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Probing the Unruh effect with an accelerated
extended system
Cesar A. Uliana Lima1, Frederico Brito 1, José A. Hoyos 1 & Daniel A. Turolla Vanzella1

It has been proved in the context of quantum fields in Minkowski spacetime that the vacuum

state is a thermal state according to uniformly accelerated observers—a seminal result

known as the Unruh effect. Recent claims, however, have challenged the validity of this result

for extended systems, thus casting doubts on its physical reality. Here, we study the

dynamics of an extended system, uniformly accelerated in the vacuum. We show that its

reduced density matrix evolves to a Gibbs thermal state with local temperature given by the

Unruh temperature TU ¼ �ha=ð2πckBÞ, where a is the system’s spatial-dependent proper

acceleration—c is the speed of light and kB and �h are the Boltzmann’s and the reduced

Planck’s constants, respectively. This proves that the vacuum state does induce thermali-

zation of an accelerated extended system—which is all one can expect of a legitimate thermal

reservoir.
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Soon after Hawking published his seminal result on particle
creation due to black hole formation, leading to the
phenomenon of black hole evaporation1, Unruh clarified

the relative character of the particle concept in the context of
quantum field theory in flat spacetime. More specifically, he
showed that the vacuum state—which represents the absence of
particles according to inertial observers—corresponds to a
thermal bath with temperature TU= ℏa/(2πckB) for uniformly
accelerated observers2, where a is the observers’ proper accel-
eration (ℏ is the reduced Planck’s constant, c is the speed of
light, and kB is the Boltzmann’s constant). This result has
become known as the Unruh effect (see ref. 3 for a compre-
hensive review). Although some deep connections may be
established between Hawking’s result and the Unruh effect—
and, in fact, the former served as motivation for Unruh’s ana-
lysis—the latter is not as well known as the former. This is
somewhat unfortunate because some conceptual issues raised
by black hole evaporation can be better understood through the
lens of Unruh’s result—e.g., that the possibility of Hawking
radiation being in a mixed state does not violate any quantum
principle (therefore, no information-loss “paradox” is present4).
But even among those who are acquainted with the Unruh
effect, not rarely it is misinterpreted as saying that the thermal
bath experienced by accelerated observers in the vacuum state
of a quantum field would be indistinguishable from a thermal
state of the same field at temperature T= TU according to
inertial observers—which is a false statement. This overly
stringent view has compelled many to challenge or restrict the
validity of the Unruh effect based on non-local observables
which behave differently in these two situations. Simple
examples of such observables are two-point correlation func-
tions5. Also, the fact that uniformly accelerated observers, static
with respect to each other, can have different proper accelera-
tions a (depending on their separation), makes the Unruh
temperature TU spatially inhomogeneous across the uniformly
accelerated frame. This peculiar behavior has been held against
the interpretation of TU as a physical temperature when
spatially-extended systems are considered6. Although having no
analogue for an inertial (equilibrium) thermal state, this inho-
mogeneity of TU is mandatory in the accelerated frame. This is
a direct, well-known consequence of relativistic redshift
effects7, as we shall discuss later.

Our main goal here is to settle this debate by providing
convincing evidence that the strict thermal nature of the
Minkowski vacuum in the uniformly accelerated frame is
physically meaningful also for spatially-extended systems—
which sense non-local observables and inhomogeneous TU—
upholding TU as a legitimate temperature. In order to achieve
this, we analyze a system composed of two uniformly acceler-
ated spins, separated by an arbitrary finite distance d (fixed in
their accelerated rest frame), directly coupled to each other—
which confers unity to the system—and locally coupled to
quantum fields in the vacuum state. We focus attention on the
reduced density matrix of the accelerated-spins’ system and
show that it evolves to an equilibrium state which, according to
an arbitrary observer with proper acceleration a static with the
spins, is exactly the one which would be expected if the system
were in contact with a thermal bath with temperature T= TU;
in other words, we show that the spin system thermalizes at a
nonzero, well-defined temperature due to the vacuum fluctua-
tions it experiences in its accelerated rest frame. This corro-
borates the view that although one might construct observables
which distinguish the Unruh thermal bath from an ordinary
(i.e., inertial) one at the same temperature—and, in fact, we
show that the thermalization time scales can distinguish these
two situations, which, we stress, is not in conflict with the

Unruh effect—the former does act as a legitimate thermal
reservoir also for extended systems.

Results
The setup. Unless stated otherwise, we adopt natural units, in
which ℏ= c= kB= 1. Let us consider two spin-1/2 point parti-
cles, A and B, whose spins sA and sB are directly coupled to each
other via, say, the (free) Hamiltonian Ĥ0 ¼ �JŝzA ŝ

z
B, J ≠ 0, which

has two-fold degenerate eigenvalues ±J/4. Since the spins are
taken to be spatially separated, this is a simple, yet legitimate
model of an extended system. Now, let us couple (locally and
weakly) the spins to a quantum field, such that neither an
eventual constant of motion would prevent the spin system from
thermalizing, nor the dynamics could be mapped onto a two free-
particle problem. As a matter of fact, the simplest spin-field
interaction which would lead to some interesting evolution is
given by linearly coupling one of the other spin components, say
ŝxAðBÞ, to a massless, scalar quantum field Φ̂. However, this would
lead to a conservation law for the observable ŝxA ŝ

x
B, which, in turn,

would split the state space of the spin system as if it were two
noninteracting (non-localized) spins. In order to avoid such a
symmetry, we shall couple the other spins’ component, ŝyAðBÞ, to
another massless, scalar field, so that the (time-dependent)
Hamiltonian is given by:

ĤðτÞ ¼ �JŝzA ŝ
z
B þ q

X
j2fx;yg

Φ̂
j
AðτÞ̂s

j
A

u0AðτÞ
þ Φ̂

j
BðτÞ̂s

j
B

u0BðτÞ

" #
; ð1Þ

where q 2 R is a dimensionless (scalar) coupling constant,

Φ̂
j
AðBÞðτÞ :¼ Φ̂

jðτ; xAðBÞðτÞÞ are massless, scalar quantum fields—
which are independent for different j∈ {x, y}—evaluated at the
spins’ location xA(B)(τ), and u0AðBÞ :¼ dτ=dτAðBÞ is the time
component of the four-velocity of spin A(B), with τA(B) being its
proper time. Note that there is no need to include the free

Hamiltonian of the fields Φ̂
j
in Eq. (1) since we already take into

account the explicit time-dependence of Φ̂
j
enforced by the free-

field Klein–Gordon equation, &Φ̂
j ¼ 0. The coordinate system

{(τ, x)} would be arbitrary at this point. However, since we are
going to consider that the system evolves according to the von
Neumann equation (Eq. (2) below), it is necessary that τ repre-
sents the parameter of a time-translation symmetry of the
spacetime—∂/∂τ is a time-like Killing field—and that Ĥ given in
Eq. (1) is the Hamiltonian of the system in the (stationary)
reference frame associated with this symmetry. For instance, if the
spins were static in an inertial frame, then τ could be conveniently
set to be the usual inertial time—for which u0AðBÞ ¼ 1. For
accelerated spins which are static in a uniformly accelerated
frame, as we are interested here, τ can be interpreted as the proper
time of a fiducial uniformly accelerated observer with respect to
(w.r.t.) whom the spins are static. The presence of u0AðBÞ in the

interaction terms accounts for the fact that Ĥ evolves the system
in the time parameter τ, while q Φ̂AðBÞ ŝ

j
AðBÞ, being a local inter-

action, is related to the evolution in the time parameter τA(B). In
particular, care must be taken when interpreting the meaning of
the parameter J: it is twice the energy gap ΔE of the spin system as
measured by the fiducial observer. According to an observer at
spin-A(B) location, this gap is inevitably corrected by the “red-
shift” factor u0AðBÞ: ΔEAðBÞ ¼ u0AðBÞΔE. Without any loss of gen-
erality, the fiducial observer can be placed at, say, spin-A’s
position, so that τ= τA—which leads to u0A ¼ 1. As we shall see
later, the value of u0B depends on whether the acceleration of the
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system is perpendicular or parallel to its spatial extension. (The
fact that ΔEA=ΔEB ¼ u0A=u

0
B—which is independent of J and of

the choice of fiducial observer—plays an essencial role in inter-
preting our results in the parallel case, in which our extended
system feels an inhomogeneous Unruh temperature.) The model
defined by Eq. (1) can be considered as an extension of the well-
known spin-boson model, which is taken as a paradigm for the
study of the dissipative dynamics of two-level systems8.

Let ρ̂ be the positive semidefinite, Hermitian, trace-class
operator (with trace 1) describing the state of the whole universe
(spins+ fields). Its evolution is governed by

i∂τ ρ̂ ¼ ½ĤðτÞ; ρ̂�; ð2Þ
whose solution can be written as

ρ̂ðτÞ ¼ Ûðτ; τ0Þρ̂0½Ûðτ; τ0Þ�
�1; ð3Þ

with ρ̂0 :¼ ρ̂ðτ0Þ and Ûðτ; τ0Þ satisfying
i∂τÛðτ; τ0Þ ¼ ĤðτÞÛðτ; τ0Þ; Ûðτ0; τ0Þ ¼ 1̂: ð4Þ

We are only interested in the reduced density matrix of the
spin system, obtained after tracing out the fields’ degrees of
freedom (system’s reduced matrix):

ρ̂sðτÞ :¼ trΦ ρ̂ðτÞ½ �: ð5Þ
Motived by the results obtained from the spin-boson model8,

we shall treat the coupling with the quantum fields as a (time-
dependent) perturbation,

V̂ðτÞ :¼ q
P

j2fx;yg
½Φ̂j

AðτÞ̂s
j
A=u

0
AðτÞ þ Φ̂

j
BðτÞ̂s

j
B=u

0
BðτÞ�, on the free

Hamiltonian Ĥ0 ¼ �JŝzA ŝ
z
B. Indeed, under this regime, namely,

the weak coupling regime, the spin-boson model provides means
for observing spin thermalization process, with predicted
decoherence/relaxation time scales matching those observed in
physical systems satisfying the conditions imposed. For that, we
write Ûðτ; τ0Þ ¼ e�iĤ0ðτ�τ0ÞÛIðτ; τ0Þ, where ÛI represents the
time evolution operator in the interaction picture, satisfying

i∂τÛIðτ; τ0Þ ¼ ĤIðτÞÛIðτ; τ0Þ; ÛIðτ0; τ0Þ ¼ 1̂; ð6Þ
with

ĤIðτÞ :¼ eiĤ0ΔτV̂ðτÞe�iĤ0Δτ ¼ q
X

j2fx;yg

Φ̂
j
AðτÞ̂s

j
AðτÞ

u0AðτÞ
þ Φ̂

j
BðτÞ̂s

j
BðτÞ

u0BðτÞ

" #
;

ð7Þ
where Δτ := τ− τ0 and

ŝjMðτÞ ¼ ŝjM cos
JΔτ
2

� �
þ 2i ŝjM ; ŝ

z
M

h î
sz�M sin

JΔτ
2

� �
; ð8Þ

with M∈ {A, B} and �A :¼ B, �B :¼ A.
Solving Eq. (6) iteratively (as a Dyson series), working

consistently up to second order in q, and restricting attention
to the case where the initial state is simply separable,
ρ̂0 ¼ ρ̂s0 � ρ̂Φ0, where ρ̂s0 and ρ̂Φ0 describe the initial state of
the spin system and of the fields, respectively, we obtain, from Eq.
(5):

ρ̂sðτÞ ¼ e�iĤ0Δτ
n
ρ̂s0 �

q2

2

P
M;N2fA;Bg

Rτ
τ0

dτ′

u0Mðτ′Þ
Rτ
τ0

dτ′′

u0N ðτ′′Þ
P

j2fx;yg
iGj

Fðx′M; x′′NÞ

T ŝjMðτ′Þ; ŝ
j
Nðτ′′Þρ̂s0

h in o
þ H:c:

o
eiĤ0Δτ þOðq3Þ;

ð9Þ
where H.c. stands for the Hermitian conjugate of the term

which precedes it and iGj
Fðx′; x′′Þ :¼ trΦ ρ̂Φ0T Φ̂

jðx′ÞΦ̂jðx′′Þ
h in o

are the time-ordered Feynman correlators in state ρ̂Φ0. (The

usual time-ordering operator T appearing explicitly in the
second line of Eq. (9) must be applied before the commutator is
expanded.) Since we are interested only in the effects of

quantum fluctuations of Φ̂
j
on the spin system, we have already

assumed hΦjðxÞi :¼ trΦ ρ̂Φ0Φ̂
jðxÞ

n o
¼ 0, which, together

with the independence of Φ̂
j

for different j, implies

trΦ ρ̂Φ0Φ̂
xðx′ÞΦ̂yðx′′Þ

n o
¼ 0. Also, we restrict attention to the

case where iGx
Fðx′; x′′Þ � iGy

Fðx′; x′′Þ ¼: iGFðx′; x′′Þ, which
applies to the situation in which we are most interested.

Static spins’ arrangements in static field states. Restricting
attention to static spins’ arrangements xA, xB and static field states
ρ̂Φ0 (w.r.t. the time parameter τ), it follows that GF(xM′, xN″) can
depend on τ′ and τ″ only through the combination ξ := τ′− τ″,
GF(xM′, xN″)=:GMN(ξ)—in addition to u0MðτÞ � u0M being con-
stant. This suggests that it may be more convenient, in the
second-order term of Eq. (9), to perform a change of integration
variables to η := (τ′+ τ″)/2 and ξ. Notice that, by construction,
GMN(ξ)=GNM(−ξ), which, in particular, implies that GAA(ξ)
and GBB(ξ) are even distributions w.r.t. ξ. But staticity also implies
that GAB(ξ) and GBA(ξ) are even distributions w.r.t. ξ; hence,
GAB(ξ)≡GBA(ξ). Using Eq. (8) into Eq. (9), the integral in η can
be explicitly evaluated, leading to:

eiĤ0Δτ ρ̂sðτÞe�iĤ0Δτ ¼ ρ̂s0 �
q2

2

P
M;N2fA;Bg

RΔτ
�Δτ dξ iGMN ðξÞ

u0Mu0N
Δτ � jξjð Þ ĈðþÞ

ðMNÞ cos
Jξ
2

� �hn

þ D̂ð�Þ
ðMNÞ sin

Jjξj
2

� �i
þ 2

J sin
JðΔτ�jξjÞ

2

� �
Ĉð�Þ
ðMNÞcos

JΔτ
2

� �h
þ D̂ðþÞ

ðMNÞ sin
JΔτ
2

� �io
þH:c:þOðq3Þ;

ð10Þ
where

Ĉð± Þ
MN :¼

X
j2fx;yg

1
2

ŝjM ; ŝ
j
N ρ̂s0

h i
± 2 ŝ

�j
Mŝ

z
�M; ŝ

�j
N ŝ

z
�N ρ̂s0

h i� 	
; ð11Þ

D̂ð± Þ
MN :¼

X
j2fx;yg

εj�j ŝ
�j
Mŝ

z
�M ; ŝ

j
N ρ̂s0

h i
± ŝjM ; ŝ

�j
N ŝ

z
�N ρ̂s0

h in o
; ð12Þ

with �x :¼ y, �y :¼ x, εxy ¼ �εyx ¼ 1, and indices M, N inside
parentheses in Eq. (10) denotes symmetrization: X(MN) := (XMN

+ XNM)/2.
As it stands, Eq. (10), being a truncated perturbative expansion,

is not appropriate to investigate long-term features of the spin
system, as relaxation to an eventual equilibrium state when
Δτ→∞. In this limit, the second-order term in q is, in general,
unbounded and, therefore, cannot be consistently considered as
providing a “small” deviation from the free evolution. We can,
nonetheless, try to break long-term evolution into a sequence of N
(≫1) time lapses Δτ such that in each time lapse, for sufficiently
small coupling q, the spins’ evolution is well described by Eq.
(10). This strategy is trivially valid for closed systems. Here,
however, since tracing out the fields’ degrees of freedom at the
end of each time step does not necessarily lead to the same result
as taking the trace only after N steps, this procedure is not
guaranteed, in general, to lead to the correct evolution of the
reduced density matrix. Notwithstanding this, in the Methods’
subsection “Validity of the Markovian regime,” we show that
there is a finite time-lapse scale Δτ (≫J−1, ∥xA− xB∥) for which
this strategy holds true—resembling a Markovian regime—
leading to the long-term evolution

ρ̂sðτNÞ ¼ e�iĤ0τN e�q2R0τN ρ̂s0

� �
eiĤ0τN ; ð13Þ

where τN=NΔτ and R0 : T Hsð Þ ! T Hsð Þ—an operator acting
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on the space of trace-class operators describing the spin system—
is determined by the equation [recall Eqs. (11) and (12)]

R0 ρ̂s
� �

¼ 1
2

X
M;N2fA;Bg

iπ~GMNðJ=2ÞĈ
ðþÞ
ðMNÞ � PJ=2 i~GMN


 �
D̂ð�Þ
ðMNÞ

n o���
ρ̂s0 7!ρ̂s

þH:c:;

ð14Þ
with

~GMNðωÞ :¼
1
2π

Z1
�1

dξ
GMNðξÞ
u0Mu

0
N

eiωξ ð15Þ

and

Pa½f � :¼ lim
ϵ!0

Z
Rn½�ϵ;ϵ�

f ðx þ aÞ
x

dx: ð16Þ

In the Methods’ subsection “Decay modes and related decay
rates of the spin system,” we present all eigenvalues λk and (right)
eigenvectors (or “eigenmatrices”) ρ̂k of R0 (with k= 1, …, 16) in
terms of i~GMNðJ=2Þ, PJ=2 i~GMN


 �
, and the elements of the Bell

basis fjΨð± Þ
AB i; jΦð± Þ

AB ig defined in Eqs. (31) and (32)—see Eqs.
(35)–(62); note that each individual mode ρ̂k does not necessarily
have to represent a physical state. This encodes complete
information about the evolution of the spin system. It is a simple
task to verify that these eigenmatrices ρ̂k are also eigenmatrices of

the free evolution: E0ðρ̂kÞ :¼ e�iĤ0Δτ ρ̂ke
iĤ0Δτ ¼ e�iEkΔτ ρ̂k, where,

depending on k, Ek= 0, ±J/2. Therefore, noticing that λ1= E1= 0
and provided Re(λk≠1) > 0—as will be verified later in our cases of
interest—we finally obtain the evolution of the spin system in the
Markovian regime:

ρ̂sðτNÞ ¼
X16
k¼1

cke
�ðq2λkþiEkÞτN ρ̂k !N!1

ρ̂1 ¼: ρ̂eq; ð17Þ

where the coefficients ck are uniquely determined by the initial

condition
P16
k¼1

ckρ̂k ¼ ρ̂s0—in particular, c1 ¼ trs ρ̂s0

 �

¼ 1.

Uniformly accelerated spins in the vacuum. Finally, in this
section we apply the expressions obtained above to our case of
interest: uniformly accelerated spins in the vacuum. The vacuum
state |0〉 of a free, massless scalar field is characterized as being the
(unique) Poincaré-invariant state of the theory. The vacuum
expectation value of the field vanishes, h0jΦ̂ðxÞj0i ¼ 0, whereas
its two-point (Wightman) function is given by

Wðx; x′Þ :¼ h0jΦ̂ðxÞΦ̂ðx′Þj0i ¼ 1
4π2σϵðx; x′Þ

; ð18Þ

where σϵ x; x′
� �

is the (ϵ-regularized) square of the geodesic
“distance” between events x and x′—which is obtained from the
square of the geodesic distance, σ(x, x′), by introducing an infi-
nitesimal negative imaginary part (−iϵ) into the time coordinate
of the first event x. As expected from its definition, notice that W
(x, x′) is a bi-scalar. Therefore, its value is insensitive to the choice
of coordinate system we use to represent the events x and x′. In
terms of inertial Cartesian coordinates {(t, X, Y, Z)}, σ(x, x′)=
−(t− t′)2+ (X− X′)2+ (Y− Y′)2+ (Z− Z′)2, whereas in terms
of coordinates {(τ, X, Y, ζ)} well adapted to a uniformly acceler-
ated frame—defined through t= (ζ+ a−1)sinh(aτ), Z= (ζ+ a−1)
cosh(aτ), with ζ >−a−1, τ 2 R—we have

σðx; x′Þ ¼ � 4
a2

ðaζ þ 1Þðaζ ′ þ 1Þ sinh
aðτ � τ′Þ

2

� �� �2
þ ðX � X′Þ2 þ ðY � Y ′Þ2 þ ðζ � ζ ′Þ2;

ð19Þ

where a > 0 is a constant. The interpretation of τ and ζ follows

from the form of the Minkowski line element in these coordi-
nates,

ds2 ¼ �ð1þ aζÞ2dτ2 þ dX2 þ dY2 þ dζ2 : ð20Þ

the coordinate τ is the proper time of (fiducial) observers static at
ζ= 0—whose constant proper acceleration is given by the para-
meter a—whereas the coordinate ζ measures spatial distances
along the acceleration direction, according to observers static in
this coordinate system. Notice [for the sake of the discussion
below Eq. (1)] that τ does represent a time-translation symmetry
of the spacetime. This can be inferred from the line element given
in Eq. (20), since the coefficients of the differentials (i.e., the
metric components) are independent of τ—∂/∂τ is a time-like
Killing field known as the boost Killing field.

For the sake of completeness, let us recall some basic facts
about accelerated frames which are relevant for our purposes.
Figure 1 presents a diagram depicting the Minkowski spacetime
region Z > |t| (called Rindler wedge) which is covered by the
accelerated Cartesian coordinates {(τ, X, Y, ζ)} defined above Eq.
(19) (suppressing the X and Y directions). In such a diagram,
worldlines of inertial observers would be represented by straight
lines making an angle smaller than 45° with the vertical t axis,
while light rays are represented by 45° lines. Constant-ζ
(hyperbolic) curves represent worldlines of a family of
uniformly-accelerated observers “at rest” w.r.t. each other—which
constitutes a uniformly-accelerated frame. All these hyperbolas
(for given X and Y) asymptote the same light rays (on Hþ and
H−) which intersect at S (a flat 2-surface when X and Y are
restored). This shows that, contrary to inertial frames, no single
uniformly-accelerated frame can cover the whole (Minkowski)
spacetime. Moreover, to any uniformly-accelerated observer,
there is a causally inaccessible spacetime region, with Hþ playing

S

ζ =
 c

on
st

.

Rindler
wedge

τ = const.

t

Z

τ

ζ

+

–

Fig. 1 Uniformly accelerated frame and the Rindler wedge. Depiction of the
Minkowski spacetime region Z > |t| covered by the coordinates τ and ζ
(suppressing coordinates X and Y). This is commonly referred to as the
Rindler wedge. Solid (blue) curves represent the (ζ= constant) worldlines
of uniformly-accelerated observers “at rest” w.r.t. each other, while dashed
(black) lines represent τ= constant hypersurfaces—which encodes
simultaneity according to these observers. All constant-ζ curves asymptote
Hþ andH− , reflecting that this uniformly-accelerated frame does not cover
the whole spacetime. Moreover, there is a spacetime region which is
causally inaccessible to observers in this frame, for whom Hþ represents a
(future) event horizon
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the role of an event horizon. This particular feature is essencial in
understanding how a pure quantum state (the Minkowski
vacuum) is perceived as a mixed (thermal) state by uniformly-
accelerated observers. In terminology introduced in ref. 9, the
Unruh thermal bath is an example of an improper mixed state,
arising from tracing out some degrees of freedom of a pure state
—the ones inaccessible to the accelerated observers. In contrast,
inertial thermal states are truly statistical mixtures of pure states
(energy-momentum eigenstates according to inertial observers),
representing the whole system—which qualifies them as proper
mixed states. Although this kind of distinction may be relevant
on a conceptual level—see, e.g., ref. 10 for a discussion in the
context of information loss in black hole evaporation—it plays
no role for our purposes since observables restricted to the
Rindler wedge cannot uncover the improper nature of the Unruh
thermal bath.

The fact that constant-ζ curves have common asymptotes—
instead of simply being translated hyperbolas in the Z direction—
also shows that uniformly-accelerated observers static at different
values of ζ have different proper accelerations. In fact, it can be
shown that ζ= constant worldlines have proper acceleration
given by aζ= a/(1+ aζ)—and it follows directly from Eq. (20)
that observers following these worldlines have proper time given
by τζ= (1+ aζ)τ. Thus, according to the Unruh effect, each such
observer “feels” a different Unruh temperature TU= aζ/(2π).
More concretely, a uniformly-accelerated extended system (with
constant proper spatial dimensions) would “feel” an inhomoge-
neous Unruh temperature along the direction of its acceleration.
This inhomogeneity—which our simple model for an extended
system can probe—is at the heart of the arguments against TU
being a legitimate physical temperature6. Note, however, that
TU

ffiffiffiffiffiffiffiffiffiffi�g00
p ¼ constant—g00 being the time-time metric compo-

nent read from Eq. (20)—evidencing the role played by the
redshift effect in the spatial variation of TU. This constraint,
T
ffiffiffiffiffiffiffiffiffiffi�g00

p ¼ constant, is known as Tolman’s relation7 and is valid
for thermal states in arbitrary (flat and curved) stationary

spacetimes—for it follows simply from the condition that the
net heat flow in an equilibrium state must vanish everywhere.

It is worth pointing out that all this discussion about uniformly-
accelerated frames, event horizons, and the Unruh effect is only
relevant for interpreting our final results, not for carrying out any
of the calculations. As far as the calculations are concerned, all we
need is the vacuum two-point functionW(x, x′), given by Eq. (18),
and information about the spins’ worldlines. The use of τ and ζ
instead of t and Z to express the bi-scalar σ(x, x′)—in Eq. (19)—
can be seen as a mere mathematical convenience, since uniformly-
accelerated worldlines separated by a constant proper distance
take the simple form ζ= constant. In addition, nowhere in the
calculations we express the (pure) Minkowski vacuum state as a
thermal bath of (Rindler) particles according to uniformly
accelerated observers—i.e., we do not assume the Unruh effect
to be true. From our perspective, we are inertial theorists using
standard quantum theory to predict the behavior of an extended
“thermometer” accelerating in the vacuum.

Spins with equal proper accelerations. Let us first consider the
case where the spins are uniformly accelerated perpendicularly to
their spatial separation, with the same proper acceleration a. This
can be described, in the coordinates {(τ, X, Y, ζ)}, by spin tra-
jectories given by XA(τ)≡ YA(τ)≡ ζA(τ)≡ YB(τ)≡ ζB(τ)≡ 0,
XB(τ)≡ d, where d is the spatial separation between the spins (in
their rest frame) and, conveniently, τ≡ τA ≡ τB (i.e.,
u0A ¼ u0B ¼ 1). This, combined with the Wightman function given
in Eq. (18), is all we need to calculate the eigenvalues λk and
eigenmatrices ρ̂k appearing in the long-term evolution of the spin
system [Eq. (17)], as presented in more detail in the Methods’
subsection “Transformed Feynman correlators and their principal
values”.

The nonzero eigenvalues λk (k= 2, …, 16) are related, through
Eq. (17), to the decoherence/relaxation rates of the spin system.
In Fig. 2, we plot all these rates (normalized by q2) as functions of
the proper acceleration a, for different separations d. In case
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Fig. 2 Acceleration dependence of relaxation/decoherence rates of the spin system with equal proper accelerations. We plot the decay rates (normalized
by q2), Re(λk)—k= 2 (solid, black line), 3 (dashed, magenta line), 4, 5, 6 (solid, blue line), 7, 8, 9, 10 (dotted, magenta line), 11, 12, 13, 14 (dashed, black
line), 15, 16 (solid, magenta line)—of the decaying modes of the spin system, as functions of the spins’ acceleration a, for different separations d. Unless
d≪ J−1—in which case mode ρ̂3 dominates the late-time dynamics for J≲a≲d�1—modes ρ̂4; ρ̂5; ρ̂6 (all belonging to the lowest-energy subspace) dictate
how the system approaches equilibrium with a relaxation/decoherence rate given by q2J/[8π(eπJ/a− 1)]
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d≳J�1, there are basically two regimes of acceleration: a≪ J—in
which modes ρ̂4; ρ̂5; ρ̂6 (all belonging to the lowest-energy
subspace) dictate how the system approaches equilibrium with
a relaxation/decoherence rate given by q2Je−πJ/a/(8π)—and a≫ J
—in which all relaxation/decoherence rates degenerate in just two
values: q2a/(8π2) and twice this value. Such a result, namely, a
relaxation rate that scales as a power law of the temperature—
recall that TU= a/(2π)—is known to be a signature of certain
inertial baths in the limit of high temperatures. Indeed, for the
class of baths known as Ohmic environments, it is precisely
established for the spin-boson model that the decay rate will have
a power law dependence, which is linear in a second order
system-bath coupling perturbation theory8. In case d≪ J−1, there
appears a third, moderate regime of acceleration (J≲a≲d�1) in
which mode ρ̂3 dictates how equilibrium is approached, with a
relaxation/decoherence rate given approximately by q2Jd2a2/
(12π). In Fig. 3, we plot the same decoherence/relaxation rates,
now as functions of the spins’ separation d, for different values of
proper acceleration a.

From Eq. (17), we see that the accelerated spin system
eventually evolves to an equilibrium state ρ̂eq ¼ ρ̂1 given by Eq.
(43). Using Eqs. (65)–(69), this equilibrium state, written in terms

of the elements of the Bell basis fjΨð± Þ
AB i; jΦð± Þ

AB ig, reads

ρ̂eq ¼
1
Z eπJ=ð2aÞ jΨðþÞ

AB ihΨ
ðþÞ
AB j þ jΨð�Þ

AB ihΨ
ð�Þ
AB j

� �h

þe�πJ=ð2aÞ jΦðþÞ
AB ihΦ

ðþÞ
AB j þ jΦð�Þ

AB ihΦ
ð�Þ
AB j

� �i
¼ e�βĤ0

Z ;

ð21Þ

where Z :¼ 2 eπJ=ð2aÞ þ e�πJ=ð2aÞ
 �
¼ trsðe�βĤ0Þ and β := 2π/a. In

other words, for any initial state ρ̂s0, the final equilibrium state ρ̂eq
of the spin system is the Gibbs thermal state with temperature
β−1= a/(2π), the Unruh temperature. (Observe that

jΨðþÞ
AB ihΨ

ðþÞ
AB j þ jΨð�Þ

AB ihΨ
ð�Þ
AB j and jΦðþÞ

AB ihΦ
ðþÞ
AB j þ jΦð�Þ

AB ihΦ
ð�Þ
AB j

are the corresponding identity matrices for the energy eigenvalue

subspaces −J/4 and J/4, meaning that, as expected, the
thermalization process does not favor any of the possible
eigenstates of those subspaces.) The spin system thermalizes
due to the vacuum fluctuations it experiences in its accelerated
frame—despite these fluctuations being distinct from the ones in
inertial thermal states, as properly noted in ref. 5—vindicating the
Unruh effect also for an extended system.

Spins with different proper accelerations. Now, we consider the
spatial separation d of the two spins to be along the direction of
their accelerations: XA(τ)≡ YA(τ)≡ ζA(τ)≡ XB(τ)≡ YB(τ)≡ 0,
ζB(τ)≡ d. In this case, τ≡ τA≡ τB/(1+ ad) (i.e., u0A ¼ 1 and
u0B ¼ 1=ð1þ adÞ) and a continues to be the proper acceleration
of spin A, while spin-B proper acceleration is given by aB= a/
(1+ ad) [recall discussion on uniformly-accelerated frames after
Eq. (20)]. Therefore, according to the Unruh effect, each spin sees
a different local temperature at its position.

Following the same steps of the previous, equal-acceleration
case, we determine λk and ρ̂k which govern the long-term
evolution of the spin system for different proper accelerations—
see Methods’ subsection “Transformed Feynman correlators and
their principal values.” It turns out that the overall behavior in
this case is very similar to the case of equal accelerations. This can
be readily seen from Figs. 4 and 5—where we plot the relaxation/
decoherence rates (as measured by observers static at ζ= 0 and
normalized by q2) of the spin system as functions of the (spin-A)
proper acceleration a and as functions of the separation d,
respectively—which should be compared with Figs. 2 and 3. Note
that the corresponding figures are almost identical, making the
previous discussion on the behavior of the relaxation/decoherence
rates for aA= aB also valid for this scenario where aA ≠ aB. In
order to better visualize the effect of the unequal proper
accelerations on the spin system, we plot in Fig. 6 the ratio
between the relaxation/decoherence rates for different accelera-
tions, Re(λdiff), and for equal accelerations, Re(λeq), for each
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decaying mode of the reduced density matrix. We see that
intermediate values of ad lead to maximum differences between
these two scenarios.

Most important for our purposes, though, is the fact that, as in
the case with aA= aB, the final equilibrium state ρ̂1 takes the form
of the Gibbs state given by Eq. (21); i.e., the spin system
thermalizes at a temperature β−1= a/(2π) according to observers

at ζ= 0—for whom Ĥ0 is the free Hamiltonian of the extended
system. As for observers at ζ ≠ 0 (e.g., with spin B, ζ= d)—for
whom the proper time is ~τ ¼ ð1þ aζÞτ—the same Gibbs state
describes thermal equilibrium at temperature TU(ζ)= a/[2π(1+
aζ)]= aζ/(2π), since, for them, the Hamiltonian of the spin
system [i.e., the time-evolution operator appearing in Eq. (2) with
τ substituted by ~τ=ð1þ aζÞ is given by Ĥ0=ð1þ aζÞ. Although
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the observed local temperatures are different—ensuring no net
heat flow across the system, as pointed out earlier—the same final
state given by Eq. (21) is a true thermal equilibrium state for all
observers simultaneously,

ρ̂eq / exp � 2π
a
Ĥ0

� �
¼ exp � 2π

aζ

Ĥ0

ð1þ aζÞ

 !
; ð22Þ

once more corroborating the physical reality of the Unruh
thermal bath and its inhomogeneous temperature for an extended
system.

Discussion
We made use of an accelerated extended system (two directly
coupled spins, each of which linearly and weakly coupled to
quantum fields in the vacuum state) in order to show that the
standard interpretation of the Unruh effect—that the inertial
vacuum state acts as a legitimate thermal reservoir according to
uniformly accelerated observers—is strictly correct even when
considering extended systems. It is indeed true, as pointed out by
ref. 5, that correlations seen by uniformly-accelerated observers in
the vacuum state differ from the ones seen by inertial observers in
an inertial thermal state. For instance, the vacuum two-point
function evaluated along two uniformly-accelerated worldlines, in
the simpler case where they have the same proper acceleration a
(perpendicular to their separation d), reads [see Eqs. (18) and
(64)]

W?
acðτ; dÞ ¼ � 1

4π2

a2

4 sinh aτ=2� iϵð Þ½ �2�a2d2

 � ; ð23Þ

whereas the two-point function evaluated along two inertial

wordlines at rest in an inertial thermal state with temperature T is
given by11

WðTÞ
in ðτ; dÞ ¼ T

8πd
coth πTðτ þ d � iϵÞð Þ � coth πTðτ � d � iϵÞð Þ½ �;

ð24Þ
with τ and d being, in both expressions, the proper-time differ-
ence and proper distance, respectively, measured by observers
following the corresponding worldlines. It is not difficult to verify
that there is no correspondence between a and T which makes
these two expressions equal (as functions of τ and d), except in
the limit case d→ 0, for which W?

acðτ; 0Þ � WðTUÞ
in ðτ; d ! 0Þ,

TU= a/(2π). This also occurs in the case of uniformly-accelerated
worldlines with different proper accelerations, where the vacuum
two-point function evaluated along these worldlines reads [see
Eqs. (18) and (71)]

Wk
acðτ; dÞ ¼ � 1

4π2

a2

4ð1þ adÞ sinh aτ=2� iϵð Þ½ �2�a2d2

 � : ð25Þ

Again, Wk
acðτ; dÞ≢WðTÞ

in ðτ; dÞ for any fixed relation between T
and a, but Wk

acðτ; 0Þ � WðTUÞ
in ðτ; d ! 0Þ, TU= a/(2π). This

means that, although point-like probes cannot distinguish
between (i) being with constant proper acceleration a in the
vacuum and (ii) being at rest in an inertial thermal bath with
temperature T= TU, extended probes can. In fact, our Fig. 6
illustrates this well: while spatially-extended probes at rest in an
inertial thermal bath cannot exhibit any dependence on its spatial
orientation, the decoherence/relaxation time scales of our exten-
ded system do depend on the system’s orientation w.r.t. its
acceleration—owning to the fact that Wk

acðτ; dÞ≢W?
acðτ; dÞ.

This kind of behavior has been occasionally interpreted as a
violation of the strict thermal character of the Unruh effect for
extended systems and non-local observables. However—and this
is the important point—this distinct behavior in situations (i) and
(ii) is not in conflict with the rigorous statement of the Unruh
effect, which only says that the vacuum state is a thermal state
according to uniformly-accelerated observers. Thermal states at
the same temperature need not be equal, for they depend on the
Hamiltonian describing the system; and the Hamiltonian carries a
subtle but important dependence on the family of observers w.r.t.
whom the time evolution is being considered. Putting it more
clearly: the Hamiltonian of a quantum field according to a family
of inertial observers is not the same as the one according to a
family of uniformly-accelerated observers; therefore, no need to
lead to the same expected values of similarly-defined observables.
On the other hand, we do expect, on the grounds of the zeroth
law of thermodynamics, that any probe in contact with different
thermal states at the same temperature reaches the same final
equilibrium state—thermal equilibrium is transitive. This is
exactly what happens to our accelerated extended system in the
vacuum. It evolves towards the Gibbs state given by Eq. (21),
which is the same equilibrium state it would have reached if it
were at rest in an inertial thermal bath at temperature T= TU.
This is all one can ask of a legitimate thermal reservoir.

It is worth stressing that the model chosen here, although
simple, does constitute a genuine extended system, since it cannot
be mapped onto a two free-particle system, and hence non-local
correlations shall be present in the dynamics. As for the equili-
brium state, even though the free-system Hamiltonian presents
only two eigenvalues, the predictions extracted from it cannot
emerge from a simple two-level analysis, because the corre-
sponding eigenenergy subspaces are spanned by states with dif-
ferent local properties. Such a character leads the expected values
of local observables, e.g., ĥsjMi ¼ Trðρ̂s ŝ

j
MÞ, to be ill-determined in

the two-level modeling. Our extended system captures all features
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used in the literature to argue against the physical reality of the
Unruh temperature, with TU= a/(2π) emerging naturally from
the thermalization process observed for the spin system. There-
fore, there is no reason to believe that our conclusions would not
hold for more complex extended systems. In particular, a dra-
matic conjectured consequence is the existence of a critical
acceleration above which an accelerated magnet in the vacuum
would be demagnetized, something which would be hard to
anticipate if it were not for the Unruh effect. This
complex situation is currently under investigation.

Methods
Validity of the Markovian regime. The strategy of breaking down the long-term
evolution of the (open) spin system into a sequence of N (≫1) time lapses Δτ, such
that in each time lapse, for sufficiently small coupling q, the spins’ evolution is well
described by Eq. (10), depends on the existence of an appropriate time lapse Δτ and
a sequence of field states ρ̂Φk


 �
k¼0;1;¼ ;N�1 such that

trΦ ρ̂ðτkþ1Þ

 �

¼ trΦ Ûkþ1;k trΦ ρ̂ðτkÞ½ � � ρ̂Φk Û
�1
kþ1;k

n o
; ð26Þ

where τk := τ0+ kΔτ and Ûl;k :¼ Ûðτ l ; τkÞ ¼ e�iĤ0ðl�kÞΔτÛIðτ l ; τkÞ (see Fig. 7).
However, the condition expressed in Eq. (26) is impracticable since it assumes
knowledge of the whole system evolution ρ̂ðτÞ. Notwithstanding, we can work with
a more convenient (although stronger) condition obtained by defining the family of
trace-preserving maps Sl,k,

Sl;k ρ̂s
� �

:¼ trΦ Ûl;kρ̂s � ρ̂ΦkÛ
�1
l;k

n o
; l � k; ð27Þ

acting on the space of trace-class operators T Hsð Þ 3 ρ̂s describing the spin system,
and asking if there is a regime (i.e., values of Δτ and fρ̂Φkgk¼0;1;¼ ) such that these
maps satisfy the composition law Sm,l ⋅ Sl,k= Sm,k, m ≥ l ≥ k (semigroup property). If
this can be established, then Eq. (26) holds for an arbitrary simply-separable initial
state ρ̂0 ¼ ρ̂s0 � ρ̂Φ0. We call this regime Markovian, for ρ̂sðτkþ1Þ ¼ Skþ1;kðρ̂sðτkÞÞ.
Note, recalling Ûðτ; τ0Þ ¼ e�iĤ0ðτ�τ0ÞÛIðτ; τ0Þ, that Sl;k ρ̂s

� �
¼ El�k

0 SIl;k ρ̂s
� �� �

,

where E0ð�Þ :¼ e�iĤ0Δτð�ÞeiĤ0Δτ is the free evolution on T Hsð Þ and SIl;k is given by

Eq. (27) with Û substituted by ÛI .
A reasonable ansatz for the sequence ρ̂Φk


 �
k¼0;1;¼ ;N�1 of field states is the one

obtained by applying the analogous of Eq. (26) for obtaining the reduced density
matrix describing the field state; i.e., substituting, in Eq. (26), trΦ by trs and ρ̂Φkby
ρ̂sk ¼ ρ̂sðτkÞ. This, together with Eq. (26), would lead to a coupled evolution of
reduced density matrices ρ̂sðτkÞ and ρ̂ΦðτkÞ. In our case of interest, however, we
expect, on physical grounds, that after some transient time—related to the time
needed for the spins to exchange information via fields and the decay of the field’s
correlation functions—the field state with which the spins interact continues to be
well approximated by the initial stationary state, so that ρ̂Φk ¼ ρ̂Φ0 may provide a
good candidate sequence. Indeed, the description put forward here is the one
associated with the Markov approximation assumed in the context of open
quantum systems12,13. There, it is well established that such an approximation
furnishes a good description for the system’s reduced dynamics as long as the key
elements are satisfied, namely, (i) the environment role is played by a large system

(huge number of degrees of freedom) in a thermal state; (ii) the system-
environment coupling can be considered weak; (iii) the environment-correlation-
functions time decay must be much shorter than the system evolution time scale.

As a consequence of this approximation, Sl,k only depends on l− k and the
composition rule then demands

El�k
0 � SIl;k ¼ E0 � SIð Þl�k; ð28Þ

where, for sufficiently small coupling q, SIðρ̂sÞ :¼ SIkþ1;kðρ̂sÞ � 1� q2RΔτð Þρ̂s can
be read from the right-hand side of Eq. (10)—substituting ρ̂s0 by ρ̂s in Eqs. (11) and
(12); the linear transformation RΔτ, acting on T Hsð Þ, stands for the second-order
term of Eq. (10) for a given time lapse Δτ.

Summing up, the strategy of breaking down long-term evolution of the (open)
spin system into N limited time steps Δτ, for each of which Eq. (10) can be applied,
depends on the validity of Eq. (28) for some Δτ. In particular, for n time steps such
that Eq. (10) can still be used for the time lapse nΔτ, Eq. (28) implies

RnΔτ ¼ RΔτ þ E�1
0 � Rðn�1ÞΔτ � E0: ð29Þ

The linear transformations E0 and RΔτ acting on the space of density matrices
can be explicitly represented as 16 × 16 matrices once a basis for the spin states and
an ordering of indices of ρ̂s are chosen. For instance, one could use the product
states |±〉A|±〉B as elements of the basis—where ŝzM j± iM ¼ ± ð1=2Þj ± iM—, define

the density-matrix elements ραβα′β′ :¼ BhβjAhαjρ̂jα′iAjβ′iB, and then sort these
elements in a column matrix as

ρ̂ ¼ ρþþ
þþ ρþþ

þ� ρþþ
�þ ρþþ

�� ρþ�
þþ ¼ : ρ��

��
� �>

: ð30Þ
This would lead to a particular representation of E0 and RΔτ. The physical

conclusions are, of course, independent of the representation that is chosen.
It turns out that E0 and RΔτ assume simpler forms when density matrices are

expressed in the Bell basis, formed by the elements

jΨð± Þ
AB i :¼ 1ffiffiffi

2
p jþiAjþiB ± j�iAj�iBð Þ; ð31Þ

jΦð± Þ
AB i :¼ 1ffiffiffi

2
p jþiAj�iB ± j�iAjþiBð Þ: ð32Þ

In this representation, E0 is diagonal—as in the product-state basis—and RΔτ is
“almost diagonal”: all but 32 (out of the 240) off-diagonal terms vanish. In

addition, one can explicitly check that the part of RΔτ associated with ĈðþÞ
ðMNÞ and

D̂ð�Þ
ðMNÞ commutes with the free evolution E0, which is not the case for the part

associated with Ĉð�Þ
ðMNÞ and D̂ðþÞ

ðMNÞ.

Considering that the Feynman correlators appearing in Eq. (10) decrease fast
enough for ξ≫ d, one can verify that for a (limited) Δτ≫ J−1, d, Eq. (10) assumes
the asymptotic form

eiĤ0Δτ ρ̂sðτÞe�iĤ0Δτ 	Δτ
J�1 ;d
ρ̂s0 �

q2

2 Δτ
P

M;N2fA;Bg
iπ~GMN ðJ=2ÞĈ

ðþÞ
ðMNÞ

n

�PJ=2 i~GMN


 �
D̂ð�Þ
ðMNÞ

o
þH:c:þOðq3Þ;

ð33Þ

where ~GMN ðJ=2Þ and PJ=2½i~GMN � are defined through Eqs. (15) and (16). Therefore,
in this regime, RΔτ is linear in Δτ, RΔτ≡ ΔτR0—see Eq. (14)—and commutes with
the free evolution E0 (see remarks above). This is enough to guarantee that Eq. (29)
is satisfied and, thus, establish that for sufficiently small q, the long-term evolution
of the reduced spin system is given by

ρ̂sðτN Þ ¼ SN;0 ρ̂s0
� �

¼ e�iĤ0NΔτ e�q2R0NΔτ ρ̂s0

� �
eiĤ0NΔτ : ð34Þ

Decaying modes and related decay rates of the spin system. Here, we present
the eigenvalues λk and eigenmatrices ρ̂k of the linear operator R0, appearing in the
long-term evolution above, in terms of i~GMNðJ=2Þ, PJ=2½i~GMN �, and the Bell states
defined in Eqs. (31) and (32). First, we define the following real quantities:

α ±
s :¼ π

2 Re i~GAAðJ=2Þ

 �

þ Re i~GBBðJ=2Þ

 �
 �

± 1
2 Im PJ=2 i~GAA


 �n o
þ Im PJ=2 i~GBB


 �n oh i
;

ð35Þ

Δα ±
s :¼ π

2 Re i~GAAðJ=2Þ

 �

� Re i~GBBðJ=2Þ

 �
 �

± 1
2 Im PJ=2 i~GAA


 �n o
� Im PJ=2 i~GBB


 �n oh i
;

ð36Þ

α±
i :¼ πRe i~GABðJ=2Þ


 �
± Im PJ=2 i~GAB


 �n o
; ð37Þ

β±
s :¼ π

2 Im i~GAAðJ=2Þ

 �

þ Im i~GBBðJ=2Þ

 �
 �

± 1
2 Re PJ=2 i~GAA


 �n o
þ Re PJ=2 i~GBB


 �n oh i
;

ð38Þ

Sk+1,k

ρ^(τk+1)

ρ^S(τk+1)
ρ^S(τk)

ρ^s(τk)⊗ρ^Φk

trΦ
trΦ

⊗ρ^Φk
⊗ρ^Φk+1

U(τk+Δτ,τk)
∧

U(τk+Δτ,τk)
∧ρ^(τk)

( s⊗ Φ)

( s)

Fig. 7 Markovian regime and the evolution of the reduced density operator.
This is a schematic representation of the condition for the validity of the
Markovian regime for the evolution of the open spin system. The full
(unitary) evolution in the space of trace-class operators describing the
universe, T (Hs⊗HΦ), must induce discrete dynamical maps Sk+1,k on the
space of trace-class operators describing the spin system, T (Hs), in such a
way that, for m≥ l≥ k, Sm,l ⋅ Sl,k= Sm,k (semigroup property)
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Δβ±
s :¼ π

2 Im i~GAAðJ=2Þ

 �

� Im i~GBBðJ=2Þ

 �
 �

± 1
2 Re PJ=2 i~GAA


 �n o
� Re PJ=2 i~GBB


 �n oh i
;

ð39Þ

β±
i :¼ πIm i~GABðJ=2Þ


 �
±Re PJ=2 i~GAB


 �n o
; ð40Þ

from which all i~GMNðJ=2Þ and PJ=2 i~GMN


 �
can be reconstructed. Also, let r0, r± be

the roots of the polynomial

PðrÞ :¼ r3 � 2ðα�s þ 2αþs Þr2 þ 4 ðαþs Þ
2 þ 2α�s α

þ
s þ ðβ�i Þ

2 � Δα�s Δα
þ
s


 �
r

� 8α�s ðαþs Þ
2 þ ðβ�i Þ

2
 �
þ 8αþs Δα

�
s Δα

þ
s ;

ð41Þ

ordered, by convention, in such a way that they are continuous functions of
Δαþs Δα

�
s and, for small enough Δαþs Δα

�
s , r0 � 2α�s þ OðΔαþs Δα�s Þ,

r± � 2ðαþs ± iβ�i Þ þ OðΔαþs Δα�s Þ. Then, the eigenvalues and eigenmatrices are:

λ1 ¼ 0; ð42Þ

ρ̂1 ¼ 1
2 ðαþs Þ2�ðαþi Þ

2þαþs α�s �αþi α
�
i½ � ðαþs Þ

2 � ðαþi Þ
2
 �

jΨðþÞ
AB ihΨ

ðþÞ
AB j þ jΨð�Þ

AB ihΨ
ð�Þ
AB j

� �n
þðαþs þ αþi Þðα�s � α�i ÞjΦ

ð�Þ
AB ihΦ

ð�Þ
AB j þ ðαþs � αþi Þðα�s þ α�i ÞjΦ

ðþÞ
AB ihΦ

ðþÞ
AB j
o
;

ð43Þ

λ2 ¼ 2αþs þ α�s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2 þ 4αþi ðαþi þ α�i Þ
q

; ð44Þ

ρ̂2 ¼ jΨðþÞ
AB ihΨ

ðþÞ
AB j þ jΨð�Þ

AB ihΨ
ð�Þ
AB j � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2þ4αþi ðα
þ
i þα�i Þ

p
�α�s

2αþi

� �
jΦðþÞ

AB ihΦ
ðþÞ
AB j

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2þ4αþi ðα
þ
i þα�i Þ

p
�α�s

2αþi

� �
jΦð�Þ

AB ihΦ
ð�Þ
AB j;

ð45Þ

λ3 ¼ 2αþs þ α�s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2 þ 4αþi ðαþi þ α�i Þ
q

; ð46Þ

ρ̂3 ¼ jΨðþÞ
AB ihΨ

ðþÞ
AB j þ jΨð�Þ

AB ihΨ
ð�Þ
AB j � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2þ4αþi ðα
þ
i þα�i Þ

p
þα�s

2αþi

� �
jΦðþÞ

AB ihΦ
ðþÞ
AB j

� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα�s Þ

2þ4αþi ðα
þ
i þα�i Þ

p
þα�s

2αþi

� �
jΦð�Þ

AB ihΦ
ð�Þ
AB j;

ð47Þ

λ4 ¼ 2α�s ¼ λ5; ð48Þ

ρ̂4 ¼ jΨðþÞ
AB ihΨ

ðþÞ
AB j � jΨð�Þ

AB ihΨ
ð�Þ
AB j; ð49Þ

ρ̂5 ¼ ijΨðþÞ
AB ihΨ

ð�Þ
AB j � ijΨð�Þ

AB ihΨ
ðþÞ
AB j; ð50Þ

λ6 ¼ r0; ð51Þ

ρ̂6 ¼ jΨðþÞ
AB ihΨ

ð�Þ
AB j þ jΨð�Þ

AB ihΨ
ðþÞ
AB j þ 2Δα�s

jΦðþÞ
AB ihΦ

ð�Þ
AB j

r0 � 2 αþs þ iβ�i
� �þ jΦð�Þ

AB ihΦ
ðþÞ
AB j

r0 � 2 αþs � iβ�i
� �

" #
; ð52Þ

λ7 ¼ αþs þ α�s � αþi þ iðβþs � β�s þ β�i Þ ¼ λ�8 ¼ λ9 ¼ λ�10; ð53Þ

ρ̂7 ¼ jΨð�Þ
AB ihΦ

ð�Þ
AB j ¼ ρ̂y8; ð54Þ

ρ̂9 ¼ jΨðþÞ
AB ihΦ

ð�Þ
AB j ¼ ρ̂y10; ð55Þ

λ11 ¼ αþs þ α�s þ αþi þ i βþs � β�s � β�i
� �

¼ λ�12 ¼ λ13 ¼ λ�14; ð56Þ

ρ̂11 ¼ jΨð�Þ
AB ihΦ

ðþÞ
AB j ¼ ρ̂y12; ð57Þ

ρ̂13 ¼ jΨðþÞ
AB ihΦ

ðþÞ
AB j ¼ ρ̂y14; ð58Þ

λ15 ¼ r�; ð59Þ

ρ̂15 ¼ Δαþs jΨðþÞ
AB ihΨ

ð�Þ
AB j þ jΨð�Þ

AB ihΨ
ðþÞ
AB j

h i
þ 2Δαþs Δα

�
s

jΦðþÞ
AB ihΦ

ð�Þ
AB j

r� � 2ðαþs þ iβ�i Þ
þ jΦð�Þ

AB ihΦ
ðþÞ
AB j

r� � 2ðαþs � iβ�i Þ

" #
;

ð60Þ

λ16 ¼ rþ; ð61Þ

ρ̂16 ¼ Δαþs jΨðþÞ
AB ihΨ

ð�Þ
AB j þ jΨð�Þ

AB ihΨ
ðþÞ
AB j

h i
þ 2Δαþs Δα

�
s

jΦðþÞ
AB ihΦ

ð�Þ
AB j

rþ � 2ðαþs þ iβ�i Þ
þ jΦð�Þ

AB ihΦ
ðþÞ
AB j

rþ � 2 αþs � iβ�i
� �

" #
:

ð62Þ
We note that in case Δαþs Δα

�
s ¼ 0—which encompasses both scenarios

analyzed in this work (equal and different spins’ proper accelerations)—Eqs. (51),
(52), (59)–(62) can be conveniently reduced to λ6 ¼ 2α�s ,

ρ̂6 ¼ jΨðþÞ
AB ihΨ

ð�Þ
AB j þ jΨð�Þ

AB ihΨ
ðþÞ
AB j, λ15 ¼ 2ðαþs � iβ�i Þ ¼ λ�16,

ρ̂15 ¼ jΦð�Þ
AB ihΦ

ðþÞ
AB j ¼ ρ̂y16.

Note that the “mode” associated with the null eigenvalue, ρ̂1—which gives the
final equilibrium state in the long-term evolution of the spin system; see Eq. (17)—
is diagonal in the Bell basis. Therefore, regardless the form of the Feynman
correlator GMN—provided Re(λk≠1) > 0—the spin system evolves to a statistical
mixture of Bell states, with populations which depend on the specific form of GMN.

Notice from Eq. (43), however, that jΨð± Þ
AB i are equally populated regardless the

form of GMN, which means that the equilibrium state is also a statistical mixture of

the separable states |+〉A|+〉B and |−〉A|−〉B. The same is not true for jΦð± Þ
AB i:

depending on GMN, the final equilibrium state may preserve correlations between |
+〉A|−〉B and |−〉A|+〉B. These results can be summarized as follows: in general, the
spin system will loose coherence in any basis which diagonalizes, simultaneously,

the free Hamiltonian Ĥ0 and the total spin Ŝ
2
:¼

P
j2fx;y;zg

ŝjA þ ŝjB

� �2
.

Transformed Feynman correlators and their principal values. Here, we calcu-
late the quantities i~GMN and Pa½i~GMN � which completely determine the long-term
evolution of the spin system through Eqs. (17) and (35)–(62). Treating first the case
of spins with the equal proper accelerations, Eq. (19) leads to

σðxA; x′AÞ ¼ σðxB; x′BÞ ¼ � 4
a2

sinh
aξ
2

� �� �2
; ð63Þ

σ xA; x
′
B

� �
¼ σ xB; x

′
A

� �
¼ � 4

a2
sinh

aξ
2

� �� �2
þd2; ð64Þ

where ξ= τ− τ′. Substituting these expressions into Eq. (18) and using that
iGMN(ξ)= θ(ξ)W(xM, x′N)+ θ(−ξ)W(x′N, xM)—where θ(ξ) is the Heaviside step
function—we obtain, using Eqs. (15) and (16), the quantities

i~GAAðωÞ ¼ i~GBBðωÞ ¼
1
8π2

ωcoth
πω

a

� �
� i

lim

ε ! 0þ
1
ε

� �
; ð65Þ

i~GABðωÞ ¼
sin 2ω

a sinh�1 ad
2

� �� �
4π2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2d2

p coth
πω

a

� �
� icot

2ω
a
sinh�1 ad

2

� �� �� �
: ð66Þ

The complex infinite in Eq. (65) is a consequence of the “too-singular”
(ultraviolet) behavior of GMM(ξ) at the vertex of the light cone. One could
“smooth” this singularity by smearing out the position of the spins. However, this is
not necessary for our purposes since it does not affect any physical result [notice,
from Eqs. (35)–(40) that this divergence only contributes—equally—to β±

s , which,
by their turn, only appear in Eqs. (53) and (56), in such a way that the divergences
cancel out]. Then, with the help of Eq. (4.115.8) of ref. 14, we can calculate
PJ=2 i~GAA


 �
¼ PJ=2 i~GBB


 �
and PJ=2 i~GAB


 �
—the former being obtained from the

limit d→ 0+ of the latter:

PJ=2 i~GAA


 �
¼ PJ=2 i~GBB


 �
¼ J

8π2
� lim

ε!0þ
lnεþ i

π

2

� �
; ð67Þ

PJ=2 i~GAB


 �
¼ 1

4π2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2d2

p F
J
2a

; sinh�1 ad
2

� �� �
þ iπsin

J
a
sinh�1 ad

2

� �� �� �
;

ð68Þ
where

Fðx; yÞ :¼ 1
x þ πcos 2xyð Þcoth πxð Þ � 2x

P1
n¼1

e�2ny

n2þx2

¼� 1
x þ πcos 2xyð Þcoth πxð Þ � Re i e2ixyBe�2y 1þ ix; 0ð Þf g

ð69Þ

and Bzðx; yÞ :¼
R z
0dt t

x�1ð1� tÞy�1 is the incomplete Euler β function. Again, a
divergence related to the singular behavior of GMM(ξ) at ξ= 0 appears in Eq. (67).
This time, however, it is not obvious that this divergence will bear no consequence
on physical results. And in fact, although the main features of the spins’ evolution
(the final equilibrium state and relaxation/decoherence time scales) are completely
oblivious to such a divergence, some transient observables (e.g., the frequency of
oscillation of some decaying modes) do depend on the real part of PJ=2 i~GMM


 �
[see,

again, Eqs. (38), (53), and (56)]. The equations above completely determine λk and
ρ̂k appearing in the long-term evolution of the spin system in the case of equal
proper accelerations—see Eqs. (17) and (35)–(62).
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In the case of spins with different proper accelerations, substituting the spins’
worldlines into Eq. (19), Eqs. (63) and (64) get replaced by:

σ xA; x
′
A

� �
¼

σ xB; x
′
B

� �
ð1þ adÞ2

¼ � 4
a2

sinh
aξ
2

� �� �2
; ð70Þ

σ xA; x
′
B

� �
¼ σ xB; x

′
A

� �
¼ � 4ð1þ adÞ

a2
sinh

aξ
2

� �� �2
þd2: ð71Þ

Applying the same procedure above to these results (recalling that u0A ¼ 1 and
u0B ¼ 1=ð1þ adÞ), we obtain

i~GAAðωÞ ¼ i~GBBðωÞ ¼
1
8π2

ωcoth
πω

a

� �
� i lim

ε!0þ

1
ε

� �
; ð72Þ

i~GABðωÞ ¼
ð1þ adÞsin 2ω

a sinh�1 ad
2
ffiffiffiffiffiffiffiffi
1þad

p
� �� �

4π2dð2þ adÞ coth
πω

a

� �
� icot

2ω
a
sinh�1 ad

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ad

p
� �� �� �

;

ð73Þ

PJ=2 i~GAA


 �
¼ PJ=2 i~GBB


 �
¼ J

8π2
� lim

ε!0þ
lnεþ i

π

2

� �
; ð74Þ

PJ=2 i~GAB


 �
¼ ð1þ adÞ

4π2dð2þ adÞ ´ F
J
2a

; sinh�1 ad

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ad

p
� �� �

þ iπsin
J
a
sinh�1 ad

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ad

p
� �� �� �

;

ð75Þ
where F is still given by Eq. (69). Again, these quantities determine all the
eigenvalues λk and eigenmatrices ρ̂k which govern the long-term evolution of the
spin system, now in the case of different proper accelerations.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Numerical codes used to generate figures can be made available from the corresponding
author upon reasonable request.

Received: 27 September 2018 Accepted: 23 April 2019

References
1. Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).
2. Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892

(1976).
3. Crispino, L. C. B., Higuchi, A. & Matsas, G. E. A. The Unruh effect and its

applications. Rev. Mod. Phys. 80, 787–838 (2008).
4. Unruh, W. G. & Wald, R. M. Information loss. Rep. Prog. Phys. 80, 092002

(2017).
5. Anastopoulos, C. & Savvidou, N. Coherences of accelerated detectors and the

local character of the Unruh effect. J. Math. Phys. 53, 012107 (2012).
6. Buchholz, D. & Verch, R. Macroscopic aspects of the Unruh effect. Class.

Quantum Gravity 32, 245004 (2015).
7. Tolman, R. C. On the weight of heat and thermal equilibrium in general

relativity. Phys. Rev. 35, 904–924 (1930).
8. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod.

Phys. 59, 1–85 (1987).

9. d’ Espagnat, B. Conceptual Foundations of Quantum Mechanics (Perseus
Books, Advanced Book Program, 1999).

10. Modak, S. K., Ortíz, L., Peña, I. & Sudarsky, D. Black hole evaporation:
information loss but no paradox. Gen. Relat. Gravit. 47, 120 (2015).

11. Weldon, H. A. Thermal green functions in coordinate space for massless
particles of any spin. Phys. Rev. D 62, 056010 (2000).

12. Weiss, U. Quantum Dissipative Systems 4th edn (World Scientific, Singapore,
2012).

13. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford
University Press, New York, 2007).

14. Gradshteyn, I. S. & Ryzhik, I. M. Table of Integrals, Series, and Products 6th
edn (Academic Press, San Diego, 2000).

Acknowledgements
C.A.U.L. acknowledges full financial support from São Paulo Research Foundation
(FAPESP) through Grant No. 2012/24728-0. F.B. is supported by the Instituto Nacional
de Ciência e Tecnologia—Informação Quântica (INCT-IQ). J.A.H. was supported by
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant Nos.
307548/2015-5 and 312352/2018-2, and FAPESP, Grant Nos. 2015/23849-7 and 2016/
10826-1. D.A.T.V. acknowledges partial support from FAPESP Grant No. 2013/12165-4.
D.A.T.V. also thanks George Matsas and André Landulfo for discussions in the early
stages of this work. The authors are also thankful to FAPESP for full financial support
regarding the publishing charges related to this article, through Grant No. 2019/12862-3.

Author contributions
F.B., J.A.H., and D.A.T.V. devised the scenario in which to concretely analyze the Unruh
effect for extended systems. C.A.U.L., F.B., J.A.H., and D.A.T.V. participated in the
discussions and analytical calculations. D.A.T.V. performed the numerical calculations
and fabricated the figures. F.B., J.A.H., and D.A.T.V. participated in the writing of the
article.

Additional information
Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Robert B. Mann, Sujoy
Modak, and other anonymous reviewer(s) for their contribution to the peer review of
this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10962-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3030 | https://doi.org/10.1038/s41467-019-10962-y | www.nature.com/naturecommunications 11

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Probing the Unruh effect with an accelerated extended system
	Results
	The setup
	Static spins’ arrangements in static field states
	Uniformly accelerated spins in the vacuum
	Spins with equal proper accelerations
	Spins with different proper accelerations

	Discussion
	Methods
	Validity of the Markovian regime
	Decaying modes and related decay rates of the spin system
	Transformed Feynman correlators and their principal values

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




