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Abstract

Eye tracking (ET) for gaze interaction in wearable computing imposes harder constraints on computational efficiency and
illumination conditions than remote ET. In this paper we present xSDL, an extended temporal support computer vision
algorithm for accurate, robust, and efficient pupil detection and gaze estimation. The robustness and efficiency of xSDL
partly come from the use of stroboscopic differential lighting (SDL), an extension of the differential lighting pupil detection
technique developed in the 90’s. Due to the erratic behavior of eye movements, traditional computer vision tracking techniques
(such as Kalman filters) do not perform well, so most ET techniques simply detect some eye feature (such as the pupil center)
at every frame. Extended temporal support uses keyframes selected during eye fixations and a simple translation model of
the pupil to further improve the computational performance of SDL. A prototype composed of two independent acquisition
systems was developed to evaluate the performance of xXSDL and other four state-of-the-art ET techniques under similar
conditions. Our results show that xXSDL outperforms those four algorithms, both in speed (close to 2000 Hz using 240 line

frames) and accuracy.
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1 Introduction

Eye trackers are devices that can estimate the point of gaze on
acomputer screen [28] or in the scene in front of the user [20].
Such devices are commonly used in usability studies [17],
marketing research [23,30], medical diagnosis [21,33], com-
munication for people with disabilities [4], psychological and
psychophysical studies [5], and virtual reality [32,35].
Current eye tracking systems are mostly feature-based
[14], i.e., they use one or more video cameras to detect and
track the eye features and estimate the point of gaze on a pla-
nar surface (typically the computer screen). Most methods
detect and track the iris or the pupil center and use active
near infrared (NIR) illumination to improve the tracking per-
formance. The use of NIR light is also desirable because it

B Frank H. Borsato
frankhelbert@utfpr.edu.br

Universidade Tecnoldgica Federal do Parand, Via Rosalina
Maria dos Santos 1233, Campo Mourao 87301-899, Brazil

2 Universidade de So Paulo, Rua do Matdo 1010, Sdo Paulo
05508-090, Brazil

Published online: 15 April 2019

creates a corneal reflection that can be used as a reference
point for gaze estimation [28].

The point of gaze can be estimated by a function that maps
eye features (such as the pupil center) onto the observed sur-
face. For example, a second-order polynomial can be used
where the coefficients can be computed using regression
techniques with corresponding eye features and gaze posi-
tions obtained from a calibration procedure. Detecting eye
features, such as the pupil or iris, in a video frame can be chal-
lenging due to noise, low image resolution, and motion blur.

When the eye is illuminated using a NIR light source
placed away from the camera optical axis (off-axis), the pupil
appears dark in the camera image. This facilitates the seg-
mentation and contour detection of pupils within light-color
irises, but the contrast between the pupil and iris is low for
people with darker eyes. Segmentation and tracking of the
iris or iris contour (also known as limbus tracking) is also
possible but it is more likely to be affected by occlusions of
the eyelids and lashes.

Differential lighting (DL) [8,26] was introduced to
improve the robustness of pupil detection methods. DL relies
on two NIR illuminators. One is placed very close to the
camera optical axis (on-axis), and one off-axis. The on-axis
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illuminator generates bright pupil images because the cam-
era is able to capture the light reflected from the back of the
eye. DL alternates the off and on-axis illumination, producing
a sequence of dark and bright pupil images. By subtracting
two consecutive frames (one dark and one bright), the overlap
between the dark and bright pupils can be easily segmented
as regions of high contrast.

Despite its advantages, DL requires camera synchroniza-
tion with the NIR light sources to produce the sequence of
dark and bright pupil images. Figure 1 depicts such arrange-
ment. Unfortunately most low-cost consumer cameras today
do not provide a synchronization output. This is particularly
true for digital web cameras used with computers. This might
be one of the reasons why current low-cost eye trackers built
with off-the-shelf web cameras use a single off-axis NIR illu-
mination to detect and track the pupil [10,11,22,37].

In this paper, we present a high-performance, low-cost,
stroboscopic differential lighting eye tracking technique with
extended temporal support (xSDL). Our technique can be
used with virtually any digital camera and was particularly
designed to be used with cameras without external synchro-
nization. The dual NIR illuminators are synchronized by
software.

The remaining of this paper is organized as follows.
Section 2 presents the basic differential lighting technique
developed for analog cameras. Section 3 describes how the
use of stroboscopic lighting allows DL to be used with digital
cameras without external synchronization output. In Sect. 4,
we introduce the extended temporal support algorithm to
improve the overall performance of SDL. Section 5 presents
the evaluation of xSDL and its comparison with state-of-
the-art algorithms in a typical gaze estimation experiment.
Section 6 presents the results of the xSDL evaluation. In
Sect.7, we present a discussion about xSDL, and finally
Sect. 8 concludes the paper.

2 Pupil detection using differential lighting
The differential lighting (DL) technique introduced by Ebi-
sawa and Satoh [8] was developed as a robust pupil detection

method to improve the performance of nonverbal commu-
nication tools for people with disabilities. In [7], Ebisawa
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shows several refinements to the basic DL such as noise
removal using morphological operations and pupil bright-
ness control.

Morimoto et al. [25] describe a pupil-corneal-reflection
(PCR) gaze estimation technique using DL and a second-
order polynomial for mapping the PCR vector to target
coordinates. Their system used an analog 30 Hz NTSC
camera with external synchronization output. An external
electronic circuitry was used to synchronize the even and
odd frames of one interlaced camera image to the on and
off-axis lights. Because each interlaced image contained a
dark and bright pupil image, the pupil could be detected at
60 fields per second (where the field has half the resolution of
an image frame after de-interlacing). In [25], the pupil was
computed as the center of mass of the blob detected from
the differential image. Hennessey et al. [16] proposed, as a
further DL refinement, the computation of the actual pupil
contour in the bright or dark pupil images, since the differ-
ential image only provides the overlap region when the eye
is moving.

Morimoto and Flickner [24] also use DL to detect the
eyes in a wider area to detect and track multiple faces. Ji
and Yang [18] describe a gaze and face pose tracking system
for monitoring driver’s vigilance using DL. Due to the sim-
plicity and good overall performance of the method, several
other refinements and applications have been suggested in
the literature [15,19,38].

DL was developed in the 90’s to be used with analog
cameras and low performance computers—low performance
when compared to regular desktop computers today. As com-
puters got more powerful and cameras more affordable and
easier to setup and use (digital plug-and-play cameras), other
pupil detection and tracking methods that do not require
custom external hardware and use only visible light, such
as [13], are preferred in practice despite DL’s good per-
formance. Nonetheless, as computational power continues
to increase and hardware continues to reduce in size, the
rise of technologies such as mobile, ubiquitous, and wear-
able computing demands more restrictive requirements for
energy consumption and computational efficiency. Because
an eye tracker can be used as a wearable input device that is
always on, DL might become a stronger alternative because
the active lighting allows the method to work under differ-
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Fig. 2 Dark (a) and bright (b) pupil images with dark stripes created
when the stroboscopic lights are not correctly synchronized with the
camera frames. The stripes correspond to sensor lines that were not lit
by the light pulses

ent lighting conditions, it is computationally very efficient,
and its simplicity allows the method to be implemented in
hardware [1].

Despite its advantages, DL using analog cameras requires
the external lighting to be synchronized with the camera’s
odd and even fields [7,25]. A modern alternative would be the
use of syncing-capable digital cameras with global-shutter,
where all pixels are exposed within the same time window
and a signal is generated to allow synchronization. While this
option is attractive, such high-end cameras are still expen-
sive. Most modern digital cameras (such as external webcams
and cameras used in notebooks, tablets, and mobile phones)
employ rolling shutters, i.e., each line of the frame is exposed
to light at slightly different times. This sliding window cre-
ates image artifacts when fast moving objects, such as the
eye, are present in the scene being captured. Also, because
DL uses two light sources, it is possible that during an image
scan part of the image is illuminated by one light and the
rest of the image is illuminated by the other light source, as
illustrated in Fig. 2.

To reduce these artifacts, we have proposed in [2] the use
of stroboscopic differential lighting (SDL) controlled by soft-
ware. This technique is described next.

3 Stroboscopic differential lighting (SDL)

In [2], we have described how stroboscopic lighting can be
synchronized with rolling-shutter digital cameras. The idea
is to fire one very short light pulse for every frame. The use
of short light pulses allows low-end cameras to capture very
sharp images (reduces motion blur) and reduces artifacts due
to the rolling-shutter. Nonetheless, when the lighting is not
correctly synchronized with the camera frames other artifacts
such as those shown in Fig. 2 are created. The dark stripes
correspond to sensor lines that were not lit by the light pulses.

Our method exploits the dark stripe artifacts to synchro-
nize the lighting. In [2] we presented the computer vision
algorithms to detect the stripe and to compute its spatial and

temporal properties that are used to adjust the lighting param-
eters to conceal the stripes within hidden image lines. The
basic idea s to first compute the position of the stripe by com-
puting a vertical integral image, i.e., a column vector where
each element corresponds to the integral of an image line.
Once the stripe position is detected, the stroboscopic pulses
are modulated to shift the stripe toward the hidden lines of
the camera sensor.

One limitation of the method described in [2] was that it
relied on the knowledge of sensor parameters. Because this
information is not always available, the parameters had to be
manually adjusted for some camera configurations used in the
experiments. In [3], we presented a new solution that dynam-
ically estimates the camera sensor exposure and number of
lines from the dark stripe artifacts. Starting with a coarse
estimation of the sensor parameters, the position and height
of the stripe is computed using the vertical integral image.
The stripe parameters are then used to refine the estimation
of the sensor parameters before the adjustment of the firing
of the illuminators, until a clear picture (without artifacts) is
obtained.

While in previous papers we have focused on the SDL
hardware and synchronization issues, the focus of this paper
is on the computer vision software for accurate detection of
eye features for gaze estimation. In the following subsections,
we describe how the pupil and corneal reflections are detected
using SDL.

3.1 Segmentation of pupil candidates

With the camera and light sources synchronized, the differ-
ence between two consecutive frames containing bright and
dark pupil images can be used to detect pupil candidates by
thresholding [27] as seen in Fig. 3.

The resulting dominant blob most likely corresponds to
the overlap pupil region. Instead of using a fixed threshold
value to compute the blob, we initially use an adaptive thresh-
old technique similar to the procedure described in [22] to
detect corneal reflections. The threshold is computed using
(1) where H is the inverted cumulative histogram of the differ-
ence image and A is a geometric constraint used to eliminate
noise, denoting the minimum expected pupil area in pixels.

(a)

Fig.3 Pupil candidate segmentation. a dark pupil image; b bright pupil
image; ¢ difference between bright and dark pupil images; d difference
image thresholded
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threshold = arg min|H; — A| )
i

H is computed by (2), where i and j are bin numbers,
is the number of pixels that falls into the intensity interval
defined by bin j, and k is the total number of bins.

k—1
Hi=Y hj, i=0...k—1 @)
j=i

The algorithm varies the threshold from high to low values
in large steps, speeding up the convergence. A new threshold
is computed as the intensity which provides enough pixels to
fill up an ellipse that encloses the contour of the largest area
traced from the binarized image in the current iteration. We
calculate the new threshold using (1) with A as the ellipse
area.

Assuming that the pupil region corresponds to the largest
elliptical blob, its area increases as the threshold is lowered.
The search stops when the ratio between the largest blob
and the remaining smaller blobs starts to decrease [22]. The
threshold that maximizes the area A of the overlap region
is selected. Additional geometric constraints regarding the
expected size, shape, and position of the pupil are used to
filter false candidates. Once this threshold is computed its
value is used in future detections. The threshold is recom-
puted again only after long periods of miss or false pupil
detections.

3.2 Segmentation of the corneal reflections

A similar adaptive threshold procedure based on the inverted
cumulative histogram method is used to segment the corneal
reflections (CRs) generated by the IR light sources. The
reflections appear as bright small spots in the pupil image
and they are commonly used to improve gaze estimation
results [28]. Quite often they are within the pupil region and
create artifacts in the difference images as seen in Fig. 3.

Geometric constraints such as the expected size and posi-
tion of the CRs are used to filter some of the false positive
candidates. Unlike the pupil though, other candidates might
remain, particularly due to the tear layer near the eyelids, and
near eyelashes.

To improve the robustness of the CR detection, each CR
candidate g is modeled as a 5-tuple (Ig, cg, 7g, dg, fg), where
l¢ is the number of iterations in which g is present; ¢, is the
coordinate of the reflection center, r, is the radius of the
enclosing circle; d,, is the distance to the pupil center; and 7,
is the ratio between the number of segmented pixels within
the circumference with radius 7 and the number of pixels
within the circumference with radius r + 1, both centered
at cg. At each iteration of the adaptive threshold method,
an ordered list of the corneal reflection candidates is stored.
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The candidates are sorted according to a quality function Q
defined as

0(g) = (Ug+ 1) - rg - (1.0/(dg +0.1)) - 7g), 3

Therefore, the best quality CRs are those that are brighter
(lg + 1), larger (rg, within an expected range), closer to the
pupil center (1.0/(d,+0.1)), and shaped like a circumference
(7¢). The computation of the threshold stops when a number
of appropriate CRs are detected and are stable between two
iterations.

The position of the center (x., y.) of one CR is estimated
as the normalized center of mass that weights the pixels
according to their intensities as follows:

N
1 v
(X, Ye) = N§ (e TN = (1)) “)
i=1

where N is the total number of segmented pixels that belong
to the CR, the function / (.) returns the pixel intensity normal-
ized to [0, 1] and o is a weighting constant. Higher values of o
are used to select the center closer to the brightest pixel while
with small values all pixels are considered. Two weighting
constant values are used, one for the bright pupil images and
one for the dark pupil images. The weighting was introduced
to reduce biasing on the center estimation when the CR sur-
rounding pixels are bright. (4) assumes that the CR intensity
profile follows a symmetric bivariate Gaussian distribution
such as the one described in [22].

3.3 Pupil refinement with subpixel accuracy

Tough the pupil overlap region can be used for gaze esti-
mation [25], more accurate results can be achieved using the
true pupil contour. Starting from the pupil candidate obtained
from thresholding, its contour can be described by an ellipse
(ey), defined by the 4-tuple (a, b, C, é), where a and b are
the major and minor axes, C = (cy, ¢y) is the ellipse cen-
ter, and 6 is the rotation angle. The pupil refinement consists
of projecting a number of rays R, k = 1, ..., m outwards
from the pupil center to detect the actual pupil edges in the
current frame, similar to [29], as seen in Fig. 4. The length of
each ray is proportional to the length of the pupil principal
axis. The edge pixels with subpixel accuracy are then used
to estimate the ellipse parameters.

Observe in Fig. 4 that rays intersecting the CRs are dis-
carded when they are detected within the pupil region to avoid
further interference in the computation of the pupil contour.

Each ray profile is transformed to a column vector as seen
in Fig. 5 using bilinear interpolation. On each column (ray
profile), a one-dimensional convolutional Gaussian deriva-
tive edge detector is applied (result seen in red). Though the
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Fig.4 Rays used to refine the edges of a bright pupil
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Fig. 5 The intensity profiles of rays computed from a bright pupil
image. (Top) Rays resulting from bilinear interpolation of the pupil
image along the ray trajectory. (Bottom) Results of the edge detec-
tor convolution along each ray. The red line shows the strongest filter
response location, while the green represents the Gaussian interpolation
with subpixel accuracy (color figure online)

peak response in general corresponds to the pupil—iris bound-
ary, other strong responses might be caused by eyelashes and
scene reflections. To lower the effect of such noisy rays, a
normalized weight is used to sort the rays as follows:

Ry ()

We= e \ SR e
/ >ic Ry

(&)

where R} (j) denotes the edge response at position j of ray
Ry, and Wy the weight attributed to ray Ri. Typically, 10%
of rays with the lowest weight are discarded.

To further improve the robustness of the technique against
outliers, a second filtering is performed, this time is based on
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Fig. 6 Top: intensity profile of each ray extracted from a dark pupil
image and corresponding convolutions. Bottom: the result of filtering
using local statistics

local statistics of the spatial distribution of candidate posi-
tions. Consider the array E containing the pixel locations of
the peak edge responses of each ray, sorted by the associated
angle of projection. Each position in this array is a candidate
to be part of the pupil contour and, therefore, we expect the
values in E to vary smoothly. To remove outliers, we com-
pute an array (o) with the local standard deviation (LSD).
Each value in o contains the standard deviation (SD) of
a neighborhood around the corresponding value in E (the
neighborhood is typically of size 7). Outliers are expected
to have high LSD, which are detected by thresholding as the
candidates with values higher than the mean plus the SD over
all LSD, i.e., threshold = 1., + 05, . Figure 6 shows a pupil
partially covered by eyelashes and the candidates filtered by
this mechanism.

For the remaining rays, subpixel accuracy is obtained by
interpolating the values around the pixel with strongest edge
response similar to [6]. Figure 5 shows the intensity profiles
of the rays computed from a bright pupil image and the cor-
responding strongest responses along with the results of the
Gaussian interpolation (shown in green).

The computation of the interpolation is very efficient and
can improve the accuracy of each pupil boundary estimation
by 0.5 pixel. Considering a worst-case scenario where the
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pupil center is shifted by 0.5 pixel due to quantization error,
this could represent an improvement in gaze estimation accu-
racy of about 0.5°, when the magnitude of the PCR vector is
small.

An ellipse is fitted to the remaining candidates based on
the direct least-squares method [9].

Instead of using the overlap area to define the pupil candi-
date, the actual pupil countour is described by an ellipse e,,
defined by the 4-tuple:

¢o = (ag, bk, Ck, k). (6)

The index K denotes keyframes, i.e., frames where the pupil
ellipse is fully computed using this subpixel process. The
next section shows how keyframes can be used to reduce
computational cost by exploiting natural eye behaviors.

When the ellipse ¢, is larger or smaller than the expected
size and shape of a pupil or e, is not completely contained in
the image, the refinement process stops and reports that no
pupil was detected in the frame.

4 Extended temporal support

Basic eye movements can be classified into fixations, sac-
cades, and smooth pursuits [31]. Because our vision is
foveated, during a fixation the target of interest must be pro-
jected onto the fovea to be perceived at the highest resolution.
The fovea only covers a small region of the retina, so the eye
must stay somewhat stable during fixations. To perceive all
the details of large objects, the eye must fixate on several
locations. A saccade is a fast ballistic eye movement that
moves the eye to different locations. Pursuits are eye move-
ments used to foveate on moving objects, such as a flying
bird.

Differential lighting works better when the overlap
between the bright and dark pupil images is large. During
saccades, the overlap region between two consecutive frames
may become quite small for slow frame-rate cameras. Fast
frame-rate cameras are used when saccades are required to
be tracked. Nonetheless, slow frame-rate cameras are still
adequate when tracking saccades are not important, e.g., for
most gaze interaction applications.

Regardless of camera frame-rate, a DL eye tracker typi-
cally detects the pupil at every frame, considering the overlap
from the previous frame. Though the pupil position could be
predicted during pursuits by regular computer vision tracking
algorithms, the erratic behavior of the eye during saccades
makes pupil positions hard to predict.

Instead of using consecutive frames to estimate the pupil
positions, our extended temporal support (xTS) technique
computes most pupil displacements from selected keyframes,
speeding up the computation of the new pupil position.

@ Springer
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Fig.7 xTS pupil position estimation process using a bright pupil (BP)
as keyframe. A dark pupil (DP) center C is computed as a function of
the keyframe pupil center Cy and the blob ellipse center B

The basic idea is shown in Fig. 7. Consider as keyframe
a bright pupil (BP) image. When any dark pupil (DP) image
with sufficient overlap is grabbed, the new pupil position C
can be estimated as a function of the position of the pupil
Ck in the keyframe and the center B of the overlap blob,
computed as the center of mass of the blob. Assuming that
B P and D P are about the same size, C can be computed as

C =B+ (B —Ck). )

The xTS algorithm maintains both a dark and a bright pupil
keyframes. The algorithm for pupil tracking using extended
temporal support with SDL (xSDL) uses those keyframes,
whenever they are available, to compute the overlap region
from the difference image of the most current frame and
its appropriate keyframe (dark or bright). When the over-
lap is significant (typically, the minimum overlap width is
set to be at least half the length of the keyframe’s pupil
minor axis), the new pupil center used for gaze estima-
tion is computed using (7). Otherwise, xSDL tries to detect
the pupil in the current frame using the previous frame.
If successful, the two consecutive frames are considered
as a new pair of keyframes (dark and bright). In case no
pupil is detected and no keyframe is available, the algo-
rithm continues to detect pupils using consecutive frames
until keyframes are once again available. Long periods with-
out any pupil being detected is possible during blinks for
example.

Algorithm 1 gives a pseudocode overview of xSDL.

Observe the control variable until_reset in Algo-
rithm 1 that is used to reset xXSDL after K consecutive
frames. The idea is to avoid long periods of gaze estimation
without recomputing the accurate pupil contour (keyframe)
to improve the overall accuracy of the system and limit
the accumulation of errors. In Sect. 5, we investigate the
influence of K in the system’s accuracy and processing
time.
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Cur = GrabFrame(); /* bright or dark pupil */
continue = True; /* set by external events */
while continue :

Prv = Cur;

Cur = GrabFrame();
P, CR = detectFullSDL(Prv, Cur);
/* see section 3.1 to 3.3 */
estimateGaze(P, CR);
if good( P, CR ) :
keyfs = setKeyframes( Prv, Cur );
until_reset = K;
/* resets after K frames */
while good(P, CR, keyfs) and until_reset :
Prv = Cur;
Cur = GrabFrame();
P, CR = detectXTS( Cur, keyfs);
estimateGaze(P, CR);
until_reset-=1;

Algorithm 1: Overview of the xSDL.

5 xSDL empirical evaluation

We compare the performance of xSDL with the following
four eye tracking algorithms: Starburst [22], ExCuSe [10],
ElSe [11], and the method proposed by Swirski et al. [37].
Li and Parkhurst [22] introduced Starburst, a hybrid
method that integrates feature-based and model-based
approaches to detect the pupil. Starting from a point within
the pupil, rays are projected radially to detect pupil—iris
boundary points, i.e., where the derivative is larger than a
threshold. Those feature points are used to fit an ellipse using
RANSAC. The process is repeated starting at each feature
point and projecting rays on the opposite direction. To reduce
possible bias from the selected initial point, the process is
iterated replacing the start point by the average location of
all feature points until convergence, i.e., the averaged center
differs less than a given threshold from the starting point loca-
tion. An ellipse is fitted to the feature points using RANSAC,
followed by an image-aware model-based optimization used
to improve the fitting. The algorithm also finds the CR using
adaptive thresholding and removes it using interpolation.
ExCuSe (Exclusive Curve Selector), developed by Fuhl
et al. [10], is based on edge filtering and oriented his-
tograms calculated via the Angular Integral Projection (AIP)
function. The method follows different processing flows
depending on the normalized image histogram. When a
bright peak is detected, the pupil is estimated using an edge-
filtering approach. The edge-filtering comprehends several
steps applied to the Canny-edge image. The first step discards
single pixels, small rectangles, and straight lines. The next
step selects the curve that most likely encloses the pupil (the
darkest area). Finally, an ellipse is fitted using all points in
the selected curve with a direct least-squares method. In case
a peak is not detected in the normalized image histogram, a
coarse pupil position is estimated using AIP functions on a

thresholded image followed by a refinement step. Four AIP
are computed 45°apart, and the pupil position is assumed to
lie in the intersection of the strongest function responses. The
pupil center is then refined by ellipse estimation similar to
the one employed by the Starburst method [22].

ElSe (Ellipse Selector), from Fuhl et al. [11], is also
based on edge filtering. After Canny-edge filtering, edges are
filtered out (using edge thinning followed by edge straighten-
ing) and separated so that every edge has elliptical shape. The
next step selects the best ellipse fitted to the edges, according
to their area, shape, and intensity ratio between the inside and
outside area. In case no ellipse is found (e.g., due to motion
blur), a coarse estimation of the pupil position is computed
using convolution in the downscaled image, followed by a
refinement step. As this second part of the method always
computes an ellipse, a validation is performed as a last step
to avoid returning a pupil position for a closed eye.

The last method used in the evaluation is the one proposed
by Swirski et al [37]. The method uses a Haar-like feature
detector to initially find a rough estimation of the pupil loca-
tion. The intensity histogram of a region around the coarse
position is clustered using k-means to refine the pupil cen-
ter. Finally, the algorithm estimates the pupil contour with an
image-augmented RANSAC ellipse fitting. Robustness and
accuracy are improved by employing a support function that
weights inliers according to their gradient direction and mag-
nitude, preferring sets of points which agree with the ellipse
gradient.

All these algorithms have a C or C++ source code available
for download. The Starburst implementation used is avail-
able online [22] in both C and MATLAB versions. The C
version lacks the model-based optimization step which we
have added for completeness. The experiments with Star-
burst, ElSe, and ExCuSe, used their default parameters, as
provided by their source codes. The experiments with Swirski
et al. algorithm also used default parameters, except for the
pupil minimum and maximum radii, for which the technique
showed to be quite sensitive. This parameter was adjusted
ONCe per user.

The experiment was designed to compare the performance
of each method in a typical gaze estimation task. Ten people
(4 females) from 30 to 59 years old (mean 36.2) volunteered
for the experiment. All participants had normal vision with-
out the need of any correction lenses.

The participants’ task was to fixate their gaze on 35 small
circular targets (7 pixels in diameter) arranged in a 5 x 7
grid. Targets were displayed one at a time in random order
for about 3 seconds. Only the 800 ms interval 500 ms before
the next target presentation were considered for analysis. A
1680 x 1050 resolution, 60 Hz, 22 monitor was used, with
a 20 pixel border at each side of the monitor. The distance
between the monitor and the participants’ eyes was about 70
cm.
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Fig.8 System prototype used to compare eye tracking methods based
on xSDL and dark pupil-only methods

5.1 Apparatus

The xSDL eye tracker prototype was built using a low-cost,
off-the-shelf Play Station 3 video camera [36]. Because all
algorithms except xXSDL work with the dark pupil image,
our prototype actually included 2 identical cameras and two
independent lighting systems: one to capture the sequence of
dark and bright pupil images using structured illumination
needed for xSDL, and the other to capture only the dark pupil
images for the other methods. Figure 8 depicts this setup.

The structured illumination system (used by the xSDL
method) was composed of one on-axis and one off-axis light
sources (sets of 850 nm LEDs) controlled by an Arduino
board.

The continuous illumination system responsible for pro-
ducing dark pupil images only was built using 940 nm LEDs.
A flat-convex lens of 20 mm focal length was used to improve
the LED efficiency. This source was also filtered using a nar-
row bandpass filter centered on the emitter wavelength.

After passing through the objective lens, the light was sep-
arated into two paths by a custom made beam splitter. Each
path projected light to a different video camera: one for xSDL
algorithm and the other for dark pupil-only algorithms. To
avoid light interference between the different illumination
systems, bandpass filters were placed in front of the cam-
era sensors: a 850 nm pass filter for the xSDL camera and a

940 nm filter for the other camera. Thus, the eye image was
captured from the same perspective using both illumination
systems (the stroboscopic technique and constant illumina-
tion), as shown in Fig. 9.

To reduce camera biasing due to different spectral
responses, such as increased noise at 940 nm due to a reduced
sensitivity in this wavelength, both cameras were initially
adjusted to the same fixed settings, and then the power of
each illuminator was calibrated to generate images of the
same brightness.

5.2 Data analysis

We used 9 (out of the 35) points to calibrate a second-order
polynomial function. This function was used to estimate the
gaze position at all of the 35 points to compute the gaze
estimation error.

We use three metrics to evaluate the methods: pupil detec-
tion robustness, gaze estimation accuracy and precision, and
processing time.

Pupil detection robustness refers to the proportion of
frames that a method is able to detect the pupil. All images
collected were manually inspected and only those contain-
ing the pupil image were used for evaluation. For xSDL, the
sequence of frames contained bright and dark pupil images.
For all other methods, the sequence of frames contained only
dark pupil images. Because Swirski’s method and Starburst
always return a pupil boundary even though these methods
did not accurately detect the pupil, we decided to consider
frames with a gaze estimation error above 5° as no pupil
detection.

The accuracy of each method is defined as the average
gaze estimation error over all 35 target locations. Error in
gaze estimation is the difference between the actual target
position and the estimated gaze position in degrees of visual
angle. The precision is given by the standard deviation of
each participant’s error.

Fig.9 Example capture of a participant with an ongoing saccade. On top, XSDL camera images and on bottom, continuous 940 nm illuminated

images
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The processing time is computed as the average time a
method took to process each frame. All methods were timed
using the same computer platform, a notebook equipped with
an Intel i7-7700HQ Processor with 8 logical cores running
at 2.8 GHz and 16 GB of RAM.

6 Results
This section presents the experimental results of pupil detec-

tion robustness, gaze estimation accuracy and precision, and
processing time.

6.1 Influence of the reset rate (parameter K)
The performance of xSDL can be controlled by the reset
rate parameter K. For small K values, we expect xSDL to

be as accurate as SDL and, as K increases, the accuracy
might drop to improve speed. In this section, we will consider

2.5 1 o} —‘7
2.0 1 o —‘7

1.5 |:| l
=
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0.5 A

Error of gaze estimation
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Fig. 10 Boxplot of accuracy for each K computed with data from the
ten participants

K = 0 to be the performance of SDL (i.e., the pupil contour
is computed at every frame with subpixel accuracy) and K =
oo to be the fastest xSDL, i.e., a new keyframe is computed
only when the overlap becomes small. In our experiments,
the pupil contour for K = oo is recomputed when the overlap
becomes smaller than half the radius of the pupil. We will also
consider the intermediate values for K € {5, 15, 30, 100}.

Figure 10 shows a boxplot of the accuracy of xSDL for
each K value, where the gaze estimation error was com-
puted for all frames with a successfully detected pupil. We
run a Friedman test and found a significant effect of K on
accuracy (x2(6) = 50.54, p < 0.01). A post-hoc Wilcoxon
signed rank test with Holm correction showed that K = 0
(grand median 0.60°) was significantly more accurate com-
pared to K = 15 (grand median 0.80°), K = 30 (grand
median 1.04°), K = 100 (grand median 1.27°), and K = oo
(grand median 1.70°), p < 0.05 in all cases. We also found
a significant difference between K = 15 and K = 100 and
K = oo(p < 0.05).

The distributions of the average error for all participants
and K values are shown in the histograms in Fig. 11. Observe
that, as expected, the number of pixels with large error
increases as K becomes larger.

Figure 12 shows the boxplot of the processing time per
frame for each K value, considering all ten participants. The
histograms in Fig. 13 show that the processing time distri-
bution is bimodal when K is greater than zero, as expected
since some frames only compute the overlapping region. We
can also observe that the first mode (that correspond to fast
frame processing) increases with higher values of K.

We run a Friedman test and found a significant effect of
K on processing time (x2(6) = 55.48, p < 0.01). A post-
hoc Wilcoxon signed rank test with Holm correction showed
that the only computation times to differ statistically were
K = 15 (grand median 0.52 ms) to K = 30 (grand median
0.48ms), K = 30 (grand median 0.48 ms)to K = 100 (grand
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Fig. 11 Histograms of the gaze estimation error for all participants and K values
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Fig. 12 Boxplot of processing time per frame for each K computed
with data from the ten participants. Note that the vertical axis has a
logarithmic scale to facilitate visualization

median 0.46 ms) and K = oo (grand median 0.44 ms), and
K =100to K = oo(p < 0.05).

Due to the good tradeoff between accuracy (less than 1°)
and speed (close to 2 KHz in the computer used in the experi-
ments), in the remainder of this section we willuse K = 15to
compare the performance of xXSDL with other state-of-the-art
eye tracking methods.

6.2 Pupil detection robustness

For each participant x method in all captured frames, we
computed the proportion of frames where the pupil was
detected (i.e., with a gaze estimation error below 5°). Fig-
ure 14 shows the boxplot for all methods.

Because data are not normally distributed, as can be
observed in Fig. 14, we ran the non-parametric Friedman test.
Results showed a significant effect of algorithm ( X2(4) =
24.32, p < 0.01). A post-hoc Wilcoxon signed rank test with
Holm correction showed that xSDL (grand median 99.25%)

=0 K=5 K=15
] o
3 g
o ™
S _
B =]
2 i
o
S 1 o 3 |
0 o | Y
> =4 A
(8]
c 7 -
S o
o
o o | o o
L3 8 3
[T
4 ° i
8,
8 - o
Sl Jdl
o J J o J_dikdl [ o J ‘l‘}ﬂ»»
0.1 1 5 0.1 1 5 0.1 1 5

100 4 —_— p— ——
] %
c 90
o
2
g 0
D 80 6}
°
=y
= ]
a 704
w—
S
@
S 60 1
C
=l
(%]
2
) 50 A
o
40 1
[0}
ElSe ExCuSe Swirski xSDL (K=15)  Starburst

Fig. 14 Boxplot of pupil detection robustness for each method com-
puted with data from the ten participants

was significantly different than ElSe (grand median 93.87%)
and ExCuSe (grand median 82.41%). The method of Swirski
(grand median 99.18%) was significantly different than ElSe,
ExCusE, and Starburst (grand median 96.57%), p < 0.05 in
all cases. All other combinations were not statistically sig-
nificant.

6.3 Gaze estimation accuracy and precision

For each method, the gaze estimation error was computed for
all frames with a successfully detected pupil. For all methods,
the error distribution was right-skewed, as shown in Fig. 15,
though ElISe and ExCuSe had a larger dispersion. Because
of the different distributions, we computed the median error
of each participant for each method. Figure 16 shows the
boxplot of gaze estimation error for the ten participants for
each method.

As can be observed in Fig. 16, xSDL (grand median 0.79°)
and Swirski (grand median 0.8°) had a very similar accu-
racy, followed by Starburst (grand median 1.1°). ElSe (grand
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Fig. 13 Histograms of the processing time per frame for all values of K and all participants. Time in the horizontal axis is in log scale
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Fig. 15 Histograms of the gaze estimation error for all participants and methods
We computed the median processing time per frame for
25 1 o —‘7 each participant and method. Figure 18 shows the boxplot of
c processing time for the ten participants. Because of the large
2 —‘7 difference in processing time among methods, we used a
© 2.0 4 {0} . . . . o . . .
E 5 logarithmic scale in Fig. 18 to facilitate visualization. As can
g be observed, xXSDL had the smaller processing time (grand
g 1.5 | median 0.52 ms) and also the smaller variation (IQR 0.057
5 ms). Starburst had the second lowest average running time
g 1o . l;! (grand median 1.29 ms, IQR 0.46 ms). On the other hand,
W !i! ElSe had the larger processing time (grand median 14.54 ms),
o] .
!i! followed by ExCuSe (grand median 6.71 ms, IQR 2.27 ms),
0.5 - and Swirski (grand median 4.61 ms, IQR 3.23 ms). Swirski
K=o Kes5 K=15  K=30 K=100 Keinf had the larger variation. A Friedman test showed a significant

Fig. 16 Boxplot of accuracy for each method computed with data from
the ten participants

median 1.5°) and ExCuSe (grand median 1.91°) had the
larger error. We run a Friedman test and found a significant
effect of algorithm on accuracy ( X2(4) =30.48, p < 0.01).
A post-hoc Wilcoxon signed rank test with Holm correction
showed that xSDL was significantly more accurate compared
to ElSe and ExCuSe, p < 0.05 in all cases. Swirski’s dif-
ference compared to ElSe, ExCuSe, and Starburst was also
significant (p < 0.05).

6.4 Processing time

We measured the time (in milliseconds) to process each
frame. The histograms in Fig.17 show that the process-
ing time distribution varied largely among methods. For
Swirski’s, the distribution was more scattered compared to all
other methods. Swirski, ExCuSe, and xSDL had a bimodal
distribution that reflects the existence of different execution
paths in their algorithms. Processing time of ElSe and Star-
burst had a unimodal distribution.

effect of algorithm (x2(4) = 36.88, p < 0.01). A post-
hoc Wilcoxon signed rank test with Holm correction showed
that processing time per frame differed significantly between
all methods (p < 0.05 in all cases), with the exception of
Swirski and ExCuSe (p = 0.77).

7 Discussion

Experimental results support that xSDL requires less pro-
cessing power compared to the other state-of-the-art methods
that were evaluated, while still presenting good robustness,
accuracy and precision. For smaller K values, the xSDL can
outperform all the tested methods in robustness, accuracy and
precision while still preserving the computational efficiency.

The improved pupil detection robustness of xSDL could
be attributed to the differential lightning technique, since it
takes advantage of the sequence of dark and bright pupil
images generated by the alternating light sources. The over-
lapping pupil area computed by the difference of consecutive
(dark-bright or bright—dark) images serves as a robust esti-
mator of the pupil location in the image, thus discarding false
positives. Dark pupil image-based methods rely on histogram
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Fig. 18 Boxplot of processing time per frame for each method com-
puted with data from the ten participants. Note that the vertical axis has
a logarithmic scale to facilitate visualization

analysis (such as ExCuSe and Swirski) or high contrast areas
(borders detected by Canny-edge filter or derivative) as a
rough estimation of the pupil location. These feature-based
approaches could result in areas not corresponding to the
pupil to be detected as such, e.g., a black blob in the captured
image. Among these methods, Swirski was the only one that
had a robustness close to xSDL, but at the cost of a much
larger running time and hence computational power.

xSDL was also among the three most accurate and pre-
cise methods. Accurate gaze estimation is very important
for many applications, such as to point at small visual tar-
gets in a gaze-controlled interface such as a virtual keyboard.
More accuracy allows to include more objects in an interface,
e.g., punctuation, accents, and control commands in a virtual
keyboard. Accuracy also reduces the number of selection
errors. Precision is also very important, since gaze estima-
tion is more consistent, improving the quality of gaze data.
Better quality implies a better usability in gaze-controlled

@ Springer

interfaces, and also more accurate results in medical appli-
cations that use gaze information.

Computational efficiency is another advantage of xSDL,
as shown by the average processing time of each method. Not
only xSDL is the fastest method, but it also holds the smallest
dispersion among all methods. Our prototype was tested at
60 frames per second to keep infrared radiation within safe
limits, as two independent illumination sources were in use.
By reducing the infrared radiation emission (i.e., by using
our technique alone), it is possible to run the prototype at
187 frames per second with the same low-cost PS3 video
camera. By using faster cameras it would be possible to run
xSDL at almost 2000 Hz with a similar computer proces-
sor, given the short average processing time of 0.59 ms per
frame. It is noteworthy that ElSe and ExCuSe had a bimodal
distribution processing time. This could be explained because
those two algorithms have 2 possible execution paths. If the
main execution path fails, then those methods use a sim-
pler approach in an effort to detect the pupil. Though we did
not verified whether ElISe and ExCuSe indeed ran different
execution flows in our experiment, this hypothesis explains
the bimodal distribution in their processing time histograms.
Swirski et al. method possess the largest variation, with a
mean processing time of 8.02 ms (IQR 3.23 ms).

7.1 Limitations and future work

Similar to any feature detection-based eye tracker using near
IR lighting, xSDL will not perform well in bright natural
illuminated scenarios. It can be also affected by occlusion of
the pupil and corneal reflections by glasses and eyelashes.
The ellipse fitting might also fail to detect very distorted
pupil images generated when the camera is placed highly off
the optical axis of the eye, typical in some head mounted
configurations [12,34].
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Though xSDL can be used with any digital off-the-shelf
camera, it requires additional custom hardware to control
the firing of the stroboscopic lighting. Our prototype is con-
stituted of a simple Arduino board that, though simple to
use, might require some knowledge and experience to build.
Nonetheless, xSDL arises as a low-cost, high-performance,
and robust eye tracker alternative for gaze-based applica-
tions.

We are currently working on an autonomous version of
xSDL. The idea is to create a camera “attachment” that elim-
inates the physical connection of the computer to the xSDL
hardware. The attachment would turn any digital camera into
a high-quality portable eye tracker.

8 Conclusion

Differential lighting (DL) is a robust and computationally
efficient pupil detection technique developed in the 90’s for
analog cameras. We have shown, in previous papers, that
the use of stroboscopic differential lighting (SDL) allows
DL to be used with any modern and low-cost rolling-shutter
digital camera. We believe that its improved performance will
compensate the trouble of building the extra synchronization
hardware (in case itis not already available) in gaze-enhanced
wearable computers.

This paper introduced the extended temporal support com-
puter vision algorithm that further improves the performance
of SDL, we called xSDL. Traditional computer vision track-
ing techniques are not used for eye tracking in general
because they are either computationally expensive (such as
correlation-based methods) or do not perform well due to the
unpredictable eye movements during fixations. SDL detects
the pupil at every frame by simple image differencing and
works better when the overlap between bright and dark pupil
images is large, i.e., it works well during fixations. xSDL
selects keyframes (dark and bright pupil images) to serve as
reference images. The position of the pupil in keyframes is
computed with high accuracy. This position is then refined
by xSDL using the translation of the overlap region com-
puted from the difference image. Our results show that xSDL
configured to recompute the pupil contour at least every 15
frames (K = 15) can achieve high speed and accuracy.

To compare xSDL performance against other state-of-the-
arteye tracking algorithms available in the literature, we have
created a two-camera apparatus that simultaneously collects
videos of the eye that are appropriate for xSDL (that requires
bright and dark pupil images), and the other methods, that
only use dark pupil images. Therefore, the methods were
compared using videos showing exactly the same eye behav-
iors and with the same frame rate (and other video properties).

Our results show that xSDL outperforms those four algo-
rithms. Using 240 line images and K = 15, xSDL is able to

process close to 2000 fps, with an accuracy of about 0.7°and
detecting the pupil practically all the time. This level of accu-
racy and robustness is similar to the method of Swirski et
al. [37], though this alternative is much more computation-
ally expensive.
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