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Abstract
High-throughput phenotyping (HTP) has enabled the acquisition of vast
amounts of data. Therefore, finding the most informative phenological stage(s)
and high-throughput traits could lead to significant optimization ofHTP-assisted
selection. An investigation as to when phenotypic data should be collected and
how it should be processed from unmanned aerial system (UAS) imagery for the
optimization and assessment of two primary traits in grain sorghum [Sorghum
bicolor (L). Moench], namely, grain yield and plant health (based on anthrac-
nose scores) was conducted. By evaluating multiple flight dates across the grow-
ing season via multispectral UAS-based imagery, a set of scenarios composed of
combinations of flight dates and vegetation indices were constructed for analy-
sis. In this sense, results showedno increase in predictive abilitywhen combining
multiple vegetation indices. Hence, using only an index with a higher predictive
ability (e.g., normalized difference vegetation index (NDVI) or modified simple
ratio (MSR) for plant healthwith 0.75; and any tested index but chlorophyll index
(CIg) for grain yield with ∼0.55) is recommended. Likewise, the combining of
multiple flights did not result in a significant increase in predictive ability for
either primary trait. Thus, we observed that a single flight for each trait (e.g., 121 d
after sowing with 0.81 for plant health; 104 d after sowing with 0.59 for grain
yield) was optimal. Concerning, the predictive algorithms examined, partial least
squares regression (PLSR) and neural network, results were similar, with PLSR
generally outperforming. In addition, we discuss our findings from an applica-
tion standpoint of a field-based breeding program and suggest additional opti-
mization options.

Abbreviations: AUDPC, area under the disease progress curve; CIg, chlorophyll index; CIre, red-edge chlorophyll index; DAS, days after sowing; GY,
grain yield; HTP, high-throughput phenotyping; ML, machine learning; MSR, modified simple ratio; MSRre, red-edge modified simple ratio; NDVI,
normalized difference vegetation index; NDVIre, red-edge normalized difference vegetation index; PLSR, partial least squares regression; UAS,
unmanned aerial system.
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1 INTRODUCTION

Given the advancements in plant genotyping during the
last decade, plant phenotyping is now the limiting factor
in the ability to determine the genetic control of impor-
tant phenotypic traits (Araus & Cairns, 2014). This fact
has generated interest in determining how compensa-
tion for the lack of high-quality phenotypic information
can be obtained (Cobb, DeClerck, Greenberg, Clark, &
McCouch, 2013). High-throughput phenotyping or simply,
phenomics, has thus been deployed to measure features of
plants (Araus & Cairns, 2014).
Vegetation indices (band ratios) collected with HTP can

be used as secondary traits for indirect selection of main or
primary traits (e.g., grain yield [GY]). This indirect selec-
tion is based on specific features (e.g., biomass via NDVI;
chlorophyll content via a CIg) that compose agronomi-
cally relevant traits (Li & Shi, 2018). In sorghum [Sorghum
bicolor (L.) Moench], multiple indices have been shown to
be correlated with overall plant health (Pugh et al., 2018;
Stanton et al., 2017), GY (Pugh et al., 2018; Shafian et al.,
2018; Stanton et al., 2017), leaf area index (Shafian et al.,
2018), senescence (Potgieter et al., 2017), fractional vegeta-
tion cover (Shafian et al., 2018), biomass yield, and chloro-
phyll and nitrogen content (Li & Shi, 2018).
The response of an organism to a set of multidimen-

sional exogenous and endogenous signals that occur in
an integrated way throughout its development is termed
the phenome (Cobb et al., 2013), which is highly condi-
tional and dynamic. Consequently, the association of pri-
mary and secondary traits throughout the life cycle of a
plant depends on a series of predictable and unpredictable
events. Gene expression is temporal; canopy features and
their genetic control change during crop development
(Feng et al., 2017). Furthermore, singular events such as
droughts can also change this relationship (Shi et al., 2017).
Both predictable and unpredictable events condition traits
that can be captured by HTP platforms with high tempo-
ral resolution. However, with higher temporal resolution,
there is an expected increase in the redundancy of infor-
mation along with the need for better storage and process-
ing equipment to handle the astonishing amount of newly
generated data. This raises questions on the usefulness of
multiple measures based on the complementarity of sec-
ondary traits at multiple phenological stages and its impli-
cations for understanding or predicting primary complex
traits (Araus & Kefauver, 2018).
Sorghum figures in the list of the most important grain

crops worldwide along with rice (Oryza sativa L.), maize
(Zea mays L.), barley (Hordeum vulgare L.), and wheat
(Tritcum aestivum L.) (FAO, 2011). Hence, sorghum breed-
ing is an essential approach towards food security. In
this sense, GY and anthracnose resistance are two com-

Core Ideas

∙ Optimization of grain yield and plant health
high-throughput phenotyping was possible.

∙ Combining flights or vegetation indices did not
increase predictive ability of primary traits.

∙ Using a single flight (121DAS) and a single index
(NDVI or MSR) maximized predictive ability.

∙ PLSR outperformed neural networks for pre-
dicting primary traits in most scenarios.

plex traits of high importance. Anthracnose (caused by
Colletotrichum sublineola Henn. ex Kabát & Bubák) is
a fungal disease that drastically affects plant health and
limits yield potential in specific environments (da Costa
et al., 2011), with resistance being oligogenic in nature
(da Costa et al., 2011; Patil et al., 2017). Symptoms com-
monly appear as circular lesions with red, orange, tan,
or purple margins around straw-colored centers (TeBeest,
Kirkpatrick, &Cartwright, 2004). Other symptoms include
premature defoliation, limitation of nutrient movement,
and reduction of kernel number and size (Mofokeng,
Shimelis, Laing, & Shargie, 2017). Grain yield is dependent
upon various characteristics and is polygenic in nature
(Boyles et al., 2017). As these traits are correlated (Pugh
et al., 2018), an identification of the appropriate phenolog-
ical stage(s) at which the signal of genotype effect is max-
imized for both would lead to significant improvement of
HTP-based selection. The relevant cost of phenotyping for
both traitsmakes it a suitable subject for a proof-of-concept
studyusingHTP, thus producing results of benefit to breed-
ers in the decision-making process.
The aims of this studywere to: (a) determine the optimal

number of evaluation dates needed to predict anthracnose
resistance (plant health) and GY in sorghum hybrids; (b)
assess the most appropriate (combination of) vegetation
indices based on multispectral imagery in the prediction
of anthracnose (plant health) and GY in sorghum hybrids;
(c) compare algorithms for the prediction of primary traits
(plant health and GY); and (d) verify the utility of these
tools for sorghum breeding programs.

2 MATERIALS ANDMETHODS

2.1 Germplasm and experimental
design

A set of 32 experimental and open-pedigree sorghum
hybrids were evaluated during the summer of 2018 in
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College Station, TX (30◦32′33.4″ N, 96◦25′46.6″ W) using
a randomized complete block design with three repli-
cations. Experimental plots were sown on 3 April (0 d
after sowing [DAS]) and consisted of two 5.5-m plots with
a row spacing of 0.762 m, an approximate sowing den-
sity of 200,000 plants per hectare. Fungal inoculations of
anthracnose were administered 45 DAS by placing infested
sorghum seeds within the plant whorl. Inoculate was pre-
pared according to the protocol presented by Pugh et al.
(2018). The trial was rainfed, and standard agronomic
practices for grain sorghum were used; these included
preplant fertilization at 0.1 Mg ha−1 and a seed-applied
fungicide to prevent early seedling death due to fungal
infections. Additional information on weather and cli-
mate conditions (Supplemental Figure S1) were obtained
using nasapower (Sparks, 2018) under the EnvRtype R
library (github.com/allogamous/EnvRtype). Traits evalu-
ated in this experiment hereafter are referred to as pri-
mary (ground truth or target) and secondary (surrogate or
remotely acquired).

2.2 Phenotyping of primary traits

Anthracnose severity was measured using the area under
the disease progress curve (AUDPC).To create theAUDPC,
anthracnose incidence and severity scores (0–9) were
recorded as the proportion of plants in a given plot show-
ing typical symptoms of anthracnose infection, i.e., grey
diseased tissue and or necrotic lesions (Pugh et al., 2018).
The utilized scale was adapted from the original to include
level 0 for no symptoms. Anthracnosemeasurements were
recorded on 11 different dates throughout the growing sea-
son (57, 65, 70, 77, 83, 91, 99, 104, 112, 119, and 127 DAS).
Anthracnose incidence and severity were then utilized to
estimate an anthracnose AUDPC score for the ith plot by
using

AUDPC𝑖 =

𝑛−1∑
𝑘=1

(
𝑦𝑘 + 𝑦𝑘+1

2

)
(𝑡𝑘+1 − 𝑡𝑘)

where n is the number of evaluations, k is the time
point, y is the score (disease intensity or incidence),
and t is the time at which the score was taken. The
higher the AUDPC value, the lower the disease resis-
tance. At the end of the field season when grain
moisture content was <15%, the GY was measured by
mechanically harvesting plots. For reporting purposes,
the GY (Mg ha−1) of all entries was adjusted to 13%
moisture.

2.3 Phenotyping of secondary traits

Image acquisition for vegetation index estimation was per-
formed using small unmanned aerial systems equipped
with a MicaSense RedEdge multispectral camera (blue:
475-nm center and 20-nm bandwidth; green: 560 and
20 nm; red: 668 and 10 nm; red edge: 71 and 10 nm; near
infrared: 840 and 40 nm) or a SlantRange 3P multispec-
tral camera (green: 560 and 40 nm; red: 655 and 35 nm; red
edge: 710 and 20nm; near-infrared: 830 and 110 nm).As dif-
ferent cameras were utilized, flight altitudes were adjusted
to obtain similar ground resolutions.Data captured byUAS
were collected across five separate dates beginning at 71
DAS and ending on 129 DAS (Table 1). The flight dates
were selected based on the expected and observed expres-
sion of disease symptoms. Images were collected±1–2 h of
solar noon, minimizing inconsistencies due to solar angle
and light scattering, and were subsequently radiometri-
cally calibrated for comparison across multiple flight dates
using reflectance panels and onboard illumination sen-
sors. Flights were projected to achieve image overlapping
of 75–80%. Additionally, ground control points were placed
around and at the middle of the study site and coordinates
recorded using post-processing kinematic (PPK) GPS for
precision georeferencing. Additional information regard-
ing data collection is presented in Table 1.
Data acquisition andmosaicking were performed by the

Unmanned Aerial System (UAS) Remote Sensing, Digi-
tal Agriculture Program at the Texas A&M AgriLife Cor-
pus Christi, TX, research and extension center. Image pro-
cessing was performed in Agisoft Photoscan Pro (Agisoft
LLC) Version 1.4.3 (Build 6529). Processing was comprised
of alignment and optimization of image position, genera-
tion of point clouds, and generation of digital surface mod-
els and orthomosaics. Mosaics were imported into QGIS
software (Version 3.02 Girona; QGIS Development Team,
2018) where plot boundaries were drawn using v.mkgrid, a
function of GRASS plugin (Version 7.4.0; GRASS Develop-
ment Team, 2018). A negative buffer of 0.15mwas drawn to
minimize neighboring effects of plot leaf overlap using the
internal Buffer function. Orthomosaics and plot shapefiles
were loaded and processed in the R environment (R Devel-
opment Core Team, 2011) using raster (Hijmans et al., 2015)
and sp (Pebesma & Bivand, 2005) packages to extract rele-
vant vegetation indices (Table 2). The index value is given
by the median of all pixel values in a given plot.

2.4 Phenotypic analysis

Primary and secondary traits were subjected to indi-
vidual analysis using linear mixed modeling for the
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TABLE 1 Days after sowing (DAS) on which flight was performed, accumulated growing degree days (GDD), estimated growth stage,
sensor, altitude (relative to ground), ground resolution of orthomosaic, number of ground control points (GCPs), and accuracy of five flights
over the sorghum trial. Ground resolution and accuracy were estimated in Agisoft Photoscan Pro averaged across all aligned images

DAS GDDa
Estimated growth
stageb Sensor Altitude

Ground
resolution

Number
of GCPs Accuracy

◦C m cm px−1 cm
71 974 booting/half bloom MicaSense

RedEdge
30.30 2.00 8 0.46

93 1412 soft dough/hard
dough

SlantRange 3P 49.60 1.96 8 0.73

104 1619 hard dough/
physiological
maturity

SlantRange 3P 50.90 2.01 8 1.75

121 1979 physiological
maturity

SlantRange 3P 50.00 1.98 8 0.60

129 2183 physiological
maturity

SlantRange 3P 50.80 2.01 7 0.89

aThe lower and upper temperature limits for sorghum growth were considered 10 and 37.7 ◦C, respectively.
bVanderlip and Reeves (1972) and Gerik, Bean, and Vanderlip (2003).

TABLE 2 Utilized vegetation indices based on green (ρG), red
(ρR), red edge (ρRE), and near-infrared (ρNIR) bands

Index Acronym Formula
Chlorophyll index CIg ρNIR

ρG
− 1

Red-edge chlorophyll
index

CIre ρNIR

ρRE
− 1

Modified simple ratio MSR ρNIR∕ρR−1√
ρNIR∕ρR+1

Red-edge modified simple
ratio

MSRre ρNIR∕ρRE−1√
ρNIR∕ρRE+1

Normalized difference
vegetation index

NDVI ρNIR−ρR

ρNIR+ρR

Red-edge normalized
difference vegetation
index

NDVIre ρNIR−ρRE

ρNIR+ρRE

Note. CIg from Gitelson et al. (2003); CIre from Gitelson, Viña, Ciganda,
Rundquist, and Arkebauer (2005); MSR from Chen (1996); MSRre from Wu
et al. (2008); NDVI from Rouse et al. (1973); NDVIre from Gitelson and Mer-
zlyak (1994). CIre, MSRre, and NDVIre are the red-edge counterparts of CIg,
MSR, and NDVI, respectively.

estimation of variance components and genotypic adjusted
means. Adjusted means were estimated using ordinary
least squares, while variance components were estimated
using restricted maximum likelihood/best linear unbiased
prediction (Henderson, 1975) with the ASReml-R package
(Version 3.0; Butler, Cullis, Gilmour, & Gogel, 2007). The
model structure was

𝐲 = 𝐗𝛃 +𝐇𝐫 + 𝐕𝐜 + 𝐓𝐠 + ε

where y is the vector of phenotypic observations (primary
or secondary traits); β is the vector of the fixed effects of
replication added to the overall mean—for the analysis of
secondary traits, the effect of flight date was also added
as fixed; r is the vector of row within replication and is
regarded as random [𝐫 ∼ 𝑁(0, 𝐼σ2𝑟 )]; c is the random effect
of column [𝐜 ∼ 𝑁(0, 𝐼σ2𝑐 )]; g is the vector of the adjusted
means for hybrids; ε is the vector for error [ε ∼ 𝑁(0, 𝐼σ2ε )];
and X, H, V, and T are the incidence matrices that relate
the independent vectors to the response variable y. Wald’s
and a likelihood ratio test were utilized for the assess-
ment of significance of fixed and random factors, respec-
tively. To obtain genotypic variance components, the pre-
vious model was run treating g as a random effect [𝐠 ∼

𝑁(0, 𝐼σ2𝑔)].
Genotypic correlations (rps) between primary and

secondary traits were estimated based on covariances
obtained by fitting bivariate models following the same
factor structure as the aforementioned model. Both treat-
ment and residual variances from the single-trait analysis
were fed as initial values to facilitate convergence. Once
covariances were obtained, genotypic correlations were
estimated using

𝑟ps =
covps√
σ2gp

√
σ2gs

where covps is the covariance between primary and sec-
ondary traits; σ2gp is the genotypic variance of the primary
trait; and σ2gs is the genotypic variance of the secondary
trait.
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2.5 Phenotyping quality and indirect
selection efficiency

To assess overall data quality, both repeatability and
experimental accuracy estimates for primary and sec-
ondary traits were estimated. Repeatability (R) estimates
were conducted at the plot level and on an entry-mean
level as

𝑝𝑙𝑜𝑡∶ 𝑅𝑖 =
σ2𝑔

σ2𝑔 + σ2ε

𝑒𝑛𝑡𝑟𝑦 𝑚𝑒𝑎𝑛∶ 𝑅m =
σ2𝑔

σ2𝑔 + σ2ε∕𝑟

where r is the number of replicates. Experimental accuracy
was estimated as

𝑟𝑔𝑔 =

(
1 −

1

1 + 𝑟CV2
𝑅

)1∕2

given that CVR = CVg/CVε, considering CV𝑔 =

(
√

σ2𝑔∕μ)100 and CVε = (

√
σ2ε ∕μ)100, where μ is the

grand mean of the trait (de Resende & Duarte, 2007).
Repeatabilities and genotypic correlations were

used to estimate the efficiency of indirect selection
using

RSsp

RSp
=

𝑅𝑖s ×
|||𝑟ps|||

𝑅𝑖p

where RSsp is the indirect response to selection; RSp is
the response to direct selection for the primary trait; Ris is
the plot level repeatability of the secondary trait; Rip is the
plot level repeatability of the primary trait; and rps is the
genotypic correlation between the primary and secondary
trait. Additionally, we estimated the coincidence of selec-
tion between direct and indirect selection based on rank-
ings. Tominimize the influence of the intensity of selection
(IS), values ranging from 10 to 50% (IS = {10, 15, . . . , 50%})
were utilized.

2.6 Phenomic prediction of primary
traits

To determine the utility of vegetation indices, flight dates,
and their specific combinations for predicting the primary
traits, three prediction structures were analyzed regarding
the utilization of the secondary traits:

F IGURE 1 Example structure of the utilized neural network.
The structure is composed of an input layer (predictors; black circles),
two hidden layers of three and two neurons (gray), and one output
layer (red). Input data (ST1, ST2, ST3, ST4) are the values of indices or
spectral bands of a plot. Output data (MT) is the network prediction
of a primary trait

1. A single index but with multiple flight dates as predic-
tors (6 indices× 31 combinations of dates× 2 traits= 372
scenarios);

2. Combinations of indices in a single flight date as predic-
tors (5 dates× 63 combinations of indices× 2 traits= 630
scenarios); and

3. Spectral bands as predictors in a single flight date (5
dates = 5 scenarios).

These structures generated multiple prediction scenar-
ios, for example, NDVI from flights at 71 and 129 DAS as
predictors of AUDPC, or NDVI and MSR from the last
flight as predictors of GY. The number of secondary traits
utilized for predicting the primary trait varied depending
on the use case. To accommodate these three structures,
predictionmethods included supervisedmachine-learning
(ML) algorithms and partial least squares (PLSR).
The ML method was a neural network with resilient

backpropagation and weight backtracking (RPROP algo-
rithm; Riedmiller & Braun, 1994) fit with the R library neu-
ralnet (Version 1.33; Fritsch andGuenther (2016)). The net-
work structure was created using the neuralnet function
and was composed of an input layer with varying num-
ber of neurons depending on the scenario, two hidden
layers of three and two neurons, and one output layer to
be compared with the ground-truth (Figure 1). Predictors
(input data) were used as the values of indices or spec-
tral bands. The number of hidden layers and their neurons
were selected based on preliminary tests (data not shown).
A reduction of error between iterations of <1% (threshold
of 0.01) as the stopping (convergence) criterionwas admin-
istered. The entire training population was used in a single
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batch. Parameters of the model were then optimized using
the compute function.
Partial least squares regression was also utilized for the

prediction of primary traits when secondary traits were
used as predictors. This method was implemented using
the pls (Version 2.7-0) R library (Mevik & Wehrens, 2015).
The regression model was applied as

𝐲 = 𝐖𝛂 + 𝛆

where y is the vector of observations of the primary trait;
α is the scalar/vector of regression coefficients of latent
variables; ε is the vector of errors [𝛆 ∼ 𝑁(0, 𝐼σ2ε )]; and W
is the weight matrix relating the primary and secondary
traits, which was obtained by the joint single value decom-
position of primary and secondary traits. To determine
the optimal number of latent variables (components),
a permutation algorithm was utilized as described by
Mevik andWehrens (2015) using the selectNcomp function.
These latent variables were utilized as predictors in the
validation.
Prior to neural network and PLSR analyses, the data

(primary and secondary traits) were normalized to a 0–1
range using R’s scale function. The assessment of relevant
parameters to the predictive ability of the models in each
scenario was completed using the following steps:

1. Plots were randomly allocated in training (75%; TS) and
validation populations (25%, VS).

2. The models were trained based on the training popula-
tion information.

3. Validation population plots 𝐲̂ = {𝑦̂1, … , 𝑦̂𝑛vs } were
predicted.

4. Predictive ability (𝑟𝑦̂𝑦; Pearson’s product-moment cor-
relation between predicted and observed values) was
estimated.

5. Steps 1–4 were replicated 10 times 𝑆𝑏
𝑖=1

= {𝑆1, … , 𝑆10}

with common training and validation populations
between scenarios, 𝑆𝑏 = {VS𝑏, TS𝑏}, where 𝑏 is the
replication number.

The effect of methods and scenarios on predictive abili-
ties was tested using analysis of variance, considering each
repetition of the validation as a replication. As the distri-
bution of predictive abilities (correlations) tended to be
skewed, they were normalized using Fisher’s z transfor-
mation, 𝑧 = (1∕2)ln[(1 + 𝑟𝑦̂𝑦)∕(1 − 𝑟𝑦̂𝑦)], prior to the anal-
ysis. Additionally, Tukey’s test was used to compare mean
predictive abilities of scenarios using the agricolae Version
1.2-8 library (De Mendiburu, 2016). Although the analyses
were performedwith transformed data, the results are pre-
sented with untransformed correlation values.

3 RESULTS

3.1 Exploratory analysis and data
description

Anthracnose symptoms were minimal until 70 DAS, after
which there was a visual linear increase in incidence
and severity until the last rating at 127 DAS (Figure 2).
On a plot basis, anthracnose ratings ranged from 0 (no
presence of disease) to 8 (severe disease) at 127 DAS. The
AUDPC values derived from these recordings varied from
0 to 304.50 with an overall mean of 100.25 (Supplemental
Figure S2). Grain yield ranged from 4.95 to 9.73, with
a mean of 7.66 Mg ha−1. Spatial dissemination of the
anthracnose progression can be observed from the
recorded anthracnose incidence/severity scores with time
(Supplemental Figure S3). Hence, preliminary phenotypic
analyses were carried out on primary and secondary traits
to assess the influence of correlated errors onmodel fitting
(Akaike criterion), which did not result in consistent
modeling improvements.
Minimum, mean, and maximum values for spectral

indices across all flights were, respectively: chlorphyll
index [CIg] (2.11, 4.19, and 6.10); red-edge chlorophyll
index [CIre] (0.81, 2.22, and 4.15);MSR (0.56, 1.86, and 3.18);
red-edge modified simple ratio [MSRre] (0.48, 1.06, and
1.67); NDVI (0.32, 0.68, and 0.85); and red-edge normal-
ized difference vegetation index [NDVIre] (0.29, 0.51, and
0.67). The amplitude of values increased during the crop
cycle (Supplemental Figure S2); however,most indices pre-
sented a decrease in mean value throughout the season.
This same pattern was not present for the red-edge-based
indices, where a meaningful increase from 71 to 93 DAS
was observed. Additionally, when this band was utilized
for index calculation, lower mean values were obtained in
each flight. The adjusted means of primary and secondary
traits is also reported (Supplemental Figure S4).

3.2 Factor significance testing and data
quality

Based on the results from the phenotypic analysis, geno-
typic variation existed for all traits (Supplemental Table
S1). While replication partitioned some variation from the
error term, the row and column factors were not signifi-
cant. Flight date, a secondary-trait-related source of varia-
tion, was significant for all evaluated indices.
Data quality informationwas assessed using the repeata-

bilities and experimental accuracy as metrics (Table 3).
Repeatabilities on a plot basis were moderate for GY and
high for anthracnose (AUDPC). Estimates of repeatability
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F IGURE 2 Boxplot of anthracnose scores on sorghum hybrids at 11 time points. Dark red points are the values of plots and solid black
points are the scores considered outliers

for secondary traits ranged from moderate to high, gen-
erally increasing in later stages of evaluation. Overall, the
red-edge-based indices had the highest values. Repeatabili-
ties on an entry-mean basis were high for both primary and
secondary traits. Experimental accuracy was high for pri-
mary and secondary traits regardless of flight date accord-
ing to the scale proposed by de Resende and Duarte (2007).

3.3 Indirect selection based on spectral
indices (secondary traits)

Multi-trait (bivariate) modeling revealed genotypic corre-
lations between primary and secondary traits (Figure 3).
Spectral indices were positively correlated to GY and
negatively correlated to AUDPC. Correlations of spectral
indices toAUDPC increased inmagnitude as the flight date
neared crop maturity. For GY, values were highest at 104
and 121 DAS and decreased thereafter. Maximum corre-
lations to AUDPC were observed at 121 DAS using NDVI
(−0.89) and to GY at 104 DAS (0.69) using the same index.
Genotypic correlations to AUDPC were generally higher
than those to GY, especially after 93 DAS. No index had
higher correlations with any primary trait across all mea-
sured flight dates, suggesting specific index × flight date
interactions. The genotypic correlation between GY and
AUDPC traits was −0.55.
Indirect selection using secondary traits appears to be

effective in some situations. For GY, CIg (129 DAS flight),
MSR, MSRre, NDVI, and NDVIre (121 DAS) resulted in
an indirect selection to direct selection efficiency ratio
≥1.00 (Table 4). For AUDPC, this was observed for CIre,
MSR, MSRre, NDVI, and NDVIre (121 DAS) and for MSR,
MSRre,NDVI, andNDVIre (129DAS) (Table 4). The coinci-
dence of selection presented distinct results depending on
flight× index combinations and selection intensity. Never-
theless, no combination of index and flight resulted in clear

superiority across all selection intensities (Supplemental
Figure S5).

3.4 Validation of prediction models

Predictive abilities obtained from the validation process
are presented by index (Supplemental Figure S6) and by
flight (Supplemental Figure S7) for primary traits. These
values were regarded as a response variable and modeled
in an analysis of variance with method, scenario (which
is combinations of indices or flights), index or flight, and
double and triple interactions as fixed explanatory vari-
ables (Table 5). For clarity purposes, double and triple
interactions are presented but not discussed in greater
detail due to the number of levels.
For the “by index” validation scheme, the method, sce-

nario, index, and method × index effects were statistically
determinant in their predictive ability for AUDPC. For
GY, similar factors were significant, in addition to the
method × scenario interaction. Overall predictive ability
means of indices varied from 0.62 to 0.75 for AUDPC and
from 0.50 to 0.55 for GY (Table 6). Tukey’s test revealed
that NDVI and MSR were the best indices for predicting
AUDPC, while CIg was the worst predictor. For GY, all
indices were statistically similar except for CIg, which had
the lowest predictive ability. Statistical differences for GY
were minimal for the tested scenarios, while more statis-
tical differences were observed for AUDPC (Supplemental
Table S2). It is possible that information from early flights
decreases predictive ability and should not be included
in the model. Regarding the prediction methods, PLSR
outperformed the machine learning method for predicting
both AUDPC and GY (Table 7).
In the “by flight” (Table 5) validation scheme, the

method, scenario, flight, and method × flight effects were
significant for the establishment of AUDPC predictive
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F IGURE 3 Genotypic correlation from bivariate mixed model
of primary (grain yield, GY; and anthracnose area under disease
progress curve, AUDPC) and secondary traits (chlorophyll index,
CIg; modified simple ratio, MSR; normalized difference vegetation
index, NDVI; red-edge chlorophyll index, CIre; red-edge modified
simple ratio, MSRre; and normalized difference vegetation index -
NDVIre) of sorghum hybrids across five flight dates (71, 93, 104, 121
and 129 d after sowing)

ability. For GY, flight and method × flight were the only
significant factors. Predictive ability means of flights for
GY ranged from 0.16 to 0.59, while for AUDPC, they varied
from −0.07 to 0.81 (Table 8). Tukey tests indicated that 121
and 104 DAS were the most useful in predicting AUDPC
and GY, respectively. Scenarios (combination of spectral
indices) examined resulted in statistically similar predic-
tive abilities, except CIg alone for AUDPC, which had the
lowestmean (Supplemental Table S3). Concerning the pre-
dictionmethod, PLSRwasmore effective than themachine
learning method for AUDPC but not for GY (Table 7).

4 DISCUSSION

4.1 Index development and assessment

Multiple scenarios were built to assess the optimum com-
binations of spectral indices and flight dates to predict
GY and AUDPC. The predictive abilities of scenarios with
either single or multiple indices were not different in their
explanation and prediction of either GY or anthracnose
resistance. This corroborates the findings of Li & Shi (2018)
on combinations of spectral indices for the prediction of
sorghum biomass. Despite being developed for specific
applications, the utilized spectral indices invariably target
common traits such as chlorophyll content (Babar et al.,
2006; Gitelson, Gritz, & Merzlyak, 2003, 2005), leaf area
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TABLE 4 Efficiency of indirect selection for hybrid sorghum grain yield (GY) and anthracnose area under the disease progress curve
(AUDPC) using vegetation indices calculated from five flights (71, 93, 104, 121 and 129 d after sowing). Bold values denote efficiencies ≥1

Index

GY AUDPC
71 93 104 121 129 71 93 104 121 129

CIg 0.22 0.70 0.96 0.99 1.02 0.16 0.56 0.72 0.78 0.88
CIre 0.40 0.80 0.93 0.99 0.90 0.17 0.65 0.84 1.01 0.99
MSR 0.20 0.64 0.98 1.03 0.98 0.15 0.59 0.85 1.02 1.01
MSRre 0.40 0.80 0.94 1.01 0.91 0.17 0.65 0.84 1.02 1.00
NDVI 0.19 0.64 0.97 1.03 0.99 0.14 0.61 0.84 1.01 1.02
NDVIre 0.39 0.79 0.95 1.03 0.93 0.18 0.65 0.84 1.03 1.00

Note. CIg, chlorophyll index; CIre, red-edge chlorophyll index; MSR, modified simple ratio; MSRre, red-edge modified simple ratio; NDVI, normalized difference
vegetation index; NDVIre, red-edge normalized difference vegetation index.

TABLE 5 Three-way analysis of variance on predictive abilities for area under the disease progression curve (AUDPC) and grain yield
(GY) using method (partial least squares regression and machine learning), scenario (indices and their combinations or flights and their
combinations), index or flight date, and their double and triple interactions

Source

By index By flight
Df AUDPCF GY df AUDPC GY

Method 1 4.21*** 6.88*** 1 0.93*** 0.04 NS
Scenario 30 6.73*** 1.02*** 62 0.10*** 0.01 NS
Index or flight 5 7.36*** 0.39*** 4 323.24*** 61.98***

Method × scenario 30 0.04 NS 0.13*** 62 0.01 NS 0.01 NS
Method × index or flight 5 0.10** 0.07* 4 0.46*** 0.16***

Scenario × index or flight 150 0.03 NS 0.02 NS 248 0.02 NS 0.01 NS
Method × scenario ×
index or flight

150 0.01 NS 0.01 NS 248 0.01 NS 0.01 NS

Residuals 3348 0.03 0.03 5670 0.03 0.03

Note. AUDPC and GY values are mean squares. NS, not significant at p < .05.
*p < .05.
**p < .01.
***p < .001.

TABLE 6 Tukey’s HSD test based on validation predictive
abilities for anthracnose area under the disease progress curve
(AUDPC) and grain yield (GY) using six spectral indices on
sorghum hybrids

Index AUDPC GY
NDVI 0.75 a 0.55 a
MSR 0.75 a 0.55 a
NDVIre 0.73 b 0.55 a
MSRre 0.72 b 0.54 a
CIre 0.72 b 0.54 a
CIg 0.62 c 0.50 b

Note. CIg, chlorophyll index; CIre, red-edge chlorophyll index; MSR, modified
simple ratio; MSRre, red-edge modified simple ratio; NDVI, normalized dif-
ference vegetation index; NDVIre, red-edge normalized difference vegetation
index. Values are the mean predictive ability of the index under the 31 combi-
nations of dates and 2 prediction methods.
Means followed by different letters are statistically different at the .05 proba-
bility level.

index (Chen& Street, 1995; Xie et al., 2018), biomass (Babar
et al., 2006; Rouse, Hass, Schell, & Deering, 1973), and
other health and yield component traits. These indices
have different saturation points (Wu, Niu, Tang, & Huang,
2008), with potentially different responses to optical and
geometrical properties (Chen & Street, 1995), sensitivity to
chlorophyll changes (Xie et al., 2018), and atmospheric and
environmental influences (Myneni & Asrar, 1994). How-
ever, they did not increase the predictive ability when
combined. In this study, indices were not complementary
under the utilized methods and algorithms.
Hence, the most parsimonious option is to identify the

single index that provides the higher predictive ability for
each primary trait. For AUDPC, statistical differences of
predictive abilities of indices were more common than for
GY. In validation, NDVI and MSR were superior for the
prediction of AUDPC. This is consistent with reports by
Pugh et al. (2018), who showed a strong linear relationship
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TABLE 7 Tukey’s HSD test based validation predictive abilities of anthracnose area under the disease progress curve (AUDPC) and grain
yield (GY) using two prediction methods (machine learning [ML] and partial least squares regression [PLSR]) on sorghum hybrids

By index By flight
Method AUDPC GY AUDPC GY
PLSR 0.73 a 0.57 a 0.57 a 0.49 a
ML 0.70 b 0.51 b 0.56 b 0.48 a

Note. Values are the mean predictive ability of the method under the 31 combinations of dates and 63 combinations of indices.
Means followed by different letters are statistically different at the .05 probability level.

TABLE 8 Tukey’s HSD test based on validation predictive
abilities for anthracnose area under disease progress curve
(AUDPC) and grain yield (GY) using five flights (71, 93, 104, 121, and
129 d after sowing [DAS]) on sorghum hybrids

Flight AUDPC GY
DAS
129 0.79 b 0.58 b
121 0.81 a 0.57 b
104 0.73 c 0.59 a
93 0.54 d 0.52 c
71 −0.07 e 0.16 d

Note. Values are themean predictive ability of the flight date under the 63 com-
binations of indices and 2 prediction methods.
Means followed by different letters are statistically different at the .05 proba-
bility level.

between NDVI and AUDPC scores. Huang et al. (2014)
compared a set of indices for monitoring disease in wheat
and found that NDVI and MSR were good at classifying
healthy and diseased leaves (accuracies of 83.6 and 82.9%,
respectively). Within the same species, NDVI has been
reported in quantitative trait loci mapping studies to be
associated with spot blotch (Kumar et al., 2016) and stripe
rust (Pretorius et al., 2017) resistance.
For GY, besides CIg, all indices presented similar predic-

tive abilities. This index had the lowest values despite its
higher genotypic correlation to the primary trait for two
flight dates (121 and 129 DAS). The relationship between
NDVI and GY in sorghum has previously been reported
(Pugh et al., 2018). Moreover, Shafian et al. (2018) found
NDVI to be the best predictor among a range of indices. In
maize, Torino, Ortiz, Fulton, Balkcom, and Wood (2014)
reported good results using NDVIre and CIre for predic-
tions of GY. Thus, examples of the robustness of these
indices at predicting GY with considerable ability are
present.
In this study, we used multiple well-known established

indices for the prediction of AUDPC and GY. Neverthe-
less, band values (by date) were also tested for the deter-
mination of their predictive ability of the evaluated pri-
mary traits (Supplemental Figure S8). The highest mean
for AUDPC (0.48 at 121 DAS in PLSR) and GY (0.57 at 129

DAS in neural networks) was lower than the best scenar-
ios presented when using indices (0.84 at 121 DAS using
NDVI and MSR in PLSR for AUDPC; 0.63 at 129 DAS
using MSRre in ML). Handcrafted indices resulted in bet-
ter prediction abilities, even though the utilized predic-
tion methods are able to internally reproduce their equa-
tions and explain the variation using band values. Studies
conducted on other crops have reported that hyperspec-
tral imagery was found to have better predictive abilities
with bands than with individual indices, suggesting that
index estimation leads to information loss (Aguate et al.,
2017; Montesinos-López et al., 2017). However, all bands
available to our research were utilized for index estima-
tion, which did not happen as reported in the aforemen-
tioned reports. Hence, additional studies in sorghumusing
hyperspectral data are warranted.
A series of secondary considerations can be drawn from

this study thatmay be useful for researcherswhenworking
with vegetation indices in grain sorghum: (a) plots should
have at least two rows due to high interplot leaf overlap
(Supplemental Figure S9A and S9B); (b) whenever geno-
type is an explanatory variable in a primary–secondary
trait correlation study (e.g., NDVI and GY), the number
of treatments should be large enough so non-causal
relationships are minimized; and (c) both panicles and
disease symptoms have lower index (e.g., NDVI) values
than healthy leaves for all tested indices (Supplemental
Figure S9C and S9D). Hence, the association of indices
with GY or AUDPC—an association between plant health
or vigor and yield or disease resistance—may be somewhat
compromised. Therefore, one could use further image
treatments and segmentation techniques (which was
not in the scope of our study) to improve the correlation
between primary traits and spectral indices.

4.2 On the best (combinations of) flight
date(s)

As shown above, prediction scenarios were built for deter-
mining the usefulness of remotely sensed temporal data
for predicting GY and AUDPC. Results suggest that com-
bining measurements of a spectral index from multiple
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flights does not result in a statistically significant increase
in predictive ability for both primary traits. Aguate et al.
(2017), working with hyperspectral data in maize, reported
that higher predictive abilities of GY were obtained when
data from all the time points (five flights) were combined.
Zhou et al. (2017), estimating GY in rice, also found that
combining flight dates resulted in increased correlation
estimates. To our knowledge, however, no other result is
available on the combination of dates using multispectral
imagery for sorghum hybrids.
Regarding the dynamics of spectral indices during

the crop cycle, the amplitude of their adjusted means
increased from the first to the last evaluation date (Sup-
plemental Figure S4). This behavior matches the disease
progress scores (Supplemental Figure S3). Nevertheless,
as genotypic variances for spectral indices respectively
increased throughout the growth cycle (Supplemental
Figure S10), the increment in genotypic correlations
between primary and secondary traits (Figure 3) resulted
from boosts in the genotypic covariance (Supplemental
Figure S11). Hence, as indirect selection relies on the
repeatability of the primary and secondary traits and their
covariance, better predictive abilities are expected at later
growth stages.
In this sense, our results suggest that 104 DAS for GY

and 121 DAS for AUDPC were the best dates to collect the
secondary traits for prediction. These findings corroborate
those of Pugh et al. (2018) for AUDPC yet contradict those
of Shafian et al. (2018) for GY. Shafian et al. (2018) reported
that index assessment at the flowering stage was the best
estimator for this trait. However, GY reduction is a known
symptom of anthracnose infection (Mofokeng et al., 2017).
Hence, stronger associations between GY and secondary
traits are expected when the widest range of disease resis-
tance levels are present (final stages). Finally, this study
used data from a single year and location. Given that envi-
ronment and genotype × environment interaction affect
anthracnose resistance (Patil et al., 2017), results will likely
vary from year to year. However, the field conditions in this
evaluation were consistent with a normal production year
(Supplemental Figure S1).

4.3 On the best prediction method

Partial least squares regression is the method of choice for
many remote sensing scientists due to its ability to deal
with highly correlated parameters such as spectral bands
and temporal data (Aguate et al., 2017; Thorp et al., 2015;
Weber et al., 2012). Recently, interest in ML has increased
in biological fields due to its ability to extract hidden pat-
terns and structures, learn from data sets, and adapt to
iteratively increase predictive ability (Angermueller, Pär-

namaa, Parts, & Stegle, 2016; Liakos, Busato, Moshou,
Pearson, & Bochtis, 2018). In this study, PLSR was gen-
erally more effective than ML in predicting both GY and
anthracnose incidence, and the best results were achieved
with single flight dates and indices. In these cases, PLSR
is equivalent to a conventional linear model. The supe-
riority of the benchmark model was also reported by
Montesinos-López, Montesinos-López, Gianola, Crossa,
and Hernández-Suárez (2018), for whom the ML method
was inferior to genomic best linear unbiased prediction.
Given that the accuracy of neural networks potentially
improves as the number of observations increases, addi-
tional studies with different parameters and higher num-
ber of observations should be completed to further eluci-
date the effective use of ML methods.

4.4 Application of remote sensing data
for plant breeding

The results presented here indicate that both GY and foliar
disease ratings (mostly due to anthracnose) can be esti-
mated with considerable accuracy using HTP traits. In
addition, we also demonstrated that the ability to select
depends on spectral indices and specific flight dates. How-
ever, the difference in mean predictive ability of GY from
the flights at 104 (best for GY) and 121 DAS (best for
AUDPC) was only 0.02. Thus, the prediction of both GY
and AUDPC using a single flight at 121 DAS and a single
index (NDVI orMSR) should suffice andwould potentially
increase selection efficiency. Ultimately, the user must
adjust the methodology so it is best utilized within their
breeding program. For example, one could carry indirect
selection at early stages if time (e.g., pre-flowering selec-
tion) is more relevant than predictive ability.
Increasing the rate of genetic gain is an important goal

of any breeding program. Indirect selection should be con-
sidered when it is faster or cheaper than direct selection.
In this study, the most predictive flight date (121 DAS)
combined with the best general indices (NDVI and MSR)
yielded selection efficiencies of ∼1.03 for GY and ∼1.02 for
AUDPC. In this situation, selection based on secondary
traits may lead to greater genetic gain than direct selection
on the primary trait. Additionally, further increases in the
efficiency of a breeding program may be achieved when
one considers the relative cost of HTP for phenotyping, the
advantage of earlier selection windows, reduction of sub-
jectivity in measurements, and its ability to exploit genetic
variability by increasing the effective size of the breed-
ing population (Araus, Kefauver, Zaman-Allah, Olsen, &
Cairns, 2018).
Further breeding inferences rely on the coincidence of

selection. In this study, there was a moderate correlation
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between AUDPC and GY (−0.55), and only a few hybrids
were best for AUDPC and GY at high selection inten-
sities (Supplemental Figure S12). Thus, while high yield
was associated with disease resistance, not all genotypes
with good disease resistance had high GY. Nonetheless, in
some situations there was a considerable coincidence of
direct and indirect selection for both traits, and the coin-
cidence increases as selection intensity decreases. This fol-
lows patterns similar to those previously presented regard-
ing genomic prediction studies (Galli et al., 2018; Matias,
Galli, Granato, & Fritsche-Neto, 2017). In this sense, spec-
tral indices may serve as a form of phenomic selection
where, after optimization, selection of hybrids could be
based on a series of remotely sensed traits associated with
breeding values in the same way that genomic selection is
applied to genotypes. Like genomic selection, phenomic
selection is likely more useful for eliminating undesir-
able genotypes than for selecting superior genotypes. Ulti-
mately, this study demonstrated it is possible to optimize
data collection and processing to increase the efficiency of
phenotyping in grain sorghum.
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