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BJORLING PROBLEM FOR MAXIMAL SURFACES IN 
THE LORENTZ-MINKOWSKI 4-DIMENSIONAL SPACE 

. ANTONIO C. ASPERTI AND JOSE A. VILHENA 

ABS TR.ACT . In this paper, we extend and solve the Bjorling-type 
problem for maximal surfaces in the Lorentz-Minkowski 4-dimensional 
space. As an application we establish symmetry principles for the 
maximal surfaces in lL 4 and construct new examples. 

1. INTRODUCTION 

A maximal surface in the Lorentz-Minkowski n-dimensional space 
is a spacelike surface with zero mean curvature vector. It is well known 
that maximal surfaces in L3 represent locally a maximum for the area 
integral [16, 8] and also that they admit a Weierstrass type representa­
tion [22, 23]. But the spacelike surfaces with zero mean curvature vec­
tor in L", represent locally the maximum(resp. minimum) for the area 
integral, if the normal variation is made in the timelike(resp. spacelike) 
direction [20]. For these surfaces we also have Weierstrass type repre­
sentation [4, 14]. An important difference between the global theory of 
maximal surfaces in [..3 and of the global theory of maximal surfaces in 
L4 is established by the so called Calabi-Bernstein theorem. It states 
that a complete maximal surface in L3 is a plane [8, 10]. However, this 
result cannot be extended to Ln, n ~ 4 [13). 

In the 3-dimensional Euclidian space R 3, given a real analytic strip( see 
§3), the classical Bjorling problem [11, 17} was proposed by E. G. 
Bjorling [7] in 1844 and consists of the construction of a minimal sur­
face in R3 containing the strip in the interior. The solution for this 
problem was given by H. A. Schwarz in (28] by means of a explicit 
formula in terms of the prescribed strip. This formula gives a beauti­
ful method, besides the Weierstrass representation [27) , to construct 
minimal surfaces with interesting properties. For example, properties 
of symmetry. 
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The equivalent problem in the Lorentz-Minkowski 3-<limensional 
space was proposed and solved, using a complex representation formula 
developed in [2). The authors introduced the local theory of maximal 
surfaces in L3 in a different way of that given in [22, 23] through the 
Weierstrass representation. They constructed new examples of max­
imal surfaces, gave alternative proofs of the characterization of the 
maximal surfaces of revolution and the ruled surfaces in L3 and proved 
symmetry principles for those surfaces. 

In Euclidian 4-dimensional space, the Bjorling problem for minimal 
surfaces was proposed and solved in [5], see also [3], from a complex 
representation formula. In that work the authors also recovered the 
symmetry principles of minimal surfaces in R4 obtained by Eisenhart 
{12]. 

In this paper, motivated by results and techniques of [2], [5] and 
[14], we introduce the local theory of maximal surfaces in L", using a 
complex representation formula-see theorem 1 below- that describes 
the local geometry of these surfaces. This formula is used to solve the 
Bjorling problem in L4, which is illustred with two examples. As an­
other consequence of theorem 1 we recover the representation formulae 
of the Bjoling problem for minimal surfaces in R.3 and maximal sur­
faces in L3 . We also recover the symmetry principles for these surfaces. 
Finally, we study the symmetry principles for the maximal surfaces in 
L4 and present new examples. 

2. PRELIMINARIES 

Let L4 denote the 4-dimensional Lorentz-Minkowski space, that is, 
the Euclidian space R4 := {(x1,x2,x3,x4

): x; ER} endowed with the 
Lorentzian metric 

(1) 

Given u, v, win L", we define the vector product 181(u, v, w) E L4 by 

(181(u,v,w),x) := -det(u,v,w,x), 

which in coordinates takes the form 

( 

u2 l/2 w2 ul l/1 w1 

181(u,v,w) = u3 l/3 w3 ,- u3 l/3 w3 

u4 v4 w4 u4 v4 w4 

ul vl wl 

u2 v2 w2 

u4 v4 w4 

(2) 

Let { e1, e2, e3, e4} be the canonical basis of R.4. The proof of the fol­
lowing proposition is straightforward. 
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Proposition 2.1. The vector product 181 has the following properties: 
1) (181(u,v,w),u) = (181(u,v,w),v) = (181(u,v,w),w) = 0; 
2) 181(u,v,e4) = u xv, where u = (u1,u2,1l,O),v = (v1 ,v2,v3 ,0) E 
1R3 C ll..4; 
3) 181(u,v,e2) = u xv, where ti= (u1,0,u3,u4), v = (v1,0,v3,v4) E 
L3 C L4 ; 

4) 181(u,v,e1) = -u xv and 181(u,v,e3) = -u xv; 
5) (181(u1,u2,u3), 181(v1,v2,v3)} = -det((u,,v;)), I~ i;j ~ 3, u;, v; E 
L4; 
where x is respectively the cross-product of!R3 and L3 . 

Let C'i be the n-dirnensiona.l complex vector space endowed with the 
hermitian estruture 

n-1 

<< z, w »:= L ziwi - z"w", 
i=I 

We will deal with the following subsets of the comple:t projective space 
P(Ci') associated to q (see (15, 6, 24]): 
1) a>f-1 := {z EC"\ {O} :« z,z »> O}/C"; 
2) CH"-1 := {z EC"\ {O} :« z,z »< 0}/C"; 
3) amn-t := {z EC"\ {O} :« z,z »= O}/C". 

Denote by 61,4 the Grassmannia.n of spacelike 2-planes of L4 with 
the induced orientation. Given u, v E L4, with (u, u) = (v, v) = ,\2 > 0 
and {u,v) = 0, let II2 = span[u,v] E Gt4 • We can identify Gf4 with 
Qf := {[z] E CPf-1 :« z, z »= O} thr~ugh the mapping that sends 
each Il2 E G!4 into [z] E Qf where z = u+iv. Given II2 = span[u, v] E 
Gt4, let v0 := 181{u,v,e4) and To:= 181(u,v,v0); then {vo,ro} is a basis 
for (Il2).1.. 

Proposition 2.2. Let v 0 and To defined as above. We have: 
1) 110 = u xv, where x is the cross-product in R3 C L4 ; 
2) 'io = .>.2e4 + u4u + v4v, where >.2 = {u, u}; 
3) (110,110) = >.2 (>.2 +(u4)2+(v4)2) and {ro,ro) = ->.2 (>.2 +(u4

)
2 +(v4Y1); 

4) if µo := J>.2 (>.2 + (u4 )2 + (v4)2), 'i := ! and ll := ;!-, then {x, x, v, T} 

is a positively oriented orthonormal basis of L4 • 

Denote by G2 4 the Grassmannian of timelike 2-planes of L4 with 
the induced orie~ta.tion. Given 111,112 E L4, with (111,111} = -(112,112) = 
>.2 > 0 and (111,112) = 0, let Il2 = span[v1 , 112] E G;,4• We can identify, 
as above, G2 4 with the real quadric QR, which is defined as the set of 
classes [z] E 

0

0Q1"- 1 such that (~e(z), Jm(z)} = 0 and ~e{z), Jm{z) 
are linearly independent. 
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Definition 2.8. A smooth immersion X : M2 ➔ L • of a 2-dimensional 
oriented connected manifold is called a spacelike surf ace S in L 4 if the 
induced metric ds2 := X*(,) on M2 is a Riemannian metric. 

Let (U, z = u + iv) be isothermal coordinates in a neighborhood of 
a point pin M 2

, that is (X,.,X,.) = (X.,,X,,) = ..X2 and (X,.,X,,) = 0. 
This induces a holomorphic estruture on M2. We define an orthonormal 
basis { 11, T} of (T11S).l by 

where 

llo 
11 = - and 

µo 

To 
T=-, 

µo 
(3) 

110 = r81(X11 , X,,, e,.), To = r81(X .. , X.,, 110), µo = J.X2 (..X2 + (x!P + (x!P). 
Observe that II and T are respectively spacelike and timelike vector 

fields normal to the surface S = X(M) and it is not hard to see that 
they are globally defined on S. Also, let f3 = {o1,<h,8a,o4 } be the 
local orthonormal frame adapted to S, where 

~ X,. 0 X. a_ ( 
u1 = T· 2 = T· U3 = 11, a. = T. 4) 

As far as we know, the normal frame {11,T} was introduced in (14], 
where spacelike surfaces in L4 are extensively studied. 

Let V and V be the Levi-Civita connection of L4 and (M2, ds2), re­
spectively. The second fundamental form of S is defined by a(V, W) := 

(VvW)l. and the mean curvature vector by Hp := ½tr(ap) for all 
pE M2

• 

Proposition 2.4. If S = X(M) is a space.like surface in L", then 
t::,.MX=2H. 

Proof: See [14]. 

Definition 2.5. A spacelike surface S in L4 is maximal if H = O. 

Let S = X ( M) a spacelike surface in L • defined in terms of local 
isothermal coordinates (U,z = u + iv) of M 2 , and define the complex 
functions 

ox,. ox,. 
I.(),.:= a;;- ia;;, k = 1,2,3,4. (5) 

It is not hard see that 

(l.()1)2+(1.()2)2+(1.()3)2-(l.()")2 = 0, jt,ell2+lt,e212+1,p312-1'f)•12 = 2.x2 > 0. 

The induced metric on Mis ds2 = ..X2 ldzl2 and the complex I-forms 
w,. := r.p,.dz are globally defined on M. Now if Sis a maximal surface, 
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it follows from Proposition 2.4 that w" is holomorphic. Thus, S can be 
represented as 

X(z) = !Re 1: w + ko, where w = (w1,w2,w3,w4
) and .zo,z EM. 

~ (6) 
The converse also holds. 

Theorem 2.6. Let M2 be a connected Riemann surface and w = 
(w1,w2,w3 ,w4 ) a holomorphic I-form with values in CC globally de­
fined on M'J satisfying 
1) « w,w »= 0, 
2) « w,w »> O, V p E M2

, 

3) !Rt f-r w = 0, for all closed path I on M2. 

Then the map X: M2 ➔ L4 given by the equation (6) defines a maxi­
mal surf ace in 11}. 

For the proof see [14]. 

The Gauss map G: M 2 -+ Q? of a spacelike surface S = X(M) in 
L4 is defined locally by G(z) = [t(z)], with X,. = t/)t for some function t/J: M2 -+ C and 4> = (,t,1,¢2,¢3,¢4), for more details see [19, 14). Let 
a(z),b(z) be the complex valued functions defined on M2 by 

-ef,3 + 4>4 ef,3 + q,• 
a(z) := 4,1 - i<f,2 , b(z) := 4,1 - i¢2 . (7) 

We have that 

4>(z) = µ(l + ab, i(l - ab), a - b, a+ b). (8) 
It follows from (3) and (8) that 

[ 

(1 + lbl2)!:>tt(a) + (1 + lal2)!Jte(b) l 
1 (1 + lbl2)Jm(a) + (1 + lal2)Jm(b) 

r(z) = II - ablJ(l + jaj2)(1 + lbl2) lal2 
- lbl2 

' 
(1 + lal2)(1 + 1h12) 

1 (1 + lbl2)Jm(a) - (1 + lal2)Jm(b) 
[ 

(1 + lbl2)!.Rc(a) - (1 + lal2)!.Jte(b) l 
v(z) = II - ablJ(l + jaj2)(1 + lbl 2 ) 1°l2lbJ2- 1 · 

For more details see [14}. 
Let A : M 2 -+ C4 be the complex map defined by 

A(z) :== v(z) + ir(z), (9) 
and observe that [A(z)] E QR. 
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3. MA.IN RESULTS 

Now we are able to propose and solve the Bjorling problem for 
maximal surfaces in L4 . Let c : I § JR ➔ L4 he a regular real 

analytic spacelike curve in L4 and let n : I ➔ C4 be a real ana­

lytic vector field along c { that is, !>le{n), Jm(n) : I ➔ L4 are vec­

tor fields along c) such that (c'(s),!>te(n)} = 0 = (c'(s),Jm(n)}, 
(!>le(n),!.)"te(n)} = -{Jm(n),Jm(n)} = 1 and Jm(n) is future directed 
for all s E / . In analogy with [2, 11), we call such a pa.ir (c, n) a an­
alytical strip in L4 . The problem is then to find a maximal surface S 
defined by X: n ~ C ➔ L' with/ C n, such that 
1) X(u,0) = c(u), 
2) A(u,O) = n{u), 'vu E /. 
It is easy to see that if X : n ~ C ➔ L4 is maximal surface in L4, 
then c(u) := X(u,O) and n(u) := A(u,0) satisfy the above data and, 
in particular, they are real analytic. Then there exist holomorphic ex­
tensions c(z) and n(z) and these extensions are unique by the identity 

theorem for analytic functions (see (21) pp. 87). In this situations, we 
can explicitly recover X(z) from c and n by means of a. unique complex 

representation formula. 

Theorem 3.1. Let S be a maximal surface in L4 given by X : U ~ 

C ➔ L 4 • Define the curve c( u) := X ( u, 0) and the vector field n( u) := 

A( u, 0) along c, on a real interval I C U. Choose any simply connected 

open set n ~ U containing I, over which we can define holomorphic 

extensions c(z) and n(z) of c and n. Then, for all z En it holds 

X(z) = !Re: (c(z) + i la 181 (vte(n(w)), Jm(n(w)), c'(w)) dw) , 
~ (10) 

where s0 is a arbitrary fixed point of I and the integral is taken along 
an arbitrary path in n joining so and z. 

Proof: Since S is maximal, the complex function W : U ➔ C' defined 
by (5) 

11' - 28X with '11 - (,,,1 ,,,1 ,,,3 ,,,") 
- QZ - T l T l T l T I 

is holomorphic in U and by (6) we can write 

X(z) = !.)"te L" \Jfdz + ko, (11) 

where ko E L4 is a suitable constant such that X(u,O) = c(u) for all 
u E /. 
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Let { 81, Eh, /h, 84} be the local orthonormal frame adapted to S given 
in (4). Now write~ in this basis, 

~(o,i,04,01) = {~(/h,04,01),ai)82 = --det(81,82,/h,04)<h = -82, 
and since X., = >..[h, we have 

'll(z) = X,.(z) - iX.,(z) =Xu+ i 181 (v{z), T(z), Xu(z)) (12) 
in isothermal coordinates (U,z = u + iv). Restricting w(z) to I and 
using the definition of c, n we obtain 

w(u,0) = X,.(u,0)+il2l(v(u,0),r(u,0),X,.(u,0))= 
= c'(u) + i l2l (!Rt(n( u)), Jm(n( u )), c'( u)). 

Since these funtions are real analytic, we can extend them to two holo­
morphic functions \Jl(z), c'(z) + i l2l (!Rt(n(z)), Jm{n(z)), d(z)) on a 
simply connected open set n ~ U and they coincide on / c !l. Hence 
by the identity theorem for analytic functions it follows that 

\lf(z) = c'(z) + i 181 (!Re(n(z)),Jm(n(z)),c'(z)), V z E !l. 
Therefore 

r(z) := c(z) + i 1: 181(!:Rt(n(w)),Jm(n(w)),c'(w))dw, V z E !l 

is well defined on n and obviously is the primitive of the holomorphic 
mapping 'l'(z). Thus, (11) yields 

X(z) = ~t (c(z) + i 1.: 181(~t(n(w)),'.Jm(n(w)),c'(w))dw). 

This completes the proof of the Theorem. D 
Remark 3.2. We can choose.any s0 E / in (10) and the values of X(z) 
will remain the same, since c'(z), !Rt(n(z)), '.Jm(n(z)) all take real values 
in IE !l. 

Using the complex representation formula given in (10), we now show 
that the Bjorling problem has a unique solution. 

Theorem 3.3. There exists a unique solution X : !l ➔ L 4 to the 
Bjorling problem for maximal surfaces in L4, which is given by 

X(z) = !Re (c(z) + i t' 181 (!Re(n(w)), Jm(n(w)), c'(w)) dw) , 
J.. (13) 

with w = u+iv En, So E I, where n is a simply connected open subset 
of C containing the real interval I and for which c, n admit holomorphic 
extensions c( z), n( z). 
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Proof: Define the holomorphic curve 1l1 : !l ~ C ➔ C4 by 

w(z) = c'(z) + i 181 {!Jte(n(z)),Jm(n(z)),c'(z)), 'r/ z E fl. 
(14) 

where n is a simply connected open subset of C containing / on which 
the holomorphic extensions c(z), n(z) exist. Since by Proposition 2.1, 
c'(u) and 181(!Jte(n(u)),Jm(n(u)),c'(u)) are orthogonal and have the 
same length, it follows that 

(r,c1(u,0)? + (,p2(u,0)Y1 + (,p3(u,0)?- (<p4 (u,0))2 = 0, 'r/ u E /. 

We also have that 

l<p1(u,o)r1 + lr;2 (u,o)l2 + l</(u,0)12- l'f'"(u,0)12 = 2(c'(u),c'(u)) > 0. 

Thus 
('f'1{z))2 + (,i'(z)? + (<l(z))2 - ('f'"(z))2 = 0, 

1,/(z)l2 + l'f'2{z)l2 + lr,c3{z)l2 - l'P"{z)l2 > 0, 
for all z E n. Moreover, the holomorphic curve 1l1 has no real peri­
ods for !l is simply connected. Therefore by Theorem 2.6, X(z) = 
!lte J~ 'P(w)dw defines a. maxima.I surface S = X(O) in L\ where 'Pis 
given by {14) and so E /. Now we shall check that this surface satisfies 
the Bjorling conditions X(u,0) = c(u) and A(u,0) = n(u). The veri­
fication of the first condition is easy, since 181(!lte(n),:Jm(n),c') is real 
when restricted to I. To check the second condition, first recall that 
1l1 = 2(8X/8z). So it follows from (14) that, restricted to I, we have 

X,.(u,0) = c'(u) and X.,(u,0) = -181 {!lte(n(u)),:Jm(n(u)),c'(u)). 

On the other hand, from (12) we have 

X.,(u, 0) = - 181 (v(u, 0), r(u, 0), c'(u)). 

Since Jm{n{u)) is future directed it follows that !lte(n(u)) = v(u,0) 
and :Jm(n(u)) = r(u,0). 

At last we will prove the uniqueness, which is to be understood in 
the following sense: If X(u, v), z = u+iv E fi is another solution, then 
X(u,v) = X(u, v) for z = u+iv E nnn. In fact, any pair of solutions 
X, X to the Bjorling problem coincide on a real interval I c nnfi, and 
since both a.re analytic they must coincide on n n fi. This completes 
the proof of the Theorem. D 

Remark 3.4. Observe that the unicity in the above theorem is only 
referred to maximal surfaces X : n ~ C ➔ L 4 satisfying X ( u, 0) = c( u) 
and A{u,0) == n{u). Actually a little more can be proven: given an 
analytic strip {c, n) in L", there exists a unique maximal immersion 
X : M" ➔ L4 whose image contains c(I) and A restricted to c is n. 
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The existence part of this statement follows from Theorem 3.3. For the 
unicity part, we refer to corollary 3.4 of [2]. There unicity is proven for 
analytic strips in L3 and maximal surfaces in L3 , but their arguments 
work in our case as well. 

Example 3.5. Consider 

{ 
c(s) = (s - s3 ,0,s2,0) E lL\ 
n(s) = (i-2,,2~9.,pli (2s, -2J2si, -(1 - 3s2

), (1 + 3s2)i) E C4, 
for all s E IR.. By a straightforward calculation, we obtain that 

181(!'te{n(s )), '.Jm(n(s )), c'(s )) = (0, 1 + 3s2
, 0, -2v'2s ), 

whose holomorphic extension is 

~(!'te(n(w)), '.Jm(n(w)), c'(w)) = (0, 1 + 3w2, 0, -2v'2w). 

Thus 

X(z) := !'te((z-z3
, 0,z2

, 0))-'.Jm{(0, z+z3-(s0+s~), 0, -v'2z2+v'2s~)) 
and therefore, the solution of the Bjorling problem for the given strip 
is 

X(z) = (u + 3uv2 
- u 3

, -v - 3u2v + v3
, u:i - v2

, 2v'2uv), 
with z = u + iv EC. 

Example 3.6. Consider 

{ 
c(s) = (1 +cos(s),0,sin(s),2sin(s/2)) EL', 
n(s) = (cos(s ), O, sin(s), 0) + i( -1 - cos(s), 0, cos(s) cot(s/2), csc(s/2)) E C', 

for all s E (0, 211-). By similar calculations, 

~(!'te(n( w )), Jm(n( w )), c'(w)) == (0, sin(z/2), 0, 0). 

Then 

X(z) :== !'te((l+cos(z), 0, sin(z ), 2 sin(z/2)))-:Jm(-2 cos(z/2)+2 cos(so/2)) 
and therefore, the solution of the Bjorling problem for the given strip 
is 

X(z) == (l+cos( u) cosh(v ), -2 sin( u/2) sinh{ v/2), cosh(v) sin( u), 2 cosh( v /2) sin( u/2)), 
with z = u + iv, where u E (0, 271") and v ER. 

As consequences of Theorem 3.3 we recover the classical Bjorling 
problem for R3 and also the Bjorling problem for L3 , see (2]. 



10 ANTONIO C. ASPERTI .AND JOSE A. VILHENA 

Corollary 3.7. Let c: / ➔ R.3, R3 ~ {x" = 0} CL", be a regular mil 
analytic curve and let n : I ➔ C4 be a real analytic vector field along 

C such that n(s) = e(s) + ie-4, where e(s) E R3 is a unitary vector field 

satisfying (c'{s),e(s)} ::;;; 0 for alls E /. Then there exists a unique 

solution to the Bjorling problem for minimal surfaces in R3
, which is 

given by 

X(z) = !Re { c(z) - i l. (e(w) x c'(w))dw}, (15) 

where w = u + iv E n, So E J, n is a simply connected open set of C 
containing I and x is the cross-product of R3 • 

Proof: From Theorem 3.3 it follows that the solution to the Bjorling 

problem is given by 

X(z) = !Re (c(z) +i 1: ~(e(w),e4 ,c'(w))dw) 

= !Re (c(z)-i 1: 181(e(w),c'(w),e4)dw). 
Hence, from Proposition 2.1 item 2 we have 

X(z) = !Re (c(z) - i l• [(w) x 2(w)dw) 

= !Re (c(z)- i l. e(w) X c'(w)dw). 

D 

Corollary 3.8. Let c: / ➔ L3 , L3 ~ {x2 = O} CL", be a regular real 
analytic spacelike curve and let n : I ➔ C4 be a real analytic vector 

field along c of the form n(s) = e:.i+iV(.,), where V(s) E L3 is a future 

directed, timelike unitary vector field such that (c'(s), V(s)} = 0 for all 

s E [. Then there exists a unique solution to the Bjorling problem for 
maximal surfaces in L3, which is given by 

X(z) = !Re { c(z) + i 1.: (V(w) x c'(w))dw}, (16) 

where w = u + iv En, So E [, n is a simply connected open set of C 
containing [ and x is the cross-product in L3 . 
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Proof: From Theorem 3.3 if follows that the solution to the Bjorling 
problem is given by 

X(z) = Vle (c(z) + i lz 0 (e2, V(w), c'(w)) dw) 

= Vle (c(z) + i lz 181 (V(w), c'(w), el) dw) . 

Hence, from Proposition 2.1 item 3 we have 

X(z) = ~e (c(z) + i J.: v(w) X d(w)dw) 

= Vlc (c(z) + i 1.: V(w) x c'(w)dw) . 

□ 

4. SYMMETRIES 

Now, we will study the symmetries of the maximal surfaces in L4 

via the complex representation formula of the Bjorling problem for 
maximal surfaces. In order to do so we fix the following notation. Let 
f(z) = x(z) + iy(z), where x(z),y(z) are real-valued functions defined 
on the open set O of C. If x(z) is harmonic and f(z) is holomorphic 
in fl, then x(z) is harmonic and / (z) is holomorphic as a function of z 
in the open set n• := {z : z E O}. Note that, n is symmetric if only 
if fl = O*. We also have that, if I c 0, f is holomorphic in fl and f 
restrict to / take only real values, then f(z) = f(z) on / c fl n fl*. 
Therefore, f(z) can be holomorphica.lly extended to n Un•. 
Proposition 4.1. Let X : n ~ C ➔ L4 be the solution of the Bjorling 
problem, for a given strip ( c, n) in L 4, where O is a symmetric simply 
connected open set containing the real interval I and for which c and 
n admit holomorphic extensions c(z) and n(z), where z = u + iv En. 
Then for all z E f2 we have 

X(z) = Vle {c(z) - i lz ~(Vle(n(w)), '.J'm(n(w)), d(w))dw}. 
•• (17) 

Proof: The surface S = .X(O) given by X(u,v) := X(u,-v), clearly 
satisfies x,.,.(u,v) = x,.,.(u,-v), Xvv(u,v) = Xvv(u,-v) and still is 
a. maximal surface in L4 . Associated to X, let A(u,v) := v(u,v) + 
ir(u, v). From Proposition 2.2 and the definition of 181, we have that 

ro(u, v) = (>.2e4 + x!X,. + x!X.,)(u, -v), 
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vii(u, v) = -181 (e4, X,.(u, -v),X.,(u,-v)), 
and hence 1( u, v) = r( u, -v) and v( u, v) = -v( u, -v ). Therefore, 

A(u,v) = -A(u,-v). (18) 

This implies that A(u,O) = -A(u,0) = -n(u) and.X(u,0) = X(u,O) = 
c(u). Hence Xis a solution of the Bjorling problem for c = c, n = -n 
and then X(z) = me J; i(w)dw, where i(z) = X,.+i181(v(z), 1(z),.X,.(z)), 
see (13). Restricting \ll'(z) to I and using (18) we obtain 

i(u,0) = X10 (u,0)+i181(-v(u,0),r(u,0),X,.(u,0)) 
= c'(u) - i ~ (~e(n(u)), '.Jm(n(u)),c'(u)). 

When we extend these functions to n•, the result follows. □ 
The proofs of the following corollaries are analogous to those of corol­

laries 3. 7 and 3.8. 

Corollary 4.2. Under the hypothesis of Proposition 4.1, if S = X(fl) C 
IR3 ~ {z4 = O} and n is of the form n(s) = e(s) + ie4 , with e(s) E R3 

unitary such that (c'(s ), {(.,)) = 0 for alls E I, then 

X(z) = ~e {c(z) + i r (e(w) x d(w))dw}, for all z En. 
JIG (19) 

Corollary 4.3. Under the hypothesis of Proposition 4.1, if S = X(fl) C 
L3 ~ {z3 = O} and n is of the form n(s) =el+ iV(s), with V(s) E L3 

unitary, future directed, timelike and such that (c'(s), V(s)} = 0 for all 
s EI, then 

X(z) = me {c(z)- i 1•(V(w) x c'(w))dw}, for all z En. 
60 (20) 

Remark 4.4. Using the formulae (15) and (19), it is not difficult to 
recover the two symmetry principles discovered by Schwarz for minimal 
surfaces in R 3(see [11) p. 123). Also, by using (16) and (20), we can 
recover the two symmetry principles for maximal surfaces in L3 given 
in [2], Theorem 3.10. 

Now using (13) and (17) we will derive three symmetry principles for 
maximal surfaces in L 4 • They were motivated by the works of Schwarz 
and [2) above mentioned. Before going to it, we have the following 
definitions. 

Definition 4.5. Let ni: beak-plane in L4 . Assume that TIA: is space­
like if k = 1; TIA: is spacelike, timelike or degenerate if k = 2; Ilk is 
timelike if k = 3. Under those conditions, we say that TIA: is a k-plane 
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of symmetry of a spacelike surface X : M2 ➔ L 4 if for all p E M2 there 
exists a certain q E M2 such that X(p), X(q) are symmetric with re­
spect to II\ that is, such that (X(q) + X(p))/2 E IJk and X(q)- X(p) 
is perpendicular to Ilk. 

Theorem 4.6. Let S be a maximal surface in L", given by X ; U ~ 
C ➔ L4 • Then we have: 
1) Every spacelike straight line contained in S is an axis of symmetry 
of S; 
2) If S intersects any timelike or spacelike 2-plane 112, orthogonally 
along a curve regular of S, then II2 is a plane of symmetry of S; 
3) If S intersects any timelike 3-space 113, orthogonally along a curve 
regular of S, then II3 is a 3-plane of symmetry of S. 

Before going through the proof, it is convenient to make the following 
observation. Suppose for instance that the maximal surface S contains 
a segment of line L, which, we may assume is a portion of the x1-axis. 
Then it is possible to define isothermiu coordinates z = u + iv in a 
neighborhood of L so that X{u, 0) parametrizes L, see [18]. Analogous 
observations a.re in place in case S intersects orthogonally the x1

, x4
-

plane, or the x1,x2-plane or the 3-space {x3 = 0}. 
Whith this in mind, it is not difficult to see that Theorem 4.6 is now 

a consequence of the following 
Lemma 4. 7. Let S be a maximal surface in L 4, given by X : n s;;; C ➔ 
L 4 , with n is symmetric and simply connected. 
1) If, for all u E I, the curve c(u) = X(u,0), is contained in the 
x 1-axis, then 

X(u, -v) = (x1 (u, v), -x2(u, v),-:r:3(u, v), -x4(u, v)). (21) 
2) If, for all u E I, the curve c(u) = X{u, 0), is contained in the timelike 
x1, x 4 - plane IP, and if the surface S intersects II2 orthogonally along 
c, then 

X(u,-v) = (x1(u,v),-x2(u,v),-x3(u,v),:z:4(u,v)). (22) 
3) If, for all u E I, the curve c(u) = X(u, 0), is contained in the space­
like :z:1, x2- plane Il2, and if the surface S intersects 112 orthogonally 
along c, then 

X(u,-v) = (x1(u,v),:z:2(u,v),-:z:3(u,v),-x4(u,v)). {23) 
4) If, for all u E I, the curve c(u) = X(u,0), is contained in the 
timelike 3-space 113 = {x2 = O}, and if the surface S intersects Il3 

orthogonally along c, then 

X(u,-v) = (x1(u,v),-:z:2(u,v),x3(u,v),x4{u,v)). (24) 
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Proof: (1) Set c(u) := X(u,0) and n(u) := A(u,O). By hypothesis, it 
follows that c(u) = (c1(u), 0, 0, 0), !ltt(n(u)) = (0,~(u, 0), v3(u, 0),v'(u, 0)) 
and '.Jm(n(u)) = (0, -r2(u,0), r 3(u, 0), r"(u, 0)). Hence, by a straightfor­
ward calculation we have that 181(!1tt(n(u)),'.Jm{n(u)),d(u)) is of the 
form (0,~2(u),1813{u),1814(u)). On account of {13), (17) it follows re­
spectively that 

X(z) = ( !1te(c1{z)),-'.Jm [ 1812(w)dw,-Jm [ 1813(w)dw, -Jm 1: 121"(w)dw), 

X(z) = ( !1tt(c1(z)),Jm l~ 1812(w)dw, Jm 1: 1813 (w)dw,'.Jm l~ 181"(w)dw), 

which proves (21). 
(2) Since by hypothesis, S intersects Il2 = { x2 = 0, x3 = 0} orthogo­
nally at c(u) := X(u,0), it follows that c(u) = (c1(u),0,0,c4(u)). Now 
recall that the 2-plane P2 generated by !lte(n(u)) and '.Jm(n(u)) is or­
thogonal to Tc(u)S along c. It follows that 181(!1te(n(u)), Jm(n(u)), d(u)) 
is of the form (0, 1812(u), 1813(u), 0). On account of (13) and (17) we then 
arrive a.t the formula (22). 
(3) The proof is analogous to item (2). 
(4) The hypothesis implies that c(u) = (c1(u),0,c3{u),c4(u)). Since S 
intersects Il3 orthogonally, we have that X.,( u, 0) E (Il3).l and therefore 
X.,(u, 0) is parallel to the unitary vector e2 which is normal to Il3• Then 
!lte(n(u)) and Jm(n(u)) lie in Il3 , which implies that the second compo­
nent of both vectors are equal to zero. Hence 181(!1te(n(u)), Jm(n(u)), c'(u)) 
is of the form (0, 1812, 0, 0). Therefore, in conjunction with (13) and (17) 
we obtain (24). 

□ 
Hin Theorem 4.1 Il2 is a degenerate two plane, we have: 

Proposition 4.8. Let X : n ~ C ➔ L4 be a maximal surface, with 
n symmetric, simply connected and assume that S = X(fl) intersects 
the degenerate 2-plane Il2 = [e1 + e,, e2] orthogonally along the curve 
c(u) = X(u,0). Then S is contained in the degenerate 3-space Il3 = 
[e1 + e4, e2, e3]. Moreover Il2 is a plane of symmetry for S if and only 
if X.,( u, 0) is a multiple of e3 • 

Proof: Consider the basis .r={t:1, t:2, t:3, 4} ofL4, where t:1 = Y/-(e1 + 
e..i), t::i = 1( e1 - e,), t:3 = e2, f4 = ea and observe that Il2 = [t:1, E3]. It 
is clear that c(u) = X(u, 0) is of the form c(3) = (c1(3), c2(3), 0,c1(3)) . 
Since the 2-plane P2 = [9tt(n(u)),Jm(n(u))] is orthogonal to Tc(v)S 
along c, is follows that -X.,(u, 0) = 181(9tt(n{u)), Jm(n(u)), c'( u)) is of 
the form (1811 (u),0,1813(u},121 1(u)). By the same arguments as before, 
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we obtain that 

X(z) = (9te(c1(z)) - '.Jmlz ~1(w)dw, 9te(c2(z)), -'.Jm lz 1813(w)dw, 
•o •o 

9te(c1(z))- '.Jm 1: 181 1(w)dw), 

X(z) = ( !>le{c1(z)) +'.Jm 1: 1811(w)dw,9te(c2(z)),'.Jm la 1813(w)dw, 

!>te(c1(z)) + '.Jm 1: 181 1(w)dw), 

which written in the basis :F gives respectively 

X(z) = ( 9te(c1(z))-'.Jm 1.: 1811(w)dw,0,!>te(c3(z)),-'.Jm [ 1814(w)dw,) :F, 

X(z) = ( !>te(c1{z)) + '.Jm 1: 181 1(w)dw, 0, !>te(c3(z)), '.Jm la 1814 (w)dw,) :F. 

The first pa.rt is clear and S is symmetric with respect to II2 if and 
only if Jm J; 1811(w)dw = 0, that is, J; 1811(w)dw = 0 and the last 
claim follows. 

D 

Remark 4.9. l)lt is not difficult to see that Lemma4.7 and Proposition 
4.8 hold without the simply connectivity assumption. 
2) Observe that if II3 is spacelike or degenerate, then there is no space­
like vector orthogonal to II3 in L4. Therefore the symmetry problem 
of maximal surfaces in not defined is these cases. 

Example 4.10. Consider 

{ 
c(s) = (0,s,0,0) E L4, 

e-• 2 · e-• 
n(s) = C;;4+.-:l.,0,- v'H•-···O) + i(-v'H•-•··o, 

for all s E R. By a straightforward calculation, we obtain that 

181(!>te{n(w)), Jm(n(w)), c'(w)) = (-1, O, - e;"', e;"\ 

Therefore, the solution of the Bjorling problem for the given strip is 

X(z) = (v,u,½e-"sin(v),-½e-"sin(v)), 

with z = u + iv E C. Note that x2 is an axis of symmetry of the 
complete maximal surface S = X(C). 
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Example 4.11. Consider 

{ 
c(s) = (sinh(s),0,0,cosh(s)) EL◄ , 
n(s) = (O,cos(s),sin(s),O} + i(sinh(s); O,O,cosh(s))-E--C4, 

for all s E JR. By a straightforward calculation, we obtain that 

181(Me(n(w)), Jm(n(w)), c'(w)) = (0, -sin(w), cos(w), 0). 

Therefore, the solution of the Bjorling problem for the given strip is 
the complete maximal surface 

X - [ cos~(u) co~u) -si~(u) sint(u) l [ ~ l 
(z) - 0 sin(u) cos(u) 0 - sinh(v) ' 

sinh(u) 0 0 cosh(u) cos(v) 

with z = u + iv E C Note that II2 = [e1, e4] is a timelike 2-plane of 
symmetry of the surface S = X(C). 

Example 4.12. Consider 

{ 
c(s) = (cos(s),sin(s),0,0) EL\ · 
n(s) = (cos(s),sin(s),0,0) +i(O,O,sinh(s),cosh(s)) E C4, 

for alls ER. By a straightforward calculation, we obtain that 

181(!Jte(n(w)), Jm(n(w)),c'(w)) = (0, O, - cosh(w), -sinh(w),O). 

Therefore, the solution of the Bjorling problem for the given strip is 
the complete maximal surface 

[ 

cos(u) -sin(u) 0 0 l [ cosh(v) l 
X( ) _ sin(u) cos(u) 0 O O 

z - O O cosh(u) sinh(u) sin(v) ' 
0 0 sinh(u) cosh(u) 0 

with z = u + iv E C. Note that IP = [e1, e2] is a spacelike 2-plane of 
symmetry of the surface S = X(C). 

Example 4.18. Consider 

{ 
c(s) = (s2 ,s,0,s2 ) E L4, 
n(s) = J:2!4_.. {(1, -2s, -1, 0) + i(l + 4s2

, 2s, 1, 2 + 4s2)} E C4, 

for all s E R. Calculating as above, we obtain that 

181(!Jte(n(w )), Jm(n( w)), c'( w)) = (-1, O, -1, -1). 

The solution of the Bjorling problem for the given strip is the complete 
maximal surface 

X(z) = (u2 -v2 + v,u, v,u2 -v2 + v), 



BJORLJNG PROBLEM IN LORENTZ-MINKOWSKI 17 

with z = u + iv E C. This surface intersects the degenerate 2-plane 
II2 = [e1 + e4 ,e2] orthogonally along X(u,0) = c(u), but II2 is not a 
plane of symmetry of S. On the other hand, if we take again the curve 
c(s) = (s\s,O,s2), but take 

n(s) = ~{(1, -28, 0,0) + i(4s2
, 2s, 0, 1 + 4s2

)}, 
1 +4s 

this time, we obtain 

1:81(!Rt(n(w)), Jm(n(w)),c'(w)) = (0,0,-1,0) 

and 
X(z) = (u2 

- v2, u, v, u2 
- v2

), 

which is symmetric with respect to the 2-plane 112• 

Example 4.14. The timelike 3-space II3 = {x2 = O} is a 3-space of 
symmetry of maximal surface S given in the example 3.6. 
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