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Measuring momentum-dependent flow fluctuations in heavy-ion collisions
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In heavy-ion collisions, momentum-dependent pair correlations can be characterized by a principal component
analysis (PCA), in which subleading modes are expected to reveal new information on flow fluctuations.
However, we find that, as currently measured, these modes can be dominated by multiplicity fluctuations, which
serve as an unwanted background. Here, we propose new PCA observables that are robust against multiplicity
fluctuations and isolate novel sources of flow fluctuations, thus being suited to provide fresh insight into the
initial stages of the system at small length scales.
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I. INTRODUCTION

According to the standard picture of relativistic heavy-ion
collisions, observed momentum anisotropies arise from the
hydrodynamic response of the quark-gluon plasma (QGP) to
the geometry of the initial state [1–3]. As the initial conditions
fluctuate event by event, momentum-dependent azimuthal
correlations develop among particles in their final state. The
detailed momentum dependence of two-particle correlations
is, so far, the only available probe of the granularity of
initial-state fluctuations, to which other more standard ob-
servables are insensitive [4–6]. Therefore, a thorough study
of two-particle correlations and their momentum dependence
is needed to resolve the relevant subnucleonic length scales
present in the initial state of heavy-ion collisions.

In Ref. [7], diagonal and off-diagonal momentum-
dependent correlations were investigated with the introduction
of the factorization breaking ratio rn(pa

T , pb
T ), which measures

the correlation of the anisotropic flow between two different
transverse momenta [4,5,7–12]. In Ref. [13], the principal
component analysis (PCA) of flow fluctuations was proposed
to characterize the same correlations in a more concise and
physically transparent way [13–17]. Measurements of the
factorization breaking ratio and the PCA of event-by-event
fluctuations were presented in Refs. [18–21].

Principal component analysis is a statistical method used to
find linearly uncorrelated combinations of correlated variables
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through the spectral decomposition of the covariance matrix
[22]. These combinations, referred to as principal compo-
nents, are ordered according to their variances, which are
eigenvalues of the covariance matrix. Hence, this method not
only sorts out independent fluctuations but also arranges them
according to importance, while requiring no model or assump-
tions whatsoever. In the case of anisotropic flow, the leading
PCA component is related to more traditional measures of
the flow harmonics, while the subleading ones are supposed
to carry more detailed information on momentum-dependent
flow fluctuations [13,16,18].

In this paper, we discuss a crucial issue with the interpreta-
tion of the PCA observables as defined in Ref. [13]. This issue,
related to multiplicity fluctuations, leads to unexpected redun-
dancies, which we illustrate using experimental data from the
CMS Collaboration [18]. In this paper we introduce a new ver-
sion of the PCA observables that factors out those redundan-
cies and properly reflects momentum-dependent anisotropic
flow fluctuations. We believe the redefined observables to be
the ultimate tool for investigating two-particle correlations.
By isolating new sources of correlation, they could be par-
ticularly useful for constraining properties of the QGP and its
initial stages.

After hydrodynamic expansion, particles at a given trans-
verse momentum pT and rapidity y are azimuthally distributed
according to a probability distribution,

E
dN

d3 p
= 1

2π
N (pT , y)

∞∑
n=−∞

Vn(pT , y) e−inϕ, (1)

where Vn(pT , y) are complex flow vectors and N (pT , y) is
the particle density as a function of rapidity and trans-
verse momentum. Due to the random orientation of events,
〈Vn(pT , y)〉 = 0, where 〈· · · 〉 represents an average over
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events. While particles are understood as independent samples
of distribution (1), the limited number of particles makes it
impossible to accurately measure Vn(pT , y) in each event. One
must instead study its statistical properties in an ensemble of
events via multiparticle correlations.

We are interested in fluctuations of the flow anisotropy as
a function of momentum, given by the harmonics Vn(pT , y).
The main features of these fluctuations are captured by the
covariance matrix

Vn�(p1, p2) ≡ 〈V ∗
n (p1)Vn(p2)〉, (2)

where we denote p ≡ (pT , y). Note that flow fluctuations
are correlated across different momenta and Vn�(p1, p2) is
a nondiagonal matrix. In case there is only one source of
fluctuations (e.g., fluctuations of the system orientation), Vn�

has only one nonvanishing eigenvalue and factorizes as

Vn�(p1, p2)
fact.=

√
〈|Vn(p1)|2〉

√
〈|Vn(p2)|2〉. (3)

However, this factorization is not perfect, indicating more than
one relevant eigenvalue [7,13]. In general, each nonvanishing
eigenvalue of a covariance matrix corresponds to a linearly
uncorrelated fluctuation mode. The subdominant fluctuations
signaled by the breaking of Eq. (3) imply that particles of
different momenta respond differently to initial-state fluctu-
ations.

In Eq. (1), the distribution of particles also depends on the
density of particles N (p). Fluctuations of N (p) can be studied
similarly with the covariance matrix [13]

N�(p1, p2) ≡ 〈�N (p1) �N (p2)〉, (4)

where �(· · · ) ≡ (· · · ) − 〈(· · · )〉. This covariance matrix con-
tains nontrivial information about fluctuations of mean trans-
verse momentum and their correlation with global multiplicity
fluctuations [23].

II. PRINCIPAL COMPONENT ANALYSIS

The principal component analysis of event-by-event fluc-
tuations was introduced in Ref. [13]. The idea is to isolate the
linearly independent fluctuation modes contributing to Vn� by
computing its eigenvalues and eigenvectors. According to the
spectral theorem,

Vn�(pa, pb) =
∞∑

α=1

λ(α)
n ψ (α)

n (pa) ψ (α)
n (pb)

=
∞∑

α=1

V (α)
n (pa)V (α)

n (pb), (5)

where λ(α)
n and ψ (α)

n (p) are the eigenvalues and normalized
eigenvectors of Vn�. Because Im[V ∗

n (p1)Vn(p2)] is odd under
parity transformations, Vn� must be real [7,13]. Moreover, a
covariance matrix must have positive eigenvalues. The princi-
pal components, or modes, of the flow fluctuations are defined
as

V (α)
n (p) ≡

√
λ

(α)
n ψ (α)

n (p). (6)

Labeling the eigenvalues in descending order, λ(α)
n � λ(α+1)

n ,
an approximation can be found by truncating the sum in
Eq. (5) at a given cut α = αmax.

The physical interpretation of the PCA can be clarified by
projecting Vn(p) onto the basis defined by {V (α)

n (p)}:

Vn(p) ≈
αmax∑
α=1

ξ (α)
n V (α)

n (p), (7)

where 〈ξ (α)
n 〉 = 0. From Eqs. (2) and (5) one finds that

〈ξ (α)∗
n ξ (β )

n 〉 = δαβ . Indeed, the PCA isolates linearly uncorre-
lated fluctuation modes, with both their magnitudes and mo-
mentum dependence characterized by V (α)

n (p). Together with
Eq. (7), it allows for an event-by-event description of Vn(p),
providing unique insight into the momentum dependence of
flow fluctuations.

There is an important subtlety regarding the measurement
Vn� and the PCA. The direct way to measure the flow covari-
ance matrix is

Vn�(pa, pb) =
〈∑

a 	=b e−in(φa−φb)

Npairs(pa, pb)

〉
, (8)

where we sum over the Npairs pairs of particles a 	= b that
can be formed between two bins, centered around pa for
particle a and pb for particle b. In the hydrodynamic picture,
particles are independently emitted from the fluid and Eq. (2)
is retrieved. However, the principal component analysis of
Refs. [13,18] considered instead the covariance matrix

V N
n�(pa, pb) ≡ 1

(2π�pT �y)2

〈∑
a 	=b

e−in(φa−φb)

〉

hydro= 〈N (pa)V ∗
n (pa) N (pb)Vn(pb)〉. (9)

Here, N (pa) = Na is the multiplicity in bin a normalized
by 2π�pa

T �ya, where �pa
T and �ya are the bin widths in

transverse momentum and pseudorapidity, respectively.1 The
extra factors of particle number are only compensated at the
end of the analysis, by dividing the resulting modes by 〈N (p)〉.
Thus, one obtains a quantity to be compared to the usual “per
particle” flow:

V N (α)
n (p) ≡

√
λ

N (α)
n ψN (α)

n (p)/〈N (p)〉, (10)

where λN (α)
n and ψN (α)

n (p) are the corresponding eigenvalues
and eigenvectors.

An important advantage of Eq. (9) over Eq. (8) is that
it gives more weight to events with a larger number of
pairs, where the relative uncertainty in the flow vector is
smaller. However, there are very important differences in the
diagonalization of Vn� and V N

n�, especially due to the fact
that 〈Na Nb〉 	= 〈Na〉 〈Nb〉. These particle number fluctuations
can be measured directly by performing the PCA on the
matrix N�(pa, pb) = V N

0�(pa, pb) and, thus, they represent an
unwanted background for n 	= 0 analyses.

1The normalization of N with (2π�pT �y)−1 is chosen for com-
patibility with Ref. [13], but is not relevant for Vn� and V R

n� below.
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FIG. 1. Comparison between the subleading principal component of V N
n� (solid blue curve) and the expected contributions V N (1)

n V N (2)
0 from

multiplicity fluctuations (dashed red curve), using the CMS Collaboration results for Pb + Pb collisions at center-of-mass energy
√

sNN =
2.76 TeV [18]. In the second curve we assumed independent variables when propagating uncertainties. The error bars represent statistical
uncertainties, while the boxes represent systematic ones.

III. MULTIPLICITY FLUCTUATIONS

The PCA of V N
0�, corresponding to particle number fluc-

tuations, was investigated in Refs. [13,18,23]. While the
leading mode is nearly constant in transverse momentum,
the subleading one displays a significant pT dependence.
We shall show that momentum-dependent multiplicity fluc-
tuations have startling consequences for the n 	= 0 PCA of
Refs. [13,18].

Figure 1 displays PCA data from the CMS Collaboration,
obtained using Eqs. (9) and (10) [18]. The solid curves are the
measured subleading PCA modes of the elliptic and triangular
flow, V N (2)

2 and V N (2)
3 , while the dashed curves represent the

combination V N (1)
n V N (2)

0 , the product of the leading mode
of the nth harmonic times the subleading mode of particle
number fluctuations. A striking proximity between the two
curves is verified and deserves to be investigated, especially
for noncentral collisions and n = 2. The relationship between
V N (2)

n and V N (1)
n V N (2)

0 in hydrodynamic simulations was first
studied in Ref. [15]. In that paper, the subleading mode of
elliptic flow, V N (2)

2 , in peripheral collisions was found to be
dominated by the nonlinear mixing between leading elliptic
flow and subleading radial flow fluctuations [i.e., fluctuations
of V0(pT ), captured by V N (2)

0 (pT )]. Figure 1 displays similar
findings, albeit we draw very different conclusions from them.

To investigate the coincidence in Fig. 1, let us now estimate
the contributions of particle-number fluctuations to the flow
covariance matrix V N

n�. Applying Eqs. (7) and (10) to the PCA
of N� = V N

0�, we can estimate the event-by-event differential
multiplicity:

N ≈ 〈N〉 (
1 + V N (1)

0 ξN (1) + V N (2)
0 ξN (2)

)
, (11)

where, for brevity, we omit the momentum dependence. Sub-
stituting Eq. (11) in Eq. (9) and isolating contributions from
V (2)

n , we find

V N
n�(p1, p2) ≈ 〈N (p1)〉〈N (p2)〉[q(1)(p1) q(1)(p2)

+ q(2)(p1) q(2)(p2)] + O(
V (2)

n

)
, (12)

with

q(1)(p) =
√

1 + (
V N (1)

0 (p0)
)2

V (1)
n (p),

(13)
q(2)(p) = V N (2)

0 (p)V (1)
n (p),

where we assume that fluctuations of N and Vn are indepen-
dent and that V N (1)

0 (p) is constant. Because V N (1)
0 is nearly

constant, V N (1)
0 V N (1)

n is approximately parallel to V N (1)
n and

contributes to this mode. On the other hand, this is clearly
not the case for V N (2)

0 V N (1)
n , which should contribute to the

subleading component. Thus, in a first approximation, it is
reasonable to expect

V N (1)
n (p) ≈ q(1)(p) + O(

V (2)
n

)
,

V N (2)
n (p) ≈ q(2)(p) + O(

V (2)
n

)
. (14)

Equation (14) shows that multiplicity fluctuations may
severely affect the observables defined in Ref. [13]. While the
correction to the leading PCA mode is small, of at most ≈ 3%
for V N (1)

0 � 0.25, this is not the case for subleading modes,
which might be dominated by fluctuations of N (p). Taking
V (2)

n → 0, we can isolate the contribution of multiplicity
fluctuations to V N (2)

n :

V N (2)
n (p) ≈ V N (2)

0 (p)V N (1)
n (p) + O(

V (2)
n

)
. (15)
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This is precisely the combination shown to approximate the
PCA data in Fig. 1. Given the simplicity of the estimate in
Eq. (15), the proximity between the two curves in Fig. 1
is truly striking. The very fact that they are comparable in
magnitude suggests that multiplicity fluctuations might be
responsible for a considerable fraction of V N (2)

n . In fact, at
least for noncentral collisions, V N (2)

2 appears to be dominated
by these multiplicity fluctuations, rather than fluctuations in
the anisotropic flow itself.

IV. NEW SET OF PCA OBSERVABLES

The results above are critical to the interpretation of the
current PCA of flow harmonic data. First, they compromise
the interpretation of the subleading PCA modes as reveal-
ing entirely new pT -dependent anisotropic flow fluctuations.
Furthermore, they suggest that these quantities are dominated
by redundant information—that is, information that is more
directly obtained from existing measurements of the leading
anisotropic mode and the multiplicity PCA modes.

The flow vector per particle Vn(p) is the quantity most
directly related to spatial anisotropy in the initial state, as
characterized by geometric eccentricities. It is thus desirable
to redefine the PCA observables so as to study fluctuations of
this quantity alone, instead of the combination N (p)Vn(p)—
removing known contributions from multiplicity fluctuations.
One possibility is measuring the PCA of Vn�, as defined in
Eqs. (5), (8), and (6). This has the disadvantage of giving the
same weight to all events, regardless of the number of parti-
cles, which might render Vn� less stable. However, because
statistical uncertainties in our simulations do not accurately
represent that from a realistic measurement, we refrain from
estimating this effect. The PCA of Vn� was employed in
Ref. [17].

As an alternative to V N
n�, we propose the diagonalization of

the matrix

V R
n�(pa, pb) ≡

〈∑
a 	=b

e−in(φa−φb)

〉/
〈Npairs(pa, pb)〉

hydro= 〈N (pa)V ∗
n (pa) N (pb)Vn(pb)〉

〈N (pa) N (pb)〉 , (16)

so that the average is weighted by the number of pairs.
Equation (16) is the definition of the correlation matrix that
is typically considered in measurements of the factorization
breaking coefficient rn(pa

T , pb
T ) [19–21,24]. For our purposes,

it will provide a good approximation to Vn�, as will be shown.
The principal components of V R

n� are given by

V R(α)
n (p) ≡

√
λ

R(α)
n ψR(α)

n (p), (17)

where λR(α)
n and ψR(α)

n (p) are the corresponding eigenvalues
and eigenvectors.

Thus, each pair of particles is given the same weight, but
multiplicity fluctuations are canceled by the denominator if
they factor out. That is, if

〈N (pa)V ∗
n (pa) N (pb)Vn(pb)〉�〈N (pa)N (pb)〉〈V ∗

n (pa)Vn(pb)〉,
(18)

then the multiplicity factor cancels and Eq. (16) becomes
Eq. (2).

To test this, we employ a state-of-the-art hybrid model,
in satisfactory agreement with experimental data [25]. Our
model consists of relativistic viscous hydrodynamics as im-
plemented in MUSIC [26,27] and evolution of the hadron gas
phase according to UrQMD [28,29]. Initial conditions were
provided by TRENTO [30] and parameter values taken from the
Bayesian analysis of Ref. [31]. In Fig. 2, we compare the new
subleading PCA mode V R(2)

n (pT ) to the subleading PCA mode
of the flow per particle V (2)

n (pT ), obtained from the covariance
matrix Vn�, in Eq. (8). A good agreement is found in general,
indicating that V R

n� can be used in place of Vn�.
Results for the original PCA modes V N (2)

n are also shown
in Fig. 2, together with the combination of Eq. (15). It is clear
that the new observables behave very differently from the ones
in Ref. [13]. While definition (16) does not necessarily remove
all effects from multiplicity fluctuations, it does remove the
most trivial ones from the corresponding two-point function.
Indeed, V R

n� ≈ Vn� to good approximation unless anisotropic
flow and radial flow fluctuations are strongly correlated. Fig-
ure 2 suggests, however, that this is not the case, because
V R(2)

n (pT ) closely follows V (2)
n (pT ).

V. SPECTRAL DECOMPOSITION

An important subtlety regarding a PCA analysis is that the
spectral decomposition is not unique. We can define a general
eigenvalue and eigenvector equation as∫

�

d pb W (pb)Vn�(pa, pb)V (α)
n (pb) = λ(α)

n V (α)
n (pa), (19)

with an arbitrary weight function W and integration range �,
both of which will affect the resulting decomposition. The
eigenvectors are then orthogonal with respect to the inner
product

(
V (α)

n ,V (β )
n

) ≡
∫

�

d pW (p)V (α)
n (p)V (β )

n (p) = λ(α)
n δα,β .

(20)

In practice, one uses finite-sized bins in momentum space
and the integrals become sums over discrete momentum in-
dices, i.e.,∑

b

�pbW (pb)Vn�(pa, pb)V (α)
n (pb) = λ(α)

n V (α)
n (pa). (21)

A change in the weight W (p) will especially affect the sub-
leading mode, which is related to the dominant leading mode
by the orthogonality relation (V (1)

n ,V (2)
n ) = 0.

A calculation can be done without considering the bin
width �pa in Eq. (21). This was, in fact, done in Refs. [13,18],
such that W (p)�pa = 1. In this case, the result will change if
the bin widths change in a nonuniform way and will depend
on the specific choice of binning. When using Eq. (21), on the
other hand, the result is stable under any choice of binning,
given a fixed choice of W (p).
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FIG. 2. New subleading principal component from V R
n� (dashed red curve) and Vn� (solid blue curve) in a hybrid hydrodynamic model, for

Pb + Pb collisions at center-of-mass energy
√

sNN = 2.76 TeV. Error bars represent statistical uncertainties. In general, V R(2)
n is seen to match

V (2)
n to very good approximation. Notice also the relative stability against changes in centrality. For reference, V N (2)

n (dash-dotted magenta
curve) and the combination V N (1)

n V N (2)
0 (dotted green curve) are also shown. The behavior observed in Fig. 1 for the CMS Collaboration data

is clearly reproduced by the model.

In Fig. 2, we employed a weight function W (p) = 1,
representing a straightforward spectral decomposition of the
covariance matrix of traditional anisotropic flows Vn, which
therefore also can be directly connected to the initial state
[32]. This choice results in a dependence on the maximum

transverse momentum used in the analysis, which was not
present in the original PCA observable [13]. This depen-
dence can be removed, without reintroducing multiplicity
fluctuation contamination, with a suitable choice of W . For
example, choosing a weight proportional to the (average)
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FIG. 3. Comparison between PCA results with different choices of weight for the spectral decomposition: the straightforward choice,
employed in this paper (W = 1, solid blue curve); the choice adopted in Refs. [13,18] (W = 1/�pT , dashed magenta curve); the alternative
choice of using the average charged-particle multiplicity per bin as the weight function (dot-dashed red curve). Both the leading and subleading
principal components of the matrix V R

n� are displayed for hydrodynamic simulations (TRENTO + MUSIC + UrQMD) of Pb + Pb collisions at
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sNN = 2.76 TeV, for n = 2 (upper panels) and n = 3 (lower panels).
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particle density, W (p) = 〈N (p)〉, reduces the contribution of
particles with large transverse momentum. We found that
the conclusions taken from Fig. 2 hold under this choice as
well.

Figure 3 shows the effect of different choices of spectral
decomposition. In this figure, we can see that, while the
effect of the �pT factor is subtle for our choice of binning,
employing different weights can have an important effect in
the final observables.

Notice that, in Fig. 2, V N (2)
n does not seem to converge

towards V (2)
n or V R(2)

n at central collisions, where multiplic-
ity fluctuations should become less relevant. In fact, in the
limit where multiplicity fluctuations vanish, the former should
become equivalent to the latter, but within a spectral decom-
position different from that employed in Fig. 2. This is so
because V N (2)

n gives more emphasis to bins of low transverse
momentum, where more particles are present, whereas V R(2)

n
gives the same weight to all momentum bins, unless a weight
of W (pT ) 	= 1 is employed. As a matter of fact, employing
a weight of W (pT ) = N (pT ) in the spectral decomposition
for V R(2)

n (see the dot-dashed red curve in Fig. 3) already
makes results much more similar to the ones for V N (2)

n as
seen in Figs. 1 and 2, even though the corresponding spectral
decompositions are still not equivalent.

VI. FINAL REMARKS

In this paper, we discussed the effect of multiplicity fluctu-
ations in the PCA of anisotropic flow. Redundancies found in
the CMS data suggest that these particle number fluctuations
contribute significantly to subleading components and may
completely dominate over the fluctuations of anisotropic flow
that are nominally being measured. The importance of multi-
plicity fluctuations to the standard PCA of flow fluctuations is

a result of the remarkable sensitivity of the subleading PCA
mode, the small size of the actual subleading flow V (2)

n , and,
of course, the choice of the covariance matrix of Eq. (9) in
Refs. [13,18]. Because particle number fluctuations can be
measured separately and directly, they represent a redundant
and unwanted background to principal component analyses of
anisotropic flow.

This led us to propose the PCA of Vn� and V R
n�, as de-

fined in Eqs. (8) and (16). The new observables are free of
trivial contributions from multiplicity fluctuations, so that the
new subleading PCA modes actually reveal fluctuations of
anisotropies in the initial state. We tested the new proposed
observables on simulated events generated by a hybrid hy-
drodynamic evolution model with event-by-event fluctuations.
In Fig. 2, the new subleading modes appear to be relatively
stable against changes in centrality, suggesting that they are
not driven by the average geometry of the system. Also,
the new proposed PCA subleading mode of anisotropic flow
fluctuation V R(2)

n , obtained from the covariance matrix V R
n�,

is seen to reasonably reproduce V (2)
n , obtained from the per

particle flow covariance matrix Vn�.
The main advantage of the proposed observables over

the factorization breaking measure rn(pa
T , pb

T ) of Ref. [7] is
that they isolate linearly uncorrelated modes, making their
physical content more transparent. They also allow for better,
more compact, visualization, because the modes are functions
of a single momentum variable. Furthermore, rn(pa

T , pb
T ) only

measures the relative importance of flow fluctuations, render-
ing them nearly imperceptible in noncentral collisions, where
V (1)

n (p) is larger [13,19–21].
The new PCA observables are sensitive to details of two-

particle correlations and could provide new constraints to
models of the hydrodynamic expansion and of the initial
state of heavy-ion collisions. Moreover, they could furnish
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energy

√
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much-needed insight into the physics of smaller collision
systems, such as proton-nucleus, where fluctuations of the
initial anisotropies should play a major role.

We stress that the positivity of the PCA eigenvalues pro-
vides a highly nontrivial check of the hydrodynamic picture,
as noted in Ref. [13]. While a covariance matrix is necessarily
positive semidefinite, this is not strictly the case for the
matrices defined in Eqs. (8), (9), and (16) outside a hydro-
dynamic picture. This is due to the absence of self-correlation
terms (a = b) and would be aggravated by the implementation
of a rapidity gap in an experimental analysis. Within the hy-
drodynamic picture, on the other hand, Vn(p) does not depend
on individual particles and both Vn� and V N

n� are covariance
matrices, with positive or vanishing eigenvalues [13]. Even in
this picture, V R

n� is not actually a covariance matrix, which
could be seen as a disadvantage.
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APPENDIX: MODEL COMPARISON TO DATA

In this paper, we employ results from a hybrid hydrody-
namic model, consisting of relativistic viscous hydrodynamics
as implemented in MUSIC [26,27] and evolution of the hadron
gas phase according to UrQMD [28,29]. Initial conditions
were provided by TRENTO [30] and parameter values were
taken from the Bayesian analysis of Ref. [31]. Further details
on this model can be found in Ref. [25].

For completeness, we here include model results for the
principal component analysis of event-by-event flow fluc-
tuations, as originally proposed in Ref. [13], for Pb + Pb
collisions at center-of-mass energy

√
sNN = 2.76 TeV. They

are displayed in Fig. 4, where they are compared to published
CMS Collaboration results [18] and a good agreement with
data is verified.
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