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Objetivos 

Este projeto tem por objetivo identificar 
e classificar diferentes tipos celulares 
encontrados na medula óssea, bem como 
acompanhar a diferenciação celular, a fim de 
encontrar possíveis marcações que levam ao 
câncer.  

Objetivos específicos 

Acesso e busca de dados scRNA-seq, 
os quais sejam relevantes e no correto formato 
para a análise. 

 Seleção e filtragem das células 
relevantes para o estudo, por meio de 
diferentes métodos de normalização, controles 
de qualidade e dimensionamento de dados. 

Utilização dos dados pré-processados 
para separação das diferentes células em 
distintos grupos, com base na variação de suas 
expressões gênicas.  

utilização de diferentes marcadores a 
fim de identificar quais são mais expressos e 
atribuir uma pontuação com base no seu nível 
de expressão em cada célula pré selecionada. 

Métodos e Procedimentos 

Para a obtenção de dados scRNA-seq 
foi utilizado o banco de dados público GEO 
(Gene Expression Omnibus, 
www.ncbi.nlm.nih.gov/geo/). Os dados 
analisados são encontrados por meio do código 

de acesso GSE120446, publicado em 26 de 
setembro de 2018 sob o título de "Human Bone 
Marrow Assessment by Single Cell RNA 
Sequencing, Mass Cytometry and Flow 
Cytometry".  Os dados incluem 
sequenciamentos de scRNA, citometria de 
massa e citometria de fluxo de medulas ósseas 
de 20 doadores saudáveis e são utilizados em 
"Human bone marrow assessment by single-
cell RNA sequencing, mass cytometry, and flow 
cytometry". Os dados de scRNA-seq utilizados 
neste estudo foram baixados em formato TSV e 
MTX, nos quais os barcodes e os genes são 
arquivos TSV e a matrix MTX. 

Controle de qualidade: Antes 
de realizar a análise da expressão dos genes, é 
necessário garantir que todos os “barcodes” 
(sequências de DNA utilizadas para 
identificação) correspondam a células viáveis, 
assim, o pré-processamentos dos dados brutos 
foi realizado por meio do pacote Seurat em R. 
Foram utilizados como parâmetros: o número 
de genes únicos em cada célula ou 
nFeatures_RNA, no qual um um valor elevado 
indica a presença de “doublet” ou “multiplet”, 
enquanto um valor baixo indica uma célula 
morta ou um “droplet” vazio; e as frações de 
genes mitocondriais, que podem indicar uma 
contaminação de DNA mitocondrial. Assim, 
foram utilizados os parâmetros nFeatures_RNA 
> 200 e < 2500 e percent.mt < 8. 

Normalização: Após a remoção das 
células indesejadas, foi realizada a 
normalização dos dados a fim de reduzir a 



 

redundância dos dados e melhorar a 
integridade dos dados, seguida da 
transformação em log por meio da função 
“LogNormalize” e da modificação linear com a 
função “ScaleData” que escala e centraliza os 
conjuntos de dados ao alterar a expressão de 
cada gene para que a expressão média das 
células seja 0, enquanto escala a expressão 
para que a variação nas células seja 1, assim, 
os dados são dimensionados a fim de permitir 
um melhor trabalho sem perder desempenho. 

Visualização:  Para a visualização da 
expressão dos genes, foi utilizada a redução 
dimensional linear em um gráfico de Principal 
Component Analysis (PCA), um processo que 
converte um conjunto de diversos dados 
relacionados em um conjunto de valores 
variáveis linearmente não correlacionados nos 
dados pré escalados. Para definir quantos 
componentes devem ser incluídos no conjunto 
de dados foi utilizada a função “JackStrawPlot” 
que compara os valores de p para cada PC e 
permitirá a visualização da queda de 
significância, sugerindo quais PCs capturam o 
sinal verdadeiro, sendo selecionado 20 PCs. 

Integração: A integração dos dados 
de sequenciamento de RNA das medulas 
ósseas foi realizada por meio do pacote Seurat 
com as funções “FindIntegrationAnchors” e 
“IntegrateData”, as quais criam “âncoras” que 
são conjuntos de células (uma em cada 
dataset) que formam a base para a integração 
dos dados realizada a seguir   

Regressão do ciclo celular: As 
etapas de controle de qualidade e 
normalização não conseguem remover vieses 
biológicos como os efeitos do ciclo celular, 
assim, foi realizada a remoção desses efeitos 
no transcriptoma por meio de uma simples 
regressão linear com o pacote Seurat. A partir 
dos dados gerados, é realizada uma pontuação 
e classificação da fase celular (G2M, S or G1) 
de cada uma das células por meio da função 
“CellCycleScoring”, que utiliza uma lista de 
marcadores de ciclo celular. Em seguida, é 
realizada a regressão linear por meio da função 
“ScaleData”, que modela a relação entre a 
expressão do gene e a pontuação das fases 
G2M e S. 

Agrupamento de células: Para 
realizar o agrupamento de células, ou 
clustering, empregou-se a função 
“FindNeighbors”, que determina os vizinhos 

mais próximos de cada célula gerando um 
gráfico KNN e então constrói um gráfico SNN, 
calculando a sobreposição da vizinhança entre 
cada célula. Foi usada, ainda, a função 
“FindClusters” que implementa o procedimento 
realizando a mesma sequência de cálculo dos 
vizinhos mais próximos e construção de um 
gráfico SNN, porém esta função contém um 
parâmetro de resolução que define a 
“granularidade” do cluster, aumentando o 
número de clusters. Por fim, a redução 
dimensional foi realizada com a utilização de 
técnicas como UMAP e tSNE, os quais são 
algoritmos que realizam uma redução de 
dimensões e geram uma projeção. 

Expressão e identificação de 
células: Para encontrar marcadores de 
expressão diferencial foi utilizada a função 
“FindMarkers”, a qual compara as células e 
automatiza o processo de clusterização. Ela 
retorna os genes marcadores, ou seja, os 
genes mais expressos do cluster analisado em 
comparação com os demais clusters e assim, 
com base nesses genes, é possível inferir o 
tipo celular em questão. Também foi utilizada a 
visualização de marcadores celulares já 
conhecidos por meio de diversos plots que o 
pacote Seurat oferece, tais como o “Vlnplot”, 
que mostra distribuições de expressão entre os 
clusters, e “FeaturePlot” que colore as células 
de acordo com um recurso selecionado, como 
um gene marcador. 
 Foi pretendido, ainda, o treino e 
utilização de um classificador de células por 
meio do pacote Garnett em R. O pacote parte 
de um arquivo com os tipos celulares e seus 
respectivos marcadores, e em seguida, treina o 
classificador ao realizar uma comparação com 
células por meio da função 
“train_cell_classifier”. 

 
 

Resultados 

 As visualizações e plots gerados 
revelam uma clara diferenciação ou 
“amadurecimento” celulares em todos os tipos 
presentes na medula óssea. Além de também 
mostrar as grandes semelhanças entre células 
T CD8 e NKs, o que torna sua distinção muito 
difícil.  
 A realização da regressão dos efeitos 
de ciclo celular gerou um impacto negativo nas 



 

análises de downstream, o que pode estar 
associado com a importância dos genes 
envolvidos no ciclo celular com a identificação 
de populações de células em proliferação. 
 
 

 
Figura 1: Visualização dos dados integrados das 

amostras de medulas ósseas por meio da redução 
dimensional UMAP 

 

Conclusões 

A análise por scRNA-seq das medulas 
ósseas nos revela que células T, assim como 
os demais tipos celulares encontrados, sofrem 
um intenso processo de diferenciação, em que 
há expressão de genes diferentes ao longo de 
seu amadurecimento. Assim, as células 
presentes no microambiente tumoral podem 
apresentar expressão diferencial e fatores de 
transcrição incomuns, o que nos auxilia no 
melhor entendimento do desenvolvimento das 
células T CD8, além de abrir portas para novas 
terapias ao reconhecer esses alvos.  

Entretanto, essas análises também 
requerem uma grande adaptabilidade para 
identificar e reconhecer os diferentes 
processamentos de dados e aplicação 
conforme o tipo celular estudado, por exemplo, 
a não utilização de regressão por ciclo celular.  
 Por fim, o reconhecimento de 
diferentes marcadores celulares pode auxiliar 
na identificação de mais tipos celulares, além 
de ampliar o conhecimento de marcadores 
relacionados com a exaustão celular. 
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