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Objetivos

Este projeto tem por objetivo identificar
e classificar diferentes tipos celulares
encontrados na medula Ossea, bem como
acompanhar a diferenciagédo celular, a fim de
encontrar possiveis marcacdes que levam ao
céancer.

Objetivos especificos

Acesso e busca de dados scRNA-seq,
0S quais sejam relevantes e no correto formato
para a anélise.

Selecdo e filtragem das células
relevantes para o estudo, por meio de
diferentes métodos de normalizagdo, controles
de qualidade e dimensionamento de dados.

Utilizacdo dos dados pré-processados
para separacdo das diferentes células em
distintos grupos, com base na variacdo de suas
expressodes génicas.

utilizacdo de diferentes marcadores a
fim de identificar quais sdo mais expressos e
atribuir uma pontuacdo com base no seu nivel
de expressao em cada célula pré selecionada.

Métodos e Procedimentos

Para a obtencdo de dados scRNA-seq
foi utilizado o banco de dados publico GEO
(Gene Expression Omnibus,
www.ncbi.nlm.nih.gov/geo/). Os dados
analisados sdo encontrados por meio do codigo

de acesso GSE120446, publicado em 26 de
setembro de 2018 sob o titulo de "Human Bone
Marrow Assessment by Single Cell RNA
Sequencing, Mass Cytometry and Flow
Cytometry". Os dados incluem
sequenciamentos de scRNA, citometria de
massa e citometria de fluxo de medulas 6sseas
de 20 doadores saudaveis e sao utilizados em
"Human bone marrow assessment by single-
cell RNA sequencing, mass cytometry, and flow
cytometry". Os dados de scRNA-seq utilizados
neste estudo foram baixados em formato TSV e
MTX, nos quais os barcodes e 0s genes séo
arquivos TSV e a matrix MTX.

Controle de qualidade: Antes
de realizar a andlise da expresséo dos genes, é
necessario garantir que todos os “barcodes”
(sequéncias de DNA utlizadas para
identificagdo) correspondam a células viaveis,
assim, o pré-processamentos dos dados brutos
foi realizado por meio do pacote Seurat em R.
Foram utilizados como parametros: o nimero
de genes Unicos em cada célula ou
nFeatures_RNA, no qual um um valor elevado
indica a presenga de “doublet” ou “multiplet”,
enquanto um valor baixo indica uma célula
morta ou um “droplet” vazio; e as fracdes de
genes mitocondriais, que podem indicar uma
contaminagcdo de DNA mitocondrial. Assim,
foram utilizados os parédmetros nFeatures_ RNA
> 200 e < 2500 e percent.mt < 8.

Normalizagdo: Apos a remocgdo das
células indesejadas, foi realizada a
normalizacdo dos dados a fim de reduzir a



29

DSIICUSP
redundancia dos dados e melhorar a
integridade dos  dados, seguida da

transformagdo em log por meio da fungéo
“LogNormalize” e da modificagdo linear com a
fungdo “ScaleData” que escala e centraliza os
conjuntos de dados ao alterar a expressado de
cada gene para que a expressdo média das
células seja 0, enquanto escala a expressao
para que a variacdo nas células seja 1, assim,
os dados sao dimensionados a fim de permitir
um melhor trabalho sem perder desempenho.

Visualizacdo: Para a visualizacdo da
expressdo dos genes, foi utilizada a reducado
dimensional linear em um grafico de Principal
Component Analysis (PCA), um processo que
converte um conjunto de diversos dados
relacionados em um conjunto de valores
variaveis linearmente ndo correlacionados nos
dados pré escalados. Para definir quantos
componentes devem ser incluidos no conjunto
de dados foi utilizada a fungao “JackStrawPlot”
que compara os valores de p para cada PC e
permitira a visualizagdo da queda de
significancia, sugerindo quais PCs capturam o
sinal verdadeiro, sendo selecionado 20 PCs.

Integragdo: A integracdo dos dados
de sequenciamento de RNA das medulas
Osseas foi realizada por meio do pacote Seurat
com as fungdes “FindintegrationAnchors” e
“IntegrateData”, as quais criam “ancoras” que
sdo conjuntos de células (uma em cada
dataset) que formam a base para a integracdo
dos dados realizada a seguir

Regresséao do ciclo celular: As
etapas de controle de qualidade e
normalizacdo ndo conseguem remover vieses
biolégicos como os efeitos do ciclo celular,
assim, foi realizada a remocédo desses efeitos
no transcriptoma por meio de uma simples
regressdo linear com o pacote Seurat. A partir
dos dados gerados, é realizada uma pontuacdo
e classificacdo da fase celular (G2M, S or G1)
de cada uma das células por meio da funcéo
“CellCycleScoring”, que utiliza uma lista de
marcadores de ciclo celular. Em seguida, é
realizada a regresséo linear por meio da funcéo
“ScaleData”, que modela a relagdo entre a
expressdo do gene e a pontuacdo das fases
G2M e S.

Agrupamento de células: Para
realizar o agrupamento de células, ou
clustering, empregou-se a funcéo
“FindNeighbors”, que determina os vizinhos

mais proximos de cada célula gerando um
grafico KNN e entdo constréi um grafico SNN,
calculando a sobreposicdo da vizinhanca entre
cada célula. Foi usada, ainda, a funcao
“FindClusters” que implementa o procedimento
realizando a mesma sequéncia de calculo dos
vizinhos mais proximos e construgdo de um
grafico SNN, porém esta fungdo contém um
pardmetro de resolucdo que define a
“‘granularidade” do cluster, aumentando o
namero de clusters. Por fim, a reducédo
dimensional foi realizada com a utilizacao de
técnicas como UMAP e tSNE, os quais séo
algoritmos que realizam uma redugdo de
dimensbes e geram uma projecao.

Expressdo e identificagdo de
células: Para encontrar marcadores de
expressdo diferencial foi utlizada a funcéo
“FindMarkers”, a qual compara as células e
automatiza o processo de clusterizagdo. Ela
retorna 0s genes marcadores, ou seja, 0S
genes mais expressos do cluster analisado em
comparacdo com os demais clusters e assim,
com base nesses genes, é possivel inferir o
tipo celular em questdo. Também foi utilizada a
visualizagdo de marcadores celulares ja
conhecidos por meio de diversos plots que o
pacote Seurat oferece, tais como o “Vinplot”,
que mostra distribuicdes de expressao entre os
clusters, e “FeaturePlot” que colore as células
de acordo com um recurso selecionado, como
um gene marcador.

Foi pretendido, ainda, o treino e
utilizacdo de um classificador de células por
meio do pacote Garnett em R. O pacote parte
de um arquivo com os tipos celulares e seus
respectivos marcadores, e em seguida, treina o
classificador ao realizar uma comparacdo com
células por meio da funcéo
“train_cell_classifier”.

Resultados

As visualizacBes e plots gerados
revelam uma clara diferenciacdo ou
“amadurecimento” celulares em todos os tipos
presentes na medula éssea. Além de também
mostrar as grandes semelhancas entre células
T CD8 e NKs, 0 que torna sua distincdo muito
dificil.

A realizacdo da regressdo dos efeitos
de ciclo celular gerou um impacto negativo nas
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analises de downstream, o que pode estar
associado com a importancia dos genes
envolvidos no ciclo celular com a identificagédo
de populagdes de células em proliferacao.

ot

Figura 1: Visualizagao dos dados integrados das
amostras de medulas 6sseas por meio da redugdo
dimensional UMAP

Conclusdes

A andlise por scRNA-seq das medulas
Osseas nos revela que células T, assim como
os demais tipos celulares encontrados, sofrem
um intenso processo de diferenciacdo, em que
ha expressao de genes diferentes ao longo de
seu amadurecimento. Assim, as células
presentes no microambiente tumoral podem
apresentar expressao diferencial e fatores de
transcricdo incomuns, o que nos auxilia no
melhor entendimento do desenvolvimento das
células T CD8, além de abrir portas para novas
terapias ao reconhecer esses alvos.

Entretanto, essas andlises também
requerem uma grande adaptabilidade para
identificar e reconhecer o0s diferentes
processamentos de dados e aplicacdo
conforme o tipo celular estudado, por exemplo,
a néo utilizacao de regresséo por ciclo celular.

Por fim, o reconhecimento de
diferentes marcadores celulares pode auxiliar
na identificagcdo de mais tipos celulares, além
de ampliar o conhecimento de marcadores
relacionados com a exaustédo celular.
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