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RESUMO

Este trabalho estuda os beneficios de estratégias de aprendizado de maquina para tratar o
problema de empacotamento de pecas irregulares em faixa. Em especifico, é estudado o beneficio
da transferéncia de aprendizagem aplicada a estratégia de aprendizado por reforco. A escolha do
método de transferéncia de aprendizado se deve ao nimero de exemplares que compartilham pecas
semelhantes, o que gera a hipétese de que o aprendizado de um exemplar poderia ser utilizado como
ponto de partida para o aprendizado de outros. Testes estatisticos mostram que a transferéncia de
aprendizado permite atingir desempenho semelhante ao método de aprendizado por reforco puro
com um sexto do tempo de execugdo. Estudos computacionais mostram os beneficios trazidos pela
introducao da transferéncia de aprendizado, em especial, para exemplares com pegas concavas.

PALAVRAS CHAVE. Empacotamento de pecas irregulares em faixas. Aprendizado por
reforco. Transferéncia de aprendizado.
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ABSTRACT

This research studies the benefits of addressing the irregular strip packing problem with
machine learning strategies. In particular, the benefit of combining transfer learning and reinforce-
ment learning method. The choice of the transfer learning strategy is due to the number of instances
that share similar pieces, which generates the hypothesis that the learning of one instance could be
used as a starting point for the reinforcement learning method in other cases. Statistical tests show
that the transfer learning strategy allows achieving similar performance to the pure reinforcement
learning method with one-sixth of the execution time. Also, computational studies illustrate the
benefits of introducing transfer learning strategies, especially for concave pieces.
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1. Introducao

Problemas de corte e empacotamento de pegas irregulares consistem em empacotar um
conjunto de pecas regulares e irregulares em objetos maiores. De acordo com a defini¢do de Ben-
nell e Oliveira [2009], uma peca é caracterizada como irregular se pelo menos trés pardmetros sdo
necessarios para identificad-la. Os objetos maiores podem ser circulares, retangulares de dimensao
fixa, ou de uma ou mais dimensdes varidveis, bem como irregulares. Neste trabalho, é considerado
o problema de empacotamento de pecgas irregulares bidimensionais em faixas, também conhecido
como nesting, em que as pegas sao empacotadas em um objeto retangular de altura fixa e com-
primento varidvel. De acordo com a tipologia proposta em Waéscher et al. [2007], o problema de
empacotamento em faixas € classificado como um problema bidimensional com uma dimensao
aberta.

Estes problemas t&ém diversas aplicagdes industriais como na fabricagdo de moveis, de
roupas, de artefatos de vidro e em metaldrgicas. Devido a sua aplicabilidade industrial e dificul-
dade de resolucio, diversos métodos heuristicos foram investigados na literatura. Uma revisao das
estratégias heuristicas cldssicas utilizadas para resolver problemas de empacotamento de pecas ir-
regulares € apresentada em Bennell e Oliveira [2009]. De modo geral, as heuristicas podem ser
divididas em construtivas e de melhoria. Para as heuristicas construtivas sdo analisadas regras para
o posicionamento das pecas. O método mais utilizado nessas heuristicas € o bottom-left, em que as
pecas sdo ordenadas de acordo com algum critério, para entdo, serem alocadas uma a uma no objeto,
sempre na posi¢do mais a esquerda e mais abaixo possivel. Um estudo sobre a sequéncia das pecas
¢ apresentado em Gomes e Oliveira [2002]. As heuristicas de melhoria envolvem mudangas na
posicao e orientagcdo das pecas, como os métodos de compactagao e separagdo, sendo o dltimo utili-
zado para remover infactibilidades [Bennell e Dowsland, 2001; Gomes e Oliveira, 2006]. Métodos
que combinam diferentes estratégias com heuristicas construtivas e de melhoria também té€m sido
propostos, como meta-heuristicas [Elkeran, 2013] e modelos de programacio inteira [Sato et al.,
2019].

Dada a variabilidade de desempenho das meta-heuristicas para a resolu¢ido do problema
de empacotamento de itens em faixas, Rakotonirainy [2020] propde um método de aprendizado
de mdaquina para selecionar a melhor heuristica para cada exemplar, tomando como base as ca-
racteristicas dos mesmos. De fato, assim como ideias de aprendizado de miquina vem ganhando
espaco na resolucdo de problemas de otimizacdo combinatéria [Bengio et al., 2020], a sua aplica-
bilidade a problemas de corte em empacotamento vem crescendo. Alguns exemplos sdo: o método
baseado em aprendizado por reforco para o problema de empacotamento 3D de itens regulares em
bins proposto por Hu et al. [2017] e o uso de métodos de aprendizado de mdquina para prever a
factibilidade do conjunto de itens a serem produzidos em cada lote [Gahm et al., 2021]. Contudo,
no melhor do nosso conhecimento, ainda ndo existem métodos de aprendizado de maquina direta-
mente aplicados a alocacdo de pecas em problemas de nesting. Nesse sentido, esse trabalho propde
duas abordagens baseadas em aprendizado de maquina para o problema de empacotamento de pecas
irregulares em faixas. A primeira utiliza puramente aprendizado por reforco, enquanto a segunda
também explora o beneficio de técnicas de transferéncia de aprendizado. Vale destacar, que a trans-
feréncia de aprendizado é extremamente Util quando consideramos problemas que sdo resolvidos
frequentemente com pequenas diferencgas, por exemplo, no contexto de fabricacdo de roupas, em
que os modelos e as quantidades mudam, mas muitas pegas continuam as mesmas.

A organizagao deste trabalho se d4 da seguinte forma: o problema de empacotamento
de pecas irregulares em faixas € definido na Sec¢do 2, as estratégias de resolucdo sdo apresentadas
na Secdo 3, a Secdo 4 contém os estudos computacionais comparando as estratégias de resolugao,
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seguida das conclusdes da pesquisa apresentadas na Secdo 5.

2. Problema de empacotamento de pecas irregulares em faixas

O problema de empacotamento de pecas irregulares em faixas consiste em dispor pegas
formadas por poligonos concavos ou convexos em um objeto de altura fixa e comprimento variavel.
Uma solucdo factivel para o problema deve garantir que nio haja sobreposicdo entre as pecas.
Os requisitos de factibilidade para o problema ainda podem ser combinados com algum objetivo
especifico, como a minimizacdo do comprimento utilizado para fazer a alocacdo, que é o objetivo
considerado nesse trabalho.

Uma solu¢do para o problema de nesting pode ser representada por uma sequéncia de
pecas a serem alocadas. A posicdo dessas pecgas no espaco bidimensional € dada conforme a regra
de alocagdo escolhida. Exemplos de regras sdo bottom-left e bottom-up [Baker et al., 1980]. Para a
pesquisa apresentada nesse trabalho, a regra de alocacdo bottom-left é utilizada.

Para a regra bottom-left, cada peca da sequéncia ¢ alocada na posicdo factivel mais a
esquerda e mais abaixo no objeto, respeitando a posi¢ao das pecgas previamente alocadas. Na Figura
1(b), € ilustrada uma solucdo gerada pela regra bottom-left a partir da sequéncia definida na Figura
1(a), onde o nimero dentro de cada poligono representa a posicao de cada peca na sequéncia de

OOLAOOA

(a) Sequéncia para alocacio.

(b) Alocagido gerada pela regra bottom-left.

Figura 1: Representacio de uma sequéncia de alocagdo seguindo a regra bottom-left.

3. Estratégias de resolucao

Neste trabalho, sdo analisadas duas estratégias de aprendizado de maquina fundamenta-
das nas ideias de aprendizado por reforco. Os métodos de aprendizado por refor¢o sdao baseados
na andlise da qualidade das decisdes sequenciais realizadas. Nesse tipo de método, cada decisdo
tomada € avaliada e recebe recompensas ou penalidades a depender da qualidade da acdo, sendo o
objetivo maximizar a recompensa total. Para o problema estudado, a decisdo a ser tomada € o tipo
de peca alocada a cada posicdo da sequéncia utilizada pela regra de alocacio bottom-left.

A técnica de aprendizado por refor¢o utilizada é denominada Q-learning [Watkins e
Dayan, 1992] e seu desenvolvimento tem vérios paralelos com as técnicas de programacao dindmica
aproximada [Powell, 2016]. Em especial, a fun¢do de Bellman, utilizada para computar o valor da
tomada de decisdo a (qual peca alocar) no estado s (posi¢cao na sequéncia), é utilizada para computar
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a recompensa de cada acdo tomada. As funcdes de aprendizado com reforco podem ser desenha-
das de vérias formas, podendo ser diferenciadas pela qualidade da resposta. Por exemplo, uma
funcdo de recompensa no estilo +1/-1 penaliza e bonifica da mesma forma todas as solu¢des acima
(ou abaixo) de um limitante, independente de quio boa (ou ruim) for a solugcdo. Ou seja, usando
recompensas do estilo +1/-1 para um exemplar onde o limitante superior é 27, duas solucdes, de
comprimento 25 e 23, respectivamente, teriam a mesma recompensa. Da mesma forma que solucdes
com comprimento 29 e 30 teriam a mesma penalizagdo. Esse tipo de recompensa padrao pode ndo
favorecer o surgimento de solu¢des cada vez mais proximas do valor 6timo. Por outro lado, quando
consideramos recompensas relacionadas ao comprimento da solucio, a funcdo de recompensa pode
necessitar de parametros que introduzam informacdes sobre o exemplar para computar a recom-
pensa, como um limitante superior.

As recompensas podem ser distribuidas ao final de cada tomada de decisdo, avaliando a
qualidade a cada passo da construcio da solucdo, ou ainda, ao final de todos os passos, quando a
solucdo final € definida. Cada uma das formas de recompensa tem seus prés e contras. Recompensas
a cada tomada de decisdo permitem analisar decisdes individualmente, contudo podem ser miopes
sobre a relac@o da decisdo para a qualidade da solucdo final. Por outro lado, recompensas baseadas
na solucdo final tendem a dar a mesma contribui¢do para todas as decisdes tomadas durante o
processo, tornando mais dificil avaliar a contribuicdo de cada decis@o para a solugdo final. Em
ambos os casos, € esperado que o alto nimero de repeticdes do método supere as limitacdes da
funcdo de recompensa escolhida.

3.1. Matriz de aprendizado

Para o método Q-learning, o aprendizado é representado por uma matriz () que guarda
as recompensas de cada decisdo tomada em cada estado. A matriz () € retangular (n x m) onde n é
a quantidade de tipos de pecas a serem alocados e m é a soma das demandas dos tipos de pegas, ou
seja, o tamanho total da sequéncia. Dessa forma, uma entrada Q;; representa o beneficio do uso de
uma peca do tipo ¢ na posi¢do j da sequéncia de alocacdo. A cada solugdo gerada pelo método Q-
learning, a matriz de aprendizado ¢é atualizada de acordo com a qualidade da solug@o. A qualidade
de uma solugdo é medida pelo comprimento da solugdao (C'W), no limitante do comprimento do
objeto original (OW) e no comprimento da melhor solu¢io incumbente (BW), dado por:

Qij = Qij + a; se (BW —CW) > 0ou (OW —CW) >0, (1)
Qij = Qij — B;  caso contrdrio. 2)

Uma nova solucdo é gerada com base nos valores de (). Mais especificamente, cada
elemento da sequéncia é escolhido por uma selecdo do tipo roleta ponderada, em que o peso de
cada escolha é baseado na sua possivel contribui¢io para a solu¢do, dado por:

p; = eQ"J', se 1 € factivel. 3)

E importante ressaltar que somente as decisdes factiveis sio computadas, ou seja, somente
os tipos de pecas para os quais as demandas ainda nio foram atendidas podem ser adicionados a
sequéncia.

O método Q-learning utilizado estd detalhado no Algoritmo 1, em que sdo dados de en-
trada: um limitante para o comprimento do objeto (OW), o comprimento da melhor solugdo incum-
bente (BW), a demanda de cada tipo de peca (vetor d), o nimero total de pegas (m) e os valores
de « e [ utilizados nas Equacgdes (1) e (2). A aleatoriedade do método fica por conta da selecdo
por roleta, enquanto a influéncia da matriz de aprendizado na decisdo a ser tomada ¢ dada pela
ponderacdo de cada entrada da roleta.
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Algoritmo 1 Aprendizado por reforgo.
1: Dados de Entrada: OW, BW,d, m, ae 3
2: procedimento ITERACOES DE APRENDIZADO POR REFORCO

3: Q<+ 0

4: enquanto critério de parada ndo atingido faca

5: S0

6: para cada posicao da solucdo (j)

7: pi €% Yi:d; >0 > Calcular contribuicio de cada peca factivel
8: Sj 1 > Selecdo por roleta ponderada
9: di +—d; — 1 > Atualiza a demanda da peca selecionada
10 CW <« BL(S) > Calcula o comprimento da soluc¢do usando a regra bottom-left
11: se (BW — CW) > 0ou (OW — CW) > 0 entao > Atualiza¢do da matriz @)
12: para cada entrada da sequéncia
13: Qij +— Qij +

14: senao
15: para cada entrada da sequéncia
16: Qij < Qij — B
17: se CW < BW entao > Atualizagdo da melhor solu¢do incumbente
18: BW + CW

3.2. Uso de transferéncia de aprendizado

Observado que os exemplares do problema de nesting compartilham muitas pegas simila-
res, a ideia € criar uma matriz de aprendizado que possa ser passada de um exemplar para outro. A
expectativa é que ao iniciar o algoritmo de aprendizado por reforco com uma matriz () préxima a
ideal, um menor nimero de iteragdes serd necessdrio para a convergéncia da matriz de aprendizado.
Em especial, estudamos o caso em que a transferéncia de aprendizado ocorre em um exemplar onde
as pegas sdo representacdes do contorno convexo (rco) de pecas de outros exemplares (blazewicz).
A diferenca entre exemplares com pegas convexas e ndo-convexas se mostra no esforco computaci-
onal demandado pela regra bottom-left. Experimentos computacionais preliminares, mostraram que
enquanto exemplares com pecas apenas convexas t€m sua andlise de alocacio realizada em décimos
de segundos, exemplares com pecas ndo-convexas podem demandar dezenas de segundos.

Como a matriz () é composta pelos tipos de pegas (n) e a demanda total do exemplar
(m), é necessdrio que a transferéncia de aprendizado seja realizada utilizando exemplares com as
mesmas quantidades de pecas, ou ainda, que a matriz () seja redimensionada de acordo com as
necessidades do novo exemplar.

As ideias implementadas para o método com transferéncia de aprendizado estdo sumari-
zadas no Algoritmo 2. Note que a matriz () gerada como saida do Algoritmo 1 é um pardmetro de
entrada nesse método. Além disso, para que a matriz de aprendizado se adapte ao novo exemplar
e o método supere possiveis overfitting devidos a matriz herdada, iteragdes puramente aleatérias
sdo feitas a cada iteracdo do algoritmo. Os passos gerais do método proposto estdo descritos na
Figura 2.

4. Estudos computacionais

Os estudos computacionais foram realizados utilizando 10 exemplares da literatura, sendo
os cinco exemplares blazewicz(k) (k = 1, ..., 5) baseados nos exemplares de Blazewicz et al. [1993],
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Figura 2: Passos do método de aprendizado por reforco.

e os cinco exemplares rco(k) (k = 1,...,5) baseados em [Oliveira et al., 2000]. Cada um dos
exemplares estd descrito na Tabela 1, onde na coluna “Exemplar’consta o nome de cada exemplar
utilizado, a coluna “n”contém o nimero de tipos de pecas distintos, a coluna “d”apresenta a mul-
tiplicidade (demanda) dos tipos de peca no exemplar e o ndmero total de pecas estd descrito na
coluna “m”. Esses exemplares podem ser encontrados em [ESICUP, 2021].

Tabela 1: Descri¢ao dos exemplares utilizados.

Exemplar |n d m
rcol 7 1 7
rco2 7 2 14
rco3 7 3 21
rco4 7 4 28
rco5 7 5 35

blazewiczl |7 1 7

blazewicz2 |7 2 14

blazewicz3 | 7 3 21

blazewicz4 | 7 4 28

blazewicz5 | 7 5 35

Como ja mencionado, os exemplares rco sdo compostos pelas envoltérias convexas das
pecas dos exemplares blazewicz. Na Figura 3, sdo ilustradas as pecas de cada um dos conjuntos de
exemplares.

Foram realizados dois grupos de testes: a primeira abordagem, denominada R (aprendi-
zado por Reforco), estd descrita no Algoritmo 1, enquanto a segunda abordagem, denominada T
(Transferéncia de aprendizado por refor¢o), € descrita no Algoritmo 2. De fato, para abordagem T a
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Algoritmo 2 Aprendizado por refor¢o com transferéncia.
1: Dados de Entrada: Q, OW, BW,d, m,ae f3
2: enquanto critério de parada ndo atingido faca

3: procedimento ITERACOES DE APRENDIZADO POR REFORCO
4 S0
5 para cada posicao da solucdo (j)
6: pi €% Yi:d; >0 > Calcular contribuicao de cada peca factivel
7 Sj i > Selecdo por roleta ponderada
8 di < d; — 1 > Atualiza a demanda da peca selecionada
9: CW « BL(S) > Calcula o comprimento da solug¢@o usando a regra bottom-left
10: se (BW — CW) > 0ou (OW — CW) > 0 entao > Atualiza¢do da matriz Q)
11: para cada entrada da sequéncia
12: Qij <+ Qij +
13: senao
14: para cada entrada da sequéncia
15: Qij «— Qi + 5
16: se CW < BW entao > Atualizagdo da melhor solu¢do incumbente
17: BW + CW
18: procedimento ITERACOES COM SOLUCOES ALEATORIAS
19: S+ RS > Cria uma solucao factivel aleatéria com probabilidade uniforme
20: CW « BL(S) > Calcula o comprimento da solug¢@o usando a regra bottom-left
21: se (BW — CW) > 0ou (OW — CW) > 0 entao > Atualiza¢do da matriz Q)
22: para cada entrada da sequéncia
23: Qij <+ Qij +
24: senao
25: para cada entrada da sequéncia
26: Qij «— Qi — B
27: se CW < BW entao > Atualizagdo da melhor solu¢do incumbente
28: BW « CW

matriz () treinada para os exemplares rco foi transferida para os exemplares blazewicz, e vice-versa.

Os métodos de resolugdo foram implementados em Matlab 2020a e C++ e os testes com-
putacionais foram realizados em um computador Intel® Core™ i5-7400 CPU 3.00GHz 64bits com
8Gb e sistema operacional Ubuntu 20.04. O critério de parada utilizado foi o tempo méximo de
execucdo sendo que, para a abordagem R, o tempo maximo de execug¢do foi definido como 700 se-
gundos por exemplar e para a abordagem T esse tempo foi de 600 segundos para a criagdo da matriz
(2 durante o aprendizado por refor¢o mais 100 segundos para a execugdo da etapa de transferéncia
de aprendizado (Algoritmo 2). O objetivo de utilizar um tempo de execu¢do menor para T é que,
como parte do aprendizado ja é herdado (por meio da transferéncia de aprendizado) é esperado que
um nimero menor de execugdes seja necessario para a convergéncia do aprendizado.

Para a fungfo de célculo de recompensa os parametros « e (3, utilizados nas Equacdes
(1) e (2), foram tomados como o = 100 e 8 = 10 x OW x (CW — OW). Esses valores foram
definidos por meio de testes computacionais preliminares considerando os intervalos a = [0, 500]
e =7vxOW x (CW — OW), com~ = [0, 50].
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Figura 3: Pecas dos exemplares rco (esquerda) e blazewicz (direita). As pecas de mesma cor representam 0s
pares de pecgas concavas (blazewicz) e seus contornos convexos (rco).

Exemplares com pegas ndo-convexas fazem com que o tempo de verificacdo de sobre-
posicdo entre pecas aumente com o nimero de vértices da peca, reduzindo significantemente o
nimero de execugdes. A titulo de comparagdo, em 600 segundos, a abordagem de aprendizado
por reforgo faz 1024 execugdes para o exemplar rcod e somente 184 para o exemplar blazewicz5.
Outra diferenca entre os conjuntos de exemplares estd na possibilidade de encaixe entre as pecas.
Devido as suas concavidades, exemplares blazewicz tém melhores opgdes de encaixe, o que permite
obter solucdes com comprimentos menores (Figura 3). Esse comportamento é observado quando
sdo comparados os valores minimos e maximos entre os exemplares blazewicz e rco. Logo, os
limitantes OW utilizados sdo diferentes para cada exemplar (ver Tabela 4).

Na Tabela 4, sdo apresentados os comprimentos minimos, miximos, a mediana e o desvio
padrdo obtidos pelas duas estratégias para os conjuntos de exemplares rco e blazewicz. Os melhores
valores para minimos, miximos e medianas estdo destacados na tabela. A coluna “Ref.”apresenta
os valores minimos encontrados para cada exemplar considerando o modelo exato de Cherri et al.
[2016], implementado em linguagem C/C++ e resolvido utilizando o software de otimizagdo ILOG
CPLEX 12.6 e tempo execucgdo de 3600s. A coluna “OW”contém os valores de limitante superior
inicial para o comprimento da solug@o utilizados para os calculos da recompensa.

Tabela 2: Resultados obtidos pelos métodos de aprendizado por refor¢o com e sem transferéncia (T e R) de

aprendizado para os exemplares rco e blazewicz.

Minimo Maximo Mediana Desvio Padrao
ow Ref. T R T R T R T R
rcol 8,00 8,00 8,00 8,00 | 12,00 12,00 9,00 9,00 | 0,89 0,99

rco2 17,00 | 14,87 | 15,33 15,50 | 22,33 20,66 | 17,50 17,00 | 1,00 0,83
rco3 25,00 | 22,44 | 23,00 22,33 | 32,00 32,00 | 26,00 26,00 | 1,21 1,21
rco4 29,00 | 30,44 | 31,00 30,00 | 39,66 40,00 | 34,00 34,00 | 1,27 1,29
rco5 41,00 | 38,40 | 39,11 = 37,66 | 47,40 49,00 | 42,00 42,11 | 1,38 1,39

blazewiczl | 8,00 | 7,40 | 7,40 743 | 11,85 11,50 | 9,00 9,00 | 0,87 0,85
blazewicz2 | 16,00 | 14,25 | 14,58 = 14,50 | 20,80 21,38 | 17,08 17,03 | 1,08 1,06
blazewicz3 | 22,00 | 21,68 | 21,86 22,13 | 30,58 29,41 | 24,84 24,95 | 1,33 1,19
blazewicz4 | 29,00 | 29,44 | 30,19 30,50 | 3543 37,42 | 32,75 3294 | 1,58 1,49
blazewicz5 | 36,00 | 41,05 | 37,36 37,47 | 43,97 44,81 | 40,27 40,15 | 1,79 1,79

Para os exemplares rco, a abordagem usando aprendizado por refor¢o (R) obteve os me-
lhores comprimentos minimos quando comparado com a abordagem T, exceto para o exemplar
rco2. Contudo para os exemplares blazewicz, 0 comportamento oposto é observado, exceto para o
exemplar blazewicz2. Esse comportamento se justifica pela qualidade da matriz () herdada pelos
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exemplares blazewicz, qualidade que se deve ao alto nimero de execucdes realizada para os exem-
plares rco. O desempenho superior da abordagem T também € evidenciado nas andlises do valor
maximo. Contudo, para as duas abordagens, nota-se a perda de qualidade na solu¢ao conforme a
dimensdo dos exemplares aumenta. Essa perda estd relacionada ao ndmero de execugdes possiveis
dentro do tempo limite. Vale destacar que para os exemplares rcol e blazewiczl as solugdes 6timas
foram obtidas.

A fim de comparar o desempenho das abordagens foi utilizado o teste de Kolmogorov-
Smirnov biamostral. Os experimentos computacionais foram realizados usando a fun¢do kstest2
em Matlab 2020a. O teste de Kolmogorov-Smirnov biamostral mostrou diferenca estatistica entre
as abordagens R e T para os exemplares blazewiczl, rcol e rco2. Para ilustrar a diferenca de de-
sempenho entre as abordagens, nas Figuras 4 e 5, é apresentada a frequéncia acumulada (CDF)
das solugdes encontradas no decorrer do tempo de execugdo. Vale ressaltar que o método de
Kolmogorov-Smirnov € baseado na comparacdo da CDF gerada para cada uma das abordagens.
Para essas figuras, o eixo vertical representa a porcentagem de solucdes de comprimento menor
ou igual a determinado valor (eixo horizontal). Intervalos da curva com crescimento estritamente
vertical sinalizam a convergéncia do método para aquele determinado valor, por exemplo, na Figura
4(a) esse comportamento pode ser visto para o comprimento 9.

Empirical CDF Empirical CDF

09 09

08 | 08 |
0.7+ 07 b

06 0.6

X 05 X 05
w w
04 | 04 |
03 | 03 |
02 02}
0.1 + 0.1 + T
R
0 0 ‘ ‘ ‘ ‘ |
7 8 9 10 1 12 13
X X
(a) blazewiczl. (b) rcol.

Figura 4: Comparag@o dos comprimentos gerados para os exemplares com 7 pegas.

Enquanto que para os exemplares blazewiczl, rcol e rco2 (Figuras 4(a), 4(b) e 5(b), res-
pectivamente) é possivel observar a convergéncia das duas abordagens de solugdo, para o exemplar
blazewicz2 (Figura 5(a)) isso ja ndo acontece. O aumento no nimero de combinagdes possiveis
entre as pecas e a redugdo no nimero de execugdes dentro do tempo limite sdo os fatores decisivos
para esse desempenho, de fato, esse comportamento se acentua com o aumento da multiplicidade
das pecas.

5. Conclusoes

Nesse trabalho, aplicamos duas técnicas de aprendizado de méquina na resolugdo de pro-
blemas de corte e empacotamento de pegas irregulares: aprendizado por refor¢o e transferéncia
de aprendizado. Foram selecionados dois conjuntos de exemplares para andlise, de forma que um
conjunto era composto por pecas convexas e nido-convexas (blazewicz) e o segundo conjunto era
composto pela envoltdria convexa das pecas do primeiro conjunto de exemplares (rco). Compu-
tacionalmente, pecas irregulares ndo-convexas demandam maior esfor¢o para gerar solugdes sem
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Figura 5: Comparag@o dos comprimentos gerados para os exemplares com 14 pecas.

sobreposi¢do, fazendo com que o nimero de avaliagdes durante o processo de aprendizado seja sig-
nificativamente reduzido. Logo, a transferéncia de aprendizado de exemplares com pecas convexas
para exemplares com pegas ndo-convexas mostrou-se vantajoso. Testes estatisticos mostraram que
o método com transferéncia de aprendizado atinge um desempenho similar ao método de aprendi-
zado por refor¢o mesmo com tempo de execucdo inferior. Além disso, a medida que a dimensao
dos exemplares cresce, o método com transferéncia de aprendizado apresentou solugdes com me-
lhores valores minimos de comprimento. Em pesquisas futuras, pretendemos expandir os exempla-
res analisados e avaliar a possibilidade de iniciar o treinamento com pecas convexas e depois dar
continuidade utilizando a forma original das pecas.
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