


BJORLING PROBLEM FOR MAXIMAL SURFACES IN
THE LORENTZ-MINKOWSKI 4-DIMENSIONAL SPACE

ANTONIO C. ASPERTI AND JOSE A. VILHENA

ABSTRACT. In this paper, we extend and solve the Bjorling-type
problem for maximal surfaces in the Lorentz-Minkowski 4-dimensional
space. As an application we establish symmetry principles for the
maximal surfaces in L. and construct new examples.

1. INTRODUCTION

A maximal surface in the Lorentz-Minkowski n-dimensional space
is a spacelike surface with zero mean curvature vector. It is well known
that maximal surfaces in L? represent locally a maximum for the area
integral [16, 8] and also that they admit a Weierstrass type representa-
tion [22, 23]. But the spacelike surfaces with zero mean curvature vec-
tor in L*, represent locally the maximum(resp. minimum) for the area
integral, if the normal variation is made in the timelike(resp. spacelike)
direction [20]. For these surfaces we also have Weierstrass type repre-
sentation [4, 14]. An important difference between the global theory of
maximal surfaces in L* and of the global theory of maximal surfaces in
L* is established by the so called Calabi-Bernstein theorem. It states
that a complete maximal surface in L? is a plane [8, 10]. However, this
result cannot be extended to L*, n >4 [13].

In the 3-dimensional Euclidian space R?, given a real analytic strip(see
§3), the classical Bjorling problem [11, 17] was proposed by E. G.
Bjorling [7] in 1844 and consists of the construction of a minimal sur-
face in R® containing the strip in the interior. The solution for this
problem was given by H. A. Schwarz in [28] by means of a explicit
formula in terms of the prescribed strip. This formula gives a beauti-
ful method, besides the Weierstrass representation [27] , to construct
minimal surfaces with interesting properties. For example, properties
of symmetry.
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The equivalent problem in the Lorentz—Minkowski 3-dimensional
space was proposed and solved, using a complex representation formula
developed in [2]. The authors introduced the local theory of maximal
surfaces in L3 in a different way of that given in {22, 23] through the
Weierstrass representation. They constructed new examples of max-
imal surfaces, gave alternative proofs of the characterization of the
maximal surfaces of revolution and the ruled surfaces in L3 and proved
symmetry principles for those surfaces.

In Euclidian 4-dimensional space, the Bjorling problem for minimal
surfaces was proposed and solved in [5], see also [3], from a complex
representation formula. In that work the authors also recovered the
symmetry principles of minimal surfaces in R* obtained by Eisenhart
[12].

In this paper, motivated by results and techniques of [2], [5] and
[14], we introduce the local theory of maximal surfaces in L*, using a
complex representation formula—see theorem 1 below- that describes
the local geometry of these surfaces. This formula is used to solve the
Bjorling problem in L*, which is illustred with two examples. As an-
other consequence of theorem 1 we recover the representation formulae
of the Bjéling problem for minimal surfaces in R?* and maximal sur-
faces in L3. We also recover the symmetry principles for these surfaces.
Finally, we study the symmetry principles for the maximal surfaces in
L* and present new examples.

2. PRELIMINARIES

Let L* denote the 4-dimensional Lorentz-Minkowski space, that is,
the Euclidian space R* := {(z?, 2%, 2%, 2*%) : z' € R} endowed with the
Lorentzian metric

(o) 1= (d1)? + (d*)? + (da)? — (da*)". )
Given u,v, w in L%, we define the vector product R{u,v,w) € L* by
(B(u, v, w), z) := —det(u,v,w, z), (2)

which in coordinates takes the form

| w2 v? w? w o w ul ! w! ul v
Ru,v,w)={ | uv® v* w®|,=|ud v® wd|,|ul v} w?| |u? v
ut vt w! ut vt wt ut vt wt uw v

Let {ej, €3,€3, €4} be the canonical basis of R%. The proof of the fol-
lowing proposition is straightforward.
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Proposition 2.1. The vector product ® has the following properties:
1) (R(u, v, w), u) = (B(u,v,w),v) = (R(u, v, w),w) =0;

2) B(u,v,eq) = 4 x B, where &t = (u!,u?,u?0),5 = (v',0?, v%,0) €
R3 C L4,'

3) B(u,v,e3) = @& x b, where & = (u!,0, w,ut), ¥ = (v,0,0%v%) €
L3 c LY

4) B(u,v,e;) = —& x & and B(u,v,e3) = —1 x ¥;

5)4((11,1,112,’“3), @(vl,vg,vg)) = —det((u,-,vj)), 1 S t,] S 3, Ugy V5 (S
L%

where x is respectively the cross-product of R® and L3,

Let C7 be the n~dimensional complex vector space endowed with the

hermitian estruture

n~1

&L z,w = szﬁ - 2w,

i=1
We will deal with the following subsets of the complez projective space
P(C}) associated to C} (see [15, 6, 24]):
1) CPT ' :={z € C*\ {0} :< 2,2 >> 0}/C%;
2) CH™! ;= {z€ C*\ {0} : < 2,2 >< 0}/C";
3) OCH* ! = {z € C* \ {0} :< 2,2 >=0}/C".

Denote by G}, the Grassmannian of spacelike 2-planes of L* with
the induced orientation. Given u,v € L*, with (u,u) = (v,0)=A2>0
and (u,v) = 0, let II* = spanfu,v] € G},. We can identify G}, with

1= {[z] € CPT™! :« 2,7 »>= 0} through the mapping that sends
each II* € GF, into [2] € Q} where z = u+iv. Given II* = span|u,v] €
G34, let vp := ®(u,v,e4) and 7 := R(u, v, 15); then {1y, 0} is a basis
for (IT%)+.

Proposition 2.2. Let vy and 7y defined as above. We have:

1) vp = 4 X ©, where x is the cross—product in R3 C L*;

2) 10 = A’eq + u'u + vy, where A2 = (u,u);

3) (vo,00) = N2(A2+(u!)?+(v*)?) and (7o, 7o) = —A2(A*+(u!)?+(v*)?);
4) if po 1= /NN + (u*)? + (v4)?), 7 := 2 andy := 2, then {%, L,u,7}
is @ positively oriented orthonormal basis of L*.

Denote by Gj3, the Grassmannian of timelike 2-planes of L* with
the induced orientation. Given vy, v; € L%, with (11,11) = —(13,1,) =
A2 > 0and (1,1,) =0, let TI? = spanfv,vy] € G34- We can identify,
as above, G;, with the real quadric QR, which is defined as the set of
classes [2] € OCH™! such that (Re(z),Im(z)) = 0 and Re(z), Im(z)
are linearly independent.
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Definition 2.3. A smooth immersion X : M? — L* of a 2-dimensional
oriented connected manifold is called a spacelike surface S in L* if the
induced metric ds? := X*{,) on M? is a Riemannian metric.

Let (U,z = u + iv) be isothermal coordinates in a neighborhood of

a point p in M?, that is (X,, X,) = (X,, Xy) = A? and (X,, X,) = 0.

This induces a holomorphic estruture on M?. We define an orthonormal
basis {v, 7} of (T,S5)* by

v=2 and r=2, (3)

where
Vp = E(Xﬂ; Xv: 34)7 To = E(Xuy an V0)1 Ho = \/A2(A2 + (31)2 + (zt)ﬂ)_

Observe that v and 7 are respectively spacelike and timelike vector
fields normal to the surface § = X (M) and it is not hard to see that
they are globally defined on S. Also, let 8 = {8,02,0s,0:} be the
local orthonormal frame adapted to S, where
X.

A ?
As far as we know, the normal frame {v,7} was introduced in {14],
where spacelike surfaces in L* are extensively studied.

Let V and V be the Levi-Civita connection of L* and (M?, ds?), re-
spectively. The second fundamental form of S is defined by (VW) :=
(VvW)!L and the mean curvaiure vector by H, := itr(e,) for all
pE M
Proposition 2.4. If § = X(M) is a spacelike surface in L, then
AuX =2H. )

Proof: See [14].
Definition 2.5. A spacelike surface S in L* is mazimal if H = 0.

Let § = X(M) a spacelike surface in L* defined in terms of local
isothermal coordinates (U, z = u + iv) of M2, and define the complex
functions

X,
o= 32=T,33=V,64=T. (4)

oz*  9z*
* = Y k=1,2,3,4. (5)

It is not hard see that

(") + @)+ = (") =0, | +1e° +|o°) — [o*]* = 2* > 0.
The induced metricon M is ds? = A?|dz|? and the complex 1-forms

w* := p*dz are globally defined on M. Now if S is a maximal surface,
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it follows from Proposition 2.4 that w* is holomorphic. Thus, § can be
represented as
zZ

X(z)= ERe/ w+ ko, where w = (w',w?,w? w?) and 2,z € M.
"’ (6)
The converse also holds.

Theorem 2.6. Let M? be a connected Riemann surface and w =
(Whw?,w?,w!) a holomorphic 1~form with values in C* globally de-
fined on M? satisfying

1) K w,@>=0,

2) Kw,w>»>0, Vpe M?,

3) Re [ w =0, for all closed path y on M?.

Then the map X : M? — L given by the equation (6) defines a mazi-
mal surface in L4,

For the proof see [14].
The Gauss map G : M? — Q3 of a spacelike surface § = X(M) in
L* is defined locally by G(z) = [8(2)], with X, = %® for some function

¥: M? = Cand @ = (¢', ¢?, ¢, 44), for more details see [19, 14]. Let
a(z), b(z) be the complex valued functions defined on M? by

_¢3 + ¢4 ¢3 + ¢4
a(z) = m, b(z) = m . (7)
We have that
9(z) = p(1 + ab,i(1 — ab),a ~ b,a + b). (8)

It follows from (3) and (8) that
[ (14 B)%e(a) + (1 + |af)Re()
o) 1 (1-+ B9m(a) + (1 1 Jaf)om(e

= T al? 2 Ial2 Ibl
11— ably/(1 +Jal?)(1 + [5P2) (1 +]aP)(L + [ol?)

1 (1 + [8]*)Im(a) — (1 + |a)?)Jm(d)

T 1= abl /O T P T 5P) IaI’Ib(I)2 ~1

v(z)

For more details see [14].
Let A: M? - C* be the complex map defined by

A(z) := v(z) +i7(2), 9)
and observe that [A(z)] € QR.

[ (1+ [b")%Re(a) — (1 + Jaf*)Re(b) ]
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3. MAIN RESULTS

Now we are able to propose and solve the Bjorling problem for
maximal surfaces in L. Let ¢ : | &-R—L!-be-axegular real
analytic spacelike curve in L* and let n : [ — C' be a real ana-
lytic vector field along ¢ ( that is, Re(n),IJm(n) : [ — L* are vec-
tor fields along ¢ ) such that (c(s),Re(n)) = 0 = (c(s),Im(n)),
(Re(n), Re(n)) = —(3m(n),Im(n)) = 1 and Im(n) is future directed
for all s € I. In analogy with [2, 11], we call such a pair (c,n) a an-
alytical strip in L*. The problem is then to find a maximal surface §
defined by X : 2 C C — L* with J C Q, such that
1) X(u,0) = c(u),

2) A(u,0) =n(u), Vuel

It is easy to see that if X : @ € C — L* is maximal surface in L4,
then ¢(u) := X(u,0) and n(u) := A(u,0) satisfy the above data and,
in particular, they are real analytic. Then there exist holomorphic ex-
tensions c(z) and n(z) and these extensions are unique by the identity
theorem for analytic functions (see [21] pp. 87). In this situations, we
can explicitly recover X(z) from c and n by means of a unique complex
representation formula.

Theorem 3.1. Let S be a mazimal surface in L* given by X : U C
C — L2, Define the curve c(u) := X(u,0) and the vector field n(u) :=
A(u,0) along c, on a real interval I C U. Choose any simply connected
open set ) C U containing I, over which we can define holomorphic
extensions c(z) and n(z) of ¢ and n. Then, for all z € O it holds

X(z) = Re (c(z) +1 /: R (Re(n(w)), Im(n(w)), ¢ (w)) dw) . :

10)

where 3o i3 a arbitrary fized point of I and the integral is taken along
an arbitrary path in §) joining 3o and z.

Proof: Since S is maximal, the complex function ¥ : U — C* defined
by (5)

=207 with ¥= (o, 6% 0%,
is holomorphic in U and by (6) we can write
X(z) = Re / Wdz + ko, (11)
2

where ko € L* is a suitable constant such that X(u,0) = ¢(u) for all
uel
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Let {01, 3, 33, 84} be the local orthonormal frame adapted to S given
in (4). Now write & in this basis,

E(63,64, al) = (E(637 64501),62)82 = - det(81,32,63,64)82 = —(92,

and since X, = Ad,, we have

¥(z) = Xu(2) - iX,(2) = X, +iR ((2),7(2), Xu(z)) (12)
in isothermal coordinates (U, z = u + iv). Restricting ¥(z) to I and
using the definition of ¢, n we obtain

\I’(ua O) = Xﬂ(“: 0) +:R (V(ua O)v T(u’ 0): Xu(ua 0)) =

= (u) +i® (Re(n(u)), Im(n(u)), ¢(u)).

Since these funtions are real analytic, we can extend them to two holo-
morphic functions ¥(z), ¢(z) +i & (Re(n(2)),Im(n(z)),d(2)) on a
simply connected open set (2 C U and they coincide on I C §). Hence
by the identity theorem for analytic functions it follows that

¥(z) = d(z) + i ® (Re(n(2)), Im(n(z)),¢(2)), ¥ z € Q.
Therefore

I'(z) i=c(z) +1¢ /* R(Re(n(w)), Im(n(w)), d(w))dw, ¥ z € 0

is well defined on Q and obviously is the primitive of the holomorphic
mapping ¥(z). Thus, (11) yields

X(2) = Re (c(z) + i/ ™ (Re(n(w)), Im(n(w)), ¢'(w)) dw) .
This completes the proof of the Theorem. O

Remark 3.2. We can choose any sq € [ in (10) and the values of X(z)
will remain the same, since ¢/(z), Re(n(z)), Im(n(z)) all take real values
inlef.

Using the complex representation formula given in (10), we now show
that the Bjérling problem has a unique solution.

Theorem 3.3. There ezists a unique solution X : 0 — L4 to the
Bjorling problem for mazimal surfaces in L4, which is given by

X(z) = Re (c(z) + i/ ® (Re(n(w)), Im(n(w)), ¢(w)) dw) ,

0 (13)
withw = u+iv € ), sy € I, where () is a simply connected open subset
of C containing the real interval I and for which ¢, n admit holomorphic
eztensions ¢(z),n(z).



8 ANTONIO C. ASPERT! AND JOSE A. VILHENA

Proof: Define the holomorphic curve ¥ : @ C C — C* by
U(z) = d(z) + i B (Re(n(z)), Im(n(2)),(2)), ¥z € Q.

(14)
where Q is a simply connected open subset of C containing / on which
the holomorphic extensions ¢(z), n(z) exist. Since by Proposition 2.1,
¢(u) and R(Re(n(u)),Im(n(u)),d(u)) are orthogonal and have the
same length, it follows that

(' (,0))* + (¢*(4,0))* + (¢%(4,0))* — (¥*(4,0))* =0, Vu € I.
We also have that

" (1, 0) + 1¢* (1, 0)* + |° (u, 0)I” — l* (1, O)[* = 2(¢'(u), ¢(w)) > O.
Thus

(#'(2))* + (#*(2))" + (¥*(2))* = (¢'(2)) = 0,

le' (@) +1e* ) + (@) = le*(2)I* > 0,

for all z € Q. Moreover, the holomorphic curve ¥ has no real peri-
ods for Q is simply connected. Therefore by Theorem 2.6, X(z) =
Re [ ¥(w)dw defines a maximal surface § = X () in L*, where ¥ is
given by (14) and sp € I. Now we shall check that this surface satisfies
the Bjorling conditions X (u,0) = c(u) and A(u,0) = n(u). The veri-
fication of the first condition is easy, since &(Re(n), Im(n),c’) is real
when restricted to . To check the second condition, first recall that
¥ = 2(8X/08z). So it follows from (14) that, restricted to I, we have

X, (u,0) = c'(u) and X,(u,0) = — B (Re(n(u)), Im(n(u)), c'(u)).

On the other hand, from (12) we have

X,(u,0) = — B ((u,0), 7(u,0),c'(u)).
Since Jm(n(u)) is future directed it follows that Re(n(u)) = v(u,0)
and Jm(n(u)) = 7(u,0).

At last we will prove the uniqueness, which is to be understood in
the following sense: If X (u,v), z= utiv € € is another solution, then
X(u,v) = X(u,v) for z = u+iv € AN, In fact, any pair of solutions
X, X to the Bjorling problem coincide on a real interval I C 2ng, and

since both are analytic they must coincide on Q N €. This completes
the proof of the Theorem. 8]

Remark 3.4. Observe that the unicity in the above theorem is only
referred to maximal surfaces X : Q C C — L* satisfying X (u,0) = c(u)
and A(u,0) = n(u). Actually a little more can be proven: given an
analytic strip (¢,n) in L4, there exists a unique maximal immersion
X : M?* — L* whose image contains ¢(J) and A restricted to c is n.
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The existence part of this statement follows from Theorem 3.3. For the
unicity part, we refer to corollary 3.4 of [2]. There unicity is proven for
analytic strips in L® and maximal surfaces in L?, but their arguments
work in our case as well.

Example 8.5. Consider
cs) = (s — $%,0,52,0) € L*,
{ n(s) = W(Zs, —2v/2si, —(1 — 3s%), (1 + 3s?)i) € C*,
for all s € R. By a straightforward calculation, we obtain that
R(Re(n(s)), Im(n(s)),c(s)) = (0,1 + 3s2,0, —2v/2s),

whose holomorphic extension is

B(Re(n(w)), Im(n(w)), d'(w)) = (0,1 + 3u?, 0, -2v2w).
Thus
X(2) 1= Re({2~2,0,2%,0))=TIm((0, 242>~ (sp+s2), 0, ~V2224+v/253))

and therefore, the solution of the Bjérling problem for the given strip
is

X(2z) = (u + 3uv® — u®, —v — 3ulv + v3 0% — y2, 2\/§uv),
withz=u+tv e C.
Example 3.6. Consider

{ c(s)=(1+ ws(s),O,sin(s),2§in(s/2)) € L4,
n(s) = (cos(s), 0,sin(s),0) + i(-1 — cos(s), 0, cos(s) cot(s/2), cse(s/2)) € C*,

for all s € (0,27). By similar calculations,
RB(Re(n(w)), Im(n(w)), ¢(w)) = (0,sin(z/2),0,0).
Then
X(z) == Re((14cos(2), 0, sin(2), 25in(2/2)))~Im(—2 cos(z/2)+2 cos(s0/2))

and therefore, the solution of the Bjérling problem for the given strip
is

X (z) = (1+cos(u) cosh(v), —2 sin(u/2) sinh(v/2), cosh(v) sin(u), 2 cosh(v/2) sin(u/2)),
with z = u 4 iv, where u € (0,27) and v € R.

As consequences of Theorem 3.3 we recover the classical Bjorling
problem for R and also the Bjorling problem for L3, see [2]-
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Corollary 3.7. Letc: I = R3, R®= {z* = 0} C L*, be a regular real
analytic curve and let n : I — C* be a real analytic vector field along
c such that n(s) = £(s) + ieq, where {(s) € R® is a unitary vector field
satisfying {(s),£(s)) = 0 for all s € 1. Then there ezists a unique
solution to the Bjorling problem for minimal surfaces in R®, which is
given by

x(2) =9t {eta) - [ (eo) x dahiof, (1)

where w=u+iv €Q, so € I, Q is a simply connected open set of C
containing I and x is the cross—product of R®,

Proof: From Theorem 3.3 it follows that the solution to the Bjorling
problem is given by

x@) = % (o) + [ @(Ew) @) do)
Re (c(z)—z' /.,, m(g(w),c'(w),e.)dw).

Hence, from Proposition 2.1 item 2 we have

X(2)

i

st (te) = [ w) 2w
Re (c(z) -1 /’: f(w) x c’(w)dw) .

a

Corollary 3.8. Let c: I — L3, L3 = {z? = 0} C L*, be a regular real
analytic spacelike curve and let n ; I — C* be a real analytic vector
field along c of the form n(s) = e;+iV(s), where V(s) € L? is a future
directed, timelike unitary vector field such that {d(s),V(s)) =0 for all
s € I. Then there ezists a unique solution to the Bjorling problem for
mazimal surfaces in L2, which is given by

X(2) = Re {c(z) +i / :(V(w) x c'(w))dw} : (16)

wherew =u+iv €, s € I, N is ¢ simply connected open set of C
containing I and x is the cross—product in L3.
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Proof: From Theorem 3.3 if follows that the solution to the Bjorling
problem is given by

X(z) = e (c(z)+i /'Ea(e,,V(w),c'(w))dw)

= Re (c(z) +i f: B (V(w), ¢(w), e2) dw) .

Hence, from Proposition 2.1 item 3 we have
X(z) = Re (c(z) + i/ V(w) x é’(w)dw)
89
= Re (c(z) +1 / V(w) x c'(w)dw) .

4. SYMMETRIES

Now, we will study the symmetries of the maximal surfaces in L4
via the complex representation formula of the Bjorling problem for
maximal surfaces. In order to do so we fix the following notation. Let
J(2) = z(z) + iy(z), where z(2), y(z) are real-valued functions defined
on the open set {2 of C. If z(z) is harmonic and f(2) is holomorphic
in Q, then z(Z) is harmonic and f(Z) is holomorphic as a function of z
in the open set 0* := {Z : z € 1}. Note that, Q is symmetric if only
if § = Q*. We also have that, if 7 C 2, f is holomorphic in { and f
restrict to I take only real values, then f(2) = f(Z) on 1 C QN Q*.
Therefore, f(z) can be holomorphically extended to U Q*.

Proposition 4.1. Let X : @ C C = L* be the solution of the Bjorling
problem, for a given strip (c,n) in L%, where §) is a symmetric simply
connected open set containing the real interval I and for which ¢ and
n admit holomorphic eztensions c(z) and n(z), where z=u+1v € Q.
Then for all z € §) we have

X(2) = Re {c(z) — / &(HRe(n(w)), Im(n(w)), c'(w))dw} .

an
Proof: The surface 5 =X(Q) given by X(u,v) := X(u, —v), clearly
satisfies Xuu(u,7) = Xuu(¥, —v), Xun(u,v) = Xow(u, —v) and still is
a maximal surface in L. Associated to X, let A(u,v) := D(u,v) +
i7(u, v). From Proposition 2.2 and the definition of &, we have that

To(u,v) = (MNes + 22 X, + 22X, )(u, —v),
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Po(u,v) = — B (eq, Xu(u, —v), X,(u, —v)),
and hence T(u,v) = 7(u, —v) and ¥(u,v) = —v(u, —v). Therefore,
A(u,v) = - Ay, —v). (18)

This implies that A(u, 0) = —A(y, 0) = —n(u) and X(u,0) = X(u,0) =
¢(u). Hence X is a solution of the Bjérling problem for é = ¢, A = —7

~

and then X(2) = Re [ (w)dw, where ¥(z) = X, +iR(%(2),7(2), Xu(2)),
see (13). Restricting ¥(z) to I and using (18) we obtain
W(u,0) Xu(u,0) + i ® (~v(u,0), 7(x,0), X,(u,0))
= J(u) — i B (Re(r(u)), Im(n(u)), ' (x)).
When we extend these functions to 1*, the result follows. |

The proofs of the following corollaries are analogous to those of corol-
laries 3.7 and 3.8.

Corollary 4.2. Under the hypothesis of Proposition4.1, if § = X(Q) C
R®= {z* = 0} and n is of the form n(s) = £(s) + iey, with £(s) € R®
unitary such that {d(s),{(s)) = 0 for all s € I, then

X(Z) = Re {c(z) +i /” (E(w) x c'(w))dw} , forall z€ Q.

I

(19)

Corollary 4.3. Under the hypothesis of Proposition4.1, if § = X)) c
L? = {z° = 0} and n is of the form n(s) = e; +iV(s), with V(s) € L3
unitary, future directed, timelike and such that (c'(s), V(s)) = 0 for all
s €1, then

X@) = e { o) - JL v xtwpan}. or st c 0 (20)

Remark 4.4. Using the formulae (15) and (19), it is not difficult to
recover the two symmetry principles discovered by Schwarz for minimal
surfaces in R%(see [11] p. 123). Also, by using (16) and (20), we can
recover the two symmetry principles for maximal surfaces in L? given
in [2], Theorem 3.10.

Now using (13) and (17) we will derive three symmetry principles for
maximal surfaces in L*. They were motivated by the works of Schwarz
and [2] above mentioned. Before going to it, we have the following
definitions.

Definition 4.5. Let II* be a k—plane in L*. Assume that IT* is space-
like if k = 1; II* is spacelike, timelike or degenerate if k = 2; II* is
timelike if k¥ = 3. Under those conditions, we say that IT* is a k-plane
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of symmetry of a spacelike surface X : M2 — L4 if for all p € M? there
exists a certain ¢ € M? such that X(p), X(q) are symmetric with re-
spect to IT¥, that is, such that (X(q) + X(p))/2 € I1* and X(q) — X(p)
is perpendicular to IT*.

Theorem 4.6. Let S be a mazimal surface in L*, given by X : U C
C —= L. Then we have:

1) Every spacelike siraight line contained in S is an azis of symmetry
of S;

2) If S intersects any timelike or spacelike 2-plane 112, orthogonally
along a curve regular of S, then II? is a plane of symmetry of S;

3) If S intersects any timelike 3-space II3, orthogonally along a curve
regular of S, then 113 is a 3-plane of symmetry of S.

Before going through the proof, it is convenient to make the following
observation. Suppose for instance that the maximal surface S contains
a segment of line L, which, we may assume is a portion of the z'-axis.
Then it is possible to define isothermal coordinates z = u + év in a
neighborhood of L so that X(u,0) parametrizes L, see [18]. Analogous
observations are in place in case S intersects orthogonally the z!,z*-
plane, or the z!, z2-plane or the 3-space {z* = 0}.

Whith this in mind, it is not difficult to see that Theorem 4.6 is now
a consequence of the following

Lemma 4.7. Lei S be a mazimal surface in L4, given by X : Q CC—
L*, with Q is symmetric and simply connected.
1) If, for all u € I, the curve c(u) = X(u,0), is contained in the
z'-azis, then

X (u,-v) = (z' (u,v), —2*(u,v), —23(u, v), —z(u,v)).  (21)
2) If, for allu € I, the curve c(u) = X(u,0), is contained in the timelike
z!,2*- plane T1?, and if the surface S intersects I1? orthogonally along
¢, then )

X(u,—v) = (z'(u,v), —2*(u,v), —23(u, v), 24(u, v)). (22)
3) If, for all u € 1, the curve c(u) = X(u,0), is contained in the space-
like z', 22~ plane 1%, and if the surface S intersects I1? orthogonally
along ¢, then

X(u, —v) = (z'(u,v), 2(u,v), —z3(u, v), —z*(u, v)). (23)

4) If, for all uw € I, the curve c(u) = X(u,0), is contained in the
timelike 3-space I1® = {z? = 0}, and if the surface S intersects I3
orthogonally along c, then

X(u, —v) = (z'(u,v), —z%(u, v), 2%(u, v), 2%(y, v)). (24)
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Proof: (1) Set ¢(u) := X(u,0) and n(u) := A(u,0). By hypothesis, it
follows that c(u) = (c!(u),0,0,0), Re(n(u)) = (0,*(u,0),3(u,0),v4(u,0))
and Jm(n(u)) = (0, 7%(u,0), 73(x, 0), 7*(u, 0)). Hence, by a straightfor-
ward calculation we have that ®(fRe(n(u)),Im{n(u)),c/(v)) is of the
form (0, ®%(u), ®*(u), ®*(u)). On account of (13), (17) it follows re-
spectively that

X(2) = (mc(cl(z)),-sm L &% (), —Jm / " ®°(w)dw, =Im /.., IZ‘(w)dw),

50

X(z) = (D%c(cl(z)),ﬂm/': ®?*(w)dw, Im /: Es(w)dw,ﬂm[o, E!‘(w)dw) ,

which proves (21).
(2) Since by hypothesis, S intersects I1? = {z? = 0, 2% = 0} orthogo-
nally at ¢(u) := X(u,0), it follows that c(u) = (c*(u),0,0,c*(u)). Now
recall that the 2-plane P? generated by Re(n(u)) and Im(n(u)) is or-
thogonal to T(y)S along c. It follows that ®(Re(n(u)), Im(n(u)), d(u))
is of the form (0, ®%(u), ®*(u),0). On account of (13) and (17) we then
arrive at the formula (22).
(3) The proof is analogous to item (2).
(4) The hypothesis implies that c(u) = (c(u),0, c*(u), c*(u)). Since §
intersects IT® orthogonally, we have that X,(u,0) € (II*)* and therefore
X.(u,0) is parallel to the unitary vector e; which is normal to II%. Then
Re(n(u)) and Im(n(u)) lie in T13, which implies that the second compo-
nent of both vectors are equal to zero. Hence ®(Re(n(u)), Im(n(u)), d(u))
is of the form (0, ®?,0,0). Therefore, in conjunction with (13) and (17)
we obtain (24).

a

If in Theorem 4.1 I1? is a degenerate two plane, we have:

Proposition 4.8. Let X :  C C — L* be a mazimal surface, with
Q symmetric, simply connected and assume that S = X() intersects
the degenerate 2-plane II? = [e; + eq, €g] orthogonally along the curve
c(u) = X(u,0). Then S is contained in the degenerate 3—space I1® =
[e1 + €4, €3, €3]. Moreover I1? is a plane of symmetry for S if and only
if X,(u,0) is a multiple of es.

Proof: Consider the basis F={¢,, ¢;, €3, €4} of L%, where ¢; = lé—i(el+
€ey), €2 = 3?(61 —e4), €3 = €3, €4 = €3 and observe that I1? = [e1, €3] It
is clear that c(u) = X(u,0) is of the form ¢(s) = (c*(s), ¢*(s),0,€'(s)).
Since the 2-plane P? = [Re(n(u)), Jm(n(u))] is orthogonal to Tig)S
along ¢, is follows that —X,(u,0) = ®(Re(n(u)), Im(n(u)), d(u)) is of
the form (R'(u),0,®%(u), ®!(u)). By the same arguments as before,
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we obtain that

X(z) = (me(cl(z)) ~Jm / R (w)dio, Re(c(z)), ~Im / & (w)dw,

L]

He(cl(z)) — Tm / ’ Ell(w)dw) ,

50

X(3) = (me(cl(z)) +9m / " (w)dw, Re(c(2)), Im / " (w)dw,

89

Re(c!(2)) + Im / E‘(w)dw) ,
80
which written in the basis F gives respectively

50 S0

X(z) = (m:(cl(z))—ﬂm/ 8 (w)dw, O,ﬂ{e(ca(z)),'—ﬂm/ 84(w)dw,) ,

F
X(z) = (mc(c‘(z))+3m/ R (w)dw, O,mc(c3(z)),3m/ E‘(w)dw,)
The first part is clear and S is symmetric with respect to II? if and

only if Im f; ®'(w)dw = 0, that is, [} R'(w)dw = 0 and the last

claim follows.

F

]

Remark 4.9. 1)It is not difficult to see that Lemma 4.7 and Proposition
4.8 hold without the simply connectivity assumption.

2) Observe that if I1® is spacelike or degenerate, then there is no space-
like vector orthogonal to I1® in LY. Therefore the symmetry problem
of maximal surfaces in not defined is these cases.

Example 4.10. Consider

o(s) = (0,5,0,0) € L4,
e—® . e—* =28 ~f e—!l
n(s) = (\/4+=‘2' 0, _\/4+2c—" ,0) + z(—\/;l+e"' 0, = 1/4te—4s? 4+2 )€ ¢,

for all s € R. By a straightforward calculation, we obtain that

-

B(SRe(n(w)), Im(n(w)), ¢ (1)) = (~1,0,~ 5,

e-"ll

P
Therefore, the solution of the Bjbrling problem for the given strip is

X(z) = (v,u, %e“‘ sin(v), —%e"‘ sin(v)),

with z = u + iv € C. Note that z? is an axis of symmetry of the
complete maximal surface S = X(C).
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Example 4.11. Consider
¢(s) = (sinh(s), 0,0, cosh(s)) € L4,
{ n(s) = (0, cos(s), sin(s), 0) + i(sinh(s), 0,0, cosh(s)}-€-€*,
for all s € R. By a straightforward calculation, we obtain that
— B(Re(n(w)), Im{n(w)), /(w)) = (0, - sin{w), cos(w), 0).

Therefore, the solution of the Bjorling problem for the given strip is
the complete maximal surface

cosh(u) 0 0 sinh(u) 0
X(z) = 0 cos(u) —sin(u) 0 0
(2) = 0 sin(u) cos(u) 0 —sinh(v) |’
sinh(u) O 0 cosh(u) cos(v)

with z = u + iv € C. Note that II? = [e,, e,] is a timelike 2-plane of
symmetry of the surface § = X(C).

Example 4.12. Consider

{ c(s) = (cos(s),si'n(s),0,0) € 1244, ’ :
n(s) = (cos(s),sin(s),0,0) + (0, 0, sinh(s), cosh(s)) € C*,

for all s € R. By a straightforward calculation, we obtain that
R(Re(n(w)), Im(n(w)), (w)) = (0,0, — cosh(w), — sinh(w), 0).

Therefore, the solution of the Bjérling problem for the given strip is
the complete maximal surface

c9s((u)) - six(1(1);) 8 g cosg(v)

sin(u) cos(u

()= 0 0 cosh(u) sinh(u) sin(v) |°
0 0 sinh(u) cosh(u) 0

with z = u +iv € C. Note that II? = [ey, €3] is a spacelike 2-plane of
symmetry of the surface § = X(C).

Example 4.13. Consider
c(s) = (s%,0,5%) € L4,
{ n(s) = Zrer{(1,-28,-1,0) +i(1 + 45%,25,1,2 + 4s?)} € C*,
for all s € R. Calculating as above, we obtain that
B(Re(n(w)), Im(n(w)), ¢(w)) = (-1,0,—1,-1).

The solution of the Bjorling problem for the given strip is the complete
maximal surface

X(z) = — v +v,u,v,u? —v? 4 v),
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w1th z = u+iv € C. This surface intersects the degenerate 2-plane

= [e1 + e4, €3] orthogonally along X (u,0) = e(u), but II? is not a
pla.ne of symmetry of S. On the other hand, if we take again the curve
c(s) = (s%s,0,5?%), but take

1
= ——={(1,-2 i(4s% 2
n(s) m{( ,—2s,0,0) +14(4s%25,0,1 + 45%)},
this time, we obtain
R(Re(n(w)), Im(n(w)), d(w)) = (0,0,~1,0)
and
X(z) = (v® = 0% u, 0,07 — 07,

which is symmetric with respect to the 2-plane I12.

Example 4.14. The timelike 3-space II* = {z? = 0} is a 3-space of
symmetry of maximal surface S given in the example 3.6.
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