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ABSTRACT

We prove some cardinal inequalities valid in the classes of Whyburn
and hereditarily weakly Whyburn spaces and we construct examples of
non-Whyburn and non-weakly Whyburn spaces to illustrate that some
previously known results cannot be generalized.
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1. INTRODUCTION

A Hausdorff space X is said to be Whyburn if whenever A € X is not closed
and z € cl(A) \ A, there is B € A such that c¢l(B)\ A = {z}. The space
is weakly Whyburn if whenever A € X is not closed, there is B € A such
that [cl(B) \ A| = 1. These classes of spaces have been studied previously in
[1], [4] and also carlier in [7] and elsewhere under the names AP-spaces, and
WAP-spaces. If A C X, then the Whyburn closure of A, denoted by wel(A) is

defined as
Aul J{el(©):C C A, [el(C)\ A] =1}

It follows immediately that a space is weakly Whyburn if and only if every
Whyburn closed set is closed. Undefined terminology can be found in [2] or [5]
and all spaces arc assumed to be (at least) Hausdorff.
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2. WHYBURN AND WEAKLY WHYBURN SPACES

In [4], a psendocompact Whyburn space which is not Fréchet was constructed
and Proposition 2.1 of [7] states that a weakly Whyburn compact Hausdorff
space must have a non-trivial convergent sequence. It is casy to see that this
latter result generalizes to countably compact Hausdorff spaces and also to fee-
bly compact spaces with an infinite set of isolated points (recall that a space is
feebly compact if every locally finite family of non-empty open sets is finite).
The question then arises whether this result is true for all pseudocompact or
feebly compact spaces. To answer this question we need the following termi-
nology.

If Y is a non-empty scattered space, then we set

Yy = {z : {z} is open} and for cach ordinal a,

Yo={z:{z}isopenin Y \ | H{Ys: 8 < al}.

The dispersion order of Y is then the least ordinal for which Y,, = @. For
the sequel, we note that for cach n € w, the dispersion order of the countable
ordinal w™ +1isn + 1.

We also need two lemmas, the simple proof of the first of which we omit.

Lemma 2.1. For n € w, an infinite scattered subset A of a Ty-space X has
dispersion order at most n if and only if it is the union of n discrete subspaces.

Lemma 2.2. IfY is a scattered metric space of finite dispersion order n+ 1,
where n > 1, and x € Y, then for any ¢ > 0, there is an embedding h :
w™ +1—Y such that h(w") = z and diam(h[w™ + 1]) < €.

Proof. The proof is by induction on the dispersion order of Y. If n = 1, then
cach point z € Y7 is the limit of a sequence S in Yy; S can be taken to have
arbitrarily small diameter and S U {z} is homeomorphic to w + 1.

Suppose now that the result is true for cach n < k& and let Y be a scattered
space of dispersion order k& + 1. Suppose that z € Y, and ¢ > 0; pick a
sequence (r.,) = S C Yi_1 converging to x such that diam(S) < ¢/2. Since
Y is hereditarily collectionwise normal, we may find mutually disjoint open
sets U, such that =z, € U,,; cach set U, is scattered and has dispersion
order k. Applying the inductive hypothesis, for cach m € w, we may find an
cmbedding by, w1 4+ 1 — U, such that h,, (wk_l) = &, and such that
diam(T;,) < /4™, where T,,, = hlw* ™1 +1]. Let T = U{Ton : m € w} U {z};
it is straightforward to check that 7' is homeomorphic to w* + 1 since each

neighbourhood of x contains all but finitely many of the sets T;,; furthermore,
diam(T") < €/2 4+ ¢/4+ ¢/16 < e. O

Example 2.3. There is a Whyburn H-closed (hence feebly compact) Hausdorft
space with no non-trivial convergent sequences.

Proof. We consider the space X = [0, 1] with the usual metric topology p. Let
7 be the topology on X gencrated by

pU{X\ D:DC X is p—discrete}.
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Since {X \ D : D C X is u—discrete} is a filter of dense subsets of (X, p) it
follows that (X, 7) is H-closed. Furthermore, it is clear that (X, 7) is Hausdorft
and has no convergent non-trivial sequences. Even more is true: It follows from
Lemma 2.1 that every scattered subspace of (X, p) of finite dispersion order is
closed in the topology 7. We will show that (X, 7) is a Whyburn space. To
this end, suppose that A C X is not closed and let = € ¢l (A) \ A. Now in
(X, p), Ais the union of a scattered subset € C A and a dense-in-itself subset
B C A, hence cither (i) z € ¢l (B) or (ii) = € ¢l (C). We consider the cases
scparately.

(7) Since B is dense-in-itself, every non-empty open subset of B contains a
dense subset homeomorphic to the rationals, . Choose a nested local base at
z of p-closed sets V = {V,, : n € w}; we may assume that V,,; € int(V,,) and
B (int(V,) \ V,u1) # @ for cach n € w. Since @ is universal for countable
mctric spaces, for cach n € w, in the open subset B N (int(V,,) \ Vi,41) of B we
may find a subspace D,, homeomorphic to the compact ordinal w™ + 1 which
has dispersion order n + 1; let D = [J{D,, : n € w}. It is casy to sce that D
is scattered and has dispersion order w and since x € ¢l, (D) a straightforward
argument shows that cl, (D) \ D = {z}.

(i7) Choose a nested local base at x of p-closed sets V = {V,, : n € w}. If
z € ¢l (C), since each scattered subspace of (X, p) of finite dispersion order
is 7-closed, it follows that for cach n € w, C' NV, has (countably) infinite
dispersion order k and since every countable limit ordinal has cofinality w, we
may assume without loss of generality that k = w. Then, for cach n € w, using
the previous lemma we may find embeddings b, : w™ +1 — V, N C and it
is not hard to sce that the maps h,, may be chosen so that if m # n, then
T, NT,, =@, where Ty, = hk[wk + 1]. Each of the sets Ty is p-compact and 7-
discrete but T = |J{T% : k € w} has infinite dispersion order and so = € cl,,(T).
Furthermore, since for cach p-neighbourhood V oof x, the set T\ V' is 7-closed,
it follows that cl(T)\ C = {z}. O

In the sequel d(X), L(X), t(X) and ¢(X) will denote respectively the den-
sity, tightness, Lindeléf number and pseudocharacter of a space (X, 7) and
P(x, X') will denote the pseudocharacter of z in X. If (X, 7) is a Hausdorff space
and z € X, then let ¢.(z, X) = min{|U| : {z} = ({cl(U) :z € U e U C 7}}.

Theorem 2.4. A k-space is weakly Whyburn if and only if for each non-
closed set A C X, there is some compact set K C X and » ¢ A such that
d(KNA)=(KNA)U{z} =K.

Proof. The sufficiency is clear, since KM A is not closed in K. For the necessity,
suppose that (X, 7) is a Hausdorff weakly Whyburn k-space and that A C X
is not closed in X. Then there is some compact set C' € X such that C N A
is not closed in C'. Since C' is a closed subset of X, C' is weakly Whyburn and
hence there is some z € C'\ A and a set B C C' N A such that cl(B)\ A = {z}.
Clearly cl(B) is the required compact subset of X. O

Corollary 2.5. A weakly Whyburn k-space is pseudoradial.



14 0. T. Alas, M. Madriz-Mendoza and R. G. Wilson

Proof. This is an immediate consequence of the previous lemma and the fact
that a compact weakly Whyburn space is pseudoradial (see [7]). [l

The next result extends Theorem 3 of [1] to the class of Hausdorff spaces.

Theorem 2.6. If X is a weakly Whyburn Lindeldf P-space and for each x € X,
Pz, X) < W, then X is pseudoradial.

Proof. For any Hausdorff space 1.(x, X) < L(X)t(z, X) (sce 2.8(c) of [3]) and
henee ¢.(z, X) < R, forcach z € X. Let A C X be anon-closed set and B C A
such that ¢cl(B)\ A = {z} for some z € X. Let i = {U, : @ < s} be a family of
minimal cardinality £ of open sets in ¢l(B) such that {cl(Uy,) : @ < £} = {z}.
Since X is a P-space and x is not isolated, k is a regular uncountable cardinal.
Since k is minimal, for cach & € k we may choose =, € ﬂ{(!l(u.@) A<
a}\{z} C A. Since cl(B) is Lindeldf, the set so constructed {z,, : @ < £} must
have a complete accumulation point z € cl(B). Since ([{cl(Uy,) : o < v} = {z}
and the well-ordered net S = (24) aex 18 finally in cach set ¢l(Ug) it follows that
z = x and x is the unique complete accumulation point of S. Furthermore,
S = () aers must converge to x, for otherwise there would exist a subsct of S
of size k with no complete accumulation point. [l

Theorem 2.7. The product of two Whyburn spaces, one of which is a k-space
and the other is locally compact is weakly Whyburn.

Proof. Suppose that X is a Whyburn k-space and Y is a Whyburn locally
compact space. It is known (sec [7]) that a compact Whyburn Hausdorff space
is Fréchet-Urysohn and it is casy to sce that the same is true of a Whyburn
Hausdorff k-space. It then follows from 3.3.J of [2] that X x Y is sequential
and hence weakly Whyburn. [l

Question 2.8. Is the product of two Whyburn k-spaces, weakly Whyburn?
Theorem 2.9. If X is weakly Whyburn, then | X| < d(X)"X ).

Proof. If X is finite, the result is trivial; thus we assume that X is infinite.
Suppose that d(X) = §, ¢(X) = k and D C X is a dense (proper) subsct
of cardinality 4. Let D = Dy and define recursively an ascending chain of
subspaces {D,, : a < kT} as follows:

Sinee X is weakly Whyburn, there is some z € X'\ D and B, C D such that
cl(B,)\ D = {z}; clearly, we have |cl(B,)| < § < §" and we may assume that
|B.| < k.

We then define

Dy = | J{el(B) : B C Dy, |B| < ,|cl(B) \ Do| = 1}.

Clearly Dy 2 Dg and since there are at most § such sets B it follows that
|D1] < 6%

Suppose now that for cach 8 < a < k* we have defined dense sets Dy such
that |D,H| < 6" and D, C Dy whenever v < A < . If e is a limit ordinal, then
define D, = U{Dg : B < a} and then |D,| < |al.6" < xT.6% = §". If on the
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other hand o = 8+ 1, and Dg ¢ X, then since X is weakly Whyburn there is
some z € X \ Dg and B, C Dy such that cl(B,) \ Dy = {z}. Again we have
that |cl(B,)| < 6% and we may assume that |B,| < k. Now we may define

Dy = | J{el(B) : B C Dy, |B| < ,|cl(B) \ Dg| = 1}.

Clearly D, 2 Dg and since there are at most (6%)" such sets B it follows that
Do < 6".

To complete the proof it suffices to show that for some o < &+, we have
that D, = X. Suppose to the contrary that A = |J{D, : @ < T} # X;
|A| < k*.6" = §%. Then, since X is weakly Whyburn and has tightness s,
there is some z € X \ A and some set B C A of cardinality at most &, such
that cl(B)\ A = {z}. Since the sets {D, : @ < kT} form an ascending chain
and cf(k*) > &, it follows that for some v < k*, B C |J{Ds : @ < v} and
hence z € D41, a contradiction. (]

Lemma 2.10. If X is hereditarily weakly Whyburn, then | X| < 24X ).

Proof. Suppose to the contrary that |X| > 2¢(X) " Let A be a dense subset
of X of minimal cardinality, A = {A C A : |elx(A4)] < 29} and ¥V =
U{clx(A) : A € A}. Since |P(A)| = 29 it follows that |Y| < 24%) and
hence if we put Z = AU (X \ Y), then |Z] > 245 Now if B € P(A) \ A,
then |elx (B) N Z| > 29X thus showing that A is Whyburn closed in Z but
not closed. Thus Z is not weakly Whyburn and hence X is not hereditarily
weakly Whyburn. [l

3. THE WHYBURN PROPERTY IN SCATTERED AND SUBMAXIMAL SPACES

We recall our convention that all spaces are Hausdorff. A space is said
to be submaximal if every dense subset is open. A standard procedure for
constructing submaximal topologics is as follows. Suppose that (X, 7) is a
(Hausdorff) space and D is a maximal filter in the family of dense subsets of
X. Then the topology ¢ generated by the subbase 7 U D is submaximal and
is called a submaximalization of 7. Note that ¢ is semiregular if and only if 7
is semiregular and submaximal (then ¢ = 7). Obviously, a scattered space is
submaximal if and only if it has dispersion order 2.

As we mentioned carlier, every regular scattered space is weakly Whyburn
and the Katétov extension of w (see 4.8(n) of [5]) shows that this is not true
in the class of Urysohn spaces. Thus it is natural to ask the following two
questions.

(1) Must a dense-in-itself submaximal Whyburn space be regular?, and
(2) Is every scattered semiregular space Whyburn?

We give a partial answer to the first question by showing that a submaxi-

malization of a resolvable space is never Whyburn and answer the second by
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constructing a semiregular scattered space of dispersion order 2 which is not
weakly Whyburn.

Recall that a space is resolvable if it possesses two mutually disjoint dense
subsets.

Theorem 3.1. A submazimalization of a resolvable Hausdorff space is not
weakly Whyburn.

Proof. Suppose that (X, 7) is a resolvable Th-space and F is a maximal filter
of dense sets in X. We first show that there is F' € F such that X \ F is
somewhere dense in X. To this end, suppose to the contrary that no such I
exists, then for each F € F, Up = X \ F is nowhere dense. Now let D and
D' be complementary dense subsets of X; clearly D, D' & F. For cach F € F,
since int(F) = X \ cl(X \ F), it follows that int(F) is dense in X and so too
are DNint(F) € DN F and D' Nint(F)) € D' N F. Since F is maximal, any
dense set which meets cach element of F in a dense set is an element of F and
so it follows that D € F and D’ € F contradicting the fact that F is a filter.
Now let ¢ be the topology generated by 7 U F and F' € F be such that
X \ F is somewhere dense; thus int, (cl, (X \ F)) =U # @. Let V. =UNF,
r € ¢l (V) \ F' and note that V is infinite. Then if B C V is such that
z € cly(B), it follows that W = int,(B) # @. But then, cl, (W) N (X \ I') =
cl,(W)N(X\F) =cl(cl.(W)N (X \ ")) N (X \ I") which is infinite. O

An example of a scattered submaximal Whyburn (even first countable) space
which is not regular (nor even semiregular) is casy to construct. Let @@ denote
the rational numbers and X = ) x {0, 1} with the following topology:

Each point of ) x {0} is isolated and a basic open neighbourhood of (g, 1) is
of the form {(q, 1)} U[(U, \ {q}) x {0}] where U, is a Euclidean neighbourhood
of g € Q.

A space X is said to be w-resolvable if X possesses infinitely many mutu-
ally disjoint dense subsets. The construction of the next example depends on
the existence of a countable w-resolvable Hausdorff space which is not weakly
Whyburn. Before constructing such a space, the following lemma is needed

Lemma 3.2. A space X, w C X C fw is hereditarily weakly Whyburn if and
only if X is scattered.

Proof. The sufficiency is clear since a subspace of a scattered space is scattered
and it was proved in [4] that a regular scattered space is weakly Whyburn.
Furthermore, it is casy to see that if the dispersion order of X is 2, then it is
Whyburn also.

For the inverse implication, suppose that D C X \w is dense in itself and let
Y =wU D; if ¥ were weakly Whyburn, then we could find p € D and B C w
such that cly(B) \ w = {p}, in other words, cly(B) = B U {p}. However,
cly (B) = clg,(B)NY and so cly (B) N D is an open subset of D to which p
belongs; since p is not isolated, this set must be infinite. [l
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By way of contrast to the last result we note that under C'H the subspace
of P-points of fw \ w has character w; and it then follows from Proposition 2.7
of [4] that this space is Whyburn.

Consider a countable dense-in-itself subset D C clgg(N)\N C fQ\Q (where
once again, () denotes the set of rational numbers with the Euclidean topology).
Let X = QUD; X is a countable Tychonoff space which, is clearly w-resolvable.
That N is Whyburn closed in X follows from the previous lemma and the fact
that clgg(N) is homeomorphic to Sw.

Example 3.3. There is a semiregular scattered space (of dispersion order 2)
which is not weakly Whyburn.

Proof. Let (Z, o) be an w-resolvable (dense-in-itself) countable Tychonoff space
which is not weakly Whyburn and let F be an infinite family of mutually
disjoint dense subsets of (Z,0) and ¢ : Z — F a bijection. Let X = Z x {0,1}
and for cach z € Z, let V., be an open neighbourhood base at z. We define a
topology 7 on X = Z x {0,1} as follows:

Each point of Z x {0} is isolated and an open neighbourhood of (z,1) is of
the form

We = {(= D} U (V x {0})\ ({(2.0)} US(2)). where V € V.

The space (X, 7) is a scattered space of dispersion order 2 and we proceed
to show that it is neither regular nor weakly Whyburn.

It is casy to sec that X is not regular since the open neighbourhood Wy .
of (z,1) contains no closed neighbourhood of that point. To prove that X
is semiregular, it suffices to show that cach of the sets Wy, . is regular open.
To sce this, suppose that (¢,1) € clx(Wy,2) where £ # z; then since ¢(z) is
dense in Z, cach neighbourhood of (£, 1) meets the set ¢(z) x {0} showing that
(t,1) € intx (cl(Wy2)).

Finally, to show that (X, 7) is not Whyburn, it suffices to prove that there is
some A C Z such that Ax {0} is Whyburn closed but not closed in X. However,
Z is not weakly Whyburn and hence there is some A € Z which is Whyburn
closed but not closed in Z and so if B C A is such that clz(B)\ A is nonempty,
we must have clz(B)\ A has no isolated points (and hence is infinite). We claim
that if B C A is such that clz(B)\ A is nonempty then elx (B x {0})\ (A x {0})
is infinite. To prove our claim, supposc that s € clz(B) \ A; then either
(s,1) € clx (B x {0}) \ (A x {0}) or not. If (s,1) & clx (B x {0})\ (A x {0})
then there is some open neighbourhood U of s in Z such that clz (U)NB C ¢(s)
and U contains infinitely many points of clz(B)\ A. If s #t € UN(clz(B)\ A),
then since BNU € ¢(t), it follows that ¢ € clx(B x {0}) \ (A x {0}), showing
that clx (B x {0})\ (A x {0}) is infinite. O
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4. SOME OPEN QUESTIONS

The space constructed in Example 2.3 is not regular, thus we are led to ask:

Question 4.1. Does every (weakly) Whyburn pseudocompact Tychonoff space
have a convergent sequence?

A mumber of dense pseudocompact subspaces of {0,1}¢ and I¢ have been
constructed which do not possess a non-trivial convergent sequence (for exam-
ple see [6]); however, the question of whether such constructions can produce
a weakly Whyburn space has apparently not been studied.

Question 4.2. 1s the bound ¢(z, X) < R, necessary in Theorem 2.67
Question 4.3. Suppose that | X| > 24X ); can X be weakly Whyburn?

Question 4.4. Docs there exist in ZFC' a dense Whyburn subspace of fw \ w?
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