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Abstract There is increasing interest in using high-energy
collisions to probe the structure of nuclei, in particular with
the high-precision data made possible by collisions per-
formed with pairs of isobaric species. A systematic study
requires a variation of parameters representing nuclear prop-
erties such as radius, skin thickness, angular deformation,
and short-range correlations, to determine the sensitivity of
the various observables on each of these properties. In this
work we propose a method for efficiently carrying out such
study, based on the shifting of positions of nucleons in Monte-
Carlo samples. We show that by using this method, statistical
demands can be dramatically reduced — potentially reduc-
ing the required number of simulated events by orders of
magnitude — paving the way for systematic study of nuclear
structure in high-energy collisions.

1 Introduction

An emerging direction of research in recent years is to use
data from high-energy nucleus-nucleus collisions in order
to infer properties of colliding nuclei, such as their defor-
mation [1-9]. In particular, recent measurements in isobaric
collisions of “°Ru and *°Zr at the Relativistic Heavy-Ion Col-
lider [10] have shown that small differences in the nuclear
properties are potentially measurable [11-17].

For such studies, it is desirable to have the ability to
continuously change nuclear structure parameters, and pre-
cisely quantify the small differences they induce on colli-
sion observables. Modern modeling of high-energy collisions
involves Monte Carlo simulations [13, 18-20]. If a new, inde-
pendent set of Monte Carlo simulations is generated for each
parameter value, a huge amount of statistics is required to
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resolve the small differences in final observables. For exam-
ple, in Ref. [21], hundreds of millions of simulation events
were generated for each set of possible nuclear parameter val-
ues, in order to study the precise observable ratios measured
in the RHIC isobar run.

We introduce a method which significantly reduces the
required number of simulations, potentially by orders of mag-
nitude. The most important source of event-by-event fluctu-
ations in a high-energy collision is the random position of
each nucleon at the time of collision [22-25]. We show that
changes in nuclear properties can be implemented by slightly
shifting these positions.

Nucleon positions are typically sampled independently
according to a Woods—Saxon distribution. We first introduce,
in Sect. 2, a fast method for carrying out this sampling. In
Sect. 3, we describe how nucleon positions must be shifted
in order to implement a change in the one-body distribution,
such as a global deformation. In Sect. 4, we describe how
they must be shifted in order to implement short-range two-
body correlations. The application of our method to heavy-
ion collisions is discussed in Sect. 5. In Sect. 6 we discuss a
complementary method to explore small regions in parameter
space without any extra simulations by reweighting events.
In Sect. 7, we show on specific examples that our methods
are considerably more efficient than traditional methods.

2 Preparing the nucleus

The idea is to prepare a set of nuclear configurations — the
position of each nucleon in a nucleus — each consisting of A
independent nucleons governed by a spherically-symmetric
probability distribution p(r). This existing set can then be
modified by changing the positions of these nucleons, such
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that the new set of nuclei respect a different 1-body density
p(x), as well as a non-trivial correlation function C(r).

The typical profile used to describe a nucleus is a Woods—
Saxon

1 1
pws(r) = = — ¢, (1)
N1+e o

which is parameterized by a radius R and diffusiveness
parameter a. The proportionality factor N (R, a) is defined by
noting that total probability must sum to unity: [ dBxp=1.
Explicitly,

N(R,a) = —8a’wLiz(—eR/?), )

where Li3 is the polylogarithm of order 3.

This distribution can be independently sampled (e.g.,
using acceptance-rejection sampling) in order to generate a
discrete set of nuclei governed by distribution p.

Here we present an alternative method for sampling (and
manipulating) a spherically-symmetric distribution. This is
done by approximating a Woods—Saxon distribution by the
convolution of a spherical step function and a 3D Gaussian.
This has the advantage of giving closed-form analytic expres-
sions, which gives a high degree of analytic control. For
example, the relation between the point nucleon density and,
e.g., the charge density can be written analytically (i.e., a con-
volution with another Gaussian simply modifies the Gaussian
width w). Additionally, nuclear configurations can be com-
puted trivially and efficiently, as only uniform and Gaussian
distributions are needed. Finally, the parameters R, a can be
easily changed.

The idea is to treat the coordinate of each nucleon as a ran-
dom variable that, rather than being governed by a Woods—
Saxon, is a sum of two other random vectors governed by a
spherical step function and spherical Gaussian, respectively.

3
Py(x) = Ps(r) = m@(Rs —r) 3)
2
Pg(X) = Pg(r) = u)3—8ﬂ3e 2w2 , (4)

with r = |x|. The position of a nucleon is given by the vector
sum of positions drawn from each of these distributions. The
sum of the two random vectors thus follows the convolution

Pc(X) =/Ps(z)Pg(x—z)d3z 5)
3 V2w _@ _(r—R;)Z
Bl G

() ()] o
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Fig. 1 Comparison of scaled Woods—Saxon distribution pws(r/R)
with step+Gauss distribution p.(r/R), Eq. (6)

With the correct choice of radial and width parameters
(Rg, w) a Woods—Saxon can be well approximated by this
function p.(r) >~ p(r).

A natural way to compare probability distributions is the
Kullback-Leibler (KL) divergence [26]

p1(X)
p2(x)

Dxw(pillp2) = / d*xp1 (x) log (7)

Two identical distributions have KL divergence Dk, (p1]|01)
= 0, while increasingly different distributions cause it to
increase.

We can choose the best parameters (R, w) to describe
a given Woods—Saxon (R, a) by minimizing the KL diver-
gence Dk1.(p, pc). A rough rule of thumb for the conversion
when a /R is small is

Ry(R,a)~ R [1 115 (%)1'8} (8)
w(R,a) ~1.83a &)

In practice we obtain the correct values on-the-fly with
numerical minimization.

A comparison to traditional Woods—Saxon distributions
is shown in Fig. 1. The fit is worst for certain large values of
skin thickness a/R (0.2—0.3), but works well for values of
interest.

In all of the numerical examples shown in this work, we
use this method for generating seed nucleon configurations,
which can then be modified as desired by shifting nucleon
positions.

3 Changing shape

Once a discrete set of nuclear configurations are prepared,
they can be modified to follow the desired statistics.
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First we consider a continuous change in the 1-body den-
sity — that is, a change that can be characterized by some
continuous parameter z, p = p(X, t).

We will be transporting particles in order to affect the
change in density that is brought about by a change in param-
eter t. Conservation of particles demands that this transfor-
mation obeys a continuity equation

8—/O-f-V( )=20 (10)
ot o=

where the evolution in position dx(x, #) of particles with
respect to parameter ¢ is described by vector field v(x, #),

dx = vdt. (11)
The shift is then obtained by integrating this equation over ¢.

3.1 Radial deformation

We start by describing how to modify the parameters R, a
of a spherical Woods—Saxon, in the case where it is desired
to start with a given Woods—Saxon sampling instead of the
alternate step+Gauss distribution (6).

In this case, there is rotational symmetry both before and
after the transformation, and we can choose a purely radial
shift for the nucleons.

v(r,0,¢) = Fu.(r) (12)

The continuity equation (10) becomes

o 19,
_ 19 , 13
ot r2or (r ,ovr) (13)

which we can simply integrate to obtain

__; " /28_10 / /
v(r 1) = rzp(r,t)/o r) o (r', t)ydr (14)

For the specific case of a Woods—Saxon distribution, we
note that for fixed value of a/R, different distributions are
related to each other by a simple scale transformation r —
Cr.

To modify a/R, we define

p(}’, t)O( m, (15)

ng (16)
R

Ro=", (17)

so that
a R 1
w_ 5 (18)
ot 2 1+ cosh(ry — tRy)
a r/a (r;)Z
1) = ——— : dr’ 19
vr(r, 1) r%ﬁ 1+ cosh(r] —1Ry) " ° (19)

3.2 Angular deformation

Starting with a set of spherical nuclei prepared using one of
the above methods, we can modify the positions of nucle-
ons to obtain nuclei described by a deformed distribution.
A nucleus with angular deformation is typically parameter-
ized by deforming a Woods—Saxon (1), replacing the radius
parameter

R—R(1+Y Ben¥em® )], (20)

l,m

where Yy ,, (6, ¢) are the real form of spherical harmonics,
and each multipole component is characterized by a coeffi-
cient B¢ . That is,

1

r—R-R ZZ,m Be.mYe.m ’

1+e a

p(r. 0, ¢) x 2n

We first note that we can relate the deformed distributions
to the spherical Woods—Saxon (1) with a coordinate trans-
formation

p(r.0,¢) o pws(r — R Y Brm¥em)- (22)

t,m

We also note that the normalization of the probability dis-
tribution depends (weakly) on coefficients Sy, in addition
to parameters R, a. However, our transformation will con-
sist only of transporting particles, so probability is naturally
conserved. We therefore omit the normalization factor, which
will cancel in the final expressions.

We therefore define our #-parameterized distribution as

p(x, 1) = pws(r —1 Y RBemYem), (23)

Lm

so that + = O represents a spherical distribution and t = 1
represents the desired deformed distribution, with the two
limits continuously connected by intermediate values.

We then determine a vector field v which satisfies the
continuity equation (10) for the above expression of p (X, ).
This single first-order differential equation for the vector field
v is an underdetermined problem, with no unique solution.
We posit a solution of the form of the gradient of a scalar

@ Springer
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Fig. 2 Vector plot of shift dx in (a) dx(x, 0, 2) B,=0.2 (b) dx(x, 0, z) B3=0.2
x-z plane for case of axial 6 - 6
quadrupole deformation only, ‘ \ N { ( f A\ ~—
B2.0 = 0.2 (a), and for axial 1 Teb t AN
octupole deformation only, 4174 .-"? R A\ X 4
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An advantage of this prescription is that symmetry arguments 0.05 1
can be used to specify the dependence of ® on the coordinates 2 0.04 1
(r, 6, ¢). In the case of a radial deformation, for instance, the e 0.03 1
velocity field Eq. (12) can be written as a gradient, where & '
solely depends on the radial coordinate r. 0.024
Inserting Eq. (24) into the continuity equation (10), one 0.01 1
obtains the following equation for ®: 0.00 4
01 0.2 03 0.4 05 0.6

2—?+V,0-VCI>+,0A<D:O. (25)
If the deformation is sufficiently small, we can linearize this
equation and replace p with the original spherical distribution
(corresponding to the value at # = 0) in the last two terms.
The second term then reduces to p{,vs (r)yod/or.

In the case of an angular deformation, we decompose &
into multipole components

O(r,60,¢) =Y RBrn fem(r)Yem(©, §) (26)

Inserting this equation into Eq. (25) and using Eq. (23), the
equations for the different multipole component decouple,
and they satisfy the following second-order equation in r

e+

!/
P
72 fe,m_ﬂz(l

2 | Pys >
PWS

" l
l,m + f@,m (I" + OWS
(27)

Note that f; , does not, in fact, depend on m.
Defining a unique solution requires two boundary condi-
tions. For this, we consider the behavior at small and large r.

! In the language of fluid dynamics, this corresponds to irrotational
flow.

@ Springer

B2

Fig. 3 KL-divergence (Dxy., Eq. (7)) vs B2, comparing the expected
Woods—Saxon distribution with the numerical distribution obtained via
Monte Carlo from a deformation of a spherical distribution. The accu-
racy improves when breaking the shift into multiple steps

Note first that

/
1
lim 2ws _ _ 2 (28)
r—00 PWS a
/
—1
lim WS ~0, (29)

r—0 pws Cl|:l+€§j|

since we expect R >> a.
So in the limit of small r, f; , is approximately a solution
of Laplace’s equation

lim fom = Cr®+ Dr'™*
r—0
At large r, we have

" 1 / 1
em T ;fg,m o= 0, (30)
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with general solution
lim fym=r+Clei + D' 31)
r—0o0

We would like to choose boundary conditions which elimi-
nate both the divergence at small r, that is, D = 0 and the
divergence at large r, that is, C’ = 0. This can be achieved
with conditions

fem(r = 0)=0 (32)
fom@r —00) =1 (33)

The general solution can not be found analytically, and
must instead be solved numerically. In practice, this can be
done by separately solving the full inhomogeneous and the
homogeneous equations, integrating backward from some
large rmax, and taking the linear combination of the two solu-
tions that satisfies the desired boundary condition at some
small ryin. That is, we solve

2 P L+ 1) Py
1”+f;(;+ls)——2fz—ls=o (34)

PWS r PWS
J1(rmax) = Fmax (35)
f]l(rmax) =1 (36)
g (24 208) - K2 gy —o (37)
JH(rmax) =1 (38)
f;-l (rmax) =0 (39)

and take as the final solution the linear combination

fl/ (rmin)

Jem(r) = fr(r) — F i)

Ju (). (40)

The solution is very stable and typically does not have any
significant dependence on rjp OF Fipax-
The final shift is thus

dx =tV® =1RY_ BrmV fom(r)Yem (@, ¢) (41)

=7 IRZIBZ,mf(/,mYE,m

l,m
~| R ad
O|t— —Y
+ r ZXW;IBZ,mfZ,m 90 Lm

+</3zRZﬂf Oy (42)
rsind e ,m Z,ma¢ l,m

For small deformation, we can set ¢ = 1, shift all particles,
and the new set of configurations will consist of independent

nucleons with (approximately) the desired 1-body probabil-
ity density. For illustration, in Fig. 2 we show example vector
plots of the shift field dx for the case of 8, ¢ only and S5 ¢
only.

For larger deformations (3_ 8 2 0.2), it is advantageous
to break into multiple (V) steps of size ¢/ N, evaluating the
shift dx at the new position after each step. In principle this
requires solving the differential equation for v at the new
nonzero value of ¢ for each subsequent step. In this case, the
equations for different multipoles f; ,, become coupled to
each other and it is necessary to simultaneously solve the
coupled differential equations. In practice, good accuracy
can be obtained by breaking the shift into several steps, but
reusing the same (¢t = 0) shift field to compute each step.
This is demonstrated in Fig. 3, where we show examples of
the KL divergence (7) between the desired deformed Woods—
Saxon distribution and the distribution obtained numerically
by implementing our method (step+Gaussian sampling fol-
lowed by shifting particles) in a Monte Carlo for various
quadripole deformations B> 9. We can see that the accuracy
improves when breaking the shift into multiple steps. For ref-
erence, the KL divergence comparing an undeformed spher-
ical distribution to the deformed Woods—Saxon ranges in the
B> range shown in Fig. 3 ranges from 0.0075 (8, = 0.1) to
0.24 (B> = 0.6). In the 30-step case, for example, this refer-
ence value is decreased by a factor 13 in the most extreme
case (B> = 0.6), with this improvement factor increasing
with decreasing f>. So using this measure, in practice our
procedure describes the deformation with at least > 92%
accuracy, while typical cases are described much better.

For illustration, in Fig. 4 we explicitly show the resulting
density from the Monte Carlo implementation in the relevant
case of the isobar pair “°Ru and %°Zr from Ref. [10] using
parameters shown in Table 1. Note that quadrupole defor-
mations are typically parameterized with magnitude $, and
angle y, related to the spherical harmonic coefficients as

B2.0 = B2 cos(y) (43)
P22 = %ﬂz sin(y). (44)

4 Short-range correlations

Interactions between nucleons can induce correlations. Such
correlations are encoded in N-body distributions beyond the
1-body density p(x). Let p2(X1, X2) denote the distribution
of nucleon pairs, from which we can define the correlation
function C(x1, x2),

(X1, X2) = p(x1)p(x2) [1 + C(x1, x2)]. 45)

In particular, short-range interactions between nucleons
(as well as their Fermi-Dirac statistics) are expected to induce

@ Springer
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Table 1 Sample parameter set relevant for studying the isobar systems of % Ru and %°Zr of Ref. [10]. The resulting densities are illustrated in

Fig. 4
System R (fm) a (fm) B y () B3.0
%Ru 5.09 0.46 0.16 30 0
967y 5.02 0.52 0.06 0 0.20
9%Ru, Woods-Saxon 9%Ru, Monte Carlo (R,a, B2, v, B3) = (5.09 fm, 0.46 fm, 0.16, 0.52, 0.0)
0.175 -
51 61 0.150 -
4 41 &~ 0125
I
21 2
- P & 0.100
1= € =
e 0 = 0 —
N N < 0075
-2 =2
3 0.0504  {§ e Ap(0, 0, z), Monte Carlo
-4 —4 —— Ap(0,0, z), Expected
0.0251  j77 ... Ap(x,0,0), Monte Carlo
-6 —6
0.000 4 —— Ap(x, 0,0), Expected
~75 -50 -25 00 25 50 75 ~75 -50 -25 00 25 50 75 -8 -6 -4 -2 0 2 4 6 8
X (fm) X (fm) X,z (fm)
96Zr, Woods-Saxon %6Zr, Monte Carlo (R.a,B2,v,B3) = (5.02 fm, 0.52 fm, 0.06, 0.0, 0.2)
0.175 A eyt ot
6 64 it
0.150
41 4 .
a7 01251
2 A 2
€ € E 0.100
e 0 = 0 =
N ~ T o075
-2 -2
3 0.0s04 [ ] Ap(0, 0, z), Monte Carlo
-4 —4 —— Ap(0,0, 2), Expected
00251  JJ ... Ap(x, 0, 0), Monte Carlo
-6 -6 _
0.000 4 Ap(x, 0, 0), Expected
-75 -50 -25 00 25 50 75 -75 -50 -25 00 25 50 75 -8 -6 -4 -2 0 2 4 6 8
x (fm) x (fm) X,z (fm)

Fig. 4 Numerical density p(x) from a Monte Carlo sampling versus
the expected Woods—Saxon distribution for parameters relevant to °Ru
(top) and %°Zr (bottom) as listed in Table 1. The Monte Carlo density
was obtained by sampling 400,000 nuclei of 96 nucleons each froma

short-range correlations between nuclei. That is, you will find
fewer (or more) pairs of nucleons within a short distance r
from each other than would be expected from independent
particles governed by distribution p.

As was possible for the 1-body distribution, we can induce
a correlation between particles by slightly shifting their posi-
tions. The simplest way is to start with a collection of uncor-
related nucleons (prepared, e.g., as described in the previous
sections), and change the distance between pairs of nucleons
such that the resulting distribution obeys the desired correla-
tion function.

We choose a prescription such that pairs of uncorrelated
particles with relative position r =r7 = x, — x) are shifted
radially from their center point so that their new separation
is 7(r). The new separation is chosen as a monotonically-
increasing function that preserves the number of pairs,

@ Springer

spherical (step + Gauss) distribution, performing the deformation, and
computing the average density in cubic bins of size (0.8 fm)3. On the
left are shown contour plots of the density at y = 0 in the x-z plane,
and on the right is the density along the central x (red) and z (blue) axes

r r
[) dr'r’? = /(; dr'r’? [1 4+ C(x1,x2)]. (46)

For a chosen correlation function C (which in principle could
depend on absolute position, orientation, spin, etc.), one can
invert this expression to solve for 7.

We choose a symmetric shift, so that each particle in the
pair moves half the required separation shift. The total shift
of a given particle i is the vector sum of the shifts implied by
its pairing with all the other particles in the nucleus,

I, R
> 5 (g =) i

J#i

dx; = (47)

Further, we note that the correlation cannot be an arbitrary
function. In particular, the number of nucleons (and therefore
the number of pairs) in each nucleus is fixed, and this places a
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d%;

Fig. 5 Each particle in a pair is moved radially away from (or toward)
their midpoint, in order to induce the desired pair correlation

restriction on the correlation function. In our formalism, this
corresponds to the fact that p; and p are probabilities, which
therefore integrate to unity, and which implies the sum rule

f p(x1)p(x2)C (X1, X2)d>x1d%x2 = 0. (48)

In order to implement an arbitrary short-range correlation
Cshort (T), we add a small, constant offset C, to ensure that
this sum rule is satisfied (if it’s not already), that is:

C(r) = Cshort (r) + Ceo. (49)

Inserting this equation into Eq. (48) and assuming that the
range of the correlation is much smaller than the system size,
one obtains:

Coo ~ —Cui / Pxpx)?, (50)

where Cyo is the volume integral of the short-range correla-
tion:

Cot = / &rCapon(r). 51)

To illustrate the method, we choose a simple example of a
step-function correlation function with a variable correlation
length Cje, and strength Cg (see Fig. 6): That is, we define:

Cstrs 7 =< Clen
Cihort = 52
short {O, e C]en. ( )

Equation (51) then gives

4
—TT
3

We note that for the short-range correlations of interest, the
offset C, defined by Eq. (50) is quite small. For example, for
Cse = —1 and Cien = 0.4 fm, we obtain Cog >~ 3 x 1073,
which is seemingly negligible. Nevertheless, its inclusion
ensures that the 1-body distribution p(x) is more precisely
maintained.

Cvol = Cstr C13en' (53)

C(r)

Cstr

Clen

Fig. 6 Simple step-function correlation function used in our tests

With this choice, the final pair separation r for a given
initial separation r is

r(l+Cgy + Coo)_l/3 r = rsw

PO =1 (1ceci ) (54)
r 1+C;" r > Igw
rsw = Clen(1 + Cgr + Coo)1/3- (55)

While this method does not guarantee that the 1-body dis-
tribution will remain fixed, as long as one inputs a valid
correlation function that respects the sum rule (48), both
the 1-body and 2-body distributions are reproduced to a
good approximation for correlations of short range. See, e.g.,
Figs.7 and 8.

Indeed, there are advantages to this method of implement-
ing correlations compared to other common methods, even
beyond the increase of computation efficiency that is the
main concern of this work. The excellent simultaneous con-
trol of the average density and correlations is one example.
A common simplified method for mimicking a short-range
nucleon-nucleon correlation is to simply disallow nuclei with
nucleon pairs less than some exclusion distance dpi, . Besides
being restricted to a very specific correlation function, this
method can bring other problems. Implementing this in the
most straightforward way [27], for example, results in an
unwanted modification of the 1-body distribution if dpiy is
not sufficiently small.

One can use clever methods to keep the nucleon density
fixed while ensuring that no pairs have distance less than
dmin, as done in Ref. [28]. However this results in an uncon-
trolled 2-body distribution, which can develop complicated
and unintended structures. Further, the method cannot be
used for nuclear shapes without an axial symmetry (for exam-
ple, for B> # 0), since it involves randomly reassigning the
azimuthal angle of offending nucleons.

The sampling method of Refs. [29,30], on the other hand,
can in principle give more precise control over the 1-body
and 2-body distributions. However, it remains difficult to
efficiently and systematically study changes in the nuclear

@ Springer
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0.175
Mmoo
P
—~ 0.125 A
7
E 0.100
T 0.0751
< 0.050
< —— Expected
0.0251 === Cien =0.4fm, Cstr = -1
00004 Clen = 0.8 fm, Corr = -1
0 > a T .
r (fm)

Fig. 7 Average nucleon density (A p) after implementation of step-
function 2-body correlation with Cgy = —1 and Cjep, = 0.4 fm (dashed)
and 0.8 fm (dotted) via particle shift, compared to the expected Woods—
Saxon. 1-body Woods—Saxon parameters correspond to the “°Ru from
Table 1

0.0 Lot - —

|
°
N

|
o
i

Jd%dQ p (%1, %2)
JdxdQ p(x1)p(%2)
&
o

—— Expected
== Cien=0.4fm, Csty = -1
...... Cien = 0.8 fm, Cotr = -1

|
°©
@

|
=
<)

T T T T T T T T
0.00 025 050 0.75 1.00 125 150 1.75 2.00

r (fm)

Fig. 8 Correlation function computed from an independent Monte
Carlo sampling plus particle shift, compared to expected pair distri-
bution

correlations, where the method described here has the clear
advantage.

5 Application to high-energy nuclear collisions

Once the nuclear configurations are prepared, they can be
used to simulate collision events. The details depend on the
specific model used for the collision dynamics, but generally,
in order to minimize statistical uncertainty, itis useful to reuse
as many of the fluctuations as possible. Besides the nucleon-
position fluctuation discussed in the previous sections, there
are others that can arise.

Fluctuations that will be present in any simulation include
the random impact parameter of each collision and the orien-
tation of each nucleus that collides. One should ensure that
when preparing collisions corresponding to different nuclear
parameters, one uses the same pair of nuclei prepared as
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described above, with the same impact parameter, and the
same Euler angles for each respective nucleus.

Note that this will not always be possible. For example,
at a given impact parameter, one pair of nuclei may suffer
a collision while a corresponding pair of deformed nuclei
might not. To avoid bias, one must nevertheless include such
unpaired events, despite the increase in statistical uncertainty.
Similarly for models with a notion of participating versus
spectator nucleons, there might be a different number of par-
ticipants in corresponding collisions.

Despite this, the decrease in statistical uncertainty from
using our methods can still be dramatic, as we show in Sect. 7.

The treatment of any other fluctuations will be specific
to each model. Generally, one should reuse fluctuations as
much as possible, using the same random number associated
with each pair of nuclei (in the case of probabilistic cross
section), individual nucleons, transverse position, etc., even
if the relevant cumulative probability distribution is slightly
different.

6 Probability reweighting

Instead of performing separate simulations for each nucleus
(i.e., each point in parameter space), it can be possible to
study multiple parameter values from a single set of simula-
tions.

The idea is the following. If we sample nuclei randomly
from some A-body probability distribution p4 (X1, X2, ... XA4)
we can reinterpret the resulting set of nucleon configura-
tions as a weighted sampling from a different distribution
'y The relative weight is simply p’/p evaluated at the sam-
pled nucleon positions.

In the limit of infinite sampling, o’ can be reconstructed
exactly, as long as the distributions both have non-zero sup-
port in the same region. Thus, in principle one can explore
many points in parameter space “for free”, by computing a
set of simulations at one point in parameter space (i.e., from
a single A-body density), and computing results for other
parameter sets by simply reweighting the events when com-
puting observables.

However, convergence can be very poor if the probability
distributions are not similar — especially if p has negligible
density in some region where p has non-negligible density. It
can take many, many samples to fill out the distribution, and
convergence can be extremely poor, wiping out any potential
efficiency gains.

This can be understood in terms of the overlap between the
two A-body distributions, p4 and p4, which scales with the
overlap between the one-body distributions p(x) and p(x)
to the power A. If A is a large number, unless p(x) and
p(x) overlap almost perfectly, the overlap between p4 and
pa will be very small, rendering the probability reweighting
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inefficient. For A = 96, an overlap of 90% with p(x), leads
to an overlap of ~ 4 x 107> with 4. This effect might be
even more limiting when considering corrections to the 2-
body distribution, esspecially if they are long-range, as there
are A(A — 1)/2 nucleon pairs.

Here we make a preliminary study of this method to gauge
its feasibility in the context of the nuclear structure studies
of interest for this work. We use the A-body density

A A
patxi,..xa)=[]a0) [T [1-Cxixp],  (56)

i=1 i,j>i

with p the (potentially) deformed Woods—Saxon (22) and C
a desired 2-particle correlation. We sample one distribution
(an uncorrellated, spherical Woods—Saxon), and estimate
observables relevant to a different distribution by reweighting
events constructed from the sampled nuclei.

Details and numerical benchmarks are presented in
Sect. 7.

7 Quantifying the efficiency gain

In order to quantify the efficacy of these methods, we imple-
ment a simple Glauber model and calculate the ratio of
observables obtained from collisions of nuclei with two dif-
ferent nuclear properties.

For simplicity, we set impact parameter to 0, so that each
nucleus (before sampling) is centered at the same transverse
coordinate. After generating a set of nuclear configurations,
we select two nuclei to collide and give each nucleus a ran-
dom (3D) orientation.

A nucleon-nucleon collision is said to occur if the trans-
verse distance is r < 2./oNn/7, where oyy = 0.62 fm?
represents the inelastic nucleon-nucleon cross section.

Among the set of participating nucleons, we then calculate
the participant eccentricities

1227 ,n |
o= o — (57)
2ir
forn = 2 and n = 3, where (r;, ¢;) are the polar coordinates
of participant nucleon i in the transverse plane.
With the eccentricity computed in each collision event,
we compute the RMS eccentricity

en{2} =/ (e7)

The ratio of ¢,{2} in two different collision systems is a
good approximation for the ratio of final measured observ-
ables v, {2}, and so represents a quantity of high relevance.

Cien = 0.2 fm, Cstr = -1

1.015 A
1.010
1.005 A

1.000 -——& ———————————————————————————————————————

0.995 1

fz{z}corr/gz{z}uncorr

Independent events
—— Shifted nucleons
—— Reweighted

0.985 | l

0 20'00 40'00 60'00 80'00 10(')00 12(')00 14(')00
Number of events

Fig. 9 Comparison of observable ratio €2{2} for nuclei with short-
range correlations (numerator) and uncorrelated nucleons (denomina-
tor), for case of step-function correlation with length Cje, = 0.2 fm and
strength Cg = — 1. Using the method of shifting nucleon positions,
the statistical uncertainty is decreased by a factor ~ 32 compared to the
traditional independent sampling, so that a calculation with 35 events
has smaller uncertainty than 100,000 events sampled independently.
Reweighting the uncorrelated events to obtain correlated nuclei gives a
smaller uncertainty than independent sampling of the correlated nuclei,
but is not competitive with the shifting-nucleons method in this case

To estimate the uncertainty in the eccentricity ratio, we
use jackknife resampling.

We quantify the efficacy of our method by comparing the
statistical uncertainty for the case of traditionally-prepared
nuclei — that is, where all nuclei are sampled completely
independently — to the case where we use the method of
shifted nucleons to relate different nuclear structure. In the
latter case, we use the same seed nuclei (before shift) for both
nuclei in the colliding pair, and the same rotation angle for
each corresponding nucleus.

For these tests we start with a baseline spherical nucleus of
uncorrelated nucleons, with Woods—Saxon parameters R =
5.09 fm and a = 0.46 fm. We then compare this baseline case
to the case where one parameter (82, 83, Clen) 1S NON-Zero.
For correlations we study a (near) full exclusion, Cgy = —1,
but note that preiliminary tests indicate that eccentricities
only depend on the combination Cg Cﬁ’m.

The deformed/correlated nuclei are either generated com-
pletely independently or by shifting nucleons. Observables
are then computed for these cases, as well as the case where
the baseline spherical, uncorrelated collisions are reweighted
to compute eccentricity ratios corresponding to the respective
deformed/correlated cases.

In Fig. 9, we show an example of adding short range cor-
relations (Ciength = 0.2 fm, Csgrengtn = —1, numerator of
eccentricity ratio) to the case where nucleons are uncorre-
lated. The shift in eccentricity with the addition of corre-
lations is ~ 0.1%, which requires a very large number of
collision events to resolve using the traditional method. In
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Table 2 Reduction in the required number of events (“Improv. Factor”)
for computing the ratio of RMS eccentricity ¢, {2} using the method of
shifting nucleons compared to independent nuclei, in a simple bench-
mark test of b = 0 collisions in a participant Glauber model. Nuclei
were prepared from an uncorrelated, spherical distribution and modified
so that a single parameter becomes non-zero. Also shown is the corre-
sponding change in ¢, {2} and the average nucleon shift when changing
each parameter from a value of 0. For the 3 change, column 3 represents
the resulting change in £3{2}, otherwise it is €2{2}. The improvement
factor does not change significantly with harmonic, so only column 3 is
harmonic-dependent. For the case of correlated nucleons, the strength

parameter is set to Cgr = —1, corresponding to almost complete exclu-
sion within the correlation length

Param. en{2} Improv. Avg.
Par. change change (%) factor shift (fm)
(B)? (0.005)2 0.02 170 0.008
(B2)? (0.01)2 0.10 100 0.02
(B)? (0.02)2 0.39 42 0.03
(B)? (0.05)2 2.3 12 0.08
(B2)? 0.1)? 8.8 47 0.17
(B)? (0.2)2 31 2.1 0.33
(B3)* (0.01)? 0.05 79 0.01
(83)? (0.05)2 1.6 13 0.06
(B3)? (0.1)2 6.3 5.0 0.12
(B3)? (0.2)2 23 22 0.25
(Clen)? (0.2 fm)3 0.13 2900 0.002
(Clen)? x2 0.27 1100 0.005
(Cren)? x4 0.53 350 0.009
(Cren)? (0.4 fm)? 1.1 180 0.017
(Cren)? x2 2.0 98 0.032
(Cren)? x4 3.8 54 0.059
(Clen)? (0.8 fm)? 7.3 25 0.11
(Cren)? x2 14 13 0.19

contrast, using the method of shifting nucleons, the statis-
tical uncertainty is reduced by a factor ~ 32. The required
number of events to obtain a certain statistical precision is
thus reduced by a factor ~ 2900. That is, a calculation with
only ~ 35 events has smaller uncertainty than 100,000 events
sampled independently. Such a dramatic decrease in compu-
tation requirements has clear implications on the feasibility
of systematic study.

However, this efficiency gain depends on the size of the
transformation between the two nuclei. In particular, as the
typical shift in nucleon position increases in distance, there
is a higher likelihood of participant nucleons turning to spec-
tators, or vice versa. This diminishes the correlation in sta-
tistical error that exists before and after the transformation.

In order to give an idea of the efficiency gain in various
contexts, we list a number of examples in Table 2.

The change in ¢,{2} generally tends to scale linearly
with g% and CstrC13en. The improvement factor tends to scale
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like 1/y/A(B2) and I/A(CstrC?en). That is, while smaller
changes create greater difficulty for traditional independent
sampling, when using the better method uncertainties are
actually decreased.

For a given average nucleon shift, the study of correla-
tions sees more efficiency gains than the study of angular
deformation. This is because in the case of angular defor-
mations, nucleons in the bulk of the nucleus do not shift,
while nucleons near the edge shift more than the average
(see, e.g., Fig. 2). It is precisely these nucleons at the edges
that have the largest effect on eccentricities (especially in the
central collisions tested here), and so the loss of syncroniza-
tion from participant-spectator conversion due to the nucleon
shift causes a decrease in correlation of statistical uncertainty,
and therefore a decrease in efficiency gain.

The method of reweighting improves even more quickly
with decreasing changes in nuclear properties than the
shifting-nucleons method. So itis more efficient than shifting
nucleons for small changes (A8 < 0.01), but loses efficacy
quickly for larger changes, becoming worse than indepen-
dent sampling for A = 0.08 or A(CstrCfen) >(0.3fm)> and
rapidly degrading beyond that. Thus, even though the same
set of events can be used in principle to study many points
in parameter space, the range of parameter space that can be
efficiently explored is limited. So it can not be used as a gen-
eral replacement for the shifting-nucleons method unless one
wants only to explore a quite small parameter space. How-
ever, it may be very useful in conjunction with other meth-
ods. For example, larger jumps in parameter space obtained
from shifting nucleons can be filled out with reweighting
around each point in parameter space that is sampled and
simulated. In that way, one can obtain a more precise inter-
polation between sampled parameter values, without com-
puting any extra simulations.

8 Conclusions

We have introduced methods to dramatically decrease sta-
tistical demands when studying how heavy-ion collision
observables depend on the properties of the colliding nucle-
ons. These properties include the average nucleon density
(parameterized by a Woods—Saxon radius R and diffusive-
ness a along with any number of angular deformation coef-
ficients B¢ ) as well as an arbitrary short-range correlation
function C (x1, X3).

In general, the efficiency gain depends on the specific
context, as well as the physical model used for simulations,
with the largest benefit corresponding to the study of small
changes in nuclear structure. Nevertheless, these methods
always reduce the statistical requirements, and quite dra-
matic improvements are possible, with some cases seeing
a reduction of the necessary number of simulations by mul-
tiple orders of magnitude.
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Armed with these techniques, a large number of detailed
and systematic studies of nuclear structure in the context of
relativistic heavy-ion collisions will be possible.
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