No Argument Left Behind: Overlapping Chunks for Faster
Processing of Arbitrarily Long Legal Texts

Israel Fama'*, Barbara Bueno!”, Alexandre Alcoforado!,
Thomas Palmeira Ferraz?, Arnold Moya', Anna Helena Reali Costa'

'Escola Politécnica, Universidade de Sdo Paulo (USP), Sao Paulo, SP, Brazil
2Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

{israelfama, barbarabueno, anna.reali}@usp.br

Abstract. In a context where the Brazilian judiciary system, the largest in the
world, faces a crisis due to the slow processing of millions of cases, it becomes
imperative to develop efficient methods for analyzing legal texts. We introduce
uBERT, a hybrid model that combines Transformer and Recurrent Neural Net-
work architectures to effectively handle long legal texts. Our approach processes
the full text regardless of its length while maintaining reasonable computational
overhead. Our experiments demonstrate that uBERT achieves superior perfor-
mance compared to BERT+LSTM when overlapping input is used and is signif-
icantly faster than ULMFiT for processing long legal documents.

1. Introduction

Legal NLP can be defined as the application of Natural Language Processing (NLP) tech-
niques within the legal domain. This subfield of NLP has been experiencing rapidly
growing interest from both academia and industry: [Katz et al. 2023] reports a signifi-
cant increase in the volume of publications, rising from fewer than 30 papers in 2013 to
nearly 120 in 2022. Brazil possesses the largest judiciary system in the world, comprising
18,000 judges distributed across 91 courts. At the time of writing, there are more than 84
million ongoing legal cases [CNJ 2024]. These numbers indicate both the need and the
opportunity for innovative solutions to manage and analyze vast amounts of legal data.

We turn our focus to Legal Judgment Prediction (LJP), which involves predicting
court decisions. Although predicting decisions may be a complex task, we argue it can
be reduced to a Text Classification task, which has seen a marked increase in studies
|[Li et al. 2022], fueled by advancements in deep learning. In particular, the Transformer
architecture emerged as a paradigm shift [Hasan 2022] for many NLP tasks. However,
it still has limitations when handling long texts, which poses significant challenges in the
legal domain, where documents are usually long and complex.

There is fruitful research being done on enhancing the input size limita-
tion for Transformers, such as Retrieval-Augmented Language Models (RALMs)
|Guu et al. 2020]. Current retrieval techniques, however, often trust embedding mod-
els which also can be sub-optimal when dealing with legal documents, where a single
word in the whole document can make a difference. Also, these methods demand sub-
stantial computational resources and large document stores to achieve good performance.

*These authors contributed equally to this work.

Other methods combine input in a sequential way, often leveraging properties of Recur-
rent Neural Networks to process longer sequences |Wan et al. 2019], although those will
also usually truncate the text if it is too long. But for documents in the legal domain, such
as judicial decisions, most of the documents are usually composed of reasoning from the
judge. Therefore, it is of our interest to have a method that uses the full text as input.

In this paper, we propose uBERT, a hybrid model that combines an encoder-based
Transformer with a Recurrent Neural Network, capable of processing long texts. We
propose an experimental setup with data from legal decisions, and compare uBERT to
baselines BERT+LSTM, Big Bird and ULMFiT in the classification task. Our results
show that uBERT slightly outperforms BERT+LSTM as long as overlapping input is in-
troduced. Also, ULMFiT performs better for long texts, but is 4x slower than uBERT.

The remainder of this paper is structured as follows: Sect. 2 reviews related work
on Legal NLP and long text classification; Sect. 3 outlines our proposal, including the
formalization of the target task and the introduction of our model; Sect. 4 outlines the
experiments we setup to assess our model in terms of performance and efficiency. Finally,
we present the results and conclude with a discussion of the findings.

2. Related Work

Transformer-Based Approaches for Long Text Processing in Legal NLP: Long-
former [Beltagy et al. 2020] employs a sparse attention mechanism, extending the input
size limit to 4096 tokens, which is eight times the limit of BERT [Devlin et al. 2019]).
|[Hoang et al. 2023] applied this architecture to classify legal texts from the Indian Legal
Documents Corpus — ILDC [Malik et al. 2021], but they did not process the entire text.

[Pappagari et al. 2019] introduced RoBERT, a method that splits long texts into
overlapping chunks for recurrent encoding. While similar in concept to our architecture,
a direct comparison is not possible due to limited details on their overlap and recurrence
strategies. Moreover, ROBERT was evaluated on shorter texts compared to our dataset.

The overlapping algorithm in our approach, uBERT, is a specific case of Sliding-
BERT’s method [Zhang et al. 2023], with the stride set to half the overlap. Unlike Slid-
ingBERT, where tokens can appear in multiple chunks, we limit overlaps to two chunks to
reduce computational overhead while preserving context continuity. This choice is driven
by efficiency, not language differences.

[Menezes-Neto and Clementino 2022] introduced BrCAD-5!, a dataset designed
for Legal Judgment Prediction (LJP), and evaluated three architectures for this task:
ULMFT [Howard and Ruder 2018], BigBird [Zaheer et al. 2020], and BERT+LSTM.
ULMFIT, a transfer learning model that fine-tunes a pre-trained language model for down-
stream NLP tasks, was the only architecture capable of processing the entire text as input.
BigBird, a sparse-attention model, addresses the 512-token limit by focusing on subsets
of tokens, thereby reducing computational complexity, and was configured to handle texts
up to 7,680 tokens. For BERT+LSTM, documents were split into 512-token chunks, with
truncation applied to middle chunks if a document required more than 15. While simi-

I This dataset consists of decisions issued by the Brazilian Federal Small Claims Court (FSCC). These decisions can be appealed
to the Appellate Panel (AP), which re-examines the case and either reverses or affirms the initial ruling. Each data point in BrCAD-5
represents the text of a decision issued by the FSCC. The task proposed by the authors is to predict whether the AP will reverse or
affirm the initial ruling based on the decision text.

lar in approach, uBERT differs from BERT+LSTM in that it uses a chunk overlapping
strategy and imposes no limit on the number of chunks, ensuring the entire text is utilized
without truncation.

Critiques and Limitations in Legal NLP Research: The legal industry has
been slow to adopt NLP advancements, relying heavily on manual work by
lawyers. [Mahari et al. 2023] identify a key issue: Legal NLP research often fails to align
with the practical needs of legal practitioners. [Medvedeva and Mcbride 2023] further
highlight a significant gap in Legal Judgment Prediction (LJP) research, criticizing the
use of poorly designed datasets that rely on biased case facts extracted from judgments.
This approach leads to models with overly optimistic performance that offer limited prac-
tical value to legal practitioners.

This work aims to bridge the gap between research and practice in the field of
Legal NLP. We propose an architecture capable of processing virtually infinite-length le-
gal texts and evaluate it on the BrCAD-5 dataset, which [Medvedeva and Mcbride 2023
regard as a well-designed benchmark.

3. Proposal

Text classification can be formalized as follows. Given a document d that represents
a judicial decision, the goal is to make a prediction y € {0,1}, by learning a binary
classifier f such that f(d) = y. The positive class y = 1 represents a decision that will be
reversed by an Appellate Panel (AP). Since legal documents are often long, when using
Transformer-based models, conventional approaches usually truncate text from d, which
is sub-optimal for the task [Pappagari et al. 2019]. This can hinder performance on the
Legal Judgment Prediction task, since some relevant part of the text may be cut off.

Believing that the text as a whole is more useful when learning a classifier, we pro-
pose unlimited BERT, or uBERT, an efficient architecture that combines an encoder-based
Transformer with a Recurrent Neural Network, utilizing an overlapping algorithm during
both training and inference to handle an unlimited number of input tokens. This approach
is similar to the BERT+LSTM model used by [Menezes-Neto and Clementino 2022], but
introduces modifications to maintain local context (through overlapping chunks) and ac-
commodate documents of virtually any size. Although the quadratic memory complexity
of the self-attention mechanism presents a challenge for scaling input indefinitely, we
leverage the RNN’s capacity to process long sequences, enabling it to take chunk em-
beddings and output a comprehensive document embedding. Several studies, such as
[Hoang et al. 2023], have explored the combination of attention mechanisms and recur-
rence. Our model builds on this concept but applies overlapping during both training and
inference, and does not limit the number of chunks processed by the encoder.

Figure 1 depicts the uBERT architecture. It shows key aspects to understand how
our model works.

Let E be an encoder-based Transformer, with dim being the dimensionality of
the output vector of the final layer, and R be a Recurrent Neural Network. Let max
be the maximum number of tokens £ can process as input. Let mazx,. be the maximum
number of chunks of maz,,; tokens that £/ can process in parallel with a single run. We
split document d into n chunks of size max,,;. tokens, starting in the first token. For each

Raw text

:. ___________________ Chunk embeddings
(N | batch 1 BERT_sutput_1 |IIIII

batch_n BERT_ocutput_n
|
T

Overlapping chunks

Figure 1: uBERT architecture.

run, we extract the hidden states from the last four layers of F, and concatenate them
to form the representation of each chunk. This is based on the idea that different layers
capture different linguistic features [Tenney et al. 2019]. Specifically, BERT+LSTM, the
baseline most similar to our proposed architecture, extracts the hidden states from the last
four layers. While other layers could be used for extraction, we retained this approach
for consistency in model comparison. In each single run, we process [1, maz.| chunks in
parallel, generating [1, maz.| vectors of embeddings, each with dimensionality 4 x dim.
We iteratively process chunks from d until an embedding vector is generated for each
chunk and thus preserving the entire text content of d.

Then, we concatenate the embedding vectors maintaining the order of the respec-
tive chunks, generating a tensor of dimensionality (n,4 x dim). We process this tensor
with the RNN sequentially, capturing the dependencies between them and generating a
contextually enhanced representation for each chunk.

Splitting text by token count can disrupt its flow, so we use token overlap between
chunks during both training and inference to maintain continuity. This technique, similar
to that used by |[Hoang et al. 2023] but applied more broadly, helps preserve the text’s
natural structure.

Our token overlap algorithm can be formalized as follows. Consider the judicial
decision d as the tokenized sequence S = {t1,...,t,}, where k is the number of tokens
in d. We define the overlap size, z, as the number of tokens each chunk shares with its
adjacent neighbors. Thus, any chunk shares L J tokens with the previous chunk and [J
with the subsequent one. The first and last chunks, having only one adjacent chunk, share
[g J tokens with their respective neighbors.

c,={ty t; t; &y}
C;={t; t3 t5 tyo}

Figure 2: Overlapping chunks example.

Figure 2 provides a simple example for clarification. In this example, the chunk

size is 4, and z = 2. As shown, chunk co = {4, t5, ts, t7} shares token ¢, with chunk ¢,
and token #; with chunk c3. Note that the first and last chunks share only one token with
the neighboring chunk.

4. Experiments

In this section, we design experiments to assess our proposed model, uBERT, and validate
its effectiveness on the legal domain. We split our experiments into 3, one for each of the
following research questions:

RQ1: Would an encoder-based model benefit from using the entire text in terms of
performance improvement?

We examine the impact of processing the whole documents using multiple encoder passes.
We first tested if simply increasing text chunks to process the whole text without using
overlap (uBERT_0) improves performance over BERT+LSTM, which processes only par-
tial text in a single pass. Then, we investigated the effect of introducing overlaps (0 to
510 tokens?) between chunks to observe if the added local context enhances predictions.

RQ2: If performance improves, does it come with reasonable computational over-
head?

We compare the inference time of our architecture against all baseline models to deter-
mine if it offers a performance gain and to assess the associated computational overhead.

RQ3: Is our architecture better for processing longer texts?

We explore the relationship between document length and model performance. We tested
the models on the full test set as well as on its subsets, the 10% and the 1% longest texts.
This experiment involved statistical analysis to determine whether longer texts lead to
better or worse predictions.

Data: We used the BrCAD-5 dataset® in our experiments. The task is a binary classi-
fication, with Class 1 indicating that the AP reverses the previous decision, and Class 0
indicating it affirms. The dataset is imbalanced, with 22% of the data points belonging
to Class 1. Although this imbalance ratio is consistent across all dataset splits, it varies
significantly with text length.

Models: In this work, our model (uBERT) uses BERT as the encoder and LSTM as the
RNN, with maz,,; set to 512 tokens and up to 15 chunks (mazx,.) processed in parallel.
Our training procedure follows the approach of [Menezes-Neto and Clementino 2022],
where we fine-tune the last layer of BERT and the LSTM. The fine-tuning is conducted for
1 epoch utilizing the One Cycle learning rate scheduler. Our inference procedure mirrors
the training process.

Baselines: our baseline models are ULMFiT (forward, backward and bidirectional)?, Big
Bird and BERT+LSTM. Notably, only ULMFiT and uBERT process the full text.

2The typical input size for BERT models is 512 tokens. Our overlap algorithm first slices the text and distributes the tokens. Only
after this process are the special tokens [CLS] and [SEP] added, resulting in the well-known 512-token limit.

3'This dataset is divided in training, validation, and test sets: the training set includes 380,673 documents, while the validation and
test sets contain 76,342 and 76,299 entries, respectively.

4ULMFIT incorporates a forward language model (predicting the next token), a backward language model (predicting the previous
token), and a bidirectional model that combines the two, allowing it to capture contextual information in both directions.

Computational Infrastructure and Resources: the experiments were conducted using
Google’s Colab infrastructure, specifically an NVIDIA A100 GPU with 40 GB of RAM.

Evaluation Metrics: We evaluate all models using the Macro F1 score and Matthews
Correlation Coefficient (MCC). The Macro F1 score is a well-established metric across
NLP fields, representing the harmonic mean of precision and recall, while MCC, though
less common, is frequently used in the Legal Judgment Prediction (LJP) subfield, as noted
by [Cuietal. 2022]. MCC measures the correlation between predicted and actual clas-
sifications by accounting for true positives, true negatives, false positives, and false neg-
atives, making it suitable for imbalanced classes®. Additionally, MCC is the metric used
by [Menezes-Neto and Clementino 2022], making it necessary for us to use it as well
for model comparison. To compare different baselines and configurations of our uBERT
model, we employed bootstrap resampling to obtain 95% confidence intervals, followed
by Wilcoxon-Holm post-hoc analysis to assess statistical significance with a = 5%, fol-
lowing similar approaches [Demsar 2006, Zhu et al. 2020, Ferraz et al. 2021].

5. Results

Table 1 presents the results for all model configurations on the full test dataset, as well as
the 10% and 1% longest texts. The baseline models were not run on the full test set in this
study due to computational resource limitations. The results reported here are reproduced
from [Menezes-Neto and Clementino 2022], which is why Table 1 does not include in-
ference times for the full test set. Figure 3 displays the macro Fl-scores across varying
text lengths, while Figure 4 ranks the models using the MCC metric. Although MCC is
effective for within-dataset comparisons, it is less suitable across datasets with differing
class imbalance; hence, we rely on the macro F1-score for cross-dataset comparisons.

Table 1: uBERT performance across various overlap sizes compared with baselines.

Full Test Set 10% Set 1% Set
(76.299 documents) (7.632 documents) (763 documents)
Dataset: Imbalance Ratio = 0.28 Imbalance Ratio = 0.32 Imbalance Ratio = 0.54

Architecture Macro-F11 MCCt Macro-F11 MCCt Inf.Time| Macro-F11 MCCt Inf.Time]

Baselines

ULMEFIT - fwd 65.1 % 0.32 64.9 % 0.32 Ih 18min 723 % 0.47 11min:22s
ULMEFIT - bwd 65.7 % 0.35 63.4 % 0.35 Ih 18min 59.9 % 0.33 14min:44s
ULMEFIT - bidir 66.9 % 0.37 64.8 % 0.34 Ih 18min 693 % 0.43 14min:44s
Big Bird 52.0 % 0.27 44.0 % 0.23 22min 30.0 % 0.08 2min:58s
BERT+LSTM 64.1 % 0.33 63.2 % 0.31 12min 64.0 % 0.36 I min:29s
Ours

uBERT_0 639 % 0.33 62.6 % 0.31 13min 613 % 0.34 Imin:51s
uBERT_150 633 % 0.32 62.2 % 0.30 14min 59.4 % 0.32 2min:(4s
uBERT_205 64.7 % 0.35 62.6 9% 0.31 15min 62.0 % 0.35 2min:(9s
uBERT_300 64.7 % 0.35 63.0 % 0.31 17min 63.0 % 0.36 2min:23s
uBERT _408 64.0 % 0.33 63.2 % 0.32 19min 643 % 0.38 2min:42s
uBERT_510 64.6 % 0.35 63.0 % 0.31 21min 64.2 % 0.38 3min:08s

SMCC ranges from -1 to 1, where 1 indicates perfect prediction, () indicates no better than random chance, and -1 indicates total
disagreement between prediction and observation.

0.9

—— ULMFT-bwd
ULMFIT bidir
0 —— ULMFiT-fwd
’ —— BERT_LSTM
---- UBERT O
0.7 ---- uBERT 150
o UBERT 205
] UBERT 300
e UBERT 408
~ 0.6
o UBERT 510
e
o
1]
=05
0.4
0.3
0 2000 4000 6000 8000
Text Length (Avg. Tokens/Group)
Figure 3: Macro-F1 score x Avg. Tokens/Group across different groups of same size ranked by the length.The error
bars represent 95% confidence intervals obtained with bootstrap resampling.
10987654321 10987654321 10987654321
| I P P ' P | P P P | | I P P P P |
ubert_150 U L ULMFT-bidir ubert 150 al E ULMFT-bwd ubert_150 {‘ u ULMFIT-fwd
ULMFIT fwd ULMFTbwd ubert 510 ULMFT bidir ULMFIT bwd ULMFIT bidir
ubert 408 ubert 300 ubert 205 ULMFIT fwd ubert 0 ubert 408
ubert 0 ubert 510 ubert 0 ubert 408 ubert 205 ubert 300
BERT LSTM ubert 205 BERT LSTM ubert 300 BERT LSTM ubert 510
(a) All Text (b) 10% Longest Text (c) 1% Longest Text

Figure 4: Critical difference diagram showing pairwise statistical comparison between baselines and varying overlap
sizes for uBERT using the MCC. Connecting bars represent no statistical difference between methods.

Processing the Full Text Requires Overlap Comparing the BERT+LSTM baseline,
which middle-truncates text when it exceeds input size, with our uBERT without over-
lap (uBERT_0), which uses the full text, we found that uBERT either underperformed or
matched the baseline across all metrics. Notably, it performed worse on the 1% longest
texts, where middle-truncation by BERT+LSTM occurs. This suggests that merely
processing the entire text is insufficient for longer inputs. We hypothesize that non-
overlapping chunks introduce noise due to abrupt segmentation, which degrades perfor-
mance. Our results support this, showing that introducing overlap in uBERT configura-
tions improves both Macro-F1 and MCC scores. The following uBERT configurations
outperformed BERT+LSTM with statistical significance: uBERT_300, uBERT_510
and uBERT_205 on full test set; uBERT_408 and uBERT_300 on 10% longest; and
uBERT_408, uBERT_300 and uBERT_510 on 1% longest. Thus, incorporating over-
lap is crucial for maintaining semantic consistency and improving performance on
longer texts.

uBERT with Overlap is still Significantly Faster than ULMFiIT As expected, intro-
ducing overlap in the uBERT architecture increased computational time overhead. How-
ever, across the full dataset and the 10% longest texts, uBERT configurations delivered
better results than the BERT+LSTM baseline with comparable inference times. Notably,
uBERT _408 achieved a 4x faster inference than ULMFiT on the 10% longest texts. For
the 1% longest texts, the increased length required two passes of uBERT_4 089, resulting

Wit zero overlap, uBERT can process a maximum of 7,650 tokens in a single encoder pass. This limit arises because uBERT
handles up to 15 chunks of 510 tokens each (excluding special tokens [CLS] and [SEP]). Therefore, documents longer than 7,650
tokens require at least two encoder passes.

in 1.8x slower inference compared to BERT+LSTM, which needed to middle-truncate
in all cases. Despite this, uBERT_408 slightly outperformed BERT+LSTM, narrowing
the performance gap with ULMFiT while maintaining a faster inference, highlighting the
efficiency and effectiveness of our approach. In summary, in all subsets, uBERT config-
urations reduced the BERT+LSTM gap being significantly faster than ULMFiT.

ULMFiT Outperforms uBERT on Longer Texts As shown in Figure 3, model dif-
ferences become more clear with increasing text length. Big Bird consistently underper-
forms on longer texts, which is why it was excluded from the comparison charts. While
some uBERT configurations outperform BERT+LSTM on longer texts, F1 scores in
both models degrade compared to full test dataset performance. In contrast, ULMFiT
models improve on longer texts compared to the full dataset. This suggests that our archi-
tecture mitigates the degradation for longer text that is inherent to the BERT+LSTM
approach, but still falls short of ULMFiT models, that handle better longer text but
at a cost of 4x slower inference time.

6. Conclusion and Future Work

Our experiments demonstrate that the uBERT model improves the handling of legal texts
compared to baseline encoder-based models, particularly on longer texts, due to its capa-
bility to process entire documents using overlapping chunks. Despite the increased com-
putational overhead, uBERT remains faster than ULMFiT. uBERT slightly outperforms
BERT+LSTM, but still falls short of ULMFiT. Thus, further refinement is needed to fully
match ULMFiT‘s performance. Notably, even ULMFiT, the top-performing model in
our experiments, achieves relatively low Macro-F1 scores, suggesting that processing the
full text alone is insufficient for high performance on this task. In this direction, future
research should expand the evaluation methodology by analyzing correctly and incor-
rectly classified cases across all tested models to assess whether specific characteristics
of judicial decisions make them more prone to misclassification by certain models. Such
an analysis, however, requires a multidisciplinary approach, including expert input from
highly skilled legal practitioners.

Future research should also explore different chunking strategies to enhance text
processing. Comparing syntactic chunking, which is based on grammatical structure,
with semantic chunking, which is based on content meaning, could provide valuable in-
sights. As this study focuses on a Portuguese-language dataset, evaluating these chunking
approaches across datasets in multiple languages would help determine if optimal chunk-
ing strategies vary with language, contributing to more robust long-text segmentation and
model performance across diverse linguistic contexts.

Acknowledgements

This work was supported by CAPES (Finance Code 001), CNPQ (grant 312360/23-1),
Programa Unificado de Bolsas de Estudo para Apoio a Formacao de Estudantes (PUB-
USP), USP-IBM-FAPESP Center for Artificial Intelligence (FAPESP grant 2019/07665-
4), and Secretaria da Fazenda do Estado do Rio Grande do Sul (SEFAZ-RS), Brazil.

References

Beltagy, L., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document trans-
former.

CNJ (2024). Conselho nacional de justica - cnj. Accessed: 2024-08-05.

Cui, J., Shen, X., Nie, F., Wang, Z., Wang, J., and Chen, Y. (2022). A survey on le-
gal judgment prediction: Datasets, metrics, models and challenges. arXiv preprint
arXiv:2204.04859v1.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1-30.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805v2.

Ferraz, T. P, Alcoforado, A., Bustos, E., Oliveira, A. S., Gerber, R., Miiller, N.,
d’Almeida, A. C., Veloso, B. M., and Costa, A. H. R. (2021). Debacer: a method for
slicing moderated debates. In Anais do XVIII Encontro Nacional de Inteligéncia Arti-
ficial e Computacional, pages 667-678. Sociedade Brasileira de Computaciao-SBC.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-W. (2020). Realm: Retrieval-
augmented language model pre-training.

Hasan, M. (2022). Transformers in natural language processing.

Hoang, T. D., Bui, C. M., and Bui, N. (2023). Viettel-Al at SemEval-2023 task 6: Legal
document understanding with longformer for court judgment prediction with expla-
nation. In Ojha, A. K., Dogruoz, A. S., Da San Martino, G., Tayyar Madabushi, H.,
Kumar, R., and Sartori, E., editors, Proceedings of the 17th International Workshop on
Semantic Evaluation (SemEval-2023), pages 862—868, Toronto, Canada. Association
for Computational Linguistics.

Howard, J. and Ruder, S. (2018). Fine-tuned language models for text classification.
CoRR, abs/1801.06146.

Katz, D., Hartung, D., Gerlach, L., Jana, A., and Bommarito, M. (2023). Natural language
processing in the legal domain. arXiv preprint arXiv:2302.12039v1.

Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., Yu, P. S., and He, L. (2022). A
survey on text classification: From traditional to deep learning. ACM Trans. Intell.
Syst. Technol., 13(2).

Mabhari, R., Stammbach, D., Ash, E., and Pentland, A. (2023). The law and NLP: Bridging
disciplinary disconnects. In Bouamor, H., Pino, J., and Bali, K., editors, Findings
of the Association for Computational Linguistics: EMNLP 2023, pages 3445-3454,
Singapore. Association for Computational Linguistics.

Malik, V., Sanjay, R., Nigam, S. K., Ghosh, K., Guha, S. K., Bhattacharya, A., and Modi,
A. (2021). ILDC for CJPE: Indian legal documents corpus for court judgment predic-
tion and explanation. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the
1 1th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4046-4062, Online. Association for Computational Linguistics.

Medvedeva, M. and Mcbride, P. (2023). Legal judgment prediction: If you are going to
do it, do it right. In Preotiuc-Pietro, D., Goanta, C., Chalkidis, L., Barrett, L., Spanakis,
G., and Aletras, N., editors, Proceedings of the Natural Legal Language Processing
Workshop 2023, pages 73—84, Singapore. Association for Computational Linguistics.

Menezes-Neto, E. J. d. and Clementino, M. B. M. (2022). Using deep learning to predict
outcomes of legal appeals better than human experts: A study with data from brazilian
federal courts. PLOS ONE, 17(7):1-20.

Pappagari, R., Zelasko, P., Villalba, J., Carmiel, Y., and Dehak, N. (2019). Hierarchical
transformers for long document classification.

Tenney, L., Das, D., and Pavlick, E. (2019). Bert rediscovers the classical nlp pipeline.

Wan, L., Seddon, M., Papageorgiou, G., and Bernardoni, M. (2019). Long-length legal
document classification. arXiv preprint arXiv:1912.06905v1.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P.,
Ravula, A., Wang, Q., Yang, L., and Ahmed, A. (2020). Big bird: Transformers for
longer sequences. CoRR, abs/2007.14062.

Zhang, L., Wang, W., Yu, K., huang, J., Lyu, Q., Xue, H., and Hetang, C. (2023). Sliding-
bert: Striding towards conversational machine comprehension in long contex. Adv.
Artif. Intell. Mach. Learn., 3:1325-1339.

Zhu, H., Mak, D., Gioannini, J., and Xia, F. (2020). NLPStatTest: A toolkit for compar-
ing NLP system performance. In Wong, D. and Kiela, D., editors, Proceedings of the
1st Conference of the Asia-Pacific Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference on Natural Language Processing:
System Demonstrations, pages 40—46, Suzhou, China. Association for Computational
Linguistics.

