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STRONG ALGEBRABILITY AND RESIDUALITY ON
CERTAIN SETS OF ANALYTIC FUNCTIONS

M.L. LOURENÇO AND D.M. VIEIRA

ABSTRACT. We show that the set of analytic functions
from C2 into C2, which are not Lorch-analytic is spaceable
and strongly c-algebrable, but is not residual in the space
of entire functions from C2 into C2. We also show that the
set of functions which belongs to the disk algebra but not a
Dales-Davie algebra is strongly c-algebrable and is residual in
the disk algebra.

1. Introduction. In the last two decades there has been increasing
interest in the search of nice algebraic-topological structures within sets
(mainly sets of functions or sequences) that do not themselves enjoy
such structures. In this note, we study algebraic-topological structures
in certain sets of analytic functions.

Now we fix the notation. The space of all analytic functions from C2

into C2, endowed with the compact open topology τ0, will be denoted by
H(C2,C2). We note that (H(C2,C2), τ0) is a Fréchet algebra. Consider
C2 as an algebra with the usual product. We denote the set of all
(L)-analytic functions from C2 into C2 by HL(C2,C2). The class of (L)-
analytic mappings (cf. Definition 2.1) was introduced by E.R. Lorch in
[12]. We call by G=H(C2,C2)\HL(C2,C2). If D denotes the open unit
disk on the complex space, then for each specific sequence of positive
numbers M = (Mn)n∈N, the set D(D,M) introduced by Dales and Davie
[10] is a subalgebra of the disk algebra A(D). As usual, we call these
algebras Dales-Davie algebras and we write H(M) =A(D) \D(D,M).

There is extensive literature on these kind of functions; see for
instance [1, 2, 10, 11, 13] for Dales-Davie algebras and [12, 14, 15]
for (L)-analytic mappings.
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As we can see, these are different classes of analytic functions. In
our work we are interested to see, in a linear/algebraic and topological
sense, whether or not those differences are big. In this direction, our
aim in this paper is to establish some structure in the sets G and H(M).
Indeed, we show that G is spaceable and strongly c-algebrable, but is not
topologically large, while H(M) is strongly c-algebrable and residual,
that means it is topologically large. Research on the theme of describing
spaceability, algebrability and residuality has been carried on in recent
years, see among many others [3, 4, 5, 6, 7, 8, 9, 13].

Next we recall some definitions. Let B be an algebra over K = R or
C. In this paper, the dimension of B, denoted by dimB, will always
refer to its dimension as a vector space.

Let S= {zi : i∈ I} be a subset of an algebra B. The algebra generated

by S is the set A(S) =
{∑k

j=1 αj z
j
i , αj ∈K, zi∈S, k∈N, i∈ I

}
, and the

set S is called a system of generators of A(S). A system of generators
S is minimal if for every i0 ∈ I, zi0 /∈ A(S \ {zi0}). Moreover, the set
S is free or algebraically independent if P (zi1 , . . . , zin) = 0 implies that
P = 0, for P ∈ C[z1, . . . , zn] and zi1 . . . , zin ∈ S.

If Y is a topological vector space, a subset A of Y is called: lineable
if A ∪ {0} contains an infinite-dimensional vector space; spaceable if
A∪ {0} contains a closed infinite-dimensional vector space; maximal
lineable if A∪{0} contains a vector subspace S of Y with dimS= dimY ;
dense-lineable if A∪ {0} contains a dense infinite-dimensional vector
space. If Y is a function algebra, A⊂ Y is said to be:algebrable if there
is an algebra B ⊂A∪{0}, such that B has an infinite minimal system
of generators; A is strongly α-algebrable if A admits a free system of
generators S such that card(S) = α. We will write card(R) = c. If Y is
a Fréchet space, a set A⊂ Y is called residual in Y if Y \A=

⋃∞
n=1 Fn,

where the closure of each Fn has empty interior. So, by Baire’s theorem,
residual sets are topologically large. For background on above concepts
we refer to [6, 7, 8].

2. Strong algebrability and spaceability of G. Lorch introduced
in [12] a definition of analytic functions (see Definition 2.1) that have
for their domains and ranges complex commutative Banach algebras
with identity.
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Definition 2.1. Let E be a commutative Banach algebra with identity
over C. A mapping f : E→ E has a derivative in the sense of Lorch in
ω ∈ E if there exists ζ ∈ E such that

lim
h→0

‖f(ω+h)− f(ω)− ζ ·h‖
‖h‖

= 0.

If f has a derivative in the sense of Lorch throughout a neighborhood
of w, we say that f is Lorch-analytic (or (L)-analytic) in ω.

We say that f is (L)-analytic in E if f is (L)-analytic at every point
of E. We denote the set of all (L)-analytic functions from E into E by
HL(E,E).

Remark 2.2. Let f : E→ E be a (L)-analytic function at ω ∈ E. So,
the element ζ ∈ E given by Definition 2.1 is unique. It is called the
(L)-derivative of f at ω and is denoted by ζ = f ′(ω).

It is clear that an (L)-analytic function is differentiable in the Fréchet
sense and hence holomorphic. However, not every Fréchet-differentiable
function on a commutative Banach algebra with identity is analytic in
the Lorch sense. Accordingly, the Lorch theory is the richer.

The following example is well known but we include here without
details for the sake of completeness. Consider in C2 the usual product
(z1, w1) · (z2, w2) = (z1 z2, w1 w2), for all (z1, w1), (z2, w2) ∈ C2, and the
norm ‖(z, w)‖= max{|z|, |w|}, for all (z, w) ∈ C2. Let F : C2→ C2 be
given by F (z, w) = (w, z), so F is analytic but it is not (L)-analytic.
Thus the set G =H(C2,C2) \HL(C2,C2) is not empty and G is not a
vector space. Then it seems natural to study some algebraic structure
inside G.

Now we give a definition, which follows from [6, Section 7.5]. A
function ϕ : C2→C2 is called a two-variable exponential-like function if

ϕ(z, w) =

( m∑
j=1

aje
bjz,

n∑
k=1

cke
dkw

)
for all (z, w) ∈ C2, aj , bj , ck, dk ∈ C \ {0}, j = 1, . . . ,m and k = 1, . . . , n,
such that b′js are distinct and d′ks are distinct. We denote by E(C2,C2)

the set of all two-variable exponential-like functions ϕ : C2→ C2.
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Using the function F :C2→C2 given in the example above we present,
in the next proposition, a family of functions which belong to G, and
that will be useful for our results.

Proposition 2.3. For each ϕ ∈ E(C2,C2), then ϕ ◦ F ∈ G, where
F (z, w) = (w, z), for all (z, w) ∈ C2.

Proof. We observe that f = ϕ ◦F is given by

f(z, w) =

( m∑
j=1

aje
bjw,

n∑
k=1

cke
dkz

)
, ∀(z, w) ∈ C2.

By Hartogs’ theorem [16, Theorem 36.1], it follows that f ∈H(C2,C2).
It is enough to show that f is not (L)-differentiable at ω = (0, 0). So let
ζ = (z1, z2), and h = (t, λt), with t > 0 and 0 < |λ| ≤ 1. Then ‖h‖ = t
and in this case if the limit

lim
t→0

∥∥∥∥∥
(∑m

j=1 aj
(
eλtbj − 1

)
− tz1

t
,

∑n
k=1 ck

(
etdk − 1

)
−λtz2

t

)∥∥∥∥∥
is zero, then (z1, z2) would depend on λ, contradicting the fact that
ζ = (z1, z2) is unique. Therefore f cannot be (L)-differentiable at the
origin, hence not in C2. �

Let f ∈ H(C2,C2). For each α > 0 consider fα(z, w) := f(α(z, w)),
for all (z, w) ∈C2. Then, for every α > 0, f ∈HL(C2,C2) if and only if
fα ∈HL(C2,C2). This fact allows us to exhibit more elements of G:

Lemma 2.4. If f ∈ G, then fα ∈ G for each α > 0.

Proposition 2.5. Let f : C2 → C2 be given by f(z, w) = (ew, ez).
Then {fα : α > 0} is a linearly independent set in H(C2,C2) and
[fα : α > 0]⊂ G ∪{0}.

Proof. Let C = {fα : α > 0}. Clearly

[C]⊂ {ϕ ◦F, ϕ ∈ E(C2,C2)}∪ {0}

and hence, by Proposition 2.3, C ⊂ [C] ⊂ G ∪ {0}. Now, it is suf-
ficient to prove that C is linearly independent. First suppose that∑n
k=1 βk fαk(z, w) = 0, for all (z, w)∈C2, where βk ∈C, for k= 1, . . . , n.
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In particular, β1 e
α1x +β2 e

α2x + · · ·+βne
αnx = 0 for all x ∈ R. Taking

n derivatives and setting x= 0, we obtain
∑n
k=1 βkα

j
k = 0, j = 1, . . . , n.

Since the α′ks are pairwise distinct, we have β1 = β2 = · · ·= βn = 0. �

It follows from Proposition 2.5 that G is maximal lineable, since
by Baire’s category theorem, the dimension of any separable infinite-
dimensional Fréchet space is c. Consequently, G is lineable. In general,
lineability does not imply dense-lineability. But in this case H(C2,C2)
is a separable Fréchet space and HL(C2,C2) is a vector subspace of
H(C2,C2). Then [6, Theorem 7.3.3] shows that G is indeed dense-
lineable. Maximal lineability also does not necessarily imply spaceability.
However, in [6, Theorem 7.4.1] the authors showed a general theorem,
which allowed us to prove that G is spaceable. To see this, we need to
recall some definitions. Let M be a subspace of a vector space V , then
each element v+M of the quotient space V/M will be denoted by v̂,
for all v ∈ V . Recall that the codimension of M in V is the dimension
of the quotient space V/M .

For the reader’s convenience we repeat a statement from [6].

Theorem 2.6. [6, Theorem 7.4.1] If Y is a closed vector subspace of
a Fréchet space X, then X \Y is spaceable if and only if Y has infinite
codimension.

Proposition 2.7. G is spaceable.

Proof. Let f : C2→ C2 be given by f(z, w) = (ew, ez) and consider

the set of classes C = {f̂α : α > 0} contained in the quotient space

H(C2,C2)/HL(C2,C2). Suppose that
∑n
k=1 βkf̂αk = 0̂, where βk ∈ C,

for k = 1, . . . , n. This implies that g =
∑n
k=1 βkfαk ∈ HL(C2,C2) and

g ≡ 0, because if g 6= 0, using Proposition 2.5 we have that g ∈ G, which
is a contradiction. Applying Proposition 2.5 again, we have that the
family C is linearly independent, so H(C2,C2)/HL(C2,C2) is infinite-
dimensional. Since (HL(C2,C2), τb) is closed in (H(C2,C2), τb) ([14,
Proposition 2.4] and τ0 = τb in HL(C2,C2), it follows by Theorem 2.6
that G is spaceable. �

In [6], the following criterion for strong algebrability is presented.
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Theorem 2.8. [6, Theorem 7.5.1] Let Ω be a nonempty set and let F
be a family of functions Ω→K, where K = R or C. Assume that there
exists a function f ∈ F such that f(Ω) is uncountable and ϕ ◦ f ∈ F ,
for every exponential-like function ϕ : C→ C. Then F is strongly c-
algebrable. More precisely, if H ⊂ (0,+∞) is a set with card(H) = c
and linearly independent over the field Q of rational numbers, then
{exp ◦(rf) : r∈H} is a free system of generators of an algebra contained
in F ∪{0}.

By adapting the proof of Theorem 2.8 to the two-variable case, it is
possible to obtain the following result.

Theorem 2.9. G is strongly c-algebrable.

Proof. For each r∈R, consider fr(z, w)=(erw, erz), for all (z, w)∈C2.
If H ⊂ (0,+∞) is a set with card(H) = c and linearly independent over
the field Q of the rational numbers, we will show that the set {fr : r∈H}
is a free system of generators of an algebra contained in G ∪{0}.

Let P be a nonzero polynomial in N complex variables without
constant term, that is,

P (z1, z2, . . . , zN ) =

m∑
j=1

ajz
k(j,1)
1 z

k(j,2)
2 · · · zk(j,N)

N ,

where a1, . . . , am ∈C\{0} and the matrix [k(j, l)]j=1,...,m
l=1,...,N of nonnegative

integers has distinct zero rows.

If r1, r2, . . . , rN ∈ H, the function Ψ : C2 → C2 given by Ψ =
P ◦ (fr1 , fr2 , . . . , frN ) is of the form

P (fr1 , fr2 , . . . , frN )(z, w)

=

m∑
j=1

aj(fr1(z, w))k(j,1)(fr2(z, w))k(j,2) · · · (frN (z, w))k(j,N)

=

m∑
j=1

aj
(
e(k(j,1)r1+···+k(j,N)rN )w, e(k(j,1)r1+···+k(j,N)rN )z

)
.

Thus, the numbers bj :=
∑N
l=1 rlk(j, l) are distinct and nonzero,

due to the Q-independence of H. Hence the function ϕ(z, w) =
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(∑m
j=1 aje

bjz,
∑m
k=1 ake

bkw
)

belongs to E(C2,C2) and Ψ = ϕ ◦ F ∈ G
by Proposition 2.3.

If Ψ≡ (0, 0) then ϕ≡ (0, 0), since F (C2)=C2. But ϕ=(ϕ1, ϕ2), where
ϕ1(w) =

∑m
j=1 aje

bjw = 0 for all w ∈C and ϕ2(z) =
∑m
k=1 ake

bkz = 0 for

all z ∈ C. Hence ϕ ≡ (0, 0) would contradict the fact that ϕ1 and ϕ2

have each one at most a countable number of zeros (see the first part of
the proof of [6, Theorem 7.5.1]). Consequently Ψ 6≡ 0 and, by Theorem
2.3, Ψ ∈ G. �

Remark 2.10. As HL(C2,C2) is of the second category, the set G is
not residual in H(C2,C2). Indeed, H(C2,C2) \ G = HL(C2,C2), and
HL(C2,C2) is Fréchet space. So G is not topologically large.

3. Maximal lineability and Residuality of H. Let D⊂C denote
the open unit disk, that is, D = {z ∈ C : |z|< 1}. The Banach algebra
of all continuous functions on D that are analytic on D with the sup
norm is denoted by A(D). As usual we call A(D) the disk algebra.

Let X ⊂C be a perfect and compact set. A complex valued function
f :X→C is differentiable at a point z0 ∈X if the following limit exists:

f ′(z0) = lim
z→z0
z∈X

f(z)− f(z0)

z− z0
.

A complex-valued function f is differentiable on X if it is differentiable
at every point of X. The algebra of all functions on X with continuous
n-th derivative is denoted by Dn(X), and D∞(X) denotes the algebra
of functions on X with derivative of all orders. We denote by f (n) the
n-th derivative of f and ‖f‖X = supz∈X |f(z)|. We denote by R0(X)
the algebra of all rational functions with poles off X.

Let (Mn)n∈N be a sequence of positive numbers such that M0 = 1,
and for each n≥ 1,

Mn

MkMn−k
≥
(
n

k

)
(0≤ k ≤ n).

The sequence M = (Mn)n∈N is an algebra sequence if it satisfies the
above conditions.
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The Dales-Davie algebras on X are defined by

D(X,M) =

{
f ∈D∞(X) :

∞∑
n=0

‖f (n)‖X
Mn

<+∞
}
.

The norm on D(X,M) is defined by ‖f‖=
∑∞
n=0 ‖f (n)‖X/Mn. These

algebras were introduced and studied by Dales and Davie in 1973 [10],
and have been investigated by Abtahi and Honary in ([1], [2] and [11]).

For each sequence M = (Mn)n∈N of positive numbers, D(X,M) is a
normed vector space. When M = (Mn)n∈N is an algebra sequence, then
D(X,M) is a normed algebra.

When X = D it follows that D(D,M) is a subalgebra of A(D).
However, H(M) = A(D) \ D(D,M) is not a vector space, hence is
not an algebra. In [13] we have shown that H(M) is algebrable and
spaceable, for several algebra sequences M = (Mn)n∈N. In this note
we show that the set H(M) is residual, strongly c-algebrable and we
determine a linearly independent set in H(M), giving us another way
to see that H(M) is maximal lineable.

Let α be a real number such that 0< α < 1. For each f ∈ A(D), we
define fα :D→ C by fα(z) = f(αz), for all z ∈D. Then it is clear that
fα ∈ A(D). We set Dα = {z ∈ C : |z| ≤ α}.

The following lemma was inspired by [7, Lemma 4].

Lemma 3.1. Let f ∈ A(D) such that f is not a polynomial. Then the
family {fα : 0< α < 1} is linearly independent.

Proof. Let c1, c2, . . . , cN ∈C, 0<α1, α2, . . . , αN < 1 and suppose that∑N
k=1 ckfαk = 0. We can assume that N ≥ 2 and α1 < α2 < · · ·< αN .

Since f ∈ A(D), then f(z) =
∑∞
n=0 anz

n, uniformly on δD, where
0< δ < 1. Then we have that

N∑
k=1

ckfαk(z) =

N∑
k=1

ckf(αkz) =

N∑
k=1

ck

∞∑
n=0

an α
n
k z

n = 0, for all z ∈ δD.

Since the series converges uniformly, it follows that an(c1α
n
1 + · · ·+

cNα
n
N ) = 0, for all n ∈ N.
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As f is not a polynomial, then there exists an increasing sequence
(nj)j∈N such that anj 6= 0, for all j ∈ N. Then in particular we have

that: c1α
nj
1 + · · ·+ cNα

nj
N = 0, for all j ∈ N. If cN 6= 0 then

−1 =
c1α

nj
1 + · · ·+ cN−1α

nj
N−1

cNα
nj
N

=

N−1∑
k=1

ck
cN

( αk
αN

)nj
.

By taking j→∞ we find a contradiction, so that cN = 0, and inductively
we have c1 =c2 = · · ·=cN−1 =cN =0, and then the family {fα : 0<α<1}
is linearly independent. �

Our main goal is to display a vector space in H(M) for some M ,
which has a uncountable system of generators. The following fact, which
was observed by Dales and Davie in [10], can be used to find algebra
sequences M = (Mn)n∈N such that H(M) 6= ∅.

Theorem 3.2. [1, Theorem 2.3] Let X ⊂ C be a perfect compact set.
Then R0(X)⊆D(X,M) if and only if limn→∞(n!/Mn)1/n = 0.

If we take Mn=n!, for all n∈N, then we have limn→∞(n!/Mn)1/n 6=0.
So R0(X) *D(X,M). In this case we use H instead of H(M).

Proposition 3.3. Let f(z) =
1

z− 3
2

. Then [fα : 3
4 < α < 1]⊂H∪{0}.

Proof. Let us first observe that each fα ∈H. By a simple calculation
of the derivatives of fα, we get

‖(fα)(n)‖D = αn‖(f (n))α‖D = αn n! ‖f‖n+1
Dα

= n!
2

3− 2α

( 2α

3− 2α

)n
.

Since α > 3
4 , it follows that

∑∞
n=0 ‖(fα)(n)‖D/n! = +∞ and hence

fα ∈H.

Let g ∈ [fα : 3
4 < α< 1]. Then g =

∑k
j=1 βj fαj , for βj ∈C \ {0} and

3
4 < αj < 1, for j = 1, . . . , k. Then

g(n)(z) =

k∑
j=1

βj f
(n)
αj (z) =

k∑
j=1

βj α
n
j n!(−1)n

(
1

αjz− 3
2

)n+1

.

To prove that g ∈H, we show that lim
n→∞

|g(n)(1)/n!|= +∞. We write



1970 M.L. LOURENÇO AND D.M. VIEIRA

g(n)(1)

n!
=

k∑
j=1

(−1)nDj C
n
j , where Cj =

2αj
2αj − 3

and Dj =
2βj

2αj − 3
.

We suppose without loss of generality that C1 >C2 > · · ·>Ck. Then

g(n)(1)

n!
= Cn1 (−1)n

(
D1 +D2

(C2

C1

)n
+D3

(C3

C1

)n
+ · · ·+Dk

(Ck
C1

)n)
.

Now

lim
n→∞

(
D1 +D2

(C2

C1

)n
+D3

(C3

C1

)n
+ · · ·+Dk

(Ck
C1

)n)
=D1,

and since |C1|>1 we have lim
n→∞

|Cn1 (−1)n|=+∞. Then lim
n→∞

∣∣∣g(n)(1)

n!

∣∣∣=
+∞, and the result follows. �

Remark 3.4. In [13, Proposition 2.3] we showed that H is spaceable,
then H is maximal lineable. Now, since every element of H is not
a polynomial, we can apply Lemma 3.1 for 3

4 < α < 1 and get that
{fα : 3

4 < α < 1} is linearly independent, and by Proposition 3.3
[fα : 3

4 < α < 1]⊂H. Hence H is maximal lineable.

In [13] we showed that H is algebrable. Now, using Theorem 2.8 it
is possible to get a better result.

Proposition 3.5. H is strongly c-algebrable.

Proof. Let f(z) = 1/(z + 2), for all z ∈ D. Using Lemma 2.2 of
[13], we have f ∈H. Consider ϕ : C→ C an exponential-like function
given by ϕ(z) =

∑m
j= aje

bjz, for all z ∈ C and for some m ∈ N, where

a1, . . . , am ∈C\{0} and some distinct b1, . . . , bm ∈C\{0}. One can see
that the proof of Theorem 3.3 of [13] works the same for this general
ϕ, since the b′js are distinct. Then ϕ ◦ f ∈H. As f(D) is uncountable,
then it follows by Theorem 2.8 that H is strongly c-algebrable. �

We finish this section by studying the residuality of H in A(D).

Theorem 3.6. H is residual in A(D).

Proof. We show that H=
⋂∞
n=1 Sn, where the Sn are open and dense
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sets in A(D). We define

Sm,n =

{
f ∈ A(D) :

m∑
k=0

‖f (k)‖D
k!

> n

}
and Sn =

⋃
m≥n

Sm,n.

Let f ∈ H. Since
∑∞
k=0 ‖f (k)‖D/k! = +∞, given n ∈ N there exists

m ∈ N such that f ∈ Sm,n and m> n. Therefore H=
⋂∞
n=1 Sn.

Since it is clear that each Sn is open let us finish the proof by showing
that each Sn is dense in A(D). Given n ∈ N, g ∈ A(D) and ε > 0, we
want to show that B(g, ε)∩Sn 6= ∅. If g ∈H, then it is clear. If g /∈H,
then

∑∞
k=0 ‖g(k)‖D/k! = r. Let

f(z) =
ε

2

1

z− 2
.

Then f ∈H and ‖f‖D < ε. Let us show that f + g ∈ Sn. We know that

there exists m∈N such that m≥n and
∑m
k=0 ‖f (k)‖D/k!>r+n. Then

m∑
k=0

‖f (k) + g(k)‖D
k!

≥
m∑
k=0

‖f (k)‖D
k!

−
m∑
k=0

‖g(k)‖D
k!

> r+n− r = n,

which shows that f + g ∈ Sn. �

Similarly to [13], in the next corollary, we show that not only H is
maximal lineable, strongly c-algebrable and residual, but actually there
is an infinite collection of algebra sequences (Mn)n∈N such that H(M)
also have these properties.

Corollary 3.7. Let (Mn)n∈N be an algebra sequence such that Mn≤n!,
for all n∈N. Then H(M) is maximal lineable, strongly c-algebrable and
residual.

Proof. If Mn ≤ n!, then H ⊆ H(M). The proof of Theorem 3.6 is
also valid in this case. �

Remark 3.8. If 0<α≤ 1, let Mn :=αn n! for all n∈N. Then (Mn)n∈N
is an algebra sequence such that Mn ≤ n!, for all n ∈ N.
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