

RT-MAT 2003-19

BJÖRLING PROBLEM FOR MAXIMAL
SURFACES IN THE LORENTZ-MINKOWSKI
4-DIMENSIONAL SPACE

Antonio C. Asperti and
José A. Vilhena

Agosto 2003

Esta é uma publicação preliminar (“preprint”).

BJÖRLING PROBLEM FOR MAXIMAL SURFACES IN THE LORENTZ-MINKOWSKI 4-DIMENSIONAL SPACE

ANTONIO C. ASPERTI AND JOSÉ A. VILHENA

ABSTRACT. In this paper, we extend and solve the Björling-type problem for maximal surfaces in the Lorentz-Minkowski 4-dimensional space. As an application we establish symmetry principles for the maximal surfaces in L^4 and construct new examples.

1. INTRODUCTION

A maximal surface in the Lorentz-Minkowski n -dimensional space is a spacelike surface with zero mean curvature vector. It is well known that maximal surfaces in L^3 represent locally a maximum for the area integral [16, 8] and also that they admit a Weierstrass type representation [22, 23]. But the spacelike surfaces with zero mean curvature vector in L^4 , represent locally the maximum (resp. minimum) for the area integral, if the normal variation is made in the timelike (resp. spacelike) direction [20]. For these surfaces we also have Weierstrass type representation [4, 14]. An important difference between the global theory of maximal surfaces in L^3 and of the global theory of maximal surfaces in L^4 is established by the so called *Calabi-Bernstein theorem*. It states that a complete maximal surface in L^3 is a plane [8, 10]. However, this result cannot be extended to L^n , $n \geq 4$ [13].

In the 3-dimensional Euclidian space \mathbb{R}^3 , given a real analytic strip (see §3), the classical Björling problem [11, 17] was proposed by E. G. Björling [7] in 1844 and consists of the construction of a minimal surface in \mathbb{R}^3 containing the strip in the interior. The solution for this problem was given by H. A. Schwarz in [28] by means of a explicit formula in terms of the prescribed strip. This formula gives a beautiful method, besides the Weierstrass representation [27], to construct minimal surfaces with interesting properties. For example, properties of symmetry.

Date: August 15, 2003.

Key words and phrases. Lorentz-Minkowski space, minimal surfaces, maximal surfaces, symmetries, extensions holomorfas, Riemann surfaces.

The first author was benefitted by Projeto Temático FAPESP 99/02684-3.

The second author was partially supported by CNPq, proc. 140410/2000-7.

The equivalent problem in the Lorentz–Minkowski 3–dimensional space was proposed and solved, using a complex representation formula developed in [2]. The authors introduced the local theory of maximal surfaces in L^3 in a different way of that given in [22, 23] through the Weierstrass representation. They constructed new examples of maximal surfaces, gave alternative proofs of the characterization of the maximal surfaces of revolution and the ruled surfaces in L^3 and proved symmetry principles for those surfaces.

In Euclidian 4–dimensional space, the Björling problem for minimal surfaces was proposed and solved in [5], see also [3], from a complex representation formula. In that work the authors also recovered the symmetry principles of minimal surfaces in \mathbb{R}^4 obtained by Eisenhart [12].

In this paper, motivated by results and techniques of [2], [5] and [14], we introduce the local theory of maximal surfaces in L^4 , using a complex representation formula—see theorem 1 below—that describes the local geometry of these surfaces. This formula is used to solve the Björling problem in L^4 , which is illustrated with two examples. As another consequence of theorem 1 we recover the representation formulae of the Björling problem for minimal surfaces in \mathbb{R}^3 and maximal surfaces in L^3 . We also recover the symmetry principles for these surfaces. Finally, we study the symmetry principles for the maximal surfaces in L^4 and present new examples.

2. PRELIMINARIES

Let L^4 denote the 4–dimensional Lorentz–Minkowski space, that is, the Euclidian space $\mathbb{R}^4 := \{(x^1, x^2, x^3, x^4) : x^i \in \mathbb{R}\}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot \rangle := (dx^1)^2 + (dx^2)^2 + (dx^3)^2 - (dx^4)^2. \quad (1)$$

Given u, v, w in L^4 , we define the vector product $\boxtimes(u, v, w) \in L^4$ by

$$\langle \boxtimes(u, v, w), x \rangle := -\det(u, v, w, x), \quad (2)$$

which in coordinates takes the form

$$\boxtimes(u, v, w) = \left(\begin{vmatrix} u^2 & v^2 & w^2 \\ u^3 & v^3 & w^3 \\ u^4 & v^4 & w^4 \end{vmatrix}, - \begin{vmatrix} u^1 & v^1 & w^1 \\ u^3 & v^3 & w^3 \\ u^4 & v^4 & w^4 \end{vmatrix}, \begin{vmatrix} u^1 & v^1 & w^1 \\ u^2 & v^2 & w^2 \\ u^4 & v^4 & w^4 \end{vmatrix}, \begin{vmatrix} u^1 & v^1 & w^1 \\ u^2 & v^2 & w^2 \\ u^3 & v^3 & w^3 \end{vmatrix} \right).$$

Let $\{e_1, e_2, e_3, e_4\}$ be the canonical basis of \mathbb{R}^4 . The proof of the following proposition is straightforward.

Proposition 2.1. *The vector product \boxtimes has the following properties:*

- 1) $\langle \boxtimes(u, v, w), u \rangle = \langle \boxtimes(u, v, w), v \rangle = \langle \boxtimes(u, v, w), w \rangle = 0$;
- 2) $\boxtimes(u, v, e_4) = \hat{u} \times \hat{v}$, where $\hat{u} = (u^1, u^2, u^3, 0)$, $\hat{v} = (v^1, v^2, v^3, 0) \in \mathbb{R}^3 \subset \mathbb{L}^4$;
- 3) $\boxtimes(u, v, e_2) = \check{u} \times \check{v}$, where $\check{u} = (u^1, 0, u^3, u^4)$, $\check{v} = (v^1, 0, v^3, v^4) \in \mathbb{L}^3 \subset \mathbb{L}^4$;
- 4) $\boxtimes(u, v, e_1) = -\check{u} \times \check{v}$ and $\boxtimes(u, v, e_3) = -\check{u} \times \check{v}$;
- 5) $\langle \boxtimes(u_1, u_2, u_3), \boxtimes(v_1, v_2, v_3) \rangle = -\det(\langle u_i, v_j \rangle)$, $1 \leq i, j \leq 3$, $u_i, v_j \in \mathbb{L}^4$;

where \times is respectively the cross-product of \mathbb{R}^3 and \mathbb{L}^3 .

Let \mathbb{C}_1^n be the n -dimensional complex vector space endowed with the hermitian estrutura

$$\ll z, w \gg := \sum_{j=1}^{n-1} z^j \overline{w^j} - z^n \overline{w^n},$$

We will deal with the following subsets of the *complex projective space* $\mathbb{P}(\mathbb{C}_1^n)$ associated to \mathbb{C}_1^n (see [15, 6, 24]):

- 1) $\mathbb{CP}_1^{n-1} := \{z \in \mathbb{C}^n \setminus \{0\} : \ll z, z \gg > 0\}/\mathbb{C}^*$;
- 2) $\mathbb{CH}^{n-1} := \{z \in \mathbb{C}^n \setminus \{0\} : \ll z, z \gg < 0\}/\mathbb{C}^*$;
- 3) $\partial\mathbb{CH}^{n-1} := \{z \in \mathbb{C}^n \setminus \{0\} : \ll z, z \gg = 0\}/\mathbb{C}^*$.

Denote by $G_{2,4}^+$ the Grassmannian of spacelike 2-planes of \mathbb{L}^4 with the induced orientation. Given $u, v \in \mathbb{L}^4$, with $\langle u, u \rangle = \langle v, v \rangle = \lambda^2 > 0$ and $\langle u, v \rangle = 0$, let $\Pi^2 = \text{span}[u, v] \in G_{2,4}^+$. We can identify $G_{2,4}^+$ with $Q_1^2 := \{[z] \in \mathbb{CP}_1^{n-1} : \ll z, \bar{z} \gg = 0\}$ through the mapping that sends each $\Pi^2 \in G_{2,4}^+$ into $[z] \in Q_1^2$ where $z = u + iv$. Given $\Pi^2 = \text{span}[u, v] \in G_{2,4}^+$, let $\nu_0 := \boxtimes(u, v, e_4)$ and $\tau_0 := \boxtimes(u, v, \nu_0)$; then $\{\nu_0, \tau_0\}$ is a basis for $(\Pi^2)^\perp$.

Proposition 2.2. *Let ν_0 and τ_0 defined as above. We have:*

- 1) $\nu_0 = \hat{u} \times \hat{v}$, where \times is the cross-product in $\mathbb{R}^3 \subset \mathbb{L}^4$;
- 2) $\tau_0 = \lambda^2 e_4 + u^4 u + v^4 v$, where $\lambda^2 = \langle u, u \rangle$;
- 3) $\langle \nu_0, \nu_0 \rangle = \lambda^2(\lambda^2 + (u^4)^2 + (v^4)^2)$ and $\langle \tau_0, \tau_0 \rangle = -\lambda^2(\lambda^2 + (u^4)^2 + (v^4)^2)$;
- 4) if $\mu_0 := \sqrt{\lambda^2(\lambda^2 + (u^4)^2 + (v^4)^2)}$, $\tau := \frac{\tau_0}{\mu_0}$ and $\nu := \frac{\nu_0}{\mu_0}$, then $\{\frac{u}{\lambda}, \frac{v}{\lambda}, \nu, \tau\}$ is a positively oriented orthonormal basis of \mathbb{L}^4 .

Denote by $G_{2,4}^-$ the Grassmannian of timelike 2-planes of \mathbb{L}^4 with the induced orientation. Given $\nu_1, \nu_2 \in \mathbb{L}^4$, with $\langle \nu_1, \nu_1 \rangle = -\langle \nu_2, \nu_2 \rangle = \lambda^2 > 0$ and $\langle \nu_1, \nu_2 \rangle = 0$, let $\Pi^2 = \text{span}[\nu_1, \nu_2] \in G_{2,4}^-$. We can identify, as above, $G_{2,4}^-$ with the real quadric QR , which is defined as the set of classes $[z] \in \partial\mathbb{CH}^{n-1}$ such that $\langle \text{Re}(z), \text{Im}(z) \rangle = 0$ and $\text{Re}(z), \text{Im}(z)$ are linearly independent.

Definition 2.3. A smooth immersion $X : M^2 \rightarrow \mathbf{L}^4$ of a 2-dimensional oriented connected manifold is called a *spacelike surface* S in \mathbf{L}^4 if the induced metric $ds^2 := X^* \langle \cdot, \cdot \rangle$ on M^2 is a Riemannian metric.

Let $(U, z = u + iv)$ be isothermal coordinates in a neighborhood of a point p in M^2 , that is $\langle X_u, X_u \rangle = \langle X_v, X_v \rangle = \lambda^2$ and $\langle X_u, X_v \rangle = 0$. This induces a holomorphic structure on M^2 . We define an orthonormal basis $\{\nu, \tau\}$ of $(T_p S)^\perp$ by

$$\nu = \frac{\nu_0}{\mu_0} \quad \text{and} \quad \tau = \frac{\tau_0}{\mu_0}, \quad (3)$$

where

$$\nu_0 = \boxtimes(X_u, X_v, e_4), \quad \tau_0 = \boxtimes(X_u, X_v, \nu_0), \quad \mu_0 = \sqrt{\lambda^2(\lambda^2 + (x_u^4)^2 + (x_v^4)^2)}.$$

Observe that ν and τ are respectively spacelike and timelike vector fields normal to the surface $S = X(M)$ and it is not hard to see that they are globally defined on S . Also, let $\beta = \{\partial_1, \partial_2, \partial_3, \partial_4\}$ be the local orthonormal frame adapted to S , where

$$\partial_1 = \frac{X_u}{\lambda}, \quad \partial_2 = \frac{X_v}{\lambda}, \quad \partial_3 = \nu, \quad \partial_4 = \tau. \quad (4)$$

As far as we know, the normal frame $\{\nu, \tau\}$ was introduced in [14], where spacelike surfaces in \mathbf{L}^4 are extensively studied.

Let $\bar{\nabla}$ and ∇ be the Levi-Civita connection of \mathbf{L}^4 and (M^2, ds^2) , respectively. The *second fundamental form* of S is defined by $\alpha(V, W) := (\bar{\nabla}_V W)^\perp$ and the *mean curvature vector* by $H_p := \frac{1}{2} \text{tr}(\alpha_p)$ for all $p \in M^2$.

Proposition 2.4. If $S = X(M)$ is a spacelike surface in \mathbf{L}^4 , then $\Delta_M X = 2H$.

Proof: See [14].

Definition 2.5. A spacelike surface S in \mathbf{L}^4 is *maximal* if $H = 0$.

Let $S = X(M)$ a spacelike surface in \mathbf{L}^4 defined in terms of local isothermal coordinates $(U, z = u + iv)$ of M^2 , and define the complex functions

$$\varphi^k := \frac{\partial x^k}{\partial u} - i \frac{\partial x^k}{\partial v}, \quad k = 1, 2, 3, 4. \quad (5)$$

It is not hard to see that

$$(\varphi^1)^2 + (\varphi^2)^2 + (\varphi^3)^2 - (\varphi^4)^2 = 0, \quad |\varphi^1|^2 + |\varphi^2|^2 + |\varphi^3|^2 - |\varphi^4|^2 = 2\lambda^2 > 0.$$

The induced metric on M is $ds^2 = \lambda^2 |dz|^2$ and the complex 1-forms $\omega^k := \varphi^k dz$ are globally defined on M . Now if S is a maximal surface,

it follows from Proposition 2.4 that ω^k is holomorphic. Thus, S can be represented as

$$X(z) = \Re \int_{z_0}^z \omega + k_0, \quad \text{where } \omega = (\omega^1, \omega^2, \omega^3, \omega^4) \text{ and } z_0, z \in M. \quad (6)$$

The converse also holds.

Theorem 2.6. *Let M^2 be a connected Riemann surface and $\omega = (\omega^1, \omega^2, \omega^3, \omega^4)$ a holomorphic 1-form with values in \mathbb{C}^4 globally defined on M^2 satisfying*

- 1) $\ll \omega, \bar{\omega} \gg \equiv 0$,
- 2) $\ll \omega, \omega \gg > 0, \forall p \in M^2$,
- 3) $\Re \int_{\gamma} \omega = 0$, for all closed path γ on M^2 .

Then the map $X : M^2 \rightarrow \mathbb{L}^4$ given by the equation (6) defines a maximal surface in \mathbb{L}^4 .

For the proof see [14].

The *Gauss map* $G : M^2 \rightarrow Q_1^2$ of a spacelike surface $S = X(M)$ in \mathbb{L}^4 is defined locally by $G(z) = [\Phi(z)]$, with $X_z = \psi \Phi$ for some function $\psi : M^2 \rightarrow \mathbb{C}$ and $\Phi = (\phi^1, \phi^2, \phi^3, \phi^4)$, for more details see [19, 14]. Let $a(z), b(z)$ be the complex valued functions defined on M^2 by

$$a(z) := \frac{-\phi^3 + \phi^4}{\phi^1 - i\phi^2}, \quad b(z) := \frac{\phi^3 + \phi^4}{\phi^1 - i\phi^2}. \quad (7)$$

We have that

$$\Phi(z) = \mu(1 + ab, i(1 - ab), a - b, a + b). \quad (8)$$

It follows from (3) and (8) that

$$\begin{aligned} \tau(z) &= \frac{1}{|1 - ab| \sqrt{(1 + |a|^2)(1 + |b|^2)}} \begin{bmatrix} (1 + |b|^2)\Re(a) + (1 + |a|^2)\Re(b) \\ (1 + |b|^2)\Im(a) + (1 + |a|^2)\Im(b) \\ |a|^2 - |b|^2 \\ (1 + |a|^2)(1 + |b|^2) \end{bmatrix}, \\ \nu(z) &= \frac{1}{|1 - ab| \sqrt{(1 + |a|^2)(1 + |b|^2)}} \begin{bmatrix} (1 + |b|^2)\Re(a) - (1 + |a|^2)\Re(b) \\ (1 + |b|^2)\Im(a) - (1 + |a|^2)\Im(b) \\ |a|^2|b|^2 - 1 \\ 0 \end{bmatrix}. \end{aligned}$$

For more details see [14].

Let $A : M^2 \rightarrow \mathbb{C}^4$ be the complex map defined by

$$A(z) := \nu(z) + i\tau(z), \quad (9)$$

and observe that $[A(z)] \in QR$.

3. MAIN RESULTS

Now we are able to propose and solve the Björling problem for maximal surfaces in \mathbf{L}^4 . Let $c : I \subseteq \mathbb{R} \rightarrow \mathbf{L}^4$ be a regular real analytic spacelike curve in \mathbf{L}^4 and let $n : I \rightarrow \mathbf{C}^4$ be a real analytic vector field along c (that is, $\Re(n), \Im(n) : I \rightarrow \mathbf{L}^4$ are vector fields along c) such that $\langle c'(s), \Re(n) \rangle = 0 = \langle c'(s), \Im(n) \rangle$, $\langle \Re(n), \Re(n) \rangle = -\langle \Im(n), \Im(n) \rangle = 1$ and $\Im(n)$ is future directed for all $s \in I$. In analogy with [2, 11], we call such a pair (c, n) a *analytical strip* in \mathbf{L}^4 . The problem is then to find a maximal surface S defined by $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$ with $I \subset \Omega$, such that

- 1) $X(u, 0) = c(u)$,
- 2) $A(u, 0) = n(u)$, $\forall u \in I$.

It is easy to see that if $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$ is maximal surface in \mathbf{L}^4 , then $c(u) := X(u, 0)$ and $n(u) := A(u, 0)$ satisfy the above data and, in particular, they are real analytic. Then there exist holomorphic extensions $c(z)$ and $n(z)$ and these extensions are unique by the *identity theorem* for analytic functions (see [21] pp. 87). In this situations, we can explicitly recover $X(z)$ from c and n by means of a unique complex representation formula.

Theorem 3.1. *Let S be a maximal surface in \mathbf{L}^4 given by $X : U \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$. Define the curve $c(u) := X(u, 0)$ and the vector field $n(u) := A(u, 0)$ along c , on a real interval $I \subset U$. Choose any simply connected open set $\Omega \subseteq U$ containing I , over which we can define holomorphic extensions $c(z)$ and $n(z)$ of c and n . Then, for all $z \in \Omega$ it holds*

$$X(z) = \Re \left(c(z) + i \int_{s_0}^z \boxtimes (\Re(n(w)), \Im(n(w)), c'(w)) dw \right), \quad (10)$$

where s_0 is a arbitrary fixed point of I and the integral is taken along an arbitrary path in Ω joining s_0 and z .

Proof: Since S is maximal, the complex function $\Psi : U \rightarrow \mathbf{C}^4$ defined by (5)

$$\Psi = 2 \frac{\partial X}{\partial z} \quad \text{with} \quad \Psi = (\varphi^1, \varphi^2, \varphi^3, \varphi^4),$$

is holomorphic in U and by (6) we can write

$$X(z) = \Re \int_{s_0}^z \Psi dz + k_0, \quad (11)$$

where $k_0 \in \mathbf{L}^4$ is a suitable constant such that $X(u, 0) = c(u)$ for all $u \in I$.

Let $\{\partial_1, \partial_2, \partial_3, \partial_4\}$ be the local orthonormal frame adapted to S given in (4). Now write \boxtimes in this basis,

$$\boxtimes(\partial_3, \partial_4, \partial_1) = \langle \boxtimes(\partial_3, \partial_4, \partial_1), \partial_2 \rangle \partial_2 = -\det(\partial_1, \partial_2, \partial_3, \partial_4) \partial_2 = -\partial_2,$$

and since $X_v = \lambda \partial_2$, we have

$$\Psi(z) = X_u(z) - iX_v(z) = X_u + i \boxtimes(\nu(z), \tau(z), X_u(z)) \quad (12)$$

in isothermal coordinates $(U, z = u + iv)$. Restricting $\Psi(z)$ to I and using the definition of c, n we obtain

$$\begin{aligned} \Psi(u, 0) &= X_u(u, 0) + i \boxtimes(\nu(u, 0), \tau(u, 0), X_u(u, 0)) = \\ &= c'(u) + i \boxtimes(\Re(n(u)), \Im(n(u)), c'(u)). \end{aligned}$$

Since these functions are real analytic, we can extend them to two holomorphic functions $\Psi(z)$, $c'(z) + i \boxtimes(\Re(n(z)), \Im(n(z)), c'(z))$ on a simply connected open set $\Omega \subseteq U$ and they coincide on $I \subset \Omega$. Hence by the *identity theorem* for analytic functions it follows that

$$\Psi(z) = c'(z) + i \boxtimes(\Re(n(z)), \Im(n(z)), c'(z)), \quad \forall z \in \Omega.$$

Therefore

$$\Gamma(z) := c(z) + i \int_{s_0}^z \boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) dw, \quad \forall z \in \Omega$$

is well defined on Ω and obviously is the primitive of the holomorphic mapping $\Psi(z)$. Thus, (11) yields

$$X(z) = \Re \left(c(z) + i \int_{s_0}^z \boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) dw \right).$$

This completes the proof of the Theorem. \square

Remark 3.2. We can choose any $s_0 \in I$ in (10) and the values of $X(z)$ will remain the same, since $c'(z)$, $\Re(n(z))$, $\Im(n(z))$ all take real values in $I \subset \Omega$.

Using the complex representation formula given in (10), we now show that the Björling problem has a unique solution.

Theorem 3.3. *There exists a unique solution $X : \Omega \rightarrow \mathbb{L}^4$ to the Björling problem for maximal surfaces in \mathbb{L}^4 , which is given by*

$$X(z) = \Re \left(c(z) + i \int_{s_0}^z \boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) dw \right), \quad (13)$$

with $w = u + iv \in \Omega$, $s_0 \in I$, where Ω is a simply connected open subset of \mathbb{C} containing the real interval I and for which c, n admit holomorphic extensions $c(z), n(z)$.

Proof: Define the holomorphic curve $\Psi : \Omega \subseteq \mathbb{C} \rightarrow \mathbb{C}^4$ by

$$\Psi(z) = c'(z) + i \boxtimes (\Re(n(z)), \Im(n(z)), c'(z)), \quad \forall z \in \Omega. \quad (14)$$

where Ω is a simply connected open subset of \mathbb{C} containing I on which the holomorphic extensions $c(z), n(z)$ exist. Since by Proposition 2.1, $c'(u)$ and $\boxtimes(\Re(n(u)), \Im(n(u)), c'(u))$ are orthogonal and have the same length, it follows that

$$(\varphi^1(u, 0))^2 + (\varphi^2(u, 0))^2 + (\varphi^3(u, 0))^2 - (\varphi^4(u, 0))^2 = 0, \quad \forall u \in I.$$

We also have that

$$|\varphi^1(u, 0)|^2 + |\varphi^2(u, 0)|^2 + |\varphi^3(u, 0)|^2 - |\varphi^4(u, 0)|^2 = 2\langle c'(u), c'(u) \rangle > 0.$$

Thus

$$\begin{aligned} (\varphi^1(z))^2 + (\varphi^2(z))^2 + (\varphi^3(z))^2 - (\varphi^4(z))^2 &= 0, \\ |\varphi^1(z)|^2 + |\varphi^2(z)|^2 + |\varphi^3(z)|^2 - |\varphi^4(z)|^2 &> 0, \end{aligned}$$

for all $z \in \Omega$. Moreover, the holomorphic curve Ψ has no real periods for Ω is simply connected. Therefore by Theorem 2.6, $X(z) = \Re \int_{s_0}^z \Psi(w) dw$ defines a maximal surface $S = X(\Omega)$ in \mathbb{L}^4 , where Ψ is given by (14) and $s_0 \in I$. Now we shall check that this surface satisfies the Björling conditions $X(u, 0) = c(u)$ and $A(u, 0) = n(u)$. The verification of the first condition is easy, since $\boxtimes(\Re(n), \Im(n), c')$ is real when restricted to I . To check the second condition, first recall that $\Psi = 2(\partial X / \partial z)$. So it follows from (14) that, restricted to I , we have

$$X_u(u, 0) = c'(u) \text{ and } X_v(u, 0) = -\boxtimes(\Re(n(u)), \Im(n(u)), c'(u)).$$

On the other hand, from (12) we have

$$X_v(u, 0) = -\boxtimes(\nu(u, 0), \tau(u, 0), c'(u)).$$

Since $\Im(n(u))$ is future directed it follows that $\Re(n(u)) = \nu(u, 0)$ and $\Im(n(u)) = \tau(u, 0)$.

At last we will prove the uniqueness, which is to be understood in the following sense: If $\tilde{X}(u, v)$, $z = u + iv \in \tilde{\Omega}$ is another solution, then $X(u, v) = \tilde{X}(u, v)$ for $z = u + iv \in \Omega \cap \tilde{\Omega}$. In fact, any pair of solutions X, \tilde{X} to the Björling problem coincide on a real interval $I \subset \Omega \cap \tilde{\Omega}$, and since both are analytic they must coincide on $\Omega \cap \tilde{\Omega}$. This completes the proof of the Theorem. \square

Remark 3.4. Observe that the unicity in the above theorem is only referred to maximal surfaces $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbb{L}^4$ satisfying $X(u, 0) = c(u)$ and $A(u, 0) = n(u)$. Actually a little more can be proven: given an analytic strip (c, n) in \mathbb{L}^4 , there exists a unique maximal immersion $X : M^2 \rightarrow \mathbb{L}^4$ whose image contains $c(I)$ and A restricted to c is n .

The existence part of this statement follows from Theorem 3.3. For the unicity part, we refer to corollary 3.4 of [2]. There unicity is proven for analytic strips in \mathbb{L}^3 and maximal surfaces in \mathbb{L}^3 , but their arguments work in our case as well.

Example 3.5. Consider

$$\begin{cases} c(s) = (s - s^3, 0, s^2, 0) \in \mathbb{L}^4, \\ n(s) = \frac{1}{(1-2s^2+9s^4)^{1/2}}(2s, -2\sqrt{2}si, -(1-3s^2), (1+3s^2)i) \in \mathbb{C}^4, \end{cases}$$

for all $s \in \mathbb{R}$. By a straightforward calculation, we obtain that

$$\boxtimes(\Re(n(s)), \Im(n(s)), c'(s)) = (0, 1+3s^2, 0, -2\sqrt{2}s),$$

whose holomorphic extension is

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (0, 1+3w^2, 0, -2\sqrt{2}w).$$

Thus

$$X(z) := \Re((z-z^3, 0, z^2, 0)) - \Im((0, z+z^3-(s_0+s_0^3), 0, -\sqrt{2}z^2+\sqrt{2}s_0^2))$$

and therefore, the solution of the Björling problem for the given strip is

$$X(z) = (u+3uv^2-u^3, -v-3u^2v+v^3, u^2-v^2, 2\sqrt{2}uv),$$

with $z = u + iv \in \mathbb{C}$.

Example 3.6. Consider

$$\begin{cases} c(s) = (1+\cos(s), 0, \sin(s), 2\sin(s/2)) \in \mathbb{L}^4, \\ n(s) = (\cos(s), 0, \sin(s), 0) + i(-1-\cos(s), 0, \cos(s)\cot(s/2), \csc(s/2)) \in \mathbb{C}^4, \end{cases}$$

for all $s \in (0, 2\pi)$. By similar calculations,

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (0, \sin(z/2), 0, 0).$$

Then

$$X(z) := \Re((1+\cos(z), 0, \sin(z), 2\sin(z/2))) - \Im(-2\cos(z/2)+2\cos(s_0/2))$$

and therefore, the solution of the Björling problem for the given strip is

$$X(z) = (1+\cos(u)\cosh(v), -2\sin(u/2)\sinh(v/2), \cosh(v)\sin(u), 2\cosh(v/2)\sin(u/2)),$$

with $z = u + iv$, where $u \in (0, 2\pi)$ and $v \in \mathbb{R}$.

As consequences of Theorem 3.3 we recover the classical Björling problem for \mathbb{R}^3 and also the Björling problem for \mathbb{L}^3 , see [2].

Corollary 3.7. *Let $c : I \rightarrow \mathbb{R}^3$, $\mathbb{R}^3 \cong \{x^4 = 0\} \subset \mathbb{L}^4$, be a regular real analytic curve and let $n : I \rightarrow \mathbb{C}^4$ be a real analytic vector field along c such that $n(s) = \xi(s) + ie_4$, where $\xi(s) \in \mathbb{R}^3$ is a unitary vector field satisfying $\langle c'(s), \xi(s) \rangle = 0$ for all $s \in I$. Then there exists a unique solution to the Björling problem for minimal surfaces in \mathbb{R}^3 , which is given by*

$$X(z) = \operatorname{Re} \left\{ c(z) - i \int_{s_0}^z (\xi(w) \times c'(w)) dw \right\}, \quad (15)$$

where $w = u + iv \in \Omega$, $s_0 \in I$, Ω is a simply connected open set of \mathbb{C} containing I and \times is the cross-product of \mathbb{R}^3 .

Proof: From Theorem 3.3 it follows that the solution to the Björling problem is given by

$$\begin{aligned} X(z) &= \operatorname{Re} \left(c(z) + i \int_{s_0}^z \boxtimes (\xi(w), e_4, c'(w)) dw \right) \\ &= \operatorname{Re} \left(c(z) - i \int_{s_0}^z \boxtimes (\xi(w), c'(w), e_4) dw \right). \end{aligned}$$

Hence, from Proposition 2.1 item 2 we have

$$\begin{aligned} X(z) &= \operatorname{Re} \left(c(z) - i \int_{s_0}^z \widehat{\xi}(w) \times \widehat{c}(w) dw \right) \\ &= \operatorname{Re} \left(c(z) - i \int_{s_0}^z \xi(w) \times c'(w) dw \right). \end{aligned}$$

□

Corollary 3.8. *Let $c : I \rightarrow \mathbb{L}^3$, $\mathbb{L}^3 \cong \{x^2 = 0\} \subset \mathbb{L}^4$, be a regular real analytic spacelike curve and let $n : I \rightarrow \mathbb{C}^4$ be a real analytic vector field along c of the form $n(s) = e_2 + iV(s)$, where $V(s) \in \mathbb{L}^3$ is a future directed, timelike unitary vector field such that $\langle c'(s), V(s) \rangle = 0$ for all $s \in I$. Then there exists a unique solution to the Björling problem for maximal surfaces in \mathbb{L}^3 , which is given by*

$$X(z) = \operatorname{Re} \left\{ c(z) + i \int_{s_0}^z (V(w) \times c'(w)) dw \right\}, \quad (16)$$

where $w = u + iv \in \Omega$, $s_0 \in I$, Ω is a simply connected open set of \mathbb{C} containing I and \times is the cross-product in \mathbb{L}^3 .

Proof: From Theorem 3.3 it follows that the solution to the Björling problem is given by

$$\begin{aligned} X(z) &= \Re \left(c(z) + i \int_{s_0}^z \boxtimes (e_2, V(w), c'(w)) dw \right) \\ &= \Re \left(c(z) + i \int_{s_0}^z \boxtimes (V(w), c'(w), e_2) dw \right). \end{aligned}$$

Hence, from Proposition 2.1 item 3 we have

$$\begin{aligned} X(z) &= \Re \left(c(z) + i \int_{s_0}^z \check{V}(w) \times \check{c}'(w) dw \right) \\ &= \Re \left(c(z) + i \int_{s_0}^z V(w) \times c'(w) dw \right). \end{aligned}$$

□

4. SYMMETRIES

Now, we will study the symmetries of the maximal surfaces in \mathbf{L}^4 via the complex representation formula of the Björling problem for maximal surfaces. In order to do so we fix the following notation. Let $f(z) = x(z) + iy(z)$, where $x(z), y(z)$ are real-valued functions defined on the open set Ω of \mathbb{C} . If $x(z)$ is harmonic and $f(z)$ is holomorphic in Ω , then $x(\bar{z})$ is harmonic and $\bar{f}(\bar{z})$ is holomorphic as a function of z in the open set $\Omega^* := \{\bar{z} : z \in \Omega\}$. Note that, Ω is symmetric if and only if $\Omega = \Omega^*$. We also have that, if $I \subset \Omega$, f is holomorphic in Ω and f restrict to I take only real values, then $f(z) = \bar{f}(\bar{z})$ on $I \subset \Omega \cap \Omega^*$. Therefore, $f(z)$ can be holomorphically extended to $\Omega \cup \Omega^*$.

Proposition 4.1. *Let $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$ be the solution of the Björling problem, for a given strip (c, n) in \mathbf{L}^4 , where Ω is a symmetric simply connected open set containing the real interval I and for which c and n admit holomorphic extensions $c(z)$ and $n(z)$, where $z = u + iv \in \Omega$. Then for all $z \in \Omega$ we have*

$$X(\bar{z}) = \Re \left\{ c(z) - i \int_{s_0}^z \boxtimes (\Re(n(w)), \Im(n(w)), c'(w)) dw \right\}. \quad (17)$$

Proof: The surface $\tilde{X} = \tilde{X}(\Omega)$ given by $\tilde{X}(u, v) := X(u, -v)$, clearly satisfies $\tilde{X}_{uu}(u, v) = X_{uu}(u, -v)$, $\tilde{X}_{vv}(u, v) = X_{vv}(u, -v)$ and still is a maximal surface in \mathbf{L}^4 . Associated to \tilde{X} , let $\tilde{A}(u, v) := \tilde{\nu}(u, v) + i\tilde{\tau}(u, v)$. From Proposition 2.2 and the definition of \boxtimes , we have that

$$\tilde{\tau}_0(u, v) = (\lambda^2 e_4 + x_u^4 X_u + x_v^4 X_v)(u, -v),$$

$$\tilde{\nu}_0(u, v) = -\boxtimes(e_4, X_u(u, -v), X_v(u, -v)),$$

and hence $\tilde{\tau}(u, v) = \tau(u, -v)$ and $\tilde{\nu}(u, v) = -\nu(u, -v)$. Therefore,

$$\tilde{A}(u, v) = -\overline{A(u, -v)}. \quad (18)$$

This implies that $\tilde{A}(u, 0) = -\overline{A(u, 0)} = -\overline{n(u)}$ and $\tilde{X}(u, 0) = X(u, 0) = c(u)$. Hence \tilde{X} is a solution of the Björling problem for $\tilde{c} = c$, $\tilde{n} = -\overline{n}$ and then $\tilde{X}(z) = \Re \int_{s_0}^z \tilde{\Psi}(w) dw$, where $\tilde{\Psi}(z) = \tilde{X}_u + i \boxtimes(\tilde{\nu}(z), \tilde{\tau}(z), \tilde{X}_u(z))$, see (13). Restricting $\tilde{\Psi}(z)$ to I and using (18) we obtain

$$\begin{aligned} \tilde{\Psi}(u, 0) &= X_u(u, 0) + i \boxtimes(-\nu(u, 0), \tau(u, 0), X_u(u, 0)) \\ &= c'(u) - i \boxtimes(\Re(n(u)), \Im(n(u)), c'(u)). \end{aligned}$$

When we extend these functions to Ω^* , the result follows. \square

The proofs of the following corollaries are analogous to those of corollaries 3.7 and 3.8.

Corollary 4.2. *Under the hypothesis of Proposition 4.1, if $S = X(\Omega) \subset \mathbb{R}^3 \cong \{x^4 = 0\}$ and n is of the form $n(s) = \xi(s) + ie_4$, with $\xi(s) \in \mathbb{R}^3$ unitary such that $\langle c'(s), \xi(s) \rangle = 0$ for all $s \in I$, then*

$$X(\bar{z}) = \Re \left\{ c(z) + i \int_{s_0}^z (\xi(w) \times c'(w)) dw \right\}, \text{ for all } z \in \Omega. \quad (19)$$

Corollary 4.3. *Under the hypothesis of Proposition 4.1, if $S = X(\Omega) \subset \mathbb{L}^3 \cong \{x^3 = 0\}$ and n is of the form $n(s) = e_2 + iV(s)$, with $V(s) \in \mathbb{L}^3$ unitary, future directed, timelike and such that $\langle c'(s), V(s) \rangle = 0$ for all $s \in I$, then*

$$X(\bar{z}) = \Re \left\{ c(z) - i \int_{s_0}^z (V(w) \times c'(w)) dw \right\}, \text{ for all } z \in \Omega. \quad (20)$$

Remark 4.4. Using the formulae (15) and (19), it is not difficult to recover the two symmetry principles discovered by Schwarz for minimal surfaces in \mathbb{R}^3 (see [11] p. 123). Also, by using (16) and (20), we can recover the two symmetry principles for maximal surfaces in \mathbb{L}^3 given in [2], Theorem 3.10.

Now using (13) and (17) we will derive three symmetry principles for maximal surfaces in \mathbb{L}^4 . They were motivated by the works of Schwarz and [2] above mentioned. Before going to it, we have the following definitions.

Definition 4.5. Let Π^k be a k -plane in \mathbb{L}^4 . Assume that Π^k is spacelike if $k = 1$; Π^k is spacelike, timelike or degenerate if $k = 2$; Π^k is timelike if $k = 3$. Under those conditions, we say that Π^k is a k -plane

of symmetry of a spacelike surface $X : M^2 \rightarrow \mathbf{L}^4$ if for all $p \in M^2$ there exists a certain $q \in M^2$ such that $X(p), X(q)$ are symmetric with respect to Π^k , that is, such that $(X(q) + X(p))/2 \in \Pi^k$ and $X(q) - X(p)$ is perpendicular to Π^k .

Theorem 4.6. *Let S be a maximal surface in \mathbf{L}^4 , given by $X : U \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$. Then we have:*

- 1) *Every spacelike straight line contained in S is an axis of symmetry of S ;*
- 2) *If S intersects any timelike or spacelike 2-plane Π^2 , orthogonally along a curve regular of S , then Π^2 is a plane of symmetry of S ;*
- 3) *If S intersects any timelike 3-space Π^3 , orthogonally along a curve regular of S , then Π^3 is a 3-plane of symmetry of S .*

Before going through the proof, it is convenient to make the following observation. Suppose for instance that the maximal surface S contains a segment of line L , which, we may assume is a portion of the x^1 -axis. Then it is possible to define isothermal coordinates $z = u + iv$ in a neighborhood of L so that $X(u, 0)$ parametrizes L , see [18]. Analogous observations are in place in case S intersects orthogonally the x^1, x^4 -plane, or the x^1, x^2 -plane or the 3-space $\{x^3 = 0\}$.

With this in mind, it is not difficult to see that Theorem 4.6 is now a consequence of the following

Lemma 4.7. *Let S be a maximal surface in \mathbf{L}^4 , given by $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbf{L}^4$, with Ω is symmetric and simply connected.*

- 1) *If, for all $u \in I$, the curve $c(u) = X(u, 0)$, is contained in the x^1 -axis, then*

$$X(u, -v) = (x^1(u, v), -x^2(u, v), -x^3(u, v), -x^4(u, v)). \quad (21)$$

- 2) *If, for all $u \in I$, the curve $c(u) = X(u, 0)$, is contained in the timelike x^1, x^4 -plane Π^2 , and if the surface S intersects Π^2 orthogonally along c , then*

$$X(u, -v) = (x^1(u, v), -x^2(u, v), -x^3(u, v), x^4(u, v)). \quad (22)$$

- 3) *If, for all $u \in I$, the curve $c(u) = X(u, 0)$, is contained in the spacelike x^1, x^2 -plane Π^2 , and if the surface S intersects Π^2 orthogonally along c , then*

$$X(u, -v) = (x^1(u, v), x^2(u, v), -x^3(u, v), -x^4(u, v)). \quad (23)$$

- 4) *If, for all $u \in I$, the curve $c(u) = X(u, 0)$, is contained in the timelike 3-space $\Pi^3 = \{x^2 = 0\}$, and if the surface S intersects Π^3 orthogonally along c , then*

$$X(u, -v) = (x^1(u, v), -x^2(u, v), x^3(u, v), x^4(u, v)). \quad (24)$$

Proof: (1) Set $c(u) := X(u, 0)$ and $n(u) := A(u, 0)$. By hypothesis, it follows that $c(u) = (c^1(u), 0, 0, 0)$, $\Re(n(u)) = (0, \nu^2(u, 0), \nu^3(u, 0), \nu^4(u, 0))$ and $\Im(n(u)) = (0, \tau^2(u, 0), \tau^3(u, 0), \tau^4(u, 0))$. Hence, by a straightforward calculation we have that $\boxtimes(\Re(n(u)), \Im(n(u)), c'(u))$ is of the form $(0, \boxtimes^2(u), \boxtimes^3(u), \boxtimes^4(u))$. On account of (13), (17) it follows respectively that

$$X(z) = \left(\Re(c^1(z)), -\Im \int_{s_0}^z \boxtimes^2(w) dw, -\Im \int_{s_0}^z \boxtimes^3(w) dw, -\Im \int_{s_0}^z \boxtimes^4(w) dw \right),$$

$$X(\bar{z}) = \left(\Re(c^1(z)), \Im \int_{s_0}^z \boxtimes^2(w) dw, \Im \int_{s_0}^z \boxtimes^3(w) dw, \Im \int_{s_0}^z \boxtimes^4(w) dw \right),$$

which proves (21).

(2) Since by hypothesis, S intersects $\Pi^2 = \{x^2 = 0, x^3 = 0\}$ orthogonally at $c(u) := X(u, 0)$, it follows that $c(u) = (c^1(u), 0, 0, c^4(u))$. Now recall that the 2-plane P^2 generated by $\Re(n(u))$ and $\Im(n(u))$ is orthogonal to $T_{c(u)}S$ along c . It follows that $\boxtimes(\Re(n(u)), \Im(n(u)), c'(u))$ is of the form $(0, \boxtimes^2(u), \boxtimes^3(u), 0)$. On account of (13) and (17) we then arrive at the formula (22).

(3) The proof is analogous to item (2).

(4) The hypothesis implies that $c(u) = (c^1(u), 0, c^3(u), c^4(u))$. Since S intersects Π^3 orthogonally, we have that $X_v(u, 0) \in (\Pi^3)^\perp$ and therefore $X_v(u, 0)$ is parallel to the unitary vector e_2 which is normal to Π^3 . Then $\Re(n(u))$ and $\Im(n(u))$ lie in Π^3 , which implies that the second component of both vectors are equal to zero. Hence $\boxtimes(\Re(n(u)), \Im(n(u)), c'(u))$ is of the form $(0, \boxtimes^2, 0, 0)$. Therefore, in conjunction with (13) and (17) we obtain (24). □

If in Theorem 4.1 Π^2 is a degenerate two plane, we have:

Proposition 4.8. *Let $X : \Omega \subseteq \mathbb{C} \rightarrow \mathbb{L}^4$ be a maximal surface, with Ω symmetric, simply connected and assume that $S = X(\Omega)$ intersects the degenerate 2-plane $\Pi^2 = [e_1 + e_4, e_2]$ orthogonally along the curve $c(u) = X(u, 0)$. Then S is contained in the degenerate 3-space $\Pi^3 = [e_1 + e_4, e_2, e_3]$. Moreover Π^2 is a plane of symmetry for S if and only if $X_v(u, 0)$ is a multiple of e_3 .*

Proof: Consider the basis $\mathcal{F} = \{e_1, e_2, e_3, e_4\}$ of \mathbb{L}^4 , where $e_1 = \frac{\sqrt{2}}{2}(e_1 + e_4)$, $e_2 = \frac{\sqrt{2}}{2}(e_1 - e_4)$, $e_3 = e_2$, $e_4 = e_3$ and observe that $\Pi^2 = [e_1, e_3]$. It is clear that $c(u) = X(u, 0)$ is of the form $c(s) = (c^1(s), c^2(s), 0, c^4(s))$. Since the 2-plane $P^2 = [\Re(n(u)), \Im(n(u))]$ is orthogonal to $T_{c(u)}S$ along c , it follows that $-X_v(u, 0) = \boxtimes(\Re(n(u)), \Im(n(u)), c'(u))$ is of the form $(\boxtimes^1(u), 0, \boxtimes^3(u), \boxtimes^1(u))$. By the same arguments as before,

we obtain that

$$X(z) = \left(\Re(c^1(z)) - \Im \int_{s_0}^z \boxtimes^1(w) dw, \Re(c^2(z)), -\Im \int_{s_0}^z \boxtimes^3(w) dw, \right. \\ \left. \Re(c^1(z)) - \Im \int_{s_0}^z \boxtimes^1(w) dw \right),$$

$$X(\bar{z}) = \left(\Re(c^1(z)) + \Im \int_{s_0}^z \boxtimes^1(w) dw, \Re(c^2(z)), \Im \int_{s_0}^z \boxtimes^3(w) dw, \right. \\ \left. \Re(c^1(z)) + \Im \int_{s_0}^z \boxtimes^1(w) dw \right),$$

which written in the basis \mathcal{F} gives respectively

$$X(z) = \left(\Re(c^1(z)) - \Im \int_{s_0}^z \boxtimes^1(w) dw, 0, \Re(c^3(z)), -\Im \int_{s_0}^z \boxtimes^4(w) dw, \right)_{\mathcal{F}},$$

$$X(\bar{z}) = \left(\Re(c^1(z)) + \Im \int_{s_0}^z \boxtimes^1(w) dw, 0, \Re(c^3(z)), \Im \int_{s_0}^z \boxtimes^4(w) dw, \right)_{\mathcal{F}}.$$

The first part is clear and S is symmetric with respect to Π^2 if and only if $\Im \int_{s_0}^z \boxtimes^1(w) dw = 0$, that is, $\int_{s_0}^z \boxtimes^1(w) dw \equiv 0$ and the last claim follows. \square

Remark 4.9. 1) It is not difficult to see that Lemma 4.7 and Proposition 4.8 hold without the simply connectivity assumption.

2) Observe that if Π^3 is spacelike or degenerate, then there is no spacelike vector orthogonal to Π^3 in \mathbb{L}^4 . Therefore the symmetry problem of maximal surfaces in not defined in these cases.

Example 4.10. Consider

$$\begin{cases} c(s) = (0, s, 0, 0) \in \mathbb{L}^4, \\ n(s) = \left(\frac{e^{-s}}{\sqrt{4+e^{-2s}}}, 0, -\frac{2}{\sqrt{4+e^{-2s}}}, 0 \right) + i \left(-\frac{e^{-s}}{\sqrt{4+e^{-2s}}}, 0, -\frac{e^{-2s}}{2\sqrt{4+e^{-2s}}}, \frac{\sqrt{4+e^{-2s}}}{2} \right) \in \mathbb{C}^4, \end{cases}$$

for all $s \in \mathbb{R}$. By a straightforward calculation, we obtain that

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = \left(-1, 0, -\frac{e^{-w}}{2}, \frac{e^{-w}}{2} \right).$$

Therefore, the solution of the Björling problem for the given strip is

$$X(z) = (v, u, \frac{1}{2}e^{-u} \sin(v), -\frac{1}{2}e^{-u} \sin(v)),$$

with $z = u + iv \in \mathbb{C}$. Note that x^2 is an axis of symmetry of the complete maximal surface $S = X(\mathbb{C})$.

Example 4.11. Consider

$$\begin{cases} c(s) = (\sinh(s), 0, 0, \cosh(s)) \in \mathbf{L}^4, \\ n(s) = (0, \cos(s), \sin(s), 0) + i(\sinh(s), 0, 0, \cosh(s)) \in \mathbf{C}^4, \end{cases}$$

for all $s \in \mathbb{R}$. By a straightforward calculation, we obtain that

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (0, -\sin(w), \cos(w), 0).$$

Therefore, the solution of the Björling problem for the given strip is the complete maximal surface

$$X(z) = \begin{bmatrix} \cosh(u) & 0 & 0 & \sinh(u) \\ 0 & \cos(u) & -\sin(u) & 0 \\ 0 & \sin(u) & \cos(u) & 0 \\ \sinh(u) & 0 & 0 & \cosh(u) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -\sinh(v) \\ \cos(v) \end{bmatrix},$$

with $z = u + iv \in \mathbb{C}$. Note that $\Pi^2 = [e_1, e_4]$ is a timelike 2-plane of symmetry of the surface $S = X(\mathbb{C})$.

Example 4.12. Consider

$$\begin{cases} c(s) = (\cos(s), \sin(s), 0, 0) \in \mathbf{L}^4, \\ n(s) = (\cos(s), \sin(s), 0, 0) + i(0, 0, \sinh(s), \cosh(s)) \in \mathbf{C}^4, \end{cases}$$

for all $s \in \mathbb{R}$. By a straightforward calculation, we obtain that

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (0, 0, -\cosh(w), -\sinh(w), 0).$$

Therefore, the solution of the Björling problem for the given strip is the complete maximal surface

$$X(z) = \begin{bmatrix} \cos(u) & -\sin(u) & 0 & 0 \\ \sin(u) & \cos(u) & 0 & 0 \\ 0 & 0 & \cosh(u) & \sinh(u) \\ 0 & 0 & \sinh(u) & \cosh(u) \end{bmatrix} \begin{bmatrix} \cosh(v) \\ 0 \\ \sin(v) \\ 0 \end{bmatrix},$$

with $z = u + iv \in \mathbb{C}$. Note that $\Pi^2 = [e_1, e_2]$ is a spacelike 2-plane of symmetry of the surface $S = X(\mathbb{C})$.

Example 4.13. Consider

$$\begin{cases} c(s) = (s^2, s, 0, s^2) \in \mathbf{L}^4, \\ n(s) = \frac{1}{\sqrt{2+4s^2}} \{(1, -2s, -1, 0) + i(1+4s^2, 2s, 1, 2+4s^2)\} \in \mathbf{C}^4, \end{cases}$$

for all $s \in \mathbb{R}$. Calculating as above, we obtain that

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (-1, 0, -1, -1).$$

The solution of the Björling problem for the given strip is the complete maximal surface

$$X(z) = (u^2 - v^2 + v, u, v, u^2 - v^2 + v),$$

with $z = u + iv \in \mathbb{C}$. This surface intersects the degenerate 2-plane $\Pi^2 = [e_1 + e_4, e_2]$ orthogonally along $X(u, 0) = c(u)$, but Π^2 is not a plane of symmetry of S . On the other hand, if we take again the curve $c(s) = (s^2, s, 0, s^2)$, but take

$$n(s) = \frac{1}{\sqrt{1+4s^2}} \{(1, -2s, 0, 0) + i(4s^2, 2s, 0, 1+4s^2)\},$$

this time, we obtain

$$\boxtimes(\Re(n(w)), \Im(n(w)), c'(w)) = (0, 0, -1, 0)$$

and

$$X(z) = (u^2 - v^2, u, v, u^2 - v^2),$$

which is symmetric with respect to the 2-plane Π^2 .

Example 4.14. The timelike 3-space $\Pi^3 = \{x^2 = 0\}$ is a 3-space of symmetry of maximal surface S given in the example 3.6.

Acknowledgment. We want to thank Professors Plínio A. Q. Simões and Rosa Maria S. B. Chaves from IME-USP for important contributions to this work.

REFERENCES

- [1] L. V. Ahlfors, *Complex Analysis*, McGraw-Hill, 1979.
- [2] L. J. Alías, R. M. B. Chaves & P. Mira, *Björling problem for maximal surfaces in Lorentz-Minkowski space*, Math. Proc. Camb. Phil. Soc., 134 (2003) No 2, 289–316.
- [3] L. J. Alías & P. Mira, *A Schwarz-type formula for minimal surfaces in Euclidean space \mathbb{R}^n* , C. R. Math. Acad. Sci. Paris, 334 (2002) 5, 389–394.
- [4] L. J. Alías & B. Palmer, *Curvature properties of zero mean curvature surfaces in four-dimensional Lorentzian space forms*, Math. Proc. Camb. Phil. Soc. 124 (1998), 315–327.
- [5] S. Alves, R. M. B. Chaves & P. A. Simões, *Björling problem for minimal surfaces in the Euclidean 4-dimensional space*, preprint.
- [6] M. Barros & A. Romero, *Indefinite Kählerian manifolds*, Math. Ann. 261 (1982), 55–62.
- [7] E. G. Björling, *In integrationem aequationis derivatarum partialium superfici, cuius in puncto unoquoque principales ambo radii curvedinis aequales sunt songoque contrario*, Arch. Math. Phys. (1) 4 (1844), 290–315.
- [8] E. Calabi, *Example of Bernstein problems for some nonlinear equations*, Proc. Symp. Pure Math. 15 (1970), 223–230.
- [9] M. P. do Carmo, *Differential Geometry of curves and surfaces*, Prentice-Hall, 1976.
- [10] S. Y. Cheng & S. T. Yau, *Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces*, Ann. of Math. 104 (1976), 407–419.
- [11] U. Dierkes, S. Hildebrandt, A. Kster, & O. Wohlrab, *Minimal Surfaces I*, Springer-Verlag, A Series of Comprehensive Studies in Mathematics 295.

- [12] L. P. Eisenhart, *Minimal surfaces in Euclidean four-space*, Amer. Math. Soc. 1911, 215–236.
- [13] F. J. M. Estudillo & A. Romero , *On maximal surfaces in the n -dimensional Lorentz–Minkowski space*, Geom. Dedicata 38 (1991), 167–174.
- [14] A. P. Franco F. & P. A. Simões, *The Gauss map of spacelike surfaces of the Minkowski space*, preprint
- [15] W. M. Goldman, *Complex hyperbolic geometry*, Oxford University Press; 1999.
- [16] V. P. Gorokh, *Stability of a minimal surface in pseudo-Euclidean space*, Ukrain. Geom. Sb., 33 (1990) 41–45; English transl. in J. Soviet Math. 53 (1991), 491–493.
- [17] A. Gray, *Modern Differential Geometry of curves and surfaces*, CRC Press, Boca Raton, Florida 1998.
- [18] D. A. Hoffman & H. Karcher, *Complete embedded minimal surfaces of finite total curvature*, Geometry, V, 5–93, 267–272, Encyclopaedia Math. Sci., 90, Springer, 1997.
- [19] D. A. Hoffman & R. Osserman, *The geometry of the generalized Gauss map*, Mem. Amer. Math. Soc. No. 238, vol. 28,(1980).
- [20] V. A. Klyachin & V. M. Miklyukov, *Criteria of instability of surfaces of zero mean curvature in warped Lorentz products*, Sbornik Math. 187:11 (1996), 1643–1663.
- [21] K. Knopp, *Theory of functions parts I and II*, Dover Publications, inc., 1996.
- [22] O. Kobayashi, *Maximal Surfaces in the 3-Dimensional Minkowski Space L*, Tokio J. Math. vol. No. 2(1983), 297–309.
- [23] L. V. McNertney, *On parameter families of surfaces with constant curvature in Lorentz 3-space*, Ph.D. Thesis, Brown University, 1980.
- [24] S. Montiel & A. Romero *Complex Einstein hypersurfaces of indefinite complex space forms*, Math. Proc. Camb. Phil. Soc. 94 (1983), 495–508.
- [25] G. L. Naber, *The Geometry of Minkowski Spacetimes*, Springer–Verlag, New York 1992.
- [26] B. O’Neill, *Semi-Riemannian geometry*, Academic press, 1983.
- [27] R. Osserman *A survey of minimal surfaces*, Van Nostrand Reinhold, New York, 1969.
- [28] H. A. Schwarz, *Gesammelte Mathematische Abhandlungen*, Springer–Verlag, Berlin 1890.

E-mail address: `asperti@ime.usp.br`

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA,
UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281, CEP 05311-970, SÃO
PAULO, BRAZIL

E-mail address: `vilhena@ime.usp.br`

Current address: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, CEP 05311-970, São Paulo, Brasil

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

2002-01 COELHO, F.U. and LANZILOTA, M.A. On non-semiregular components containing paths from injective to projective modules. 13p.

2002-02 COELHO, F.U., LANZILOTTA, M.A. and SAVIOLI, A.M.P.D. On the Hochschild cohomology of algebras with small homological dimensions. 11p.

2002-03 COELHO, F.U., HAPPEL, D. and UNGER, L. Tilting up algebras of small homological dimensions. 20p.

2002-04 SHESTAKOV, I.P. and UMRBAEV, U.U. Possion brackets and two-generated subalgebras of rings of polynomials. 19p.

2002-05 SHESTAKOV, I.P. and UMRBAEV, U.U. The tame and the wild automorphisms of polynomial rings in three variables. 34p.

2002-06 ALENCAR, R. and LOURENÇO, M.L. On the Gelbaum-de Lamadrid's result. 16p.

2002-07 GRISHKOV, A. Lie algebras with triality. 28p.

2002-08 GRISHKOV, A.N. and GUERREIRO, M. Simple classical Lie algebras in characteristic 2 and their gradations, I. 21p.

2002-09 MELO, S.T., NEST, R. and SCHROHE, E. K-Theory of Boutet de Monvel's algebra. 8p.

2002-10 POJDAEV, A.P. Enveloping algebras of Filippov algebras. 17p.

2002-11 GORODSKI, C. and THORBERGSSON, G. The classification of taut irreducible representations. 47p.

2002-12 BORRELLI, V. and GORODSKI, C. Minimal Legendrian submanifolds of S^{2n+1} and absolutely area-minimizing cones. 13p.

2002-13 CHALOM, G. and TREPODE, S. Representation type of one point extensions of quasitilted algebras. 16p.

2002-14 GORODSKI, C. and THORBERGSSON, G. Variationally complete actions on compact symmetric spaces. 8p.

2002-15 GRISHKOV, A.N. and GUERREIRO, M. Simple classical Lie algebras in characteristic 2 and their gradations, II. 15p.

2002-16 PEREIRA, Antônio Luiz and PEREIRA, Marcone Corrêa. A Generic Property for the Eigenfunctions of the Laplacian. 28p.

2002-17 GALINDO, P., LOURENÇO, M.L. and MORAES, L.A. Polynomials generated by linear operators. 10p.

2002-18 GRISHKOV, A. and SIDKI, S. Representing idempotents as a sum of two nilpotents of degree four. 9p.

2002-19 ASSEM, I. and COELHO, F.U. Two-sided gluings of tilted algebras. 27p.

2002-20 ASSEM, I. and COELHO, F.U. Endomorphism rings of projectives over Laura algebras. 10p.

2002-21 CONDORI, L.O. and LOURENÇO, M.L. Continuous homomorphisms between topological algebras of holomorphic germs. 11p.

2002-22 MONTES, R.R. and VERDERESI, J.A. A new characterization of the Clifford torus. 5p.

2002-23 COELHO, F.U., DE LA PEÑA, J.A. and TREPODE, S. On minimal non-tilted algebras. 27p.

2002-24 GRISHKOV, A.N. and ZAVARNITSINE, A.V. Lagrange's theorem for Moufang Loops. 21p

2002-25 GORODSKI, C., OLMOS, C. and TOJEIRO, R. Copolarity of isometric actions. 23p.

2002-26 MARTIN, Paulo A. The Galois group of $x^n - x^{n-1} - \dots - x - 1$. 18p.

2002-27 DOKUCHAEV, M.A. and MILIES, C.P. Isomorphisms of partial group rings. 12p.

2002-28 FUTORNY, V. and OVSIENKO, S. An analogue of Kostant theorem for special PBW algebras. 14p.

2002-29 CHERNOUSOVA, Zh. T., DOKUCHAEV, M.A., KHIBINA, M.A., KIRICHENKO, V.V., MIROSHNICHENKO, S.G. and ZHURAVLEV, V.N. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I. 36p.

2002-30 FERNÁNDEZ, J.C.G. On commutative power-associative nilalgebras. 10p.

2002-31 FERNÁNDEZ, J.C.G. Superalgebras and identities. 11p.

2002-32 GRICHKOV, A.N. , GIULIANI, M.L.M. and ZAVARNITSINE, A.V. The maximal subloops of the simple Moufang loop of order 1080. 10p.

2002-33 ZAVARNITSINE, A.V. Recognition of the simple groups $L_3(q)$ by element orders. 20p.

2002-34 ZUBKOV, A.N. and MARKO, F. When a Schur superalgebra is cellular? 13p.

2002-35 COELHO, F.U. and SAVIOLI, A.M.P.D. On shod extensions of algebras. 11p.

2003-01 COELHO, F.U. and LANZILOTTA, M.A. Weakly shod algebras. 28p.

2003-02 GREEN, E.L., MARCOS, E. and ZHANG, P. Koszul modules and modules with linear presentations. 26p.

2003-03 KOSZMIDER, P. Banach spaces of continuous functions with few operators. 31p.

2003-04 GORODSKI, C. Polar actions on compact symmetric spaces which admit a totally geodesic principal orbit. 11p.

2003-05 PEREIRA, A.L. Generic Hyperbolicity for the equilibria of the one-dimensional parabolic equation $u_t = (a(x)u_x)_x + f(u)$. 19p.

2003-06 COELHO, F.U. and PLATZECK, M.I. On the representation dimension of some classes of algebras. 16p.

2003-07 CHERNOUSOVA, Zh. T., DOKUCHAEV, M.A., KHIBINA, M.A., KIRICHENKO, V.V., MIROSHNICHENKO, S.G., ZHURAVLEV, V.N. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. 43p.

2003-08 ARAGONA, J., FERNANDEZ, R. and JURIAANS, S.O. A Discontinuous Colombeau Differential Calculus. 20p.

2003-09 OLIVEIRA, L.A.F., PEREIRA, A.L. and PEREIRA, M.C. Continuity of attractors for a reaction-diffusion problem with respect to variation of the domain. 22p.

2003-10 CHALOM, G., MARCOS, E., OLIVEIRA, P. Gröbner basis in algebras extended by loops. 10p.

2003-11 ASSEM, I., CASTONGUAY, D., MARCOS, E.N. and TREPODE, S. Quotients of incidence algebras and the Euler characteristic. 19p.

2003-12 KOSZMIDER, P. A space $C(K)$ where all non-trivial complemented subspaces have big densities. 17p.

2003-13 ZAVARNITSINE, A.V. Weights of the irreducible $SL_3(q)$ -modules in defining characteristic. 12p.

2003-14 MARCOS, E. N. and MARTÍNEZ-VILLA, R. The odd part of a N -Koszul algebra. 7p.

2003-15 FERREIRA, V.O., MURAKAMI, L.S.I. and PAQUES, A. A Hopf-Galois correspondence for free algebras. 12p.

2003-16 KOSZMIDER, P. On decompositions of Banach spaces of continuous functions on Mrówka's spaces. 10p.

2003-17 GREEN, E.L., MARCOS, E.N., MARTÍNEZ-VILLA, R. and ZHANG, P. D-Koszul Algebras. 26p.

2003-18 TAPIA, G. A. and BARBANTI, L. Um esquema de aproximação para equações de evolução. 20p.

2003-19 ASPERTI, A. C. and VILHENA, J. A. Björling problem for maximal surfaces in the Lorentz-Minkowski 4-dimensional space.
18p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 2001 estão à disposição no Departamento de Matemática do IME-USP.
Cidade Universitária “Armando de Salles Oliveira”
Rua do Matão, 1010 - Cidade Universitária
Caixa Postal 66281 - CEP 05315-970