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RESUMO
Este trabalho estuda os benefı́cios de estratégias de aprendizado de máquina para tratar o

problema de empacotamento de peças irregulares em faixa. Em especı́fico, é estudado o benefı́cio
da transferência de aprendizagem aplicada à estratégia de aprendizado por reforço. A escolha do
método de transferência de aprendizado se deve ao número de exemplares que compartilham peças
semelhantes, o que gera a hipótese de que o aprendizado de um exemplar poderia ser utilizado como
ponto de partida para o aprendizado de outros. Testes estatı́sticos mostram que a transferência de
aprendizado permite atingir desempenho semelhante ao método de aprendizado por reforço puro
com um sexto do tempo de execução. Estudos computacionais mostram os benefı́cios trazidos pela
introdução da transferência de aprendizado, em especial, para exemplares com peças côncavas.

PALAVRAS CHAVE. Empacotamento de peças irregulares em faixas. Aprendizado por
reforço. Transferência de aprendizado.
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ABSTRACT
This research studies the benefits of addressing the irregular strip packing problem with

machine learning strategies. In particular, the benefit of combining transfer learning and reinforce-
ment learning method. The choice of the transfer learning strategy is due to the number of instances
that share similar pieces, which generates the hypothesis that the learning of one instance could be
used as a starting point for the reinforcement learning method in other cases. Statistical tests show
that the transfer learning strategy allows achieving similar performance to the pure reinforcement
learning method with one-sixth of the execution time. Also, computational studies illustrate the
benefits of introducing transfer learning strategies, especially for concave pieces.
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1. Introdução

Problemas de corte e empacotamento de peças irregulares consistem em empacotar um
conjunto de peças regulares e irregulares em objetos maiores. De acordo com a definição de Ben-
nell e Oliveira [2009], uma peça é caracterizada como irregular se pelo menos três parâmetros são
necessários para identificá-la. Os objetos maiores podem ser circulares, retangulares de dimensão
fixa, ou de uma ou mais dimensões variáveis, bem como irregulares. Neste trabalho, é considerado
o problema de empacotamento de peças irregulares bidimensionais em faixas, também conhecido
como nesting, em que as peças são empacotadas em um objeto retangular de altura fixa e com-
primento variável. De acordo com a tipologia proposta em Wäscher et al. [2007], o problema de
empacotamento em faixas é classificado como um problema bidimensional com uma dimensão
aberta.

Estes problemas têm diversas aplicações industriais como na fabricação de móveis, de
roupas, de artefatos de vidro e em metalúrgicas. Devido à sua aplicabilidade industrial e dificul-
dade de resolução, diversos métodos heurı́sticos foram investigados na literatura. Uma revisão das
estratégias heurı́sticas clássicas utilizadas para resolver problemas de empacotamento de peças ir-
regulares é apresentada em Bennell e Oliveira [2009]. De modo geral, as heurı́sticas podem ser
divididas em construtivas e de melhoria. Para as heurı́sticas construtivas são analisadas regras para
o posicionamento das peças. O método mais utilizado nessas heurı́sticas é o bottom-left, em que as
peças são ordenadas de acordo com algum critério, para então, serem alocadas uma a uma no objeto,
sempre na posição mais a esquerda e mais abaixo possı́vel. Um estudo sobre a sequência das peças
é apresentado em Gomes e Oliveira [2002]. As heurı́sticas de melhoria envolvem mudanças na
posição e orientação das peças, como os métodos de compactação e separação, sendo o último utili-
zado para remover infactibilidades [Bennell e Dowsland, 2001; Gomes e Oliveira, 2006]. Métodos
que combinam diferentes estratégias com heurı́sticas construtivas e de melhoria também têm sido
propostos, como meta-heurı́sticas [Elkeran, 2013] e modelos de programação inteira [Sato et al.,
2019].

Dada a variabilidade de desempenho das meta-heurı́sticas para a resolução do problema
de empacotamento de itens em faixas, Rakotonirainy [2020] propõe um método de aprendizado
de máquina para selecionar a melhor heurı́stica para cada exemplar, tomando como base as ca-
racterı́sticas dos mesmos. De fato, assim como ideias de aprendizado de máquina vem ganhando
espaço na resolução de problemas de otimização combinatória [Bengio et al., 2020], a sua aplica-
bilidade à problemas de corte em empacotamento vem crescendo. Alguns exemplos são: o método
baseado em aprendizado por reforço para o problema de empacotamento 3D de itens regulares em
bins proposto por Hu et al. [2017] e o uso de métodos de aprendizado de máquina para prever a
factibilidade do conjunto de itens a serem produzidos em cada lote [Gahm et al., 2021]. Contudo,
no melhor do nosso conhecimento, ainda não existem métodos de aprendizado de máquina direta-
mente aplicados à alocação de peças em problemas de nesting. Nesse sentido, esse trabalho propõe
duas abordagens baseadas em aprendizado de máquina para o problema de empacotamento de peças
irregulares em faixas. A primeira utiliza puramente aprendizado por reforço, enquanto a segunda
também explora o benefı́cio de técnicas de transferência de aprendizado. Vale destacar, que a trans-
ferência de aprendizado é extremamente útil quando consideramos problemas que são resolvidos
frequentemente com pequenas diferenças, por exemplo, no contexto de fabricação de roupas, em
que os modelos e as quantidades mudam, mas muitas peças continuam as mesmas.

A organização deste trabalho se dá da seguinte forma: o problema de empacotamento
de peças irregulares em faixas é definido na Seção 2, as estratégias de resolução são apresentadas
na Seção 3, a Seção 4 contém os estudos computacionais comparando as estratégias de resolução,



seguida das conclusões da pesquisa apresentadas na Seção 5.

2. Problema de empacotamento de peças irregulares em faixas

O problema de empacotamento de peças irregulares em faixas consiste em dispor peças
formadas por polı́gonos côncavos ou convexos em um objeto de altura fixa e comprimento variável.
Uma solução factı́vel para o problema deve garantir que não haja sobreposição entre as peças.
Os requisitos de factibilidade para o problema ainda podem ser combinados com algum objetivo
especı́fico, como a minimização do comprimento utilizado para fazer a alocação, que é o objetivo
considerado nesse trabalho.

Uma solução para o problema de nesting pode ser representada por uma sequência de
peças a serem alocadas. A posição dessas peças no espaço bidimensional é dada conforme a regra
de alocação escolhida. Exemplos de regras são bottom-left e bottom-up [Baker et al., 1980]. Para a
pesquisa apresentada nesse trabalho, a regra de alocação bottom-left é utilizada.

Para a regra bottom-left, cada peça da sequência é alocada na posição factı́vel mais a
esquerda e mais abaixo no objeto, respeitando a posição das peças previamente alocadas. Na Figura
1(b), é ilustrada uma solução gerada pela regra bottom-left a partir da sequência definida na Figura
1(a), onde o número dentro de cada polı́gono representa a posição de cada peça na sequência de
alocação.

(a) Sequência para alocação.

(b) Alocação gerada pela regra bottom-left.

Figura 1: Representação de uma sequência de alocação seguindo a regra bottom-left.

3. Estratégias de resolução

Neste trabalho, são analisadas duas estratégias de aprendizado de máquina fundamenta-
das nas ideias de aprendizado por reforço. Os métodos de aprendizado por reforço são baseados
na análise da qualidade das decisões sequenciais realizadas. Nesse tipo de método, cada decisão
tomada é avaliada e recebe recompensas ou penalidades a depender da qualidade da ação, sendo o
objetivo maximizar a recompensa total. Para o problema estudado, a decisão a ser tomada é o tipo
de peça alocada a cada posição da sequência utilizada pela regra de alocação bottom-left.

A técnica de aprendizado por reforço utilizada é denominada Q-learning [Watkins e
Dayan, 1992] e seu desenvolvimento tem vários paralelos com as técnicas de programação dinâmica
aproximada [Powell, 2016]. Em especial, a função de Bellman, utilizada para computar o valor da
tomada de decisão a (qual peça alocar) no estado s (posição na sequência), é utilizada para computar



a recompensa de cada ação tomada. As funções de aprendizado com reforço podem ser desenha-
das de várias formas, podendo ser diferenciadas pela qualidade da resposta. Por exemplo, uma
função de recompensa no estilo +1/-1 penaliza e bonifica da mesma forma todas as soluções acima
(ou abaixo) de um limitante, independente de quão boa (ou ruim) for a solução. Ou seja, usando
recompensas do estilo +1/-1 para um exemplar onde o limitante superior é 27, duas soluções, de
comprimento 25 e 23, respectivamente, teriam a mesma recompensa. Da mesma forma que soluções
com comprimento 29 e 30 teriam a mesma penalização. Esse tipo de recompensa padrão pode não
favorecer o surgimento de soluções cada vez mais próximas do valor ótimo. Por outro lado, quando
consideramos recompensas relacionadas ao comprimento da solução, a função de recompensa pode
necessitar de parâmetros que introduzam informações sobre o exemplar para computar a recom-
pensa, como um limitante superior.

As recompensas podem ser distribuı́das ao final de cada tomada de decisão, avaliando a
qualidade a cada passo da construção da solução, ou ainda, ao final de todos os passos, quando a
solução final é definida. Cada uma das formas de recompensa tem seus prós e contras. Recompensas
a cada tomada de decisão permitem analisar decisões individualmente, contudo podem ser mı́opes
sobre a relação da decisão para a qualidade da solução final. Por outro lado, recompensas baseadas
na solução final tendem a dar a mesma contribuição para todas as decisões tomadas durante o
processo, tornando mais difı́cil avaliar a contribuição de cada decisão para a solução final. Em
ambos os casos, é esperado que o alto número de repetições do método supere as limitações da
função de recompensa escolhida.
3.1. Matriz de aprendizado

Para o método Q-learning, o aprendizado é representado por uma matriz (Q) que guarda
as recompensas de cada decisão tomada em cada estado. A matriz Q é retangular (n×m) onde n é
a quantidade de tipos de peças a serem alocados e m é a soma das demandas dos tipos de peças, ou
seja, o tamanho total da sequência. Dessa forma, uma entrada Qij representa o benefı́cio do uso de
uma peça do tipo i na posição j da sequência de alocação. A cada solução gerada pelo método Q-
learning, a matriz de aprendizado é atualizada de acordo com a qualidade da solução. A qualidade
de uma solução é medida pelo comprimento da solução (CW ), no limitante do comprimento do
objeto original (OW ) e no comprimento da melhor solução incumbente (BW ), dado por:

Qij = Qij + α; se (BW − CW ) ≥ 0 ou (OW − CW ) ≥ 0, (1)

Qij = Qij − β; caso contrário. (2)

Uma nova solução é gerada com base nos valores de Q. Mais especificamente, cada
elemento da sequência é escolhido por uma seleção do tipo roleta ponderada, em que o peso de
cada escolha é baseado na sua possı́vel contribuição para a solução, dado por:

pi = eQij , se i é factı́vel. (3)

É importante ressaltar que somente as decisões factı́veis são computadas, ou seja, somente
os tipos de peças para os quais as demandas ainda não foram atendidas podem ser adicionados a
sequência.

O método Q-learning utilizado está detalhado no Algoritmo 1, em que são dados de en-
trada: um limitante para o comprimento do objeto (OW ), o comprimento da melhor solução incum-
bente (BW ), a demanda de cada tipo de peça (vetor d), o número total de peças (m) e os valores
de α e β utilizados nas Equações (1) e (2). A aleatoriedade do método fica por conta da seleção
por roleta, enquanto a influência da matriz de aprendizado na decisão a ser tomada é dada pela
ponderação de cada entrada da roleta.



Algoritmo 1 Aprendizado por reforço.
1: Dados de Entrada: OW , BW , d, m, α e β
2: procedimento ITERAÇÕES DE APRENDIZADO POR REFORÇO

3: Q← 0
4: enquanto critério de parada não atingido faça
5: S ← ∅
6: para cada posição da solução (j)
7: pi ← eQij , ∀i : di ≥ 0 . Calcular contribuição de cada peça factı́vel
8: Sj ← i . Seleção por roleta ponderada
9: di ← di − 1 . Atualiza a demanda da peça selecionada

10: CW ← BL(S) . Calcula o comprimento da solução usando a regra bottom-left
11: se (BW − CW ) ≥ 0 ou (OW − CW ) ≥ 0 então . Atualização da matriz Q
12: para cada entrada da sequência
13: Qij ← Qij + α

14: senão
15: para cada entrada da sequência
16: Qij ← Qij − β
17: se CW ≤ BW então . Atualização da melhor solução incumbente
18: BW ← CW

3.2. Uso de transferência de aprendizado

Observado que os exemplares do problema de nesting compartilham muitas peças simila-
res, a ideia é criar uma matriz de aprendizado que possa ser passada de um exemplar para outro. A
expectativa é que ao iniciar o algoritmo de aprendizado por reforço com uma matriz Q próxima à
ideal, um menor número de iterações será necessário para a convergência da matriz de aprendizado.
Em especial, estudamos o caso em que a transferência de aprendizado ocorre em um exemplar onde
as peças são representações do contorno convexo (rco) de peças de outros exemplares (blazewicz).
A diferença entre exemplares com peças convexas e não-convexas se mostra no esforço computaci-
onal demandado pela regra bottom-left. Experimentos computacionais preliminares, mostraram que
enquanto exemplares com peças apenas convexas têm sua análise de alocação realizada em décimos
de segundos, exemplares com peças não-convexas podem demandar dezenas de segundos.

Como a matriz Q é composta pelos tipos de peças (n) e a demanda total do exemplar
(m), é necessário que a transferência de aprendizado seja realizada utilizando exemplares com as
mesmas quantidades de peças, ou ainda, que a matriz Q seja redimensionada de acordo com as
necessidades do novo exemplar.

As ideias implementadas para o método com transferência de aprendizado estão sumari-
zadas no Algoritmo 2. Note que a matriz Q gerada como saı́da do Algoritmo 1 é um parâmetro de
entrada nesse método. Além disso, para que a matriz de aprendizado se adapte ao novo exemplar
e o método supere possı́veis overfitting devidos à matriz herdada, iterações puramente aleatórias
são feitas a cada iteração do algoritmo. Os passos gerais do método proposto estão descritos na
Figura 2.

4. Estudos computacionais

Os estudos computacionais foram realizados utilizando 10 exemplares da literatura, sendo
os cinco exemplares blazewicz(k) (k = 1, ..., 5) baseados nos exemplares de Błażewicz et al. [1993],



Figura 2: Passos do método de aprendizado por reforço.

e os cinco exemplares rco(k) (k = 1, ..., 5) baseados em [Oliveira et al., 2000]. Cada um dos
exemplares está descrito na Tabela 1, onde na coluna “Exemplar”consta o nome de cada exemplar
utilizado, a coluna “n”contém o número de tipos de peças distintos, a coluna “d”apresenta a mul-
tiplicidade (demanda) dos tipos de peça no exemplar e o número total de peças está descrito na
coluna “m”. Esses exemplares podem ser encontrados em [ESICUP, 2021].

Tabela 1: Descrição dos exemplares utilizados.
Exemplar n d m

rco1 7 1 7
rco2 7 2 14
rco3 7 3 21
rco4 7 4 28
rco5 7 5 35

blazewicz1 7 1 7
blazewicz2 7 2 14
blazewicz3 7 3 21
blazewicz4 7 4 28
blazewicz5 7 5 35

Como já mencionado, os exemplares rco são compostos pelas envoltórias convexas das
peças dos exemplares blazewicz. Na Figura 3, são ilustradas as peças de cada um dos conjuntos de
exemplares.

Foram realizados dois grupos de testes: a primeira abordagem, denominada R (aprendi-
zado por Reforço), está descrita no Algoritmo 1, enquanto a segunda abordagem, denominada T
(Transferência de aprendizado por reforço), é descrita no Algoritmo 2. De fato, para abordagem T a



Algoritmo 2 Aprendizado por reforço com transferência.
1: Dados de Entrada: Q, OW , BW , d, m, α e β
2: enquanto critério de parada não atingido faça
3: procedimento ITERAÇÕES DE APRENDIZADO POR REFORÇO

4: S ← ∅
5: para cada posição da solução (j)
6: pi ← eQij , ∀i : di ≥ 0 . Calcular contribuição de cada peça factı́vel
7: Sj ← i . Seleção por roleta ponderada
8: di ← di − 1 . Atualiza a demanda da peça selecionada
9: CW ← BL(S) . Calcula o comprimento da solução usando a regra bottom-left

10: se (BW − CW ) ≥ 0 ou (OW − CW ) ≥ 0 então . Atualização da matriz Q
11: para cada entrada da sequência
12: Qij ← Qij + α

13: senão
14: para cada entrada da sequência
15: Qij ← Qij + β

16: se CW ≤ BW então . Atualização da melhor solução incumbente
17: BW ← CW

18: procedimento ITERAÇÕES COM SOLUÇÕES ALEATÓRIAS

19: S ← RS . Cria uma solução factı́vel aleatória com probabilidade uniforme
20: CW ← BL(S) . Calcula o comprimento da solução usando a regra bottom-left
21: se (BW − CW ) ≥ 0 ou (OW − CW ) ≥ 0 então . Atualização da matriz Q
22: para cada entrada da sequência
23: Qij ← Qij + α

24: senão
25: para cada entrada da sequência
26: Qij ← Qij − β
27: se CW ≤ BW então . Atualização da melhor solução incumbente
28: BW ← CW

matrizQ treinada para os exemplares rco foi transferida para os exemplares blazewicz, e vice-versa.
Os métodos de resolução foram implementados em Matlab 2020a e C++ e os testes com-

putacionais foram realizados em um computador Intel® Core™ i5-7400 CPU 3.00GHz 64bits com
8Gb e sistema operacional Ubuntu 20.04. O critério de parada utilizado foi o tempo máximo de
execução sendo que, para a abordagem R, o tempo máximo de execução foi definido como 700 se-
gundos por exemplar e para a abordagem T esse tempo foi de 600 segundos para a criação da matriz
Q durante o aprendizado por reforço mais 100 segundos para a execução da etapa de transferência
de aprendizado (Algoritmo 2). O objetivo de utilizar um tempo de execução menor para T é que,
como parte do aprendizado já é herdado (por meio da transferência de aprendizado) é esperado que
um número menor de execuções seja necessário para a convergência do aprendizado.

Para a função de cálculo de recompensa os parâmetros α e β, utilizados nas Equações
(1) e (2), foram tomados como α = 100 e β = 10 × OW × (CW − OW ). Esses valores foram
definidos por meio de testes computacionais preliminares considerando os intervalos α = [0, 500]
e β = γ ×OW × (CW −OW ), com γ = [0, 50].



Figura 3: Peças dos exemplares rco (esquerda) e blazewicz (direita). As peças de mesma cor representam os
pares de peças côncavas (blazewicz) e seus contornos convexos (rco).

Exemplares com peças não-convexas fazem com que o tempo de verificação de sobre-
posição entre peças aumente com o número de vértices da peça, reduzindo significantemente o
número de execuções. A tı́tulo de comparação, em 600 segundos, a abordagem de aprendizado
por reforço faz 1024 execuções para o exemplar rco5 e somente 184 para o exemplar blazewicz5.
Outra diferença entre os conjuntos de exemplares está na possibilidade de encaixe entre as peças.
Devido às suas concavidades, exemplares blazewicz têm melhores opções de encaixe, o que permite
obter soluções com comprimentos menores (Figura 3). Esse comportamento é observado quando
são comparados os valores mı́nimos e máximos entre os exemplares blazewicz e rco. Logo, os
limitantes OW utilizados são diferentes para cada exemplar (ver Tabela 4).

Na Tabela 4, são apresentados os comprimentos mı́nimos, máximos, a mediana e o desvio
padrão obtidos pelas duas estratégias para os conjuntos de exemplares rco e blazewicz. Os melhores
valores para mı́nimos, máximos e medianas estão destacados na tabela. A coluna “Ref.”apresenta
os valores mı́nimos encontrados para cada exemplar considerando o modelo exato de Cherri et al.
[2016], implementado em linguagem C/C++ e resolvido utilizando o software de otimização ILOG
CPLEX 12.6 e tempo execução de 3600s. A coluna “OW”contém os valores de limitante superior
inicial para o comprimento da solução utilizados para os cálculos da recompensa.

Tabela 2: Resultados obtidos pelos métodos de aprendizado por reforço com e sem transferência (T e R) de
aprendizado para os exemplares rco e blazewicz.

Mı́nimo Máximo Mediana Desvio Padrão
OW Ref. T R T R T R T R

rco1 8,00 8,00 8,00 8,00 12,00 12,00 9,00 9,00 0,89 0,99
rco2 17,00 14,87 15,33 15,50 22,33 20,66 17,50 17,00 1,00 0,83
rco3 25,00 22,44 23,00 22,33 32,00 32,00 26,00 26,00 1,21 1,21
rco4 29,00 30,44 31,00 30,00 39,66 40,00 34,00 34,00 1,27 1,29
rco5 41,00 38,40 39,11 37,66 47,40 49,00 42,00 42,11 1,38 1,39

blazewicz1 8,00 7,40 7,40 7,43 11,85 11,50 9,00 9,00 0,87 0,85
blazewicz2 16,00 14,25 14,58 14,50 20,80 21,38 17,08 17,03 1,08 1,06
blazewicz3 22,00 21,68 21,86 22,13 30,58 29,41 24,84 24,95 1,33 1,19
blazewicz4 29,00 29,44 30,19 30,50 35,43 37,42 32,75 32,94 1,58 1,49
blazewicz5 36,00 41,05 37,36 37,47 43,97 44,81 40,27 40,15 1,79 1,79

Para os exemplares rco, a abordagem usando aprendizado por reforço (R) obteve os me-
lhores comprimentos mı́nimos quando comparado com a abordagem T, exceto para o exemplar
rco2. Contudo para os exemplares blazewicz, o comportamento oposto é observado, exceto para o
exemplar blazewicz2. Esse comportamento se justifica pela qualidade da matriz Q herdada pelos



exemplares blazewicz, qualidade que se deve ao alto número de execuções realizada para os exem-
plares rco. O desempenho superior da abordagem T também é evidenciado nas análises do valor
máximo. Contudo, para as duas abordagens, nota-se a perda de qualidade na solução conforme a
dimensão dos exemplares aumenta. Essa perda está relacionada ao número de execuções possı́veis
dentro do tempo limite. Vale destacar que para os exemplares rco1 e blazewicz1 as soluções ótimas
foram obtidas.

A fim de comparar o desempenho das abordagens foi utilizado o teste de Kolmogorov-
Smirnov biamostral. Os experimentos computacionais foram realizados usando a função kstest2
em Matlab 2020a. O teste de Kolmogorov-Smirnov biamostral mostrou diferença estatı́stica entre
as abordagens R e T para os exemplares blazewicz1, rco1 e rco2. Para ilustrar a diferença de de-
sempenho entre as abordagens, nas Figuras 4 e 5, é apresentada a frequência acumulada (CDF)
das soluções encontradas no decorrer do tempo de execução. Vale ressaltar que o método de
Kolmogorov-Smirnov é baseado na comparação da CDF gerada para cada uma das abordagens.
Para essas figuras, o eixo vertical representa a porcentagem de soluções de comprimento menor
ou igual a determinado valor (eixo horizontal). Intervalos da curva com crescimento estritamente
vertical sinalizam a convergência do método para aquele determinado valor, por exemplo, na Figura
4(a) esse comportamento pode ser visto para o comprimento 9.
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Figura 4: Comparação dos comprimentos gerados para os exemplares com 7 peças.

Enquanto que para os exemplares blazewicz1, rco1 e rco2 (Figuras 4(a), 4(b) e 5(b), res-
pectivamente) é possı́vel observar a convergência das duas abordagens de solução, para o exemplar
blazewicz2 (Figura 5(a)) isso já não acontece. O aumento no número de combinações possı́veis
entre as peças e a redução no número de execuções dentro do tempo limite são os fatores decisivos
para esse desempenho, de fato, esse comportamento se acentua com o aumento da multiplicidade
das peças.
5. Conclusões

Nesse trabalho, aplicamos duas técnicas de aprendizado de máquina na resolução de pro-
blemas de corte e empacotamento de peças irregulares: aprendizado por reforço e transferência
de aprendizado. Foram selecionados dois conjuntos de exemplares para análise, de forma que um
conjunto era composto por peças convexas e não-convexas (blazewicz) e o segundo conjunto era
composto pela envoltória convexa das peças do primeiro conjunto de exemplares (rco). Compu-
tacionalmente, peças irregulares não-convexas demandam maior esforço para gerar soluções sem
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Figura 5: Comparação dos comprimentos gerados para os exemplares com 14 peças.

sobreposição, fazendo com que o número de avaliações durante o processo de aprendizado seja sig-
nificativamente reduzido. Logo, a transferência de aprendizado de exemplares com peças convexas
para exemplares com peças não-convexas mostrou-se vantajoso. Testes estatı́sticos mostraram que
o método com transferência de aprendizado atinge um desempenho similar ao método de aprendi-
zado por reforço mesmo com tempo de execução inferior. Além disso, à medida que a dimensão
dos exemplares cresce, o método com transferência de aprendizado apresentou soluções com me-
lhores valores mı́nimos de comprimento. Em pesquisas futuras, pretendemos expandir os exempla-
res analisados e avaliar a possibilidade de iniciar o treinamento com peças convexas e depois dar
continuidade utilizando a forma original das peças.
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