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Abstract

Properties of bosonic atoms in small systems with a periodic quasi-one-dimensional circular
toroidal lattice potential subjected to rotation are examined by performing the exact
diagonalization in a truncated many-body space. The expansion of the many-body
Hamiltonian is considered in terms of the first-band Bloch functions, and no assumption
regarding restriction to nearest neighbour hopping (tight-binding approximation) is involved.
A finite size version of the zero temperature phase diagrams of Fisher ef al (1989 Phys. Rev. B
40 546570) is obtained and the results, in remarkable quantitative correspondence with the
results available for larger systems, discussed. Ground-state properties relating to superfluidity
are examined in the context of two-fluid phenomenology. The basic tool, consisting of the
intrinsic inertia associated with small rotation angular velocities in the lab frame, is used to
obtain the ground state ‘superfluid fractions’ numerically. They are analytically associated
with one-body, uniform solenoidal currents in the case of the adopted geometry. These
currents are in general incoherent superpositions of contributions from each eigenstates of the
associated reduced one-body densities, with the corresponding occupation numbers as
weights. Full coherence occurs therefore only when only one eigenstate is occupied by all
bosons. The obtained numerical values for the superfluid fractions remain small throughout the
parameter region corresponding to the ‘Mott insulator to superfluid’ transition, and saturate at

unity only as the lattice is completely smoothed out.

(Some figures may appear in colour only in the online journal)

1. Introduction

Following the amazing development of experimental
techniques in the latest years, cold atom systems became
the primary candidates for the study of many-body quantum
phenomena. Mean-field aspects of condensation, for example,
have been extensively investigated both at the experimental
[1, 2] and theoretical [3—8] levels. Properties of the strongly
correlated regime became accessible with the use of optical
lattices, and the transition from Mott-insulator to superfluid
was verified in the lab [9]: in the superfluid phase, the atoms are
delocalized in the lattice in a state with long-range coherence,
whereas in the insulator phase they are localized in the lattice
sites, each of these, with a fixed number of atoms [9].

0953-4075/13/205303+10$33.00

Fundamental aspects of superfluid behaviour relating to
flux properties in systems of alkali gases are still a matter of
active research. The rigorous theoretical proof of superfluidity
in the Gross—Pitaevskii limit was established only in 2002
[10], in terms of a criteria based on inertia and two-fluid
arguments. In the current experimental scenario, different
setups which include effects of rotation of containers have
been proposed [11, 12] and/or realized [13]. In particular,
persistent flow in a toroidal trap [14] and frictionless flow
on a 2D system subjected to a moving obstacle [15] were
observed very recently. This highlights the importance of
explicitly considering the coupling of the system with its
moving boundaries. In fact, in the context of optical lattices,
earlier works [16, 17] have already investigated superfluid
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properties in terms of the response of the system to imposed
phase twists within the Bose—Hubbard model. In these studies,
however, ‘the influence of the lattice potential itself on the
superfluid flow’ has been neglected, and it is not clear how
inclusion of such influence affects the superfluid properties and
relates to the transition from localized to delocalized bosons
in the many-body ground state.

Motivated by this, we investigate here superfluidity
properties in a weakly interacting Bose gas trapped in a rotating
annular toroidal Kronig—Penney trap, which constitutes a
simplification of the experimentally implemented optical
lattices. In order to study superfluidity in terms of an
inertial criterion, we consider an externally imposed rotation
(‘cranking’) of the lattice. The result is a ‘cranked’ extension
of the field Hamiltonian underlying the Bose—Hubbard model.
This Hamiltonian is conveniently expanded in a single-particle
basis of Bloch functions and single-particle energies, and
all the required two-body matrix elements are explicitly
calculated. In the calculations reported below, the single-
particle basis is truncated to the first band only. However,
within the bounds set by this limitation, this treatment
effectively relaxes the constraints inherent to the tight-binding
approximation which underlies the standard usage of the Bose—
Hubbard model: the range of the tunnelling is not restricted to
nearest neighbours, and interactions are no longer restricted
to occur on site. It therefore includes nontrivial many-body
effects stemming from the multi-mode treatment as e.g. cross-
collisional induced effects [18].

In terms of the results of the numerical many-body
diagonalization, one can then obtain superfluid fractions (in the
sense of the two-fluid model) and associated currents. These
results are compared with results obtained for a finite version of
the zero temperature phase diagram [19] of the Mott-insulator
to superfluid transition. And despite being a small system, to
which the strict definition of phase transition does not apply,
it still deploys ‘precursor’ features which can be related even
quantitatively to those which have been both observed in real
systems and supported by approximate computational results
obtained for considerably larger systems. In this context,
properties relating to condensation are also analysed. We
apply the Penrose—Onsager [20] criteria, which considers
the establishment of occupation dominance of one of the
eigenstates of the reduced density matrix. In particular, it is
seen that the closure of the Mott lobes happens for the same
range of parameter values at which occupation dominance
essentially attains its peak value, and that these changes evolve
in a scale different from that associated with the overall
changes of the superfluid fraction and superfluid current.

This paper is organized as follows: in section 2 we present
the cranked version of the lattice model, whose ground-
state properties are analysed in section 3 in terms of the
zero-temperature phase diagrams. In sections 4 and 5, we
discuss properties related, respectively, to superfluidity and
condensation, and in section 6 we present our conclusions.

2. The cranked quasi-momentum Hamiltonian

2.1. Bose—Hubbard model

The many-body dynamics of cold bosonic atoms in external
lattice potentials is strongly dominated by the two basic
ingredients consisting of hopping and short range (repulsive)
two-body interaction effects [21]. In a tight-binding regime
hopping is dominated by nearest-neighbour processes and two-
body effects are dominated by ‘on-site’ contributions only.
These ingredients are combined in the Bose—Hubbard model
Hamiltonian

JU > 0, ey

where the first sum is restricted to nearest neighbours (i, j)
and the operator g; (&:f) destroys (creates) a bosonic particle in
site i. In order to connect this Hamiltonian involving ‘sites’
to a more basic description involving spatial coordinates,
one associates the sites to amplitudes defined in terms of
the first-band Wannier function, which is sufficiently well
localized in space in the tight-binding regime. As is now well
known, competition between localization, favoured by two-
body repulsion, and delocalization, favoured by the hopping
term leads to a quantum phase transition between a ‘Mott
insulator’ phase and a ‘superfluid’ phase in the ground state as
the relative importance of the two parameters J and U of the
model is varied [9, 19].

Specializing now to the case of a finite, one-dimensional
potential array consisting (for convenience) of an odd number
of sites M with periodic boundary conditions (i.e., a ring-
shaped one-dimensional array of sites), interesting symmetries
become manifest by changing to the representation which
diagonalizes the hopping term of the Hamiltonian (1). This

is achieved by a (discrete) Fourier transform

| M
A i,

Aj=— en™gq,, (2
n=1
M-

where ¢ = 5 0"%

‘quasi-momentum’ bosonic operators A, A;, the Hamiltonian
reads

. In terms of the new

M—1

2 2 A
Hp=—2J Y cos (%) AiA,

M-l
=2

U Mo a
507 D m(ar + 42 — g3 — aALAL Ay Ay, 3)
qj

where the &y/(g) in the two-body term is the modular
Kronecker delta, equal to one if g is an integer multiple of
M and zero otherwise. It indicates ‘modular’ conservation of
total quasi-momentum (Qr = mod()_ . 9ngs M), i.e, with
allowance for Umklapp processes. This in fact reduces many-
body Hamiltonian matrices to block-diagonal form, each block
being associated with a value of Q7, which assume the same
values of g. In particular, traces of the tight-binding assumption
are manifest in this representation in the cosine law for the
single-particle energies and in the single common value U/M
for the two-body matrix elements.
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2.2. Configuration space field theoretical model

Limitations of the tight-binding regime which are built into the
Bose—Hubbard Hamiltonian can be lifted without substantially
increasing eventual computational costs by first returning
to a configuration space representation of the Hamiltonian.
We do this by keeping the overall geometry consisting of
a regular toroidal array with mean radius R and containing
M angular domains separated by potential barriers, with a
one-dimensional lattice constant given by I, = 2wR/M.
Furthermore, we assume an effective one-dimensional regime
in which the transverse amplitude is independent of angle
and effectively frozen in its ground state. In this context,
the relevant Hamiltonian can be written in terms of angle
dependent bosonic field operators tﬁ(fp), lﬁT(go) as [5, 6]

~ B2 d?
H=/d(ﬂ W(@)[( de 2 +Vlan(§0)>

A s .
+3¢ @V (@) |¥(p), 4

in which m is the boson mass and Vi, (¢) is the external lattice
potential, accounting both for tight transverse confinement
and for the angular periodicity. The effective one-dimensional
strength parameter A is related to the strength of the usual
effective two-body contact interaction given in terms of the
s-wave scattering length a, A = 47 hza/m, as

A= A/dzrl lwo (F)I*.

Here wq (7, ) is the frozen transverse amplitude in the array.
This is a nodeless, normalized, confining wavefunction which
sets the scale for the transverse size of the toroidal trap, and
thus also the proportionality constant relating the effective
strength parameters A and A.

Before re-establishing contact with the Bose—Hubbard
form (3) of the Hamiltonian, we consider a further extension
of the effective one-dimensional Hamiltonian (4) to include
uniform rotation of the lattice with angular velocity w around
the axis of the toroidal structure. By transforming to the
reference frame rotating with the lattice potential, the required
effective Hamiltonian becomes

H_/dW() : hd—mR22
o= [V \Gae ~ "

A A A .
+ Vi (9) + EW(w)W(@}Ww)- 6)
This differs from equation (4) just by the replacement

hd hd

L=—— — (,—mowR) = ~— —mwR*|. (6
ide ide

One can now make contact with the Bose—Hubbard form

(3) by representing H,, in the (truncated) single particle basis
consisting of the M (first band) Bloch functions {qﬁ;‘”) (p)}
which diagonalize its one-body part. Note that these functions
are labelled by the quasi-momentum ¢ and depend on the
cranking angular velocity w. This is done by expressing H,, in
terms of the bosonic operators

Aj) = / dp ¢} (9)¥} (¢) and

Al = / de ¢\ (0)V,(9).

which leads to
M-1
Ze(w)A(w) A(w)
q=0
A @)
T3 Zg{q,}&vz(% +4qs—q1 —q2)
4i
x AQTAGTALDAL. ™

H® —

Here, the e(") are the (first band) single particle Bloch
eigenvalues and the objects g(‘“) gé‘;’)qz 4., AT integrals
over products of four Bloch functlons which, together with
the strength parameter A, constitute the required two-body
matrix elements in the adopted single-particle basis. The
single particle energies are now the Bloch eigenvalues which,
as shown in continuation, have spacings consistent with
the cosine rule of (3) in the tight-binding regime; the two
body matrix elements may and indeed do increasingly show
fluctuations as one leaves the extreme tight-binding limit.

Finally, it is worth mentioning explicitly that truncation
of the single-particle basis to the first-band Bloch states,
together with the modular conservation of total quasi-
(angular)momentum in (7) implies that there are no mean
field two-body effects, i.e. all two-body matrix elements
involving just one-particle changes of state vanish. As a
consequence, reduced one-body density matrices of non-
degenerate stationary many-body states of (7) will be diagonal
in this base, total quasi-momentum being then a good quantum
number.

2.3. Numerical implementation

In order to implement the many-body model (7) numerically,
we first adopt a schematic realization of the lattice potential in
terms of the Kronig—Penney model with §-function barriers

Vi — yZ (w——(n+1)>

where y is the strength parameter for the é-function barriers.
For this choice, Bloch functions are given as analytic
expressions involving few numerical parameters which are
easily obtained, together with the Bloch eigenvalues, by
solving transcendent algebraic equations numerically.

The behaviour of the Bloch eigenvalues as a function of
the cranking angular velocity w, given in units of wy = h/mR>
(energy being measured in units of €y = h?/mR?), is shown for
two values of the barrier parameter y in figures 1(a) and (b).
Part (c) of the same figure shows the w dependence of the tight-
binding regime one-body eigenvalues as implemented in the
Bose—Hubbard model, given by the function —2 cos (%(q —
a))) (cf equation (3)). While this cosine function is clearly
capable of reproducing the relative spacings of the Bloch
single-particle energies very accurately for sufficiently large
values of y, deviations from it are clearly seen in the case of
the lower value of y. We use single particle Bloch eigenvalues
e(" obtained numerically in all calculations, while taking
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Figure 1. First-band Bloch single-particle energies (in units of

€y = h?/mR?), for M = 5, y = l¢ (a) and 100¢, (b), as functions
of the cranking angular velocity w (in units of wy). (c):
Bose—Hubbard single-particle energies per unit hopping parameter
also as a function of w. Note the distortion relative to the cosine law
(c) in case (a). One quarter of the width of the Bloch band may be
used as an effective Bose-Hubbard hopping parameter J for each
value of y, as discussed in the text. The values of J for (a) and (b)
are 0.691 and 0.0474 respectively, also in units of €.

advantage of the analytical expression valid in the tight-
binding regime to define a parametrization of the barrier
strength in terms of an effective hopping coefficient J as
&~

R ®)
Here, € and € are respectively the upper and the lower
bounds for the first-band cranked Bloch eigenvalues {6[5“’)}
for a given value of the barrier strength parameter y. For
simplicity, we refer to the numerator of equation (8) as the
‘energy width of the first band’. This parametrization coincides

J =

2 0257,

[=)

g

5 02

o 2.-2,1,0 IR

.é 0.157 (_ 2,1, ) . \\‘ nam ol

£ - (C12-2-2) o

E 7 .\\\

S0l (0.0.0.0) A

2  (-11,0,0) R

< 005 ---(=2,2,1,-1) )
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E ‘ ‘ | R
5 02 0.4 0.6 0.8

J

Figure 2. Typical behaviour of the two-body matrix elements. The
notation (q1, ¢2, g3, q4) denotes the integral

f d(,0q>;‘I (©)9;, (©)y, (©) Py, (¢). Unlike strictly quasi-momentum
conserving matrix elements, Umklapp matrix elements vanish
together with barrier strength parameter at

J =25/32¢) = 0.781 25¢.

with the Bose—Hubbard definition of the hopping parameter in
equations (1) and (3) in the tight-binding domain. Note also
that the dependence of the Bloch energies with the cranking
angular velocity leads to single-particle energy level crossings
at integer and half-integer values of w/wy. Since the quasi-
momentum is a good quantum number for the individual
Bloch states, these level crossings will have a decisive role
in determining the total quasi-momentum of cranked many-
body ground state, as discussed in the following section.

The four wavefunction integrals gf;]’?% .0 Are casily
evaluated in terms of the Bloch functions. Some sample results
are shown in figure 2, for M = 5 and w = 0, as functions
of the effective hopping parameter J just defined. Salient
features here are the complete bunching on a single value
go in the tight-binding limit J — 0 (go ~ 0.239 in the present
case), and the strong quenching of Umklapp matrix elements
in the opposite limit of very large hopping, as compared to
angular momentum conserving matrix elements. Note that
definition (8) of the effective hopping parameter leads to
J/eg — 25/32 = 0.781 25 as the barrier strength parameter
y — 0, for the present case with M = 5. In order to facilitate
comparison with results obtained using the Bose—Hubbard
Hamiltonian parameters as in (1) and (3), we again use the
tight-binding limit to define an effective two-body parameter
U to replace the two-body constant A as

U= goMA 9)

in terms of which the two-body part of equation (7) coincides
in the tight-binding limit to that of the Bose—Hubbard model,
equation (3).

3. The ground-state phase diagram

The different dynamical regimes prevailing in different
parameter domains [19] of the Bose-Hubbard Hamiltonian (3)
have been studied extensively using diverse approximation
schemes and/or computational techniques. The focus of these
studies is the thermodynamic limit, in which the number of
sites and the number of bosons go to infinity at fixed finite mean
occupation per site. The one-dimensional case has been treated
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rather recently by Kiihnerer al [22], including, in particular,
the ‘ground-state phase diagram’ [19] in which different phase
domains are identified in a /U x J/U diagram, u being the
chemical potential.

Our purpose in this section is to indicate how one can
obtain phase-diagram information by using the results of
exact many-body diagonalization of the Hamiltonian (7),
albeit with feasibly small number of sites and of bosons.
Under these circumstances, there will of course be no case
for taking thermodynamic limits and determining precise
phase boundaries, but as will be shown explicitly there
are clear ‘precursor features’ in the small number solutions
which clearly identify, surprisingly even quantitatively, several
thermodynamic limit properties.

Since in this context we deal always with systems having
a fixed, given number of particles, a replacement must be
devised for the chemical potential p. We thus replace u by the
addition energy Ay, N being the number of bosons, defined
as Ay = Eg(N + 1) — Eg(N) — €, where E¢(N) denotes the
ground-state eigenvalue for N bosons in the chosen number
of sites, and € is the average of the single particle (first-band
Bloch) energies. Note that € vanishes for the cosine law of
the Bose—Hubbard Hamiltonian (3). With this replacement,
the axes of the graph corresponding to the ground-state phase
diagram become

" Ay  Ey(N+1)—Ey(N)—e€ J

- — = , = (10)
U U U U

where we use the quantities U and J as defined in equations (9)

and (8) in order to characterize the dynamical parameters of

the many-body Hamiltonian (7).

Results obtained for M = 5 sites and N = 0 to 11 bosons
are shown in figure 3(a), for the usual situation of vanishing
cranking angular velocity, w = 0, the strength of the two-body
effective interaction having been fixed at A = 0.06¢,. This
value is realistic in the sense that it corresponds to the mass
and scattering length of 8Rb for R ~ 10 um with a transverse
confinement scale of the order of 1 pwm. The value of the barrier
strength parameter y has been varied to cover the desired
range of values of J/U. Actually, the whole parameter domain
covered by this graph falls within the tight-binding domain
in which the results obtained using the Hamiltonian (7) differ
very little from what one obtains using the Bose—Hubbard
Hamiltonian (3) itself [24]. Each curve in this graph shows
the dependence on J/U of the (U-scaled) addition energy Ay
for one of the values of N. As seen, the bunching of these
curves at integer values of the U-scaled addition energies in
the limitJ/U — 0 gives room for the Mott insulator lobes. The
shape and range of these lobes reproduces even quantitatively
the results obtained towards the thermodynamic limit, cf [22],
including in particular the ‘reentrant behaviour’ [23] (see also
[25]) characteristic of the one-dimensional Bose—Hubbard
model. Moreover, one can show perturbatively, in the large
J/U limit past the insulator lobes, that the spacing between
consecutive Ay /U curves approaches the value 1/M, M being
the number of sites [24], suggesting therefore a definite N-
cleavage as one moves towards the thermodynamic limit.

Effects of cranking are illustrated in figure 3(b), which
differs from (a) in that here @ = 0.48awy, i.e. just shortly

2r ()
1.5
2
o
Z, 05F
m
Lo
—
+
Z —0.5¢
)
—1F
-1.5 ‘
0 01 02 03 04 05 06 07
J/U
2r (b)
o L5
w L
Voo
Z, 05f
m
Lo
2—0.5—
B
_1—
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Figure 3. Scaled particle addition energies as functions of J/U for
w = 0 and w = 0.48w using (the) single-particle energies, and with
the effective hopping parameter defined in the text. Here

A = 0.06¢p, M = 5 and N varies from O to 11 (from the first to the
last line going upwards). In (a), the closure of the lowest Mott lobe
is seen to happen in the neighbourhood of J/U ~ 0.35, while in (b)
it is affected by the angular velocity and happens for higher values,
J/U > 0.7.

before the first single-particle level crossing (see figure 1).
The broadening and lengthening of the Mott insulator lobes
which is visible in this case is governed essentially by the Bloch
energies modified by rotation. This effect can be understood
in terms of the effective reduction of the kinetic energy (cf
equation (6)) which quenches hopping thus favouring the
insulating phase.

4. Properties related to superfluidity

The dependence on w of the energy (in the rotating system) of
the many-body ground state of the cranked Hamiltonian (3),
for small values of the angular velocity, allows for the
determination of an inertial parameter Z through the relation

T
E@WN)=EOWN) + sz +0WH, w—>0

which may be related to the ‘superfluid fraction’ f;, defined
within the phenomenological framework of the two-fluid
model of superfluid behaviour, as (cf [4])
z z
Js

- == 1
Irig NmR? (n
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where Zgj; = Nm R? is the rigid moment of inertia of the
system. This bears the understanding that, in stationary state,
as viewed from the rotating frame, the inertia corresponds to
that part of the fluid which remains stationary in the lab frame
(the ‘superfluid’), while the ‘normal’ component is carried
around with the externally imposed angular velocity.

4.1. Current for inertial parameter

The inertial parameter Z can be expressed as

dE@(N) 1 |dH,
2——— = —(P | —
dw? ) dow
where |®@) is the state vector for the N-body ground
state at cranking angular velocity w and where the well-
known Feynman—Hellmann relation has been used. This last
expression involves the expectation value of the derivative
of H,, equation (5), with respect to the parameter w. This
derivative is in fact a one-body (albeit nonlocal) operator:
ddﬂ = —/dw ) (Ei - msz) V(). (13
w ide
All the information relevant for one-body observables,
contained in the correlated many-body ground state |<I>(()“’))
of the Hamiltonian (7), is carried by its associated
one body reduced density, defined as p(p,¢) =
(CD(()”)MﬁT((p/)lﬁ(go)lCI)éw)). We may thus proceed to express
the inertial parameter 7, as given by equation (12), in terms of
this object. For this purpose, it is convenient to use its spectral
decomposition, which involves the solutions of the eigenvalue
problem

= o) (12)

w—0 w—0

/dw/p(“(so, ) x (@) = my X0 (@)

where the single-particle eigenfunctions y,(¢) are the so
called natural orbitals, the associated eigenvalues n, being
the corresponding occupation numbers [26]. In terms of these
ingredients, the one-body reduced density can be expressed as

P V(0. ¢) =D nxu (@i (@). (14)

Using (13) and (14) in equation (12), one finds that the inertial
parameter Z can be written in the form

m R? .
7= —/dww(w)
w

where the current j,(¢) is given by

h dx,
Jol9) = — Zn [mlm <xf(<p)%> - w|xv<go>|2] .
(16)

To obtain this expression, matrix elements involving a
@-derivative have been evaluated with the prescription

~ d . e n
/ ol () 3 0) = f dg / 05 ()8 (0 — &) (o)

where 8’ (@) is the first derivative of the Dirac delta function
with respect to the argument.

The current j,(¢) is therefore, in general, an incoherent
sum of currents associated with each natural orbital, full
coherence resulting only in the limiting case of full occupancy

5)

w—0

of a single natural orbital. Moreover, it is easy to see that the
current j,(¢), together with the (diagonal part of the) one-
body reduced density, obeys a conservation law which, for the
stationary states of the cranked Hamiltonian (5), in fact makes
it independent of ¢ (i.e., solenoidal) as a result of the time
independence of the associated one-body reduced density.

In order to see this, we begin from the expression of
the many-body Hamiltonian in terms of the field operators,
equation (7), and use the stationary character of | ¥ ()

d
H, W @) = ihanv(‘“)(r)),

WO ) = 7o)

to write the vanishing time derivative of the reduced one-body
density as

d / d w).7 © / w
3P 9 lp=y= awﬂ " (@)Y (@) W) |y
1 ~ ~
= E@”HW@W@/),Hw1|c1><w>> ly=p= 0.

By computing the ¢-derivatives with the prescription
aeoood?
/dﬁl"/fI (‘P)Fl//((ﬂ) =
¢
= / dy / de'y" ()8 (9 — ) (¢,

where 8" (¢) stands for the second derivative of the Dirac delta
function with respect to the argument, the commutator can
again be expressed in terms of the reduced one-body density
expressed in terms of its natural orbitals with the result

d h N (AN 2| _
dp 2 ny [mRZIm (xv (@) dy > ol X (@) } =0,
A7)

which states the ¢ independence of the current j,.
Using (17), the expression for the inertial parameter Z,
equation (15), reduces to

2
T =mR*=j,
w

w—0
Correspondingly, the ‘superfluid fraction’ f; is expressed in
terms of this current as

127 .

fs= ﬁ;]w o

In fact, the last two factors clearly amount to the time integral
of the solenoidal current j, for the duration of one period of
the cranking.

A feature of the evaluation of superfluid fractions by
means of equations (11) and (18) which is worth stressing
is that the definition of the current j, stems directly from the
inertial parameter Z, being identified as the expectation value
of a momentum dependent one-body operator, and therefore
apt to be expressed in terms of the one-body reduced density,
independently of any assumptions concerning the relevance of
a condensate wavefunction [16, 17]. This possibly manifests
itself a posteriori, through the coherence properties of the
current.

(18)
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It is worth noting that the formal results (15)—(17) can
be extended in a straightforward way to a more general
context, involving stationary many-boson states in an arbitrary
three-dimensional external trap, cranked around a fixed axis
specified by the unit vector . The effective Hamiltonian (5) is

in this case replaced by
2
H, — /d3r @ﬁ%(f’)[L <E€ — mow (i X f'))
2m \ i
Ao~ ~ ~
+ Virap (F) + EW(?W(?)]W(V)- (19)

Following the procedure just described for the one-
dimensional case, one obtains from (19) an expression for
the inertial parameter that is given in terms of the volume
integral of the appropriately weighted tangential component of
a solenoidal current density. This current is again written as an
incoherent sum of currents associated with the natural orbitals,
and that are weighted by the corresponding occupation
numbers.

4.2. Numerical results

For the case of the calculations reported here, the fact that the
many-body states |d>((]‘°)) have good total quasi-momentum,
together with the adopted truncation to single boson states
of the first band only, ensures that the associated reduced
one-body densities are diagonal in the quasi-momentum
representation, i.e.

(W ALTAL | W) = ngdyy. (20)

The natural orbitals are thus just the Bloch functions ¢
themselves, so that the corresponding occupation numbers
n, may accordingly be labelled by the associated quasi-
momentum g. As a numerical check, we evaluate the superfluid
fraction f; both by taking numerical derivatives of the ground-
state eigenvalue E“ (N) with respect to w”, as written
in equation (12), and in terms of the current j,, as in
equation (18), the current being evaluated as in equation (16),
in terms of the Bloch functions and of the eigenvalues n, of
the reduced one-body density, equation (20). In order to deal
with the implied limit @ — 0 in the numerical evaluation of
superfluid fraction values from either equations (11) and (12)
or from equation (18), we use the fact that the value obtained
is very stable against variation of the value of w. This remains
true even by orders of magnitude down from w ~ 0.lwy, as
long as the differences involved in obtaining either 7 or j,, are
sufficiently above the limitations set by machine precision. In
view of equation (15), this amounts to a numerical verification
that the w-dependence of E ) (N)—E© (N) is quadratic, while
that of j,, is linear within such a range.

Results for the commensurate case N = M = 5 are
shown in figure 4, where the values obtained for the superfluid
fraction f; are plotted as a function of the hopping parameter
J for two values of the two-body strength parameter A (or U,
see equation (9)). The most striking result of the numerical
evaluation of the superfluid fraction for the model system on
hand is the ‘prima facie’ absence of any dramatic features
in the parameter domain (J ~ 0.025¢p for A = 0.06¢, and
J ~ 0.125¢y for A = 0.3€p) which supports the transition

o o
(=)} o0

N
~

superfluid fraction

0.2

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7

J

Figure 4. Superfluid fraction for the system with N = M = 5 and
A = 0.06¢p and A = 0.3¢,. The curves correspond to equations
(11) and (12) while the points are obtained using the solenoidal
current as in equation (18). See text for details.

associated with the closing of the Mott insulator lobes (cf
figures 3(a) and 4). In fact, while being affected by the increase
of the two-body interaction parameter, the superfluid fraction
retains there a smooth monotonically increasing behaviour
saturating at the full scale of the hopping parameter J.

Effects related to the presence of the Mott insulator lobes
in the ground-state phase diagram of figure 3(a) do appear,
however, in the corresponding intervals of J/U and consist
of a quenching of the calculated superfluid fraction in such
intervals at the corresponding commensurate filling, relative
to the values obtained for incommensurate filling. This is
shown in figures 5(a) and (b) for the cases N/M = 1 and
2, respectively. As discussed in section 5 below, fragmentation
of the total boson number N over occupations n, of different
natural orbitals occurs in the J/U domains spanned by the Mott
insulator lobes and is stronger in the case of commensurate
occupation (see figures 6(a) and (d)). The quenching effect
may thus be associated with stronger loss of coherence of the
current j,, (see equation (15)) for commensurate filling. Note
that, for the ‘realistic’ value A = 0.06¢p of the two body
strength parameter, the calculated values of the superfluid
fraction are small in the whole J/U domains associated
with the Mott insulator lobes, so that these effects are not
conspicuous on the scale used in figure 4.

A comment relating the results obtained for the superfluid
fraction as understood in [17] is also in order. A connection
to the present evaluation of superfluid fractions can in fact
be established analytically in a rather straightforward way by
noting that equation (12) can in particular be applied to an
ideal gas (U = 0), in which case the ground state for small w
consists of the N bosons occupying the lowest (g = 0) quasi-
momentum Bloch orbital. In the tight-binding approximation
the ground-state energy is thus given by

() 2w h
E o (N) = —2JN cos Veor ) wy = —,

ideal wo
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Figure 5. Quenching of the superfluid fraction at commensurate
fillings, N; = M in (a), N, = 2M in (b). In both cases results are
given for the two values A = 0.06¢y and A = 0.3¢, of the two body
strength parameter. Curves for N; — 1, N; and N; + 1 are shown, the
lowest corresponding to commensurate filling. Compare the
extension of the quenching interval of the variable J/U to the
extension of the corresponding Mott insulator lobes in figure 3(a).

from which one easily calculates the corresponding superfluid
fraction £0%% in terms of dE.”) (N)/dw?. One can then set
up a quenching factor Q defined as the ratio

fi  _ dEW/dooy _ dE@| Mo
fldead = Gp@ .2 dw? |, _, 472N’

ideal
If now one takes into account the relation between the cranking
angular velocity and the ‘twist’” ® used in ([17]), namely
® = 2mw/wy, to express the quenching factor Q in terms
of dE® /d®?, one obtains the expression used there for the
superfluid fraction.

0=

5. Properties related to condensation

Equation (15) and its interpretation that full coherence of the
superfluid current is restored only in the limit where only one of
the natural orbitals is occupied suggests that further attention

)

0 Pk R S et e o= NI S

—
0 0.2 0.4 0.6 0.8 1 1.2 1.4
J/g

(b)

0 ‘

0 0.2 0.4 0.6 0.8 1 1.2 1.4
J/u
(c)
seo .
ar —q=0
’/’ ---q=1

1+

R
% 02 04 06 08 1 12 14

/g

Figure 6. Eigenvalues of the reduced density matrix for A = 0.06¢,
and M = 5. In (a)—(c) the mean filling per site N/M = 1, while in
(d), N/M = 1.2 .In (a), » = 0 while in (b), @ = 0.48w, and in (c),
o = 0.52wy, i.e. just before and after the single-particle level
crossing at w = 0.5wy. At w = 0.5wy there is a migration of
population from the state with quasi-momentum ¢ = 0 in (a) and (b)
to the one with ¢ = 1 in (c); (d) illustrates qualitative differences in
the limit J/U — 0 between the incommensurate and the
commensurate situations.

should be given to the eigenvalues and eigenvectors of the
one-body density matrix. In fact, their properties are related
to the Penrose and Onsager criteria [20] for characterizing
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Bose—Einstein condensation in systems of interacting bosons.
It is defined in terms of the macroscopic occupation of a
natural orbital, which then plays the role of ‘condensate
wavefunction’ (see equation (20) and discussion on the spectral
decomposition of the reduced density matrix in section (4)).
Barring important limiting procedures which have to be used
when dealing with extended systems, and notwithstanding
non-existence theorems for Bose—Einstein condensation as
a phase transition in one-dimensional systems [25], in the
present case of fixed, finite number of bosons the behaviour
of the natural orbital occupation numbers with the parameters
of the model Hamiltonian is still revealing of condensation
oriented one-body properties of the correlated many-boson
state.

Typical behaviour for occupation numbers of the system’s
ground-state natural orbitals is shown in the plots of
figures 6(a)—(c) for a situation with commensurate filling (the
number of bosons N being an integer multiple of the number of
sites in the array, M), and in figure 6(d) for an incommensurate
case. In all cases the two-body interaction parameter has been
fixed at A = 0.06¢(. Use of the larger value A = 0.3¢, as
in figures 4 and 5, gives however essentially identical results,
reflecting the validity of the tight-binding approximation in
this context. Since in the incommensurate case one may have
to deal with different values of total quasi-momentum due to
the w-dependence of the Bloch energies, the two cases are
better discussed separately.

We begin with the commensurate situation where,
regardless of the values of w, the ground state of the many-
body system is always found in the subspace of total quasi-
momentum Q7 = 0. As shown in figures 6(a)—(c), evaluated
for the case N = M, in the extreme tight-binding limit
J — 0, one has a fully degenerate situation in which
each of the orbitals has unit occupation, implying that the
reduced one-body density is an incoherent superposition
with equal weights of one body densities constructed from
each of the first-band Bloch functions. This is in fact a
consequence of the localization of each particle in one of the
sites, achieved through probability amplitudes involving the
(Wannier) coherent superposition of the Bloch functions. In
the commensurate case with pg = 1, localization causes the
two-body energy to vanish in the limit / — 0. Increasing
the effective hopping parameter J by lowering the barrier
strength leads eventually to a situation in which the trace of
the reduced one-body density is carried by essentially a single
eigenvalue, the associated natural orbital being the Bloch state
with lowest single-particle energy at the considered value of
the cranking angular velocity w. This implies that the spectral
decomposition of the reduced one-body density essentially
reduces to a single term, which corresponds to the underlying
many-body state approaching the simple form of a product
state in which all bosons are coherently delocalized in the
collectively occupied Bloch wavefunction. Parts (b) and (c) of
figure 6 illustrate the change of role of Bloch orbitals near the
level crossings at @ = 0.5wy.

Figure 6(d) shows the evolution under increasing effective
hopping parameter J of the eigenvalues of the reduced one-
body density in the incommensurate case N = 6, M = 5 for

o = 0. Unlike in the commensurate case, here one no longer
has occupation number degeneracy for the natural orbitals at
the extreme tight-binding limit / — 0, but an occupation
enhancement of the lowest Bloch state which in fact typically
exceeds the contribution of the extranumerary boson, an effect
which may be traced to the action of bosonic enhancement
factors [24]. The delocalization process induced by hopping,
associated with progressive dominance of a single Bloch state,
is however maintained.

Finally, it is worth noting that, in all cases, the scale
over which the transition to delocalization occurs, in terms
of J/U coincides with that which may be associated with the
extension of the Mott insulator lobes in the ground-state phase
diagram (see figure 3), suggesting the connection of these two
features.

5.1. Discussion

The relatively small values obtained for the superfluid fraction
throughout the range of barrier strengths in which the
delocalization transition takes place is perhaps not surprising if
one keeps in mind that this range falls within the tight-binding
domain in which the Bose—Hubbard model is an excellent
approximation to the present treatment of the Hamiltonian
(7), and that the potential barriers themselves constitute an
important mechanism coupling the externally imposed rotation
to the dynamics of the many-body system. From this point of
view, the obtained values for the superfluid fraction based
on the two-fluid model arise from a current, in the rotating
frame of reference in which the lattice potential is at rest, that
still manages to flow through the hindrance of the potential
barriers.

There are two features of this current that deserve some
remarks. First, the fact that in the present one-dimensional
circular geometry it is independent of position on the circle
(see equation (17)) is clearly a necessary consequence of
stationarity, which in particular requires a time independent
one-body density. Moreover, the restriction to the Bloch
orbitals of the first band, together with the (modular)
conservation of quasi-momentum by the Hamiltonian (7),
imply the vanishing of mean field effects of the two-body force,
thus causing the first-band Bloch states themselves to play the
role of eigenstates of the reduced one-body density. From
the one-body equation leading to them it follows that each of
the individual square brackets in equation (17) vanishes for the
numerical calculations reported here. It should be kept in mind,
however, that this is just an artefact of the adopted truncation
of the single particle basis, and not true in the general case
in which, according to equation (17), only the appropriately
weighted sum of them is independent of ¢.

The second feature deserving comment is the fact that
the current associated with the superfluid fraction is generally
given as an incoherent sum of contributions associated with
each of the populated eigenstates of the reduced one-body
density. Thus, to the extent that it favours the occupation of a
single such eigenstate, the delocalization transition associated
with the closing of the Mott insulator lobes effectively
promotes the complete coherence of the full current. In
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the context of the calculations reported here, the effects
of incoherence stem from the different values of the (¢-
independent) contributions of the first-band Bloch states
together with the respective occupation numbers. The special
role played by the Bloch states is however also an artefact of
the adopted truncation of the single-particle base. In general,
further many-body dynamical effect will be encoded in the
structure of the eigenstates of one-body density.

6. Conclusions

We presented a numerical study of properties of a small
system of identical bosons in one-dimensional circular lattice
undergoing rotation. The calculations were based on the
diagonalization of the standard many-body Hamiltonian in
the external lattice potential with contact two-body effective
interactions truncating the involved single particle basis to
the first-band Bloch states of the rotating lattice. With
the appropriate scaling of the system parameters, results
agree quantitatively with those obtained from the simple
Bose—Hubbard model in the tight-binding limit, but will
elsewhere incorporate additional effects (such as modified
single-boson energy spacings and hopping effects other than
nearest neighbours), subject to the limitations imposed by the
adopted truncation (to the first band) of the single-particle
orbitals.

Results obtained for a reinterpretation of the (grand-
canonical) ground-state phase diagram in terms of ‘separation
energies’ obtained by comparing ground-state energies of
systems with different numbers of particles reproduce results
of known grand-canonical calculations quantitatively even for
a small lattice, including the ‘reentrant behaviour’ of the Mott
insulator lobes characteristic of one-dimensional systems. The
closing of the lobes is clearly associated with the delocalization
of the bosons over the lattice which results from the progressive
occupation of a single eigenstate of the one-body reduced
density matrix.

Numerical results for ground-state superfluid fractions,
obtained in the context of two-fluid phenomenology, link the
closing of the Mott insulator lobes with increased coherence
of a uniform, solenoidal single particle current associated with
the intrinsic inertia of the superfluid fraction. This association
can be formally extended to three-dimensional traps, also
independently of assuming the existence of a condensed mode
or any particular currents associated with it.

The value of the superfluid fraction remains small
throughout the parameter domain associated with the
transition, and grows monotonically saturating at the value
1 only with the complete smoothing out of the lattice. This
suggests that the ‘Mott-insulator to superfluid transition’ may
be a transition related rather to properties of coherence and
delocalization, than to superfluidity in terms of propensities in
the system to physical flow.
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