21], which was awarded the STAM Linear Algebra Prize 2000 for the most outstanding
paper published in 1997-1999. Their miniversal deformations contain repeating parame-
ters (see (3)), which complicates their use in the proof of Theorem I. We use the following
miniversal deformations.

Theorem 3.2 (Garcia-Planas, Sergeichuk [27, Theorem 4.1]). Let A be a Kronecker pair
of form (16), in which A\1,..., \t—1 € C are distinct and Ay = co. Then all matriz pairs
A+ X that are sufficiently close to A can be simultaneously reduced by some equivalence
transformation

matrices R(X) and S(X)
A+ X = RX) YA+ X)S(X), are analytic at (0,0), (22)
R(0,0) =1, and S(0,0) =1,

to the form
-7 4 " -
_ 1 - Ry, Z2 ... Z |0 0
Lz;H 0 0 ! . loT o7
LZLZ o* — — R%;z." : 0
0] .|07 .. 0 oz
L. ot Rﬂé 07 o
/0 0 ’ J 0] 0< 0 (23)
e 1 0
Jy| 07 . 07
T Ry, ZT .. ZT
0 '.. 0 . .-' :
LnQL Rng ZT
L ni . L na
in which

t—1
T = Thrkr, M)y Jo = Ty, (0)
=1
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(see (19)) and the stars are replaced by complex numbers that depend analytically on the
entries of the pair X at (0,0). The number of stars is minimum that can be achieved by
equivalence transformations of the form (22).

Thus, the family of matrix pairs (23) is a linear miniversal deformation of the Kro-
necker matrix pair (16). The summands of each of the types in (16) and the corresponding
horizontal and vertical strips in (23) can be absent.

By a miniversal pair we mean a matrix pair that is obtained from (23) by replacing
its stars by complex numbers. We use the Frobenius matrix norm

Iaislll == \/ZU lai;|>, ay €C. (24)

For a matrix pair A = (A, A’), we write || A]| :== /||4||? + ||A’||?> and define its neigh-
borhood

Ny (A) :=={B|[|B— Al <r},
in which r is a positive real number.

Remark 3.1. Let A be the matrix pair from Theorem 3.2. Let N,.(A) be its neighborhood,
in which all pairs are reduced to the form (23) by an analytic transformation A+ X +—
A+ X from (22). Since it is analytic, there is a positive ¢ € R such that

1X]| <c|X||  forall A+ X € N,(A).

Hence, each pair in N,(A) is equivalent to a miniversal pair from N,.(A). Thus, if a
Kronecker pair B is equivalent to a pair in an arbitrarily small neighborhood of A, then
B is equivalent to a miniversal pair in an arbitrarily small neighborhood of A. We use
this fact in the proof of Theorem I.

Miniversal deformations were also constructed for matrices under congruence [17] and
*congruence [19], for pairs of symmetric matrices under congruence [15], for pairs of skew-
symmetric matrices under congruence [14], and for matrix pairs under contragredient

equivalence [27].
3.8. Weyr canonical form

The Weyr characteristic of a square matrix A for an eigenvalue A is the non-increasing
sequence (my,ma, ... ), in which m; is the number of Jordan blocks J;(\) of size I > i in
the Jordan form of A.

Let A be a matrix with the single eigenvalue 0, and let (mq,ma,...) be its Weyr
characteristic for 0. In the proof of Theorem 6.1, we use the fact that A is similar to the

matrix
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Om, P 0
O, I,
W= ma o Fo= M| (25)
o
0 Omk

which is permutation similar to the Jordan canonical form of A. Sergeichuk [39] sug-
gested to call W the Weyr canonical form of A. Now this term is generally accepted; see
historical remarks in [36, pp. 80-82]. Each matrix with distinct eigenvalues A1,..., A is
similar to a Weyr matrix (M I+ W)@ - ® (A + Wy), in which W7, ..., Wy are of the
form (25).

Applying the permutation of rows and columns of (19) that transform Jg, ., (\)
to its Weir canonical form, Klimenko and Sergeichuk [30] obtain a matrix in which all
stars are on the main diagonal and under it. Thus, if we replace each Jordan matrix
Dy, (M) © -+ @ Dy, () in (16) by the transpose of its Weyr canonical form, and use
such matrices instead of J and Jy in (23), then we obtain a matrix in which all stars
are on the main diagonal and over it. The obtained matrix defines an upper triangular
miniversal deformation of a Kronecker pair in which Weyr matrices are used instead of
Jordan matrices.

4. A direct proof of a weak form of Theorem IV

Due to the following theorem, which is a weak form of Theorem IV it suffices to prove
Theorem I for all matrix pairs (16) with two direct summands and for all matrix pairs
of the form Dy, (A) @ - - @ Dy, (A).

Theorem 4.1. Let A = ([Ay5], [A};]) be a Kronecker pair of form (16) partitioned such
that the pairs of diagonal blocks (A11, Aly), (A22, Abs), ... are the direct summands (17).
Write

D, = DkLl()\l)@@,ka?(Al)a 1=1,....t.
Then each immediate successor of (A) is the orbit of some matriz pair obtained from
A by an arbitrarily small perturbation of only one pair (A;j, Aj;) with i < j that is not
contained in D1, ..., Dy, or of only one pair (Aij, Aj;) from D1, ..., Dy.

Proof. Besides the partition of the matrices of A = (A, A’) into the blocks A;; and Al

we also consider the partition of A and A’ into the superblocks obtained by joining all
strips that correspond to the same eigenvalue. Thus, the diagonal superblocks form the
matrix pairs

ET

my?

T
o LD Dy, Dy Ly, e L,
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Let (B) be an immediate successor of (A). Then there exists a sequence
By = (B1,By), By = (By,B)), ... (26)

of pairs from (B) that converges to A. All matrix pairs close enough to A are reduced
to the miniversal form (23) by a smooth equivalence transformation that preserves .A.
Hence, all pairs (26) can be taken in the miniversal form (23), which is upper superblock
triangular.

We say that a block (superblock) of B; or B; in (26) is perturbed if it differs from the
corresponding block (superblock) of A or A’.

Case 1: There are infinite many pairs (26), in which at least one upper diagonal
superblock is perturbed.
Then there is a partition

A:<[M O] {M’ O’}) M and M’ are m x m/,

0 N 0o N O and O’ are zero (27)

that is coarser than the partition into superblocks, with the property: O or O’ is per-
turbed infinitely many times in the sequence (26). We can suppose that O or O’ is
perturbed in each pair (26).

Let the partition
B — M; O; M! O]
L 0 N;|'| 0 N

be conformal with (27). Write & := (||O;]| + ||O}]])~!, in which || - || is the Frobenius
matrix norm (24). Define the equivalent pair

7 ._|Im 0 Iy 0| _ (I M; &O;| [ M] &O;

sy gulul's G = ([0 LT ) ew
Then [|£0;] + [1£:O;|| = 1, and so the set of matrix pairs (£;0;,§;0;) is compact. Chose
a fundamental subsequence (&;, O, , &, O}, ) and denote its limit by (Q, Q’). Consider the

(¥ )1 #)

We have (B) > (X) since all B;, € (B) and B;, — X as k — c.

Make additional partitions of X into blocks conformally to the partition of A =
([Asj], [A%;]) in the theorem. Choose in (Q,Q’) the nonzero pair (X, X’) of conformal
blocks X and X’ such that all columns of @ to the left of X and all blocks of @ exactly
under X are zero, and all columns of )’ to the left of X’ and all blocks of Q' exactly
under X' are zero:
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[ M 0] 0 = =7 [M 010 = %]
My 0 X M} 0 X' «
PO N T3 0 Mo 0 =«
B N 0|’ N| 0
0 Ny 0 N
i 0 Ny | L 0 N3 |
Write
o M|Y | [ MY
“\lo|N]] o0 \N’
[ M, 0 0 07 [M 0|0 0 07
M, 0 X 0 M} 0 X' 0
B 0 Ms| 0 0 O 0 M0 0 O
B Ny 0|’ N| 0
0 Ny 0 N}
i 0 Ny | | 0 N3 |

Then

as e—0

(In@e ' T e 21X (I, ©el ®e%ly) ),

in which a x b is the size of My and M7, and ¢ x d is the size of N3 and Nj. This implies
that (X) > (V). Since

Im 0 Im/ 0 o M €Y M Y’ ase—0
= Sl = (8 ST W) e

we have that () > (A). Therefore, (B) > (X) > (V) > (A).

In order to prove that ) is a desired pair, it suffices to prove that ()) # (A) (which
implies (B) = ()) > (A) because (B) is an immediate successor of (A)).

On the contrary, suppose that () = (A). Since ). is equivalent to ), we have
Y. € (A) for each e. Hence there exist nonsingular matrices, which we take in the form
I+ R. and I + S., such that

V.= (I+R)AI+S.) = A+ R.A+ AS. + R.AS..

By Lipschitz’s property for matrix pairs (see [38] or [1]), we can choose the matrices R,
and S and a positive constant ¢ € R such that

|IR:|| <ec and [|Se] < ec for all ¢, (28)

in which || - || is the Frobenius matrix norm (24).
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The pair ). is in the miniversal form (23) for (27) since all nonzero entries of @ and
Q' are at the places of some stars. By the construction of miniversal deformation (23),
which is given in [27, Theorem 4.1], the pair

0

0
0
0

coo
()
coo

O |lo™o
coo

AY, =Y. —A=¢ =R.A+ AS. + R.AS. (29)

O |loxo

0]
does not belong to the space
T :={RA+ AS|R and S are nonsingular matrices}
(which is the tangent space to (A) at A). Thus,
de :=min {||V. — A— RA— AS||| R and S are square matrices} # 0.

(which is the distance from Y. to the affine space {A+ RA+ AS|R,S}).
Let R" and S’ be such that

di= V1 —A-RA-AY| =AYV, — R A- AY|.
By (29), AY. = AV, and so edy = ||[AY. — (eR')A — A(eS")| = d.. By (28),
edi < [|AY: — ReA — AS.|| = |R-AS: || < | RN 1S:] < 2| Al

This leads to a contradiction since ed; < €2¢?||A|| does not hold for a sufficiently small
€.

Case 2: There is only a finite number of pairs (26) in which at least one upper diagonal
superblock is perturbed.

Let AN, A®) . be the pairs of diagonal superblocks of A, then A = AV AP . ..
We can suppose that all upper diagonal superblocks are not perturbed, and so B; :=
Bgl) & 352) @---, in which Bgl), BZ@, ... are the pairs of perturbed diagonal superblocks
of B; in (26).

Since all B; ~ B (the symbol ~ means “equivalent”), we can suppose that B;l) ~
Bgl) ~ -+ for each I. Since A ~ B, we have AY) ~ Bgl) ~ Bgl) ~ .- for some [. Then all

_ 1
C; ;:A(U@...@A(Z 1)@B§)@A(l+1)@...
are equivalent and (C;) = (C1) > (A). Moreover, (B) > (C1) because
BYVg...eoB" Vg Bil) @B @... iz, C.

There is no intermediate orbit between (A) and (B), and so (B) = (C1). O
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5. Perturbations of direct sums of two indecomposable Kronecker pairs
; T T
5.1. Perturbations of L1 @ L;,
Theorem 5.1. For the Kronecker pair

£l ot m < n, (30)

its miniversal deformation from Theorem 3.2 is given by the matriz pair

RT ‘ a1 ... Op_1q
. 0 : (31)
o| &Y
in which
(01, 1) = (%,...,%0,...,0). (32)
—

(a) If the stars in (32) are complex numbers that are not all zero, then (31) is equivalent
to one of the pairs

T T
‘Cm-‘rr D En—r’

m+r<n—r, r>1. (33)

(b) Each pair (33) is equivalent to a pair of the form

({L(?Tn LOZ] ’ H)ﬁ AJ%ETLE)D v (34)

in which Ay (g) is defined in (9) and € is an arbitrary nonzero complex number.
(¢) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-
hood of (30) consists of the pairs
Ll oLl

e —r m+r<n—r, r=0.

Lemma 5.1. Each pair of n x (n — 1) matrices of the form

rl %7 Mk % %7
0o 1 . 1 *
0 . x| 1 % (35)
.1 L%
L0 041 LO 1]
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is reduced to LT by simultaneous additions of columns from left to right and simultaneous
additions of rows from the bottom to up.

Proof. Consider the subpair P of (35) obtained by removing the last row and last column
in the matrices of the pair (35). Reasoning by induction on n, we suppose that the subpair
P is reduced to £I_; by simultaneous additions of columns of its matrices from left to
right and simultaneous additions of rows from the bottom to up. We obtain (35) in
which all entries that are marked by stars are zero except for some entries of the last
columns. We make zero the entries of the last column in the first matrix by adding the
other columns simultaneously in both matrices; then we make zero the stars of the last
column in the second matrix by adding the last row. O

Proof of Theorem 5.1. (a) Let the stars in (32) be complex numbers that are not all
zero, and let a be the first nonzero entry. Then

1<s<n—m. (36)

Let (C, D) be the matrix (31); we will reduce it by simultaneous elementary transforma-
tions to the form (33). We usually specify only transformations with one of the matrices
C and D; it is understood that we make the same transformations with the other matrix.
We divide the first horizontal strips of C' and D by «g, then multiply the first vertical
strips by as, and obtain (32) with a5 = 1. Consider the obtained pair

C11|C’12} [D11|D12]>
C,D) = ,
( ) ( {021 |C22 Doy |D22
1 m—1|1 s s+m—1 1 m—1|1 s s+m—1
1 : : 0 0..01:x * kLK1
0--. 1. :
1 . 0 :
0 1 . m
1 0 : 1
0:-,1 1 0 :
= N o I 10 o (S
] 0]1 0 110 s+1
0 . 0. Q. 1.
U\ o1 .0 -0
0f_._._. 01 _. (A 10 s+m
0 -, 1
R | .0
0 1

We denote by 8 the entries in (37) that are transformed to —1 and then are restored to
0 during the following simultaneous elementary transformations, which make zero the
entry “1” under as:
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o The strip [D11 Di2] is subtracted from the substrip formed by rows s+1,5+2,...,s+
m in the strip [D2; Das]. Thus, the block (1,1) is subtracted from the rectangle in
the block (2,1) (see (37)).

e Then the substrip formed by columns s+1,...,s+m—1in [g;z } is added to [g; } .
Thus, the rectangle in the block (2,2) is added to the rectangle in the block (2,1)
restoring it.

We obtain
M1 b Fx ... x|0 0 1]|=x* * 7]
0" 1 0
1 :
0 1
1 0
1 -
1 10
1 * * * ..k
0" 1 0
1
L 0. L 1

in which the stars denote complex numbers. Interchanging the first and second vertical
strips, then the first and second horizontal strips, we obtain

[ C11|C12|Ch3 D11|D12| D13
(C,D) = C21|Ca2|Co3 |, | Da1|Daa|Dos
| C31|C32|Css D31 | D32 | D33
. T
0-. o
| .0
: 01 10
0l 1] * * | x *
01 1 0
= 0 .. 5 1 ?(39)
1
0 1
0x ..ox|1 * * | % ¥
. . '-' * '.'
L 0 04 . 1

in which we replace by stars some zero entries of the blocks Csy and Dss.

Using transformations from Lemma 5.1, we make zero all stars in Dss; the forms
of the other blocks do not change. Make zero row 1 of D3o by adding rows 2,3,... of
horizontal strip 2 to row 1 of strip 3 simultaneously in C' and D. Make zero row 1 of C3o
by adding column 1 of vertical strip 3 simultaneously in C' and D. Then, adding rows
3,4, ... of strip 2 to the row 2 of strip 3, we make zero row 2 of D3s. Adding column 2
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of vertical strip 3, we make zero row 2 of Csq, and so on until we obtain (39) in which
all stars in horizontal strips 3 of C' and D are zero.

Using Lemma 5.1, we make zero all stars in Dyo. Multiplying horizontal strips 2 in
C and D by an arbitrarily small number and then dividing vertical strips 2 by the
same number, we make the entries of Day3 arbitrarily small; these transformations do not
change the other blocks. We obtain the pair that is equivalent to the initial perturbed

pair (31) and that is obtained from £I . @& LI _ by an arbitrarily small perturbation,

m-+s
in which s as in (37) and satisfies (36). If m + s > n — s, then we interchange L], ,
and LI and reduce the obtained pair by equivalence transformations to its miniversal
form.
We obtain
LY, 1 0

in which the stars are sufficiently small complex numbers. By (36),
m <m' :=min(m + s,n —s) <n' :=max(m + s,n — s).

We repeat this procedure until we obtain a pair

in which all stars are zero, and m < m®) < n®. Thus, (40) is of the form (33).

(b) Let £, @ LT be the pair (33); we must prove that it is equivalent to (34).
We divide the first horizontal strips of (34) by e, then multiply the first vertical strips
by €, and obtain the pair (37) in which all stairs are zero. The obtained pair is reduced
as above to (38) in which all stairs are zero. This pair is permutation equivalent to
L err .

m—r

(c) This statement follows from (a), (b), Theorem 3.2, and Remark 3.1. O

Example 5.1. If m = 2 and n = 8 in (31), then (a1, ..., a7) = (%, *,*,%,%,0,0). The pairs

Ly 0 Ry A(e) : _
({O LST}’[O RT withe#0Oandr=1,2,3,4,5

are equivalent to LI & LY, LT o LT, LT o LT, ¥ o L], LT & LT, respectively. We obtain
both £I & £T and £T & L7 since they are not reduced one to the other by equivalence
transformations that are close to the identity; whereas the pairs that are close to A are
reduced to the form (23) by smooth transformations (22) that are close to the identity.
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5.2. Perturbations of L, ® L,
Theorem 5.2. For the Kronecker pair
Ly, @ Cn; m<n, (41)
its miniversal deformation from Theorem 3.2 is given by the matriz pair (CT,DT), in
which (C, D) is the pair (31).
(a) If the stars in (32) are complex numbers that are not all zero, then (CT,DT) is
equivalent to one of the pairs
Lontr @ Ly—r, m+r<n—r, r>1 (42)
(b) Each pair (42) is equivalent to a pair of the form
L, 0 R, 0
0 L,|'[A.(&)T R,|)’
in which A, () is defined in (9) and ¢ is an arbitrary nonzero complex number.
(¢) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-
hood of (41) consists of the pairs
Lotr @ Lyr, m+r<n—r, r=>0.
Proof. This theorem is obtained from Theorem 5.1 by matrix transposition. 0O
5.3. Perturbations of LT @ D,,(\)
Theorem 5.3. For the Kronecker pair
LT oD,(\), AeCUoo, (43)

the matriz pair (23) of its miniversal deformation without stars in the diagonal blocks is

ifAeC

LoD\ =1 /- - (44)

S R N if A=o00

in which (aq,...,0p) = (%,...,%).
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(a) Let the stars in (44) be complex numbers that are not all zero, and let s be the
first nonzero element in (o, ...,ay). Then (44) is equivalent to the pair

‘Cﬁ-i-n—s-i-l S DS—l ()‘) (45)

(b) Each pair (45) with s € {1,...,n} is equivalent to a pair of the form
LT 0 RL  A(e) ;
({o In]7{o L) FAEC
Ly V()| [Ry 0 .
({ 0" a0y [0 1)) TAE

in which A,(e) and V.(¢) are defined in (9) and € is an arbitrary nonzero complex

(46)

number.
(¢) The set of Kronecker canonical forms of all pairs obtained by perturbations of the

blocks (1,2) in (43) consists of the pairs
LT

m-+r

@ Dp—r(N), in which 0 < r < n.
Proof. Let (A, B) be the pair (43) with A = co. Write

0 1

Zy, = o (p-by-p).
1 0

Since (RL, LL) = Z,, (LY RT)Z,,_1, we have that (B, A) is equivalent to the pair (43)
with A = 0. Therefore, it suffices to prove the theorem for A € C.

Let (A, B(\)) be the pair (43) with A € C. By Lemma 5.1, the pair (4, B(A) — AA) is
equivalent to (A, B(0)). Therefore, it suffices to prove the theorem for A = 0. In the rest
of the proof, we set A = 0. Then (44) in which aq,...,a, € C is

Ciu|C Dy | D
(. D) = 11| Ca = | D1»
Ca ‘ Ca2 Dy, ‘ Ds
M1 1 [o o] Qg ... an_
Y L0 0
1
— : (47)
1 0 1
1 0
0 0
: 1
i 1] 0
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(a) Each matrix that commutes with J,,(0) has the form

K1 Ko - Knp

K, = K1 - |l Ky,.e.. kn €C. (48)
. o
0 K1

The equivalence transformation

(I, ® K;)(C,D)(I;n_1 & K,,), k1 #0 (49)
replaces (aq,...,a,) by
(a1, ., an) Ky = (1K1, 1Ky + agky, .o, 1Ky + -+ - + apky) (50)

and does not change the other entries of C' and D. Let as be the first nonzero entry in
(a1,...,a,). Using transformations (50), we make (ai,...,a,) = (0,...,0,1,0,...,0)
with “1” at the position s.

Let first s = 1. Then

(Zm D In)(c’ D)(mel @ I’ﬂ) = (Rrj;L+n7 LﬁJrn) ~ (Lngn? RZ;LJrn)?

which is a pair of the form (45).

Let now s > 2. The “1” under oy = 1 is the (s — 1, s)th entry of the block Doy (see
(47)). We make zero this entry of Dyy by the following elementary transformations:

e Case 1: m < s. We subtract the rows 1,2,...,m of the first horizontal strip from
the rows s — 1,5 — 2,...,s —m of the second horizontal strip, respectively, in C' and
D. Then we add the columns s — 1,5 — 2,...,s — m + 1 of the second vertical strip
to the columns 1,2,...,m — 1 of the first vertical strip in C' and D. For example, if
m =3, n =06, and s =5, then

T0] 0ol . 1
01 i 10 A
00 : 01 : ;
1. = ] 0.1: =«
(C,D)=|[0o0] 1f0 0 .joa] 0fT o ;
08 10 80 01
8 0f. . 01) . ] 00f. . 00f1_.
: 1 : 01
1 L0

we denote by 8 the zero entries that are transformed to —1 and then are restored to
0.
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e Case 2: m > s. We subtract the rows 1,2,...,s — 1 of the first horizontal strip from
the rows s — 1,5 — 2,...,1 of the second horizontal strip, respectively, in C' and D.
Then we add the columns s—1,s5—2,...,1 of the second vertical strip to the columns
1,2,...,5 — 1 of the first vertical strip in C' and D. For example, if m = 5, n = 4,
and s = 3, then

10 00 1
O 1) 4] 10} .1
0;1 ; 1:0 ;
01 : 10 :
Cpy=|L—"o ¢ || 1]
08 10 80 01
8 0] .. 01f. .| 00]... 001 |
: 1 : 01
1 -0

Therefore, for each s the pair (C,D) is reduced to the pair (C’,D’) that is ob-
tained from (47) by replacing (a1,...,a,) by (0,...,0,1,0,...,0) with a; = 1 and
by replacing the entry “1” under a, by 0. Then (Z,, ® I,)(C',D')(Zpm-1 @ I,) =
(RE o oits LY 1) @ (Ls—1, Js—1(0)) ~ LI . @& Dy_1(0), which is a pair of the
form (45).

(b) The pair (46) with A = 0 is the pair (47) in which (aq,...,a,) = (0,...,0,£,0,...,
0) with € # 0 at the place s. Reasoning as in part (a), we reduce it to the pair (45).

(c) Because of the statement (a), it is sufficient to prove that all pairs in a sufficiently
small neighborhood of LI & D,,(0) that are obtained by perturbations of its blocks (1,2)

are reduced to the form (44) with A\ = 0 by transformations (22). To keep matters clear,
let us prove it for m = 3 and n = 2; that is, for the pairs

1 0|z11 712 0 0|y11 Y12
0 1|z21 woo 1 0|y21 y22
00|w31 w32 |, | 0 1|ys1 yso , (51)
00| 1 O 00| 0 1
00| 0 1 00| 0 O

in which all z;; and y;; are sufficiently small complex numbers. We successively make
(231, 232) = (0,0) by adding rows of the second strip, (ys1,y32) = (0,0) by adding the
second column, (z21,x22) = (0,0) by adding rows of the second strip, (ya1,y22) = (0,0)
by adding the first column, and (z11,z12) = (0,0) by adding rows of the second strip.
We obtain (51), in which all x;; and y;; are zero except to y11 and y12. O

5.4. Perturbations of Ly, ® Dp(N\)

Theorem 5.4. For the Kronecker pair

Ly ®Dn(A), A€ CUo, (52)
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the matriz pair (23) of its miniversal deformation without stars in the diagonal blocks is

if\eC

L ®Dp(N) =

if A =00

in which (a1, ..., 0p) = (%,...,%).

(a) Let the stars in (53) be complex numbers that are not all zero, and let o, be the
last nonzero element in (

a1, .,ap). Then (44) is equivalent to the pair
Lotr @ Dp—r(N). (54)

(b) Each pair (54) with r € {1,...,n} is equivalent to a pair of the form
L, O Ry 0 ,
([ o) [alor ain]) mrec

({Vf(?)T JH?O)H%” PD if A =00

in which € is an arbitrary nonzero complex number.
(c) The set of Kronecker canonical forms of all pairs obtained by perturbations of the
blocks (1,2) in (52) consists of the pairs

Lmtr ® Dp—r(N), in which 0 < r < n.

Proof. The mapping

0 1

I, — 0 I, O
AH{ 0 ZH}AT[O zn]’ Zo:=| | (nbyn)
1 0

transforms the matrices from Theorem 5.3 to the matrices from Theorem 5.4. O
5.5. Perturbations of Dy (N\) @ Dp(N)
Theorem 5.5. For the Kronecker pair
Din(N) @ Dp(N), m<n, A€ CUoo, (55)

the matriz pair (23) of its miniversal deformation with stars only in the blocks (1,2) is
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Im(A) A .
(Im+n,7 |: mO Jn(>\):|) Zf)\ S (C, a;
m 1 — 79
([ 0 Jn(())] ,Im+n) if A = o0,
in which o, ..., q,, are stars.
(a) Let ax, ..., am in (56) be complex numbers that are not all zero. Let v, be the last

nonzero element in this sequence. Then (56) is equivalent to the pair
Dm*T()‘) @ DnJrr()‘)' (57)
(b) Each pair (57) with r € {1,...,m} is equivalent to the pair (56), in which
(a1,...,am) = (0,...,0,6,0,...,0) and ¢ is an arbitrary nonzero complex number in
the r-th position.

(¢c) If a given Kronecker pair K is equivalent to a pair in an arbitrarily small neigh-
borhood of (55), then K has the form Dp,—r(A) ® Dyyr(A) with r € {0,...,m}.

Proof. This theorem follows from Theorem 6.2 by the reasons that are given at the
beginning of Section 6. O

5.6. Perturbations of E% ® L,

Theorem 5.6. For the Kronecker pair
£l @ L, (58)

the matriz pair (23) of its miniversal deformation is

[1 ar | [0 Bi B2 ... B
0 . (6% 1
. 0 .
1 : . 0
O am ) ]- ) (59)
1 0 0 1
0 0 I
I 1 0] [ 0 1]

in which all o; and B; are stars.
(a) Let the stars in (59) be complex numbers that are not all zero. Let

<_61a"'7_6naa17"'aam) :5(607-~-;C’r7171a07'"70)7 57&07
——
120 (60)
coterr+- ez bal = (- A)" (= A"
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with distinct A1, ..., As € C. Then (59) is equivalent to the pair
Dry(M1) @ B Dy, (As) ®Di(0). (61)
(b) Each pair (61) with distinct \1,..., s € C, positive r1,...,75, and I > 0 is
equivalent to the pair (59), in which aq,...,am, B1,. .., By are determined by (60) and
an arbitrary nonzero € € C.

(c) The set of Kronecker canonical forms of all pairs in a sufficiently small neighbor-
hood of (58) consists of (58) and the pairs

Dr (M) B -+ @Dy, (M), M4, =m4n—1
with distinct eigenvalues A\q,..., A\ € C U oo.

Let us denote by Pgll (ZZ the pair (59) in which aq,...,qm, B, .., B are complex
numbers.

Lemma 5.2. If (C,D) = P35l """, then (DT,CT) ~ ’Pi:lngi
Proof. We have the equivalences of pairs
Ly, | 0
et
T AT\ _
B' a1 ...
[ B1 .
Rl = 0 LT 0
~ B ) aq (8700
0| R 0 L
i B Q..o Q1]
T . T
N L 0 R, 0 _ B fh
g | o
0| Lm 0 Ry ]

in which the third pair is obtained from the second by reversing the order of rows in
each horizontal strip and reversing the order of columns in each vertical strip. 0O

Proof of Theorem 5.6. (a)&(b) By Theorem 3.2, there is a neighborhood of (58), in
which each pair is equivalent to the pair

QU

P (62)
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for some aq, ..., Qm, 81, .-, Bn-
Case 1: oy # 0 4n (62). In this case, Pglloén ~ (Im+4n—1,®P) with
—Cm4+n—2 .- —C1 —Co
0 0
P .= , (63)
0 10
(CO e 7cm+n—2) = Oé:nl(*ﬂl, ey 7[3”,(11, e ,Oém_l) (64)
because
Por Qa1 ®© Zn) = (Qum ® Zn—1)(Imn—1,P), (65)
in which
Om  Opm—1 Qp_2
. 0 1
Q. Oy i
Qp = Lo by, 2= (p-by-p)-
Qi . 1 0
L O -
For example, if m = n = 4, then (65) takes the form
7100 ar] [0 0 03 BafBsp] | [ 22 ]
010 o 100 43
001 Qs 010 Q4
000 ag|,]1 001 1
1000 0100 1
0100 0010 1
L 00104 [ 000 1] 1
r 7 [ —c6 —c5 —ca|—c3 —c2 —c1 —co |
Qg4 (i3 (g O
Qg Qi3 02 1 0 O
Qg O3 0 1 0
= 054 177 0 O 1
1 0
1
1
L _ L 0 ]
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in which
as(co, c1,C2,€3,¢4,C5,C6) = (=1, —PB2, —P3, —Pa, 01, a2, 3).

The Jordan canonical form of (63) is J,, (A1) @ - -- @ J,_ (As) with distinct A1,..., A5 €
C; its characteristic polynomial is

(ZC — )\1)T1 cee (iL’ — )\S)Ts = Cp +cir+---+ Cm+n_2.’£m+n_2 + xm+n—1

(66)
= a;l(_ﬂl — fox — - — ﬂn.f(}n_l +arz” + a233"+1 4+ ammm-i-n—l).
We have proved that
Po %~ (L) ~ Dy (M) @ - © D, (A) i am £0, (67)

which is a pair of the form (61) with [ = 0. This proves the statement (a) in Case 1.
By (67), each pair (61) with distinct eigenvalues A1, ..., A\s € C and [ = 0 is equivalent
to Pg:%: defined by (66). Since (64) holds, Pgllo;;: is the pair (59) defined by (60)

with € = a;,. The pair Pgll C;g: is also equivalent to the pair (59) defined by (60) with
an arbitrary nonzero ¢ since

(U5 2] 0 2D b =[5 s (5 2] 1% &)
0 Ln ’ 0 Rn 0 6In o 0 5In—1 0 Ln ’ 0 Rn

(68)
for an arbitrary nonzero é. This proves the statement (b) if all \; # oo.
Case 2: a, 20 = g1 =+ = ayy for some k < m in (62). Let us show that
aY...0p, ai...a 0...0 Q... O .
Pay g =Py~ Par e @ (Jn—k(0), Im—k) if o, # 0. (69)
For clarity, we first prove (69) in the following special case:
a1 a200 a1 o .
7351162%354 ~ Pﬁlﬂ125;54 @ (JQ(O), IQ) lf (6%} 7é O (70)

The first pair in (70) is

100 a1 000|B Bo By Bu]
010 o) 100
001 0 010
(C,D):=]1]1000 0,001 , ag # 0.
100 0 01 0 O
0100 0O 0 1 0
I 0010 | 00 0 1|

It is sufficient to make zero the entry (2,2) of C; i.e., to prove that
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F10 0 al [0 0 0B B2 Bs B
0 00 o) 1 00
0f{0 1 0 0|11 0
(C,D) ~ 0{0 0 0Of,[0]0 1 (71)
1 0 00 0100
0100 0010
L 0010 000 1
since the pair ([8 é] , [(1) ?]) in the squares is a direct summand. We make this zero

preserving the other entries by the following sequence of elementary transformations
with (C, D):

o Substituting column 7 multiplied by a5 ! from column 2, we make zero the entry
(2,2) of C:

[1%0 o 0% 0B B2 B3 B
000 Qo 100
001 0 010
000 0,001
100 0 01 0 0
0100 0 010
i 001 0[] [ = 000 1)

This transformation may spoil the entries denoted by * in columns 2 of C and D;
we restore them as follows.

o We restore column 2 of C' by adding column 1 (multiplied by a scalar) to column 2.
This transformation spoils entry (2,2) of D; we restore it and the entries denoted by
stars in column 2 of D by adding row 3 to rows 1, 2, and 7. We obtain

10 = ay 00 0B B2 Bs Ba]
0 0 =x Qs 1 00
001 0 010
000 01,1001
1 00 O 0 1 0 0
010 O 0 1 0
i */0 01 0 1L 0 0 0 1 ]

e We restore column 3 of C' by adding columns 1, 6, and 7, which spoils column 3 of
D. We restore it by adding row 4 and obtain (71), which proves (70).

The equivalence (69) for an arbitrary pair (C, D) = 77?311 O;;: with oy # 0 = apy1 =

- = @y is proved in the same way: we make zero the entry (k,k) of C' by adding

the last column, which may spoil the entries (1,%),...,(k — 1,k) of C; they are made
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zero by adding columns 1,...,k — 1. This spoils column k of D; we restore it by row
transformations. This spoils column k41 of C’; we restore it by column transformations,
and so on, until we obtain the equivalence (69).

By (69) and Case 1,

Po G =P~ Dy (M) @+ @ Dy, (As) @ Dy (00),

g (—B1— = Bar™ Vb ana” £+ agr 1) = T — A
=1

This proves the statement (a) in Case 2. This also proves the statement (b) in Case 2
for € = ay; it holds for an arbitrary nonzero € due to (68).

Case 8: a1 = -+ = ay, = 0 in (62); that is, (C, D) = 7351'_'_'_ gn. Let
ﬁlz"':ﬁp—lzo#ﬁpv Bq?’éozﬁqﬁ-l:"':ﬁn (1<p<q<n)'

By Lemma 5.2 and Case 2, we have

T AT\ ., PBn - B1 _ 0..08¢ ... 3, 0...0
(D, CT) ~ Pl it =Py iy

~ Dy, (1) ® -+ & Dr,_, (Hs—1) ® Dintn—q(0) ® Dp—_1(00),

in which g4, ..., us—1 are distinct nonzero complex numbers; this direct sum is deter-
mined by

(2= )" (@ = ) = BB By B P (72)
If p < q, we set A\ := ,ul_l, vy Ag_1 = ,us__ll, and find that

(C,D) ~Dry (M) B - BDr, ,(As—1) ® Dingn—gq(00) ® Dp_1(0). (73)
Replacing = by 7! in the polynomials (72), we obtain consistently

(b= ATH" (@ =A ) = 5};1(5(1 + Bgorx 4+ 5pr(qu))7
(2= )™ (@ = A)" 7 = B By + Bpiaw o+ BT,
(2= M) (@ = Ae) 22l = =B (< Bya? T = Fpaa® — o — Byt h),
The last equality is the second equality in (60) that is determined by the first equality in
(60) with e = —f3,. The direct sum (73) is the direct sum (61). This proves the statement

(a) in Case 3. This also proves the statement (b) in Case 3 for ¢ = —f,; it holds for an
arbitrary nonzero € due to (68).

(c) This statement follows from (a), (b), Theorem 3.2, and Remark 3.1. O
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6. Perturbations of Jordan matrices

By Lipschitz’s property (see [38] or [1]), each matrix that is obtained by an arbitrar-
ily small perturbation of I, is reduced to I, by equivalence transformations that are
close to the identity transformation. Hence, each pair that is obtained by an arbitrarily
small perturbation of (I,,, B) is reduced to a pair of the form (I,,C) by equivalence
transformations that are close to the identity transformation.

Hence, the theory of perturbations of matrix pairs with a nonsingular first matrix,
with respect to equivalence transformations, is reduced to the theory of perturbations of
square matrices with respect to similarity. By Theorem 4.1, it reduces to the theory of
perturbations of Jordan matrices with a single eigenvalue.

The closures of orbits of Jordan matrices under similarity have been described by
Den Boer and Thijsse [13], and by Markus and Parilis [35]; see also [22, Theorem 2.1].
In this section, we describe the closures of orbits of Jordan matrices in the form that is
used in Theorem I. The proof is based on the Weyr canonical form of matrices under
similarity.

Theorem 6.1. Let J be a Jordan matriz with a single eigenvalue .

(a) If J is a Jordan block, then (J) has no successors.
(b) Let J have at least two Jordan blocks. Write it as follows:

J=P®J,(N\) @& Jy(\) & Q for some p < g, (74)

in which P is a direct sum of Jordan blocks of sizes < p and Q is a direct sum of
Jordan blocks of sizes > q (P and Q can be absent). Define the Jordan matriz

Jpgi=P&J 1(N) @ Ji1(N) @ Q, (75)

in which Jy_1(X) is absent if p = 1. Then (Jp 4) itmmediately succeeds (J), and each
immediate successor of (J) is (Jpq) for some p and q.

Lemma 6.1. Let J and J' be Jordan matrices with a single eigenvalue A. Let (my,ma, . ..)
and (mh,mj,...) be their Weyr characteristics (see Section 3.3). Write

sit=mi+---+m; and s,:=mi+---+m; foralli. (76)
Then

(J)y <(J) <<= s;>s, foralli. (77)
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Example 6.1. Let

J = J3(\) © Ju(A) ® Ja(N), J' = J3(X) @ J3(N) @ J5(N).

Then
my=mg=m3=3, my=2, mz=0, mg=mr=---=0,
! !/ !l _ / !l _ ! !
my=mg=m3z=3, my=1, ms=1 mg=msy 0,
and so
S1 3, So 67 S3 9, S4 11, S5 = Sg — ].].7
si =3, s5=06, s5=9, s;=10, si=s; 11

Hence, (J) < (J'), (J) # (J'), and so (J) < (J').

Proof of Lemma 6.1. Let J be a Jordan matrix with a single eigenvalue A. Then (J —
M) = (J) — Al and we must prove (77) only for A = 0.

<. Let W and W’ be Weyr canonical matrices of the same size with the sin-
gle eigenvalue 0 (see Section 3.3). Let their Weyr characteristics (mq,ma, ..., my) and
(mh,mh, ..., m})satisfy s1 > s}, s2 > s), .. .. Then for each sufficiently small ¢ the Weyr
canonical form of eW’ + W is W’. If ; — 0, then ;W' + W — W. Hence (W) < (W').

=. Let J be a Jordan matrix with the single eigenvalue A = 0. Let J’ be a Jordan
matrix such that each neighborhood of J contains a matrix whose Jordan canonical form
is J’. This means that there is a convergent sequence

A17 AQ, o= J (78)

in which all A; are similar to J’. All A; have the same characteristic polynomial f(z).
Since the coefficients of characteristic polynomial continuously depend on the matrix
entries, f(x) is also the characteristic polynomial of J. Hence, f(z) = 2™, and so J’ is
nilpotent.

Since all A; are similar to J', they have the same Weyr canonical form

Oy FY 0
S;AS = Oms , F= [I’”ﬂl] ,
. , 0
Fk—l
0 O,

in which (m},m,...) is the Weyr characteristic of J'. Applying the Gram—Schmidt
orthogonalisation process to the columns of S;, we obtain a unitary matrix U; = S; R;,
where R; is a nonsingular upper-triangular matrix. Then
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- (Z) -
Om’l Vl * e *
(@) :
Oy VA
-1 —_ -1 -1 LS., . = .
U7 'AU; = RV - ST AS; - Ry = o, |
ms
(@)
Vk’—l
L 0 Om}C d

in which every Vj(i) is an mj x mj,; matrix with linearly independent columns.

The set of matrices Uy, Us, ... is bounded since each entry of a unitary matrix has
modulus < 1. Hence this set has a limit point, which we denote by U. Deleting some A;
in (78) if necessarily, we obtain U; — U. Since each U; is unitary, we have U;U; = I,
and so UU* = I. Hence U is unitary and

Om’l V1 * *
Oy Va2 :
U AU - U JU = 0., . % |
m3
o Ve
L 0 Oy, ]
V(Z) -V, ..., Vk(i)l — Vi_1. Note that the columns of some V; can be linearly depen-
dent.
Therefore,
my = nullity J = nullity U~ 1JU > m
Since
_Om’1 0 W 0 1
Om’2 0
—1 7277 _
vrru = O VioVio1 |
0
L 0 Omy
we have

my + mg = nullity J? = nullity U1 J?U > > m) +mb,
and so on, which proves “="in (77). O

Proof of Theorem 6.1. (a) Let J = J,(A) and (J) < (J'). By (77), mj < my = 1. Since
m} is the number of Jordan blocks, J’ is a Jordan block. Since J and J’ have the same
size, J' = Jp(A) = J.
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(b) For each matrix X, we denote by (m1(X),ma(X),...) its Weyr characteristic and
write $;(X) :=my(X)+---+m;(X). Let A, B, and C be square matrices with a single
eigenvalue. Since m;(A @& B) = m;(A) + m;(B), we have s;,(A ® B) = s,(A) + s;(B).
Thus, s;(A @ B) < s;(A® C) if and only if s;(B) < s;(C). By (77),

(A@B) < (AC) < (B)<(O). (79)

Let (my,ma,...) and (m1,Mma,...) be the Weyr characteristics of the matrices (74)
and (75). Then m, = m;, — 1, mg41 = mg41 + 1, the other m; = m;, and so

Sp=58p—1, Spy1=5py1—1, ..., Sy =s5,—1, theothers;, =s; (80)

in the notation (76). Let us prove three facts.

Fact 1: (J) < (Jp,q). This inequality follows from (79) and the inequality (J,(\) &
Jqg(N)) < (Jp—1(X) ® Jy41 (X)), which holds by (77) and (80).

Fact 2: if J' is a Jordan matriz with the single eigenvalue \, then

(J)y < (J) = (J)<{Jpq) <(J) for some p,q. (81)
Due to (79), it is sufficient to prove (81) for J and J’ that have no common Jordan

blocks. By the assumptions of Theorem 6.1(b), J has at least two Jordan blocks. Let us
show that (81) holds for p and ¢ such that

in which all Jordan blocks of @) are of size > q.
By (J') > (J) and Lemma 6.1, s; < s; for all i. By Fact 1, (J,4) > (J). We must
prove that (J') > (J, q); i.e., s; <5; for all 4. Due to (80), it suffices to prove that

/ / /
Sp < Sps Spy1 < Sptl, «-es Sq < S (82)

Since J and J’ do not have common Jordan blocks, J’ does not contain J,(\), and so

S1 =M1 =" =Mp > Mpt1
\Y%
! />...> ! li
Sp=my = =2 my =my
/
Thus, my, = m,.
o
If my, = my,, then

S =M1 =" =Mp > Mpt1
I
I o — o — gy — o
sp=my = =my=my
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Hence, s1 = 87, 52 = 85, ..., 8p = Sp, Spr1 = Sp + Mpy1 < S, + My, g = 8,1, which
: /
contradicts sp41 = Sp+1-
Therefore, m;, > mj,, s, = 5,1 +my > s, 1 +m, = s, and so s, > s,,, which proves
(82) if p=gq.
Let p < ¢. Then J has only one J,(A), which means that m, = mp41 + 1. Since
my, > m;,, we have m, —1 > m/, and so

p,
mp—lzmp+1:mp+2:...:mq
WV
/A / /
My =My Z Mg 2000 2 My
. . / _ ! !’ —— —
We obtain consistently s, > s, spr1 = Sp + Mpy1 > 8, + My = Spiq, -y Sq =

Sq—1+mg > s,_1 +m; = s, which proves (82) if p < q.
Fact 3: if J' is a Jordan matriz with the single eigenvalue X\, then

() <{J) <{Jpyg) = T =dpy

up to permutations of Jordan blocks in J'.
On the contrary, let (J) < (J') < (J, ) for some J'. By Fact 2, we can take J' = Jp o

for some p’ < ¢'.

Write t(J) := (t1,t2,...), in which ¢; is the number of i x ¢ Jordan blocks in J.
Then n(J) := t1 + t3 + - -+ is the number of Jordan blocks in J. If t = (¢1,%s,...) and
t' = (t},th,...) are infinite sequences of nonnegative integers with ¢; +t2 + - -+ < oo and
t) +t5 + - -+ < 00, then we write

<t ift)=ty, ..., th_y =tr_1, tx <ty for some k > 1;
Xt ity <tg, thyy = tep1, thyo = tipa,... for some k> 1.

By Fact 2, the inequality (Jp o) < (Jp4) implies that J, , is obtained from J, o by
a sequence of replacements of type J]J;

Jp’,q’ l (Jp’yq/)nm l ((JP’1(1’)T1~,51)7”2,S2 l :L Jp,q~ (83)

Therefore,

(1) n(Jpq) Z n(Jpq),
1
(ii) if n(Jp q) = n(Jp,q), then t(Jp o) < t(Jpq), and
(ili) t(Jpr.q') < t(Jp.g)
since the analogous statements hold for each of the replacements (83).

Let n(Jp ) > n(Jpg). Then J = Jy(A\) @ --- and p = 1. Hence ¢ < p/, and so
t(Jp ) - t(Jp,q), which contradicts (iii).
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Thus, n(Jp q) = n(Jpq). If p’ < p, then (ii) does not hold. If ¢’ > ¢, then (iii) does

not hold. Hence, p < p’ < ¢’ < ¢, which contradicts (p’,q’) # (p,q) and proves Fact 3.
Facts 2 and 3 prove Theorem 6.1(b). O

The following theorem ensures Theorem 5.5.

Theorem 6.2.
(a) Let aq, ..., u, be complex numbers that are not all zero. Let o, be the last nonzero

element in this sequence. Then the matriz

aq
JnN) ] 00
o ;o m<mn, AeC (84)
0 | Jun)
18 stmilar to
Im—r(A) & Tnir(N). (85)

(b) If a given Jordan matriz J is similar to a matriz in an arbitrarily small neigh-
borhood of

I (X)) @ Jn(N), m<n, AeC,

then J has the form Jp—r(A) @ Jpir(N) with r € {0,...,m}.

Proof. (a) Let A be the matrix (84). Using similarity transformations

K1 Ko - Km
-1 . .
an | DAl D] ma=| m ] mre
n n
) s
0 K1

0) with “1” at the position r, preserving the

we make (aq,...,a,) = (0,...,0,1,0,...,0)
(50)). In the obtained matrix

other entries of A (compare with (49) and
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r+1 m|1 m—r
Al : ; 1
0 :
Al Lo r
Al 0 | r4+1
Ao :
STk : (86)
A0 m
(IR0 Al 1
0--. A
- 8 -1
0 Al m—r
A
|
AMn

we make zero the entry “1” to the left of a,, = 1 by the following similarity transforma-
tions (every 8 denotes the zero entry that first is transformed to —1 and then is restored
to 0; compare with (37)):

o Make zero the entry “1” to the left of o, = 1 by subtracting columns 1,2,...,m—1r
of the second vertical strip from columns r+ 1,7 +2,...,m of the first vertical strip,
respectively. Thus, the marked (m — r) x (m — r) subblock in the (2,2)th block of
the matrix (86) is subtracted from the marked (m — r) x (m — r) subblock in the
(2,1)th block.

e Make the inverse transformations of rows, adding rows r + 1,...,m of the first
horizontal strip to rows 1,...,m — r of the second horizontal strip, restoring the
(m — 1) x (m —r) subblock in the (2,1)th block.

The (m — r) x (m — r) marked subblock in the (1,1)th block of the obtained matrix is
a direct summand, and so the obtained matrix is permutation similar to (85).

(b) This statement follows from Theorem 6.1(b). O

7. Theorem II follows from Theorem I

Theorem II is formulated in terms of coin moves and proved sketchily by Edelman,
Elmroth, and Kégstrom [22, Theorem 3.2]. In this section we derive Theorem II from
Theorem 1.

It is sufficient to prove the following statement:

Let a Kronecker pair B be obtained from a Kronecker pair A by some re-
placement (j) from Theorem I, where j € {i,1i,...,vi}. Then (B) immediately  (87)
succeeds (A) if and only if (j) is the replacement (j') from Theorem II.
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Case 1: (j) is the replacement (ii):
Lo ®Ly ] Lyg1® Ly—1, in which m+2<n. (88)

=—. Let (B) immediately succeed (A). We must prove that (88) is the replacement
(ii"). To the contrary, let (88) be not the replacement (ii’); that is, A contains L, &L, DL,
with m < k<nandn—m > 3.

If k —m > 2, then (88) is the following composition of replacements of type (ii):

Ln@®Ly®Lp | Lrnt1 ®Le1®Ln | Ling1 DLy @ L1
By Theorem I,
<£’rn @ ['k 2 ['n> < <£m+1 S Lk—l 2 En> < <[/m+1 S Ek: 2 ‘cn—1>7

and so (B) is not an immediate successor of {A).
If k—m =1, then n — k > 2 and (88) is the following composition of replacements of

type (ii):
Em & Ek ¥ En l L:m S Ek—l—l S En—l l £m+1 S7] Ek @b En_l-

Thus, (B) is not an immediate successor of (A) too.
<. Let B be obtained from A by replacement (ii’). Let B can be also obtained from
A by a sequence

® (4 4 ®
A:A1’—1>A2'—2>A3|—3>~-~I—p>¢4p+1=6

of replacements of types (i)—(vi). In order to show that (B) is an immediate successor of
(A), we must prove that p = 1.
Let

S S t
A=@Ll e@Ln @ (Pea )& & Di, (1),
=1 ' 1=1 =1 ' (89)
mi < <m§a ni < <’I’L§, kil < gkisi (’L:l,,t),

in which A\q,..., A\ € C U oo are distinct (see (16)).
All replacements @1, ..., ¢, are not of

e type (vi) since A and B have the same number s of summands of type £1 | but (vi)
decreases the number s and this number cannot be restored by (i)—(v);

e type (iii) since it increases the number my + - -- + m, whereas this number is not
changed by (i), (ii), (iv), and (v);

o type (iv) since it increases ny + - - + ng;
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o type (v) with A = \; since it increases > _ (kig — kip) whereas this number is not
changed by (i) and (ii);

o type (i) since it decreases >, _;(m; —m;).

Therefore, all ¢1, ..., ¢, are replacements of type (ii). Since each replacement (ii’) is not
the composition of several replacements of type (ii), p = 1, and so (B) is an immediate
successor of (A). We have proved (87) in Case 1.

Case 2: (j) is the replacement (i). The statement (87) is proved by transposing the
matrices in Case 1.

Case 3: (j) is the replacement (iv):

—. To the contrary, suppose that (90) is not (iv'); that is, m < m or n < 7). If
m <, then (90) is the composition of replacements of types (ii) and (iv):

Lo @ L ®Dp(A) L Lin ® L1 @ Dp1(A) | Ling1 © Lig @ D1 (A).
If n <7, then

Lm @ Dn(A) @ Dg, (A) l L1 @ Dy(N) ’Dﬁxfl()‘)
1 L1 @ Dn1(A) & Dy (A)-

By Theorem I, (B) is not an immediate successor of (A).
<. Let B be obtained from A by replacement (iv'). Let B can be also obtained from
Aby a sequence A = Ay 25 Ay 22 . 0 A,11 = B of replacements of types (i)—(vi).
All replacements ¢1, ..., ¢, are not of

e type (vi), which decreases the number s (see (89));
o type (ii), which increases lexicographically (ni,ne,...,ns);
 types (i) and (iii), which change the sequence (mj, ma,...,ms);

o type (v), which decreases lexicographically (k;1, kia, ..., kis,) if A; = A

Therefore, all 1, ..., ¢, are of type (iv). Since each replacement (iv’) is not the compo-
sition of several replacements of type (iv), p = 1, and so () immediately succeeds (A).

Case 4: (j) is the replacement (iii). The statement (87) is proved by transposing the
matrices in Case 3.

Case 5: (j) is the replacement (v):

Dp(A) @ Dp(A) | Di—1(A) ® Dyg1(A), in which m < n. (91)
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= To the contrary, suppose that (91) is not (v'); that is, A contains D,, (A\) DD (\)®
D, (A) with m < k < n and m < n. Then (B) is not an immediate successor of (A) since
if m < k < n then

l D'rrL—l()\) S Dk()\) S Dn+1(>\)7

and if m < k < n then

l Dm—l()\) ® Dk()‘) S Dn-l—l()\)-
<. Let B be obtained from A by replacement (v’), and let B can be also obtained
from A by a sequence A = A; 5 Ay 2 ... 4N Ap+1 = B of replacements of types
(i)—(vi). All replacements ¢1, ..., p, are not of types (i)—(iv) and (vi) since they change
Mi,...,Ms OF N,..., N5 (see (89)).
Therefore, all ¢1,. .., ¢, are of type (v). Since each replacement (v') is not the com-
position of several replacements of type (v), p = 1, and so (B) immediately succeeds (A).

Case 6: (j) is the replacement (vi):
ﬁ%@ﬁn l Drl(ul)@"'@’DT(](uq)? (92)

in which p1,..., 1ty € CU oo are distinct and 71 + -+ + 7 =m +n — 1.

=. To the contrary, suppose that (92) is not (vi’).

If m < m, then

EZ;L @ ‘C% & Ly l ‘CZ;L D Dr1+m—m(ﬂl) S D qu (.“q)
l ‘C%@ DTl (:LLl) ©---D qu(,u'q)’

and so (B) is not an immediate successor of (A). Hence m = 7 and, analogously, n = 7.

If some A\; & {u1,..., g} (see (89)), then

E% ® Ly ® Dkil (/\Z) l [’% S ‘Cﬁ-l-ku
l DT’l (Hl) S-S DTq (Hq) S?) Dkil (>\i)7

and so (B) is not an immediate successor of (A). Hence ¢ > t (see (89)) and we can
rearrange fii, ..., fiq such that gy = Ay, ..., p = Ag.

Let r; < kis, for some ¢; for definiteness, for ¢ = 1. Then p; = Ay,

ﬁ% (&3] »Cﬁ ©® Dk/lsl (,Ufl) l ’C’% @ £ﬁ+k1s1 —r1 @ DTl (:Ll‘l)
l DTz (:U’Q> - D DTq (Nq) S2) Dklsl (,U,1> @ DTl (:ul)’
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and so (B) is not an immediate successor of (A). Hence, r1 = ki, ..., ¢ = kis, -
<—. Let B be obtained from A by a replacement

P ﬁgi@ﬁng 1 Dry (1) @ -+ © Dy, (11q), g=t (93)

of type (vi'); that is, 1 = A1, ..., ue = A, and kygy <71, - .o, kes, <14

Let B can be also obtained from A by a sequence A = A; ~2 Ay +22 - - - RLN Api1 =
B of replacements of types (i)—(vi). Exactly one replacement ¢, : A, — Ay41 is of
type (vi) since ¢ increases > k;; and decreases s by one. The preceding replacements
©1,...,pyu—1 do not change s and 5. Let

s 3 t’
A=A, = @Eﬁ; ® @Cn; & EB (Dkgl(%) ©--- O Dy, O\ﬁ)a
=1 i=1 =1 ‘
/ /
ml < e < m

S?

ny <Ky, ki <<kl (=100t Ut

We can suppose that ¢, is not a product of replacements. Then ¢, is of type (vi’) due
to part “=="; that is,

P, ‘Cg’é@‘cnlg l Dpl(yl) ST @qu/(l/q’)7 ql 2 tla

in which v1 = A1, ..., v = Ay, and ki, < p1, -+, kprs, < pu.

If m’, > my, then m; has been increased by some ¢; with I < w of type (iii). However,
this golidecreases > k;j, which cannot be restored because of the condition k15, < 71,
oo vy ks, <. Hence m), < my. Analogously, ng < ns.

If mj < my, then 37, - ki; + >, pi < 32, ;kij + >2;ri and this inequality cannot
be transformed to the equality by replacements @,y1,...,¢p, of types (i)—(v). Hence
mj = mg and, analogously, ng = ns.

If py < ry, then kj; +--- 4+ k'ls,l + p1 < k11 + -+ + kis, + 71, and this inequality
cannot be transformed to the equality by replacements @y41,...,¢p of types (i)—(v).
Hence p; > r1 and, analogously, p; > r; for all i. Using m’é = my and n; = ng, we find
that ¢/ =t and p; = r; for all i. Therefore, ¢, is the replacement ¢ from (93). It is easy
to check that u =p =1 and ¢ = .
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